
Knowledge Representation for Explainability in
Collaborative Robotics and Adaptation
Alberto Olivares-Alarcos1, Sergi Foix1 and Guillem Alenyà1

1Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain

Abstract
Autonomous robots are going to be used in a large diversity of contexts, interacting and/or collaborating
with humans, who will add uncertainty to the collaborations and cause re-planning and adaptations to
the execution of robots’ plans. Hence, trustworthy robots must be able to store and retrieve relevant
knowledge about their collaborations and adaptations. Furthermore, they shall also use that knowledge
to generate explanations for human collaborators. A reasonable approach is first to represent the domain
knowledge in triples using an ontology, and then generate natural language explanations from the stored
knowledge. In this article, we propose ARE-OCRA, an algorithm that generates explanations about target
queries, which are answered by a knowledge base built using an Ontology for Collaborative Robotics
and Adaptation (OCRA). The algorithm first queries the knowledge base to retrieve the set of sufficient
triples that would answer the queries. Then, it generates the explanation in natural language using the
triples. We also present the implementation of the core algorithm’s routine: construct explanation, which
generates the explanations from a set of given triples. We consider three different levels of abstraction,
being able to generate explanations for different uses and preferences. This is different from most of
the literature works that use ontologies, which only provide a single type of explanation. The least
abstract level, the set of triples, is intended for ontology experts and debugging, while the second level,
aggregated triples, is inspired by other literature baselines. Finally, the third level of abstraction, which
combines the triples’ knowledge and the natural language definitions of the ontological terms, is our
novel contribution. We showcase the performance of the implementation in a collaborative robotic
scenario, showing the generated explanations about the set of OCRA’s competency questions. This work
is a step forward to explainable agency in collaborative scenarios where robots adapt their plans.
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1. Introduction

Throughout the next decades, research and industry are expected to experience several trans-
formations towards autonomous robots that operate in a large spectrum of environments and
tasks. This includes scenarios where robots interact and/or collaborate with humans, who
would add uncertainty and constraints to the environment. The development of applications
where humans and robots closely collaborate, triggers the appearance of several issues such as
those related to trustworthiness between the partners. Hence, autonomous collaborative robots
shall, among others, be able to store and retrieve knowledge about their experiences to explain
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their decisions and actions. For instance, knowledge about how their tasks’ requirements (e.g.
safety) and the changes in their environment affect their plan adaptations. Furthermore, each
human collaborator might prefer a different type of explanation and robots should be able to
provide several types.

Nowadays, there is a need for trustworthy intelligent agents, specially due to the growing
trend of using ‘black-box’ machine learning algorithms. Aligned with this idea, the European
General Data Protection Regulation (GDPR) law [1] has considered the right to explanations.
Hence, research on eXplainable Artificial Intelligence (XAI) [2] has recently gained significant
momentum. Indeed, there are several works on interpreting the results of ‘black-box’ machine
learning mechanisms such as deep neural networks [3]. Furthermore, it is also possible to find
other efforts towards explainable agency (i.e. explaining the behavior of goal-driven agents and
robots) [4], and explainable automated planning and decision-making [5].

Langley et al. [6], discussed the need for three elements of explainable agency: a represen-
tation of the domain knowledge, a way to store the knowledge, and the ability to access and
retrieve the knowledge to generate explanations. Knowledge representation formalisms such as
ontologies, are commonly used to store and retrieve knowledge in the robotics domain. Indeed,
the 1872–2015 IEEE Standard Ontologies for Robotics and Automation [7] presented a core
ontology for robotics and automation, which is currently being extended to other robotics’
sub-domains [8]. Furthermore, ontologies have been widely used for autonomous robotics
during the last years [9]. Out of the robotics domain, a few works have used ontologies to
generate natural language (NL) explanations [10, 11]. In other works ontologies helped with
improving the human understanding of global post-hoc explanations, presented in the form
of decision trees [12]. Although inspiring, in none of those works can we find methods that
are able to generate different types of explanations, a desirable functionality that has already
been considered for the verbalization of robot’s plans [13]. Furthermore, to the best of our
knowledge, ontologies have not been used for explainable agency in robotic domains yet.

(a) (b)

Figure 1: Collaboratively filling a tray: example of a collaborative task where the human would
require explanations about the collaboration and the robot’s plan adaptations. (a) Indirectly physical
collaboration, the human and the robot move close to each other without contact. (b) Directly physical
collaboration, the human and the robot exchange forces.

In this article, we explore how storing robots’ experiences in a knowledge base, might help to



generate human readable explanations about robots’ collaborations and plan adaptations. The
relevant knowledge is formally represented with OCRA, an Ontology for Collaborative Robotics
and Adaptation [14]. Here we present ARE-OCRA, an algorithm to generate explanations about
robots’ collaborations and plan adaptations using the retrieved facts from the knowledge base.
We implement the core algorithm’s routine that provides different explanations depending on
the level of abstraction, from robot formal knowledge to more human readable formats. The
first level reports the set of sufficient triples that would answer the target query or queries. This
could be used by ontology experts to debug the reasoning system. The second level, inspired by
other literature baselines, produces a NL sentence joining the knowledge from the triples with
aggregation rules commonly used in NL generation. Finally, the third level of abstraction is
our novel contribution. It extracts the relevant entities from the triples and inserts them in the
available natural language definition of the ontology entities. The implementation is applied to
a collaborative robotics scenario, in which a human and a robot share the execution of a task
(see Fig. 1). The contributions of this work are:

• the design of an algorithm to generate explanations for collaborative robotics and adapta-
tion by means of an ontology;

• an implementation of the core routine: construct explanation. It uses a set of sufficient
triples to answer the target queries, and generates a natural language explanation in three
different levels of abstraction;

• and a qualitative validation in different situations extracted from a real case: a complete
collaborative task in which a human and a robot, closely interacting, fill a tray with
tokens.

2. ARE-OCRA: Algorithm for Robot Explanation with an
Ontology for Collaborative Robotics and Adaptation

Given a human and a robot collaboratively executing a task, we can represent and store the
knowledge about their collaboration and adaptations using the ontology OCRA. The algorithm
ARE-OCRA (see Alg 1) first gets all the instances of interest in our queries (see line 2), e.g.
Collaborations or Plan adaptations . Second, the algorithm extracts a set of sufficient triples
to explain some target queries (line 4). Third, ARE-OCRA uses the set of triples to generate
the final explanation in NL (line 5). In this work, we present an implementation of the main
routine: construct explanation. Hence, we assume that in the knowledge base there is only one
target instance (e.g. a Collaboration), and that the set of triples has already been generated by
querying the knowledge base.

The construct explanation routine (see Alg. 2) is able to generate three different explanations for
the same set of triples, depending on the desired level of abstraction. The first level just processes
the triples and concatenates them (see line 2). In the second level of abstraction, the implemented
routine joins the triples using commonly natural language generation rules [15] (line 4). This
level represents the baseline and it is inspired by other works from the literature [10, 11]. Note
that until this point, we are generating natural language from the formal axioms of the ontology.
Finally, the third level is our novel contribution and it generates the most abstract explanation



(line 9). We use the NL definitions of the ontology terms and combine them with the knowledge
from the triples. These definitions are distributed together with OCRA, and capture the same
notion that is represented in the logical axioms of a term, but in an more human friendly way.

In this maximum level of abstraction, we first choose the NL definition depending on the
triples’ knowledge (lines 10-11). The triples are prepared so that we can detect which is the main
term in the explanation. There is a triple indicating that an entity is individual of one of the
OCRA’s classes (e.g. Plan adaptation ). Second, we use pre-defined tags to know where to insert
the relevant knowledge from the triples (line 12). In the NL definitions, after the mention to the
relevant classes appearing in the axioms, we find the tags. Looking into the triples and using
the tags, we extract the knowledge that corresponds to each tag (line 13), and we substitute the
tag by it (line 14). For instance, in an explanation about a Plan adaptation , the NL def. has a
tag after the mention to the initial plan: ’is worse plan than’. In the triples, we could find the
instance corresponding to the initial robot’s plan by using the tag. At this point, we already
have the NL definition filled with instances from the triples. Finally, we extract from the triples
the instance that is individual of the target ontological entity (e.g. Plan adaptation). The final
explanation starts with a sentence referring to this instance-class relationship (lines 14-15):
’High risk plan adaptation’ is an instance of ’Plan adaptation’, followed by the NL definition
obtained before.

Algorithm 1: ARE-OCRA
Input: Target competency questions (𝑞), abstraction level (𝑎), natural language

definitions (𝑛𝑙), ontology properties and their inverse (𝑜𝑛𝑡_𝑝𝑟𝑜𝑝)
Output: Robot’s explanation (𝑒𝑥𝑝)

1 𝑒𝑥𝑝 ←− ∅
2 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ←− GetTargetEventInstances(𝑞)
3 foreach 𝑒𝑖 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do
4 𝑡𝑟 𝑖𝑝𝑙𝑒𝑠 ←− GetTriplesFromKnowledgeBase(ei, q)
5 𝑒𝑖_𝑒𝑥𝑝 ←− ConstructExplanation(𝑡𝑟 𝑖𝑝𝑙𝑒𝑠, 𝑎, 𝑛𝑙, 𝑜𝑛𝑡_𝑝𝑟𝑜𝑝)
6 𝑒𝑥𝑝 ←− 𝑒𝑥𝑝 + 𝑒𝑖_𝑒𝑥𝑝
7 end
Result: Robot’s explanation (𝑒𝑥𝑝)

3. Validation: collaboratively filling a tray

In the collaborative task depicted in Fig. 1, there are several situations from which a human
might require an explanation. For instance, we can find different risks or types of collaborations,
and the robot might adapt to different unexpected situations such a high risk of collision. In this
work, we have focused on providing explanations to the competency questions of the ontology
OCRA, which are presented in our previous work [14]. The competency questions are the set
of queries that fix the scope of an ontology. Some examples are:

• Plan adaptation questions: Why is an adaptation of an agent’s plan happening? Which
is the plan before and after an adaptation?



Algorithm 2: Construct explanation routine.
Input: Sufficient set of triples to answer the queries (𝑡𝑟 𝑖𝑝𝑙𝑒𝑠), abstraction level (𝑎),

natural language definitions (𝑛𝑙), ontology properties and their inverse (𝑜𝑛𝑡_𝑝𝑟𝑜𝑝)
Output: Sentence explaining a set of triples (𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛)

1 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 ←− ∅
2 if a == 1 then
3 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 ←− TriplesListToSentenceFirstLevel(triples)
4 else if a == 2 then
5 𝑚𝑜𝑑_𝑡𝑟 𝑖𝑝𝑙𝑒𝑠 ←− CastTriples(𝑡𝑟 𝑖𝑝𝑙𝑒𝑠)
6 𝑚𝑜𝑑_𝑡𝑟 𝑖𝑝𝑙𝑒𝑠 ←− ClusterTriples(𝑚𝑜𝑑_𝑡𝑟 𝑖𝑝𝑙𝑒𝑠)
7 𝑚𝑜𝑑_𝑡𝑟 𝑖𝑝𝑙𝑒𝑠 ←− OrderTriples(𝑚𝑜𝑑_𝑡𝑟 𝑖𝑝𝑙𝑒𝑠)
8 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 ←− GroupTriplesIntoASentence(𝑚𝑜𝑑_𝑡𝑟 𝑖𝑝𝑙𝑒𝑠)
9 else
10 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑙_𝑖𝑑 ←− SelectTargetNLDefinitionID(𝑡𝑟 𝑖𝑝𝑙𝑒𝑠)
11 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑙 ←− SelectTargetNLDefinition(𝑛𝑙, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑙_𝑖𝑑)
12 𝑡𝑎𝑔𝑠 ←− ExtractTagsFromNLDefinition(𝑛𝑙, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑙)
13 𝑡𝑎𝑔𝑠_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 ←− GetKnowledgeAboutTags(𝑡𝑎𝑔𝑠, 𝑡𝑟 𝑖𝑝𝑙𝑒𝑠, 𝑜𝑛𝑡_𝑝𝑟𝑜𝑝)
14 𝑖𝑛𝑖𝑡 𝑖𝑎𝑙_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ←− SubstituteTagsByKnowledge(𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑙, 𝑡𝑎𝑔𝑠_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒)
15 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ←− SelectOntologicalTargetInstance(𝑡𝑟 𝑖𝑝𝑙𝑒𝑠)
16 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 ←− AddKnowledgeAboutClass(𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑙_𝑖𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖𝑛𝑖𝑡 𝑖𝑎𝑙_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)
17 end

Result: Sentence explaining a set of triples (𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛)

(a) (b) (c)

Figure 2: Robot’s plan adaptation to a situation of high risk of collision: (a) First the robot executes
its initial plan, filling compartment 9; (b) then the robot detects a situation of high risk and stops, (c)
Finally, the human interacts with the robot while it executes its new plan: stop and remain compliant
until a human command is received.

We have made available an open source implementation of the routine construct explanation
together with some use cases1. In addition, we present one of those cases in detail in this
document: a plan adaptation triggered by a predicted high risk of collision (see Fig. 2).

In the proposed plan adaptation, the robot is initially moving towards the compartment 9, to
place a token on it. However, the robot detects a potential risky situation of collision with the

1www.iri.upc.edu/groups/perception/ARE-OCRA

www.iri.upc.edu/groups/perception/ARE-OCRA


human, and decides to stop. From that moment on, the robot remains in admittance mode, thus
compliant, until the human gives the command to resume its motion. A user might want to
know why the robot has stopped, and/or which where the initial and final plans. Having stored
the knowledge about the adaptation using OCRA, and extracting the triples from it, our method
would generate an explanation in natural language. Recall that in this article we focus on the
part of our algorithm in which we generate the explanation using a set of already available
triples. In Listings 1 and 2 we can see the explanation that our method would generate for
abstraction levels 2 and 3, respectively. The result of the first level is depicted in the additional
material 1.

Listing 1: Generated explanation for all competency questions about the plan adaptation ‘High
Risk Plan Adaptation’ with abstraction level 2.

' H ighR i skP lanAdap ta t i on ' i s I n d i v i d u a l O f P l anAdap t a t i on and h a s P a r t i c i p a n t '
KinovaGen3_0 ' . ' PlaceTokenOnCompartment9 ' i sWorsePlanThan '
StopAndRemainCompliantUntilHumanCommand ' and hasComponent '
T r ayFu l lO fTokensUnde rSa f e tyCond i t i on s ' . ' C o l l i s i o nR i s k I sH i g h ' i s P o s t c o n d i t i o nO f '
Execut ionOfPlaceTokenOnCompartment9 ' . ' Execut ionOfPlaceTokenOnCompartment9 '
e x e c u t e s P l a n ' PlaceTokenOnCompartment9 ' . '
ExecutionOfStopAndRemainCompliantUntilHumanCommand ' e x e c u t e s P l a n '
StopAndRemainCompliantUntilHumanCommand ' . ' StopAndRemainCompliantUntilHumanCommand
' hasComponent ' T r ayFu l lO fTokensUnde rSa f e tyCond i t i on s ' .

Listing 2: Generated explanation for all competency questions about the plan adaptation ‘High
Risk Plan Adaptation’ with abstraction level 3.

' H ighR i skP lanAdap ta t i on ' i s an i n d i v i d u a l o f P l anAdap ta t i on , an Event in which an
Agent ( ' KinovaGen3_0 ' ) , due to i t s e v a l u a t i o n o f the c u r r e n t or expec t ed f u t u r e
s t a t e ( ' C o l l i s i o nR i s k I sH i g h ' ) , changes i t s c u r r e n t P lan ( ' PlaceTokenOnCompartment9
' ) wh i l e e x e cu t i n g i t , i n t o a new Plan ( ' StopAndRemainCompliantUntilHumanCommand ' )
, i n o rde r to c on t i nuou s l y pursue the ach ievement o f the ’ p l an s Goal ( '
T r ayFu l lO fTokensUnde rSa f e tyCond i t i on s ' ) .

4. Conclusion

In this work, we have proposed an algorithm (ARE-OCRA) to generate explanations for collabo-
rative robotics and adaptation utilizing an ontology (OCRA). The main routine of the algorithm
has already been implemented: construct explanation. It uses a set of sufficient triples to answer
the target queries to be explained, generating a natural language explanation in three different
levels of abstraction for different final users. We showcase the performance of the implemented
routine in several situations extracted from a realistic collaborative task. Our work enhances the
explainability of robots in collaborative situations in which they adapt their plans to unexpected
situations. In the future, we first want to finish the implementation of the whole algorithm,
also extracting the triples from the knowledge base. We would like to expand the explanation
space, considering other parameters such as specificity and locality [13]. Furthermore, it is
also interesting to store not only a volatile knowledge base but a whole episodic memory for
long-term collaborative explanations. Finally, we also plan to evaluate the different types of
explanation with a user study.
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