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Abstract

The aim of this paper is to introduce a methodology for defining groups from regionalized com-
positional data, through a hierarchical clustering algorithm aware of both the spatial dependence
and the compositional character of the data set. This method is used to define a regionalization of
Catalunya (NE Spain) with respect to its precipitation patterns in the Winter season. This region
is characterized by a highly contrasted topography, which plays a dominant role in the spatial
distribution of precipitation. Each rain gauge station is characterized by the relative frequencies
of occurrence of six intervals of daily precipitation amount (classes ranging from “no rain” for
precipitation below 3 mm, to “heavy storm” above 50 mm). Recognizing that frequencies are com-
positional data, the spatial dependence of this data set has been characterized by variograms of the
set of all pair-wise log-ratios, in the fashion of the variation matrix. Then, a Mahalanobis distance
between stations has been defined using these variograms to ensure that gauges with high spatial
correlation get smaller distances. This spatially-dependent distance criterion has been used in a
Ward hierarhical cluster method to define the regions. Results reveal 5 quite homogeneous groups
of stations, which can be mostly ascribed a physical meaning. Finally, possible links to regional
circulation patterns are discussed.

1 Introduction

Many disciplines, like hydrology, climatology, forest management or agriculture, among others, use
spatial information of the climatological variables as a basis for the knowledge of the processes they
study. Precipitation is one of the main climatic variables used, which distribution is highly variable
in time and space. The study of precipitation characteristics in a region is very important for water
resources management, drainage of urban and agricultural lands, floods, etc. Thus, an accurate
regionalization of precipitation patterns is useful for the optimum design and management of water
related activities.

Objective regionalizations of different climatic variables (usually temperature and rainfall) and
using different techniques (multivariate analysis, neural networks, etc.), have been performed for
many regions of the world: for instance Bonell and Summer (1992), Bonell (1992), White and
Richman (1991), Gong and Richman (1995), Fovell and Fovell (1993), Romero et al. (1999), Unal
et al. (2003), to mention a few. For the case study of Catalunya, different regionalizations using
rainfall as variable have been performed, for instance by Mart́ınez-Albaladejo (1990), Periago et al.
(1991), Fernández-Mills et al. (1994), Gibergans-Báguena and Llasat (2007).

In general, methods used in most of these regionalizations have only considered the values of
variables at different times and places, but do not take into account their geographical situation, and
therefore, explicitly the spatial variability of the phenomenon. In particular, for the reference data
set, the precipitation regime of Catalunya is highly irregular. The reasons are the complexity of the
general atmospheric circulation and the rich orography (Llasat and Puigcerver, 1992; Mart́ın-Vide,
1995; Doswell et al., 1996; Romero et al., 1997; Rigo and Llasat, 2007). Beyond spatial variability
issues, data may also suffer of other sources of inaccuracy, most commonly due to rounded data,
censored values and missing data. Censored data is an important problem, as rain gauges typically
fail under extreme precipitation conditions.

In order to overcome these problems, daily precipitation has been split in six intervals of daily
precipitation intensity, and then frequencies have been computed for each of the intervals. Frequen-
cies may be then considered compositions, and be suitably treated with the log-ratio approach. A
Ward hierarchical cluster analysis of the dataset has been carried out, based on a Mahalanobis-
Aitchison distance between individual stations. In order to take into account the spatial variability,
a generalized Mahalanobis distance is defined using compositional variograms and cross-variograms.
All calculations in this contributions have been carried out using the functions of the package com-
positions (van den Boogaart et al., 2010; van den Boogaart and Tolosana-Delgado, 2008) of R
.
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Figure 1: Orographic characteristics of the study area, and distribution of rain gauges. The lower right inset shows the
location in the Mediterranean region. Gauge numbers are reported in Table 1.

A detailed description of the used dataset is provided in section 2. Cluster analysis for pluvio-
metric regionalization is discussed in section 3. A methodology for compositional geostatistics is
briefly presented in section 4. Section 5 presents the regionalization obtained for the winter season.

2 Case study

Catalunya is located on the NE corner of the Iberian Peninsula (Fig. 1) and has an area of 35000
km2. Its coastline runs along the NE–SW direction and its main orographic features are a complex
coastal mountain system (Serralada Litoral, Serralada Pre-Litoral and Serralada Transversal),
with some peaks exceeding 1000 m, and the Pyrenees, roughly lying along the E-W direction on
the northern border of Spain. The main rivers are the Ebro with its tributaries, and the so-
called inner basins (Llobregat, Besós, Fluvià, etc.) where most floods occur. The proximity to
the Mediterranean Sea in combination with its specific orography have a determinant role in the
pluviometric regime variability. The Pyrenees shelter the southern basins against Atlantic and
northerly advection, but at the same time their relief enhance the development of storms in the
temperate and hot months of the year affecting the northern face of the Pyrenees. The coastal chain
system enhance the pluviometric effects of Mediterranean cyclogenesis along the coast, forming for
moderate easterly advection a pluviometric screen between the coast and the rest of the country.
The Ebro basin pluviometric regime is strongly conditioned by the precipitation deficit due to these
mountain chains and the relative remoteness of the Atlantic Ocean.

The original dataset consists of daily precipitation amounts recorded at 46 rain gauges (Fig.
1, Table 1) from 1970 to 1990, provided by the Instituto Nacional de Meteoroloǵıa (Spanish Met
Office).

Due to its inaccuracies, the presence of censored data and its many missing values, the original
precipitation data have been applied a series of thresholds to convert them into a categorical
variable. The selected thresholds appear naturally taking into account the characteristics of its
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Height Code Name Height Code Name
357 1 La Pobla de Masaluca 327 23 Balsareny

8 2 Amposta 717 24 Moià
142 3 Perelló 707 25 Prats de Llu canès
350 4 Montblanch 555 26 Borgonyà
198 5 Castellv{́ı} de la Marca 370 27 Les Planes d’Hostoles
162 6 Sant Sadurn{́ı} d’Anoia 296 28 Castellfollit de la Roca
318 7 Artesa de Segre 96 29 Martorelles
380 8 Terradets, embassament 203 30 Caldes de Montbui
421 9 Gavet, Central 346 31 Cánoves, Can Garriga
558 10 Organyà 147 32 Dosrius
691 11 La Seu d’Urgell 88 33 Argentona
838 12 Port de Suert 70 34 Girona, Bell-Lloch
957 13 Esterri d’Àneu 64 35 Calella de Palafrugell

1052 14 Tabescan, presa 44 36 Jafre
974 15 Viella 17 37 Castelló d’Empúries

1144 16 Arties 23 38 Cadaqués
704 17 Berga 193 39 Darnius
843 18 La Pobla de Lillet 1570 40 Le Tec
738 19 Campdevànol 1562 41 Mont-Louis
947 20 Camprodon 2047 42 Hospitalet
680 21 Calaf 628 43 Usson
238 22 Manresa 860 44 Salou

673 45 Artigues

Table 1: Codes and names of rain-gauges locations. Height is in meters above sea level.

histogram (Fig. 2): as can be seen, too many readings are concentrated at 5 and 10 mm/24h, which
suggests a sort of rounding in the manual recording process. Therefore, we have chosen six intervals
of daily precipitation: no rain (below 3), weak for [3, 5), moderate weak for [5, 10), moderate for
[10, 20), moderately heavy for [20, 40), and heavy (40 and over). Moreover, these intervals are
equally spaced logarithmically to honor the ratio scale of precipitation (Egozcue et al., 2006; Ortego
et al., 2010). A clustering of a regionalized categorial variable would require hierarchical Bayesian
models, beyond the scope of this paper. Instead, we take a simplified approach by working with
the frequency vectors as compositions.

3 Cluster analysis for spatially dependent data

In order to detect changes in the precipitation frequency distribution patterns, a cluster analysis will
be performed. Cluster analysis (Everitt, 1993) is a multivariate technique used for grouping objects
into homogeneous subgroups according to similarities. Euclidean and Mahalanobis distances are fre-
quently used to measure the similarity between objects or individuals. Let xn = (xn1, xn2, . . . , xnp),
n = 1, 2, . . . , N , be the vector of p characteristics observed for the n-th sample in a dataset with N
individuals. The squared Euclidean distance is defined as

d2
E(n,m) = (xn − xm)′ (xn − xm) ,

where the prime indicates transpose vector. The Mahalanobis distance is defined as

dM (n,m) = (xn − xm)′C−1 (xn − xm) , (1)

where C is the estimated covariance matrix defined as:

C =
1
N

N∑

i=1

(xn − x̄)′(xn − x̄) ,

and x̄ is the estimated vector of means. Unlike the Euclidean distance, the Mahalanobis distance
takes into account any possible dependence between variables. However, this distance ignores the
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Figure 2: Daily rainfall histogram

spatial structure, which may affect the relationship between samples. The Mahalanobis distance
(Eq. 1) can be then generalized replacing the covariance matrix, C by any positive definite matrix.
In particular, one can choose a suitable matrix that takes into account spatial dependence, following
Pawlowsky-Glahn et al. (1997); Jiménez-González et al. (1998).

Geostatistical techniques model spatial data as the realizations of random functions (Math-
eron, 1965; Olea, 1999; Pawlowsky-Glahn and Olea, 2004). Important tools for measuring the
spatial dependence among samples are the (semi)variogram and cross-(semi)variogram. Let S =
x(s1),x(s2), . . . ,x(sN ) be a regionalized data set of size N , where si are the spatial coordinates of
the i-th sample, and x(si) := xi is a column vector of p observations at that location. Assuming
some sort of stationarity of the considered variables, the (semi)variogram of the i-th variable is
defined as

γi(h) =
1
2

E
[
(xi(s)− xi(s + h))2

]
.

Alternatively, the auto-covariance function of variable i may be defined as

Ci(h) = Cov [xi(s), xi(s + h)] .

These two functions are symmetric on h and satisfy that γi(h) = Ci(0)− Ci(h).
The definition of variogram can be extended to the bivariate case. The cross-variogram reflects

the covariance of the increments of two variables between two locations placed a vector h apart,

γij(h) = Cov [xi(z)− xi(z + h), xj(z)− xj(z + h)] .

Cross-covariances are also easy to define as functions Cij(h) giving the covariance between xi(z) and
xj(z + h). Note that in general Cij(h) 6= Cji(h); instead, it is always true that Cij(h) = Cji(−h).
Moreover

2Γ(h) = 2C(0)− (C(h) + Ct(h))

where Γ(h) (and C(h)) is a matrix-valued function with variograms (autocovariances) in the main
diagonal and cross-variograms (cross-covariances) in the off-diagonal elements. For h 6= 0, C(h)
describes the spatial dependence among the considered variables, whereas at h = 0 it reflects the
classical covariance between them. Under second-order stationarity hypothesis, it is verified that
limh→∞ Γ(h) = C(0) and limh→∞C(h) = 0.

From Jiménez-González et al. (1998), the following generalization of the Mahalanobis distance
for data with spatial dependence is defined:

d(n,m) = (x(zn)− x(zm))′ [2C(0)− Γ(h)]−1 (x(zn)− x(zm)) . (2)

This distance has the effect of reducing the Mahalanobis distance for spatially dependent samples.
This can be seen by considering two extreme cases:
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• taking h “large enough”, samples may be thought to be spatially independent; the metric
matrix becomes then [2C(0)− Γ(h)]−1 → C(0)−1 and the proposed Mahalanobis distance
converges to the classical one;

• taking h = 0, the variogram Γ(0) = 0 and the metric matrix is then [2C(0)]−1 = 1/2C(0)−1,
and the resulting Mahalanobis distance is half of the classical one.

The cluster technique used in this work is Ward’s method (Ward, 1963). This method produces
a hierarchical clustering, i.e. initially each object is assumed to form a separate group, and then
objects or groups close to one another are successively merged. Hierarchical methods usually
produce a graphical output known as a dendrogram that shows this hierarchy and indicates at
which level of similarity any two clusters were merged. The choice of a suitable number of clusters
is a subjective task.

4 Variograms for compositional data

Spatial dependence has been already introduced into the cluster methodology through the intro-
duction of spatial dependence in the Mahalanobis distance (Eq. 2). In order to introduce the
compositional characteristics of our input data, the Mahalanobis distance is computed using the
ilr coordinates of the vectors of frequencies z(sn) = zn = (zn1, zn2, . . . , znD), i.e. by means of a
matrix of contrasts V,

xn = Vt · log(zn) = ilr(zn).

As usual, V columns sum up to zero (hence they are contrast) and these columns form a system
of D − 1 orthonormal vectors, thus Vt ·V = I and zn = C exp(V · xn) = ilr−1(xn).

Pawlowsky-Glahn and Olea (2004) present different specifications of the covariance/variogram
structure of a regionalizated composition. We nevertheless follow Tolosana-Delgado et al. (2011)
idea of using the intrinsic variation matrix (also known as lr-variograms or variation-variograms,
Ψ = (ψij)), a generalization of the concept of variation matrix. The variation-variograms are
defined as the matrix of direct variograms of all pairwise log-ratios of any two variables (i, j), and
can be estimated from a regionalized compositional data set by

γ̂ij(h) =
1

2N(h)

∑

n,m∈N(h)

(
log

zni

znj
− log

zmi

zmj

)2

.

This matrix contains the same information as ilr variograms, but to estimate them we only use two
parts at a time. This reduces the influence of a bad frequency estimation of all parts, a sensible
issue given the small number of large precipitation storms observed. The fitting of the variogram
model may be performed using variation-variograms with respect to a relative scale, so that the
behavior at the origin is better captured. That implies choosing a parametric correlogram model
ρ(h, θ) depending on a parameter θ, and optimizing a logarithmic measure of discrepancy between
the empirical variograms Ψ̂(h) and the model

Ψ(h|θ,A,B) = Aδ(h 6= 0) + B(1− ρ(h, θ))

under the restriction that both matrices A (nugget effect) and B) (variogram sill) are negative
semi-definite. According to (Tolosana-Delgado et al., 2011), this is necessary in order to ensure
that the model Ψ(h|θ, . . .) is compatible with a covariance function model for the ilr-transformed
compositions. This ilr-model can be obtained simply as

C(h|θ, . . .) = −1
2
V ·A ·Vtδ(h 6= 0) + V ·B ·Vt(1− ρ(h, θ))

This will be the model used to compute spatially-dependent Mahalanobis distances with Eq. (2).

5 Results

The winter season (December-January-February) is used for illustration. After summer, winter
is the season with the lowest precipitation, though these are very important in the water cycle,
providing a valuable storage for dry periods of spring and summer Catalunya climate is characterized
by the high irregularity of precipitation, in both spatial and temporal scale. In particular, winter
is the most irregular season of the year (Mart́ın-Vide and López-Bustins, 2006).
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Figure 3: Variograms

To characterize the compositional variography, all pair-wise log-ratio variograms have been es-
timated with standard methods. These have been then fitted an exponential variogram model,
forcing the corresponding sill matrix to be negative semi-definite (as necessary). This was auto-
matically done using geostatistical functionalities of the package “compositions”. Results of the
estimation and fitting can be seen in Fig. 3.

Then, a hierarchical clustering has been performed following section 3. We can see in Fig. 4
the stations cluster into five groups. The geographical representation of this clustering is shown in
Fig. 5, where colors indicate different groups:

• green: stations on W Catalunya. The southward retreat of the subtropical high pressure
zones facilitates the arrival to Catalunya of unstable Atlantic air masses that cause these
precipitations. However, having crossed the whole Iberian Peninsula and its mountain ranges,
they arrive too weak and produce light precipitation.

• orange: Winter, after summer, is the season with less amount of rain in the coastal zone. This
low precipitation is mainly due to the presence of a low pressure area on the Iberian Peninsula
which favors circulation from the E over the Catalan coast. Since during this season the sea
temperature is not high, there is no important contribution of water vapor and, consequently,
there are no heavy rainfalls from convective origin (as happens in autumn).

• blue: stations placed in the central basins, these are affected by situations of E and mostly
SW winds, where the mass of air is channelled through the valley of the Llobregat river.
Precipitation occurs due to the rise of these air masses over the mountains of the Serralada
Pre-litoral.

• magenta: similar to the previous case, but now the stations are located at the NE basins
of Catalunya. These basins are affected by E storms. Air masses enter through the valleys
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Figure 5: Winter regionalization
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of rivers like Ter and Fluviá, producing rainfall by ascension of the water masses over the
mountains of the Serralada Transversal.

• cyan: Corresponds to the stations located in the north face of the Pyrenees. These are open
to the NW and rather sheltered from S and SW, facilitating the passage of frontal systems
and low pressure areas from the Atlantic ocean that follow the general West-East circulation
of these latitudes. This causes an Atlantic climate in contrast to the typical Mediterranean
climate of Catalunya.
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Periago, M., X. Lana, C. Serra, and G. Fernández-Mills (1991). Precipitation regionalization: An
application using a meteorological network in Catalonia (NE Spain). International Journal of
Climatology 11, 529–543.

Rigo, T. and M. Llasat (2007). Analysis of mesoscale convective systems in Catalonia (NE of Spain)
using radar for the period 1996-2000. Atmospheric Research 83, 458–472.

Romero, R., C. Ramis, and S. Alonso (1997). Numerical simulation of an extreme rainfall event
in Catalonia: role of orography and evaporation from the sea. Quarterly Journal of the Royal
Meteorological Society 123, 537–559.

Romero, R., C. Ramis, J. A. Guijarro, and G. Sumner (1999). Daily rainfall affinity areas in
Mediterranean Spain. International Journal of Climatology 19, 557–578.

Tolosana-Delgado, R., K. G. van den Boogaart, and V. Pawlowsky-Glahn (2011). Geostatistics for
compositions. In: Pawlowsky-Glahn, V. and A. Buccianti (eds), Compositional Data Analysis at
the beginning of the XXI century, Wiley. In press

Unal, Y., T. Kindap, and M. Karaca (2003). Redefining the climate zones of Turkey using cluster
analysis. International Journal of Climatology 23 (9), 1045–1055.

van den Boogaart, K. G. and R. Tolosana-Delgado (2008). “compositions”: a unified R package to
analyze Compositional Data. Computers and Geosciences 34 (4), 320–338.

van den Boogaart, K. G., R. Tolosana-Delgado, and M. Bren (2010). compositions: Compositional
Data Analysis. R package version 1.10-1.

Ward, Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the
American Statistical Association 58, 236–244.

White, D. and M. Richman (1991). Climate regionalization and rotation of principal components.
International Journal of Climatology 11 (9), 1–25.

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

9




