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ABSTRACT

Since Markowitz’s work on portfolio theory in 1952, numerous developments have been carried out

to improve the original techniques of portfolio optimization, to the point that the current research

on the topic focuses on building deep learning models that design the whole portfolio in only one

step. Even though deep learning has helped to solve a wide range of problems in different areas,

it has not proven successful enough yet in some branches of finance such as portfolio design.

After verifying that heuristic or more simple methods do not work as active trading strategies, the

goal of this thesis becomes to explore how the portfolio optimization problem can be approached via

deep learning. We analyze whether the classical portfolio theory ideas should be either completely

replaced by end-to-end neural networks or incorporated into the architectures, and we discuss the

impact that the frequency of the data has on the performance of the models.

For this reason, multiple deep learning architectures that take as input only asset returns have

been implemented and extensively backtested, mainly on high-frequency cryptocurrency data.

All backtests have been carried out under the same trading framework and their performances

have been compared to some standard benchmarks in order to extract significant conclusions. Our

results indicate that, on high-frequency data, deep learning models are capable of detecting features

that are invisible to the classical financial methods. Nevertheless, this predictability can not be

exploited in real-life trading as the portfolios need to be largely reoptimized often and therefore

the transaction costs imposed by the exchanges cancel out all the profits.

Keywords: Quantitative finance, portfolio optimization, deep learning, time series analysis

AMS Code: 91G05



RESUM

Des del desenvolupament de la teoria moderna de carteres de Markowitz l’any 1952, s’han dut a

terme numerosos avenços per a millorar-ne les tècniques originals, fins al punt que la recerca actual

en aquest àmbit es centra en construir models d’aprenentatge profund que distribueixin el capital

de manera òptima entre els actius considerats en un sol pas. Malgrat que l’aprenentatge profund

ha ajudat a resoldre un gran nombre de problemes en altres àrees, encara no s’ha demostrat que

sigui prou exitós en algunes branques del camp de les finances com és el cas del disseny de carteres.

Després de comprovar que mètodes més heuŕıstics no funcionen com a estratègies d’inversió activa,

l’objectiu d’aquesta tesi esdevé explorar com l’aprenentatge profund pot servir per abordar el

problema de l’optimització de carteres. S’analitza si les idees clàssiques de la teoria de carteres

han d’ésser reemplaçades completament per xarxes neuronals que integrin tot el procés, o si bé és

més adequat incorporar-les dins de l’arquitectura dels models. Es discuteix també l’impacte que

té la freqüència de les dades amb què treballen els models en el seu rendiment.

Per aquests motius, s’han implementat i posat a prova diversos models d’aprenentatge profund que

treballen únicament amb els guanys històrics dels actius, entrenats principalment en dades d’alta

freqüència de criptomonedes. Totes les proves s’han dut a terme sota el mateix marc d’inversió i

els seus rendiments s’han comparat amb el d’altres carteres estàndard per tal de poder extreure

conclusions significatives. Els results obtinguts indiquen els models d’aprenentatge profund im-

plementats són capaços de detectar patrons en les dades que són invisibles pels models financers

clàssics. No obstant, aquesta predictibilitat no es pot aprofitar completament en les inversions a

temps real ja que les carteres han de ser reoptimizades sovint i això provoca que els costs que les

plataformes imposen a cada transacció neutralitzin tots els guanys.

Paraules clau: Matemàtica financera, optimització de carteres, aprenentatge profund, anàlisi de

sèries temporals

Codi AMS: 91G05



RESUMEN

Desde el desarrollo de la teoŕıa moderna de carteras de Markowitz en el año 1952, se han llevado

a cabo numerosas mejoras sobre las técnicas originales, hasta el punto que la investigación actual

en este ámbito se centra en construir modelos de aprendizaje profundo que distribuyan el capital

de manera óptima entre los activos considerados en un solo paso. Aunque el aprendizaje profundo

ha ayudado a resolver un gran número de problemas en otras áreas, aún no se ha demostrado que

sea suficientemente exitoso en algunas ramas del campo de las finanzas como es el caso del diseño

de carteras.

Después de verificar que métodos más heuŕısticos no funcionan como estrategias de inversión activa,

el objetivo de esta tesi es explorar cómo el aprendizaje profundo puede usarse para abordar el

problema de la optimización de carteras. Se analiza si las ideas clásicas de la teoŕıa de carteras

deben ser reemplazadas completamente por redes neuronales que integren todo el proceso, o si

conviene incorporarlas dentro de la arquitectura de los modelos. Se discute también el impacto

que tiene la frecuencia de los datos con que trabajan los modelos en su rendimiento.

Por estos motivos, se han implementado y puesto a prueba varios modelos de aprendizaje pro-

fundo que trabajan únicamente con las ganancias históricas de los activos, entrenados principal-

mente con datos de alta frecuencia de criptomonedas. Todas las pruebas se han llevado a cabo

bajo el mismo marco de inversión y sus rendimientos se han comparado con el de otras carteras

estándar para poder extraer conclusiones significativas. Los resultados obtenidos indican que los

modelos de aprendizaje profundo implementados son capaces de detectar patrones en los datos que

son invisibles para los modelos financieros clásicos. Sin embargo, esta predictibilidad no se puede

aprovechar completamente en las inversiones a tiempo real ya que las carteras deben ser reopti-

mizadas a menudo y esto provoca que los costes que las plataformas imponen a cada transacción

neutralicen todos los beneficios.

Palabras clave: Matemática financiera, optimización de carteras, aprendizaje profundo, análisis

de series temporales

Código AMS: 91G05
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Chapter 1

Introduction

Over the last decade, deep learning has been the cause of a whole revolution in multiple disci-

plines. The way some problems are approached in fields like image recognition, natural language

processing, recommendation systems or bioinformatics has completely changed and neural net-

works provoked major improvements from the cutting-edge techniques used before. Out of all the

fields impacted by this revolution finance is not an exception.

In nowadays finance world, most records and observations are captured electronically by internet-

connected devices. This makes finance become a data based discipline and allows investors to

access a wide range of market data that was not available for them decades ago. As the amount of

available data increases, the tools used to deal with it become more and more complex, whereas

the range of problems that can be tackled becomes broader. Nowadays, machine learning (and,

more specifically, deep learning) is used in problems such as fraud detection, credit assessment

and risk management. If we want to look at more concrete examples, deep learning could help to

handle online prices of millions of items and assess inflation, or it could be used to process satellite

imaging to assess the activity of oil rigs or the commercial activities in harbours by recognizing

the amount of containers stored [12].

Nevertheless, there is one problem in finance where deep learning has not provided significant

improvements yet: portfolio optimization. Portfolio optimization is the decision making process of

continuously selecting the best allocation of a budget into different financial investment products

with the objective of maximizing certain function. For instance, one could try to maximize the

returns while minimizing the risk. This idea was first brought by Markowitz in 1952 [16] and since

then it has established the foundation of how the portfolio optimization problem is approached.

Numerous developments have been done to the original Markowitz’s modern portfolio theory, which

was proven to suffer from a great number of limitations, up to the point that the current research
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on the topic focuses on the use of deep learning tools to overcome them. However, not much

success has been achieved yet. The special characteristics of financial data and the intricacies

of real life trading make it really tricky to set up a good model. Moreover, there is one main

difference between finance and other applications where deep learning provides excellent results:

in portfolio optimization we are not trying to replicate a task that humans can already do well,

such as recognizing images or responding appropriately to verbal requests. This might change

completely the problems deep learning may face.

It is this wide range of options that can still be explored when facing portfolio optimization via

deep learning what motivates this thesis. The main objective is to analyze the ability of neural

networks to detect and exploit predictability on financial data (mainly historical asset returns)

to design profitable portfolios. This decouples in 3 subtopics that are explored separately in this

project. Firstly we study how different architectures can lead to different performances, focusing

on whether the neural networks should still include some ideas of classical portfolio theory or not.

Secondly we explore the impact that the frequency of the data has on the predictability the models

are capable of learning. And finally we discern the influence of transaction costs on the profitability

of the models to conclude if they could be brought into real-life trading scenarios or not. All this

is done by running extensive backtests on different scenarios, mainly on intraday cryptocurrency

data, evaluating them with some of the most well-known performance measures and comparing

them to some standard benchmarks of the industry.

All the work carried out to achieve these goals is presented on the rest of this document, which is

structured as follows.

• Chapter 2 introduces some useful concepts about quantitative finance that are used through-

out all the project and includes a brief study on the nature of financial data.

• Chapter 3 reviews previous work related to the challenges faced in this project, focusing on

the latest advances on deep learning applied to portfolio optimization.

• Chapter 4 proves the need of a complex tool like deep learning to approach portfolio opti-

mization by verifying that simpler heuristic strategies do not work in this problem.

• Chapter 5 contains the main experiments carried out for this project. Different architectures

are described and backtested under a specific trading framework.

• Chapter 6 contains experiments on the frequency of the data.

• Chapter 7 analyzes the changes in performance when transaction costs are taken into account.

• Chapter 8 discusses how the results obtained from the experiments can be put together to

understand the difficulties of portfolio optimization and finally concludes the thesis.
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Chapter 2

Primer on financial data

Even though numerous types of data exist in finance, we will focus on the one that comes from

the prices of assets such as stocks or cryptocurrencies. Each of these individual prices generates

a time series {pt}, where pt denotes the price of the given asset at (discrete) time index t. This

index depends on the frequency of the data. We will say that the data is low-frequency if it has

been gathered daily, weekly, monthly and so forth. On the other hand, we will say that the data

is high-frequency if it has been gathered on an intraday basis, such as hourly, minute-by-minute

or second-by-second.

2.1 Asset prices and returns

Basic modeling for these price time series does not use the regular prices of the assets as defined

above. Instead, it uses the log-prices:

Definition 2.1.1. The log-price of an asset at time t is yt := log pt

The most fundamental model describes the log-prices as a randow walk with drift: yt = µ+yt−1+ϵt,

being ϵt the noise of the time series. The main downside of this model is that the random walk is

not stationary. For this reason it is more appropriate to work with the asset returns:

Definition 2.1.2. The simple return (a.k.a. linear return) at time t is Rt :=
pt−pt−1

pt−1

Definition 2.1.3. The log-return at time t is rt := yt − yt−1 = log pt

pt−1

Under the assumption of the fundamental model described above, the log-returns now satisfy

rt = µ + ϵt, so we obtain the desired stationarity. It is also worth noting that rt = log(1 + Rt),

thus rt ≈ Rt when Rt ≈ 0. To exemplify how these concepts come into play, we plot in Figure 2.1

the daily log-prices and log-returns of the PepsiCo, Inc. (PEP) stock from 2002 to 2021:
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Figure 2.1: Daily log-prices and log-returns of PEP stock

In this type of financial data, not only there is a low signal-to-noise ratio, but there also are

some particularities that one should take into account when working with it. These come from

empirical observations of different financial markets throughout the years and they are only broad

generalizations of the data, so we will refer to them as stylized facts. A detailed statistical analysis

of them is done in [5]. The most relevant stylized facts to this project are summarized below.

Firstly, there is an absence of linear autocorrelations of asset returns, except for very small intraday

scales when the noise microstructure starts to reveal itself. On the other hand, there actually exists

autocorrelation of the absolute value of the returns, and it decays slowly as a function of the time

lag. Secondly, there is a significant non-Gaussianity in the distribution of the log-returns, due to

two main reasons. The first one is that these distributions are heavy-tailed, and the second one

is the asymmetry: one can observe large drawdowns in stock prices but huge upwards movements

are not that usual. These two properties can be observed in Figure 2.2.

Figure 2.2: Histogram and QQ plot of PEP stock daily log-returns

The shape of the log-returns distributions are not the same at different time scales though, as with

lower frequency data they resemble more and more a normal distribution. Another important

stylized fact is the intermittency: the time series of the returns display irregular bursts that show

4



a high variability. Finally, it is observed that high-volatility events tend to happen close in time.

This is known as volatility clustering and can be easily observed in the log-returns in Figure 2.1,

where three main volatility clusters can be observed in 2002, 2008 and 2020.

In reality, we would not just deal with a single asset but with a universe of N assets. For this reason

we denote the log-returns of the N assets at time t as a vector rt ∈ RN (for the simple returns,

Rt ∈ RN ). The goal is to model the vector rt conditional on the previous historic data Ft−1.

Following [8], rt follows a multivariate stochastic process with conditional mean and covariance

matrix, denoted respectively as µt = E[rt | Ft−1], Σt = E[(rt−µt)(rt−µt)
T | Ft−1]. For simplicity,

one may assume that rt follow an i.i.d. distribution, thus the conditional mean and covariance

become constant: µt = µ, Σt = Σ. In practice, both µ and Σ have to be estimated using the past

T observations. The simplest estimators are the sample estimators:

Definition 2.1.4. Given the vectors of returns rt ∈ RN , 1 ≤ t ≤ T , the sample mean estimator is

defined as µ̂ = 1
T

∑T
t=1 rt. The sample covariance is defined as Σ̂ = 1

T−1

∑T
t=1(rt − µ̂)(rt − µ̂)T

The sample estimators turn out to be very noisy, specially the sample mean, leading to unacceptable

errors when designing the portfolios. To correct this, more sophisticated and robust estimators

exist, e.g., shrinkage estimators or Black-Litterman estimators, but they fall out of the scope of

this project.

2.2 Portfolio basics

The next useful concept that must be defined are portfolios. Portfolios simply represent how a

certain budget is allocated among a collection of financial products. We denote by B the capital

budget in dollars, and by w ∈ RN the vector of normalized dollar weights assigned to each asset,

such that
∑N

i=1 wi = 1. Other constraints could be specified for w such as cardinality, leverage or

maximum position constraints. One constraint that will be present throughout the whole project

is the long-only constraint (w ≥ 0), which does not allow for short positions.

From the notation described above, it is immediate to verify that Bw denotes the dollars invested

in each asset. From this follows:

Definition 2.2.1. Let Bwi be the initial wealth of asset i at time t − 1. Let Ri,t be the linear

return of asset i at time t. The portfolio return is defined as:

RP
t =

∑N
i=1 Bwi(1 +Ri,t)

B
− 1 = wTRt

From the last definition one can deduce that the expected return and variance of the portfolio are

wTµ and wTΣw, respectively. Moreover, we can define:
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Definition 2.2.2. Let B be the initial budget. Assuming fully reinvestment at each time stamp,

the Net Asset Value (a.k.a. wealth or cumulative return) is:

NAVt = B

t∏
s=1

(1 +RP
s )

Nevertheless, when trading financial instruments in real life one might wish to modify the portfolio

occasionally to adapt to new market trends and maximize the benefits. Then the vector of weights

will depend on the time index t, and we will denote it by wt. In this case, exchanges impose some

transaction fees to the practitioners every time an instrument is bought or sold. These fees are not

negligible and can have a big impact on the final wealth of a given portfolio investment strategy,

specially if the weights are rebalanced often. We can incorporate these transaction costs to our

previous definitions as follows:

Definition 2.2.3. Given a transaction fee rate C, the portfolio return at time t becomes:

RP
t =

N∑
i=1

R̃i,t

R̃i,t = wi,t−1Ri,t − C |wi,t (1 + wi,t−1Ri,t)− wi,t−1|

As expected, when C = 0 this last definition becomes the one above where transaction costs are

not considered.

Until now we have been talking about portfolios in general terms, but it is interesting to introduce

some well-known basic portfolios that will be of use later. Even though they are not widely used by

practitioners as more refined strategies can provide better results, they will serve as benchmarks

to compare the performance of our designed portfolios.

The first and most naive portfolio is known as Buy & Hold. It consists on selecting one asset and

allocating the whole budget B to it for the whole investment period. One can use different criteria

to make the choice. Following the notation described previously, this portfolio can be expressed as

w = ei, being ei the canonical vector with a 1 on the i-th position. There is no diversification in

this strategy.

Oppositely to the Buy & Hold, the Equally Weighted Portfolio (a.k.a. EWP, 1 over N portfolio or

uniform portfolio) tries to exploit the benefits of diversification by allocating the capital equally

across all assets. This can be expressed as w = 1
N 1.

Although the expected return is very relevant when evaluating the performance of the model, one

needs to control also the probability of going bankrupt, which is known as risk. This is where

Markowitz’s modern portfolio theory [16] comes into play. The most basic risk measure is the
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variance of the returns. Usually, the higher the mean return, the higher the variance, and vice

versa. The idea of Markowitz’s mean-variance portfolio (MVP) is to find a trade-off between the

expected return wTµ and the risk of the portfolio given by the variance wTΣw by solving the

following convex optimization problem:

max
w

wTµ− λwTΣw

s.t. 1Tw = 1

where 1 denotes the all-ones vector and λ is a parameter that controls how risk-averse the investor

is. By sweeping this parameter one can recover the whole trade-off curve. In practice, more

constraints would be added to the problem defined above like sparsity, turnover or long-only

constraints. Throughout the work developed in this project, whenever referring to the MVP we

will assume the latter is included in the problem.

2.3 Performance measures

After having designed and backtested different investment strategies, it is necessary to have some

ways to analyze and compare their performance. The most obvious one is to just look at the gains

over the investment period:

Definition 2.3.1. The annualized non-cumulative return is KE
[
RP

t

]
, where K denotes the num-

ber of trading periods in a year.

Note that the metric is annualized in order to be able to compare the results from strategies that

work with data of different frequencies or investment periods of different length.

However, as we mentioned before when stating Markowitz’s modern portfolio theory, it is not

enough to look only at the final wealth obtained if the probability of going bankrupt is different

between the strategies. The simplest way to quantify this is by looking at the standard deviation

(or variance) of the returns:

Definition 2.3.2. The annualized volatility of an investment is given by
√
KVar

[
RP

t

]
, where K

denotes the number of trading periods in a year.

The main problem of using the volatility as a risk measure is that it penalizes both the unwanted

high losses and the desired high gains (as they both deviate considerably from the mean), whereas

most investors would not mind this upside risk. One measure that takes into account only the

returns below the mean is the semi-variance:

Definition 2.3.3. The annualized semi-variance of an investment is
√
KE

[((
E[RP

t ]−RP
t

)+)2]
,

where K denotes the number of trading periods in a year and (·)+ = max{0, ·}.
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The last risk measure we will use is the drawdown, which calculates the decline from the historical

peak of the cumulative return:

Definition 2.3.4. Let X(t) be the cumulative return at time t. The drawdown at time t is defined

as:

DD(t) =
HWM(t)−X(t)

HWM(t)

where the High Water Mark is given by

HWM(t) = max
1≤τ≤t

X(τ)

We define the maximum drawdown over an investment period of length T as

MDD = max
1≤t≤T

DD(t)

Comparing the performance of different portfolios by looking at their final wealth and their risk

separately might not allow to extract clear information. For this reason, some metrics have been

defined that combine both and give a more complete summary of the overall performance. One of

these is the Sharpe Ratio X[21], which calculates the expected gains per unit of risk:

Definition 2.3.5. The annualized Sharpe Ratio is defined as

√
K

E
[
RP

t

]
− rf√

Var
[
RP

t

]
where K is the number of trading periods in a year and rf is the risk-free rate.

In the subsequent experiments of this project we will always take rf = 0 as there does not exist any

risk-free investment in the environments considered. It is worth noting that, as stated in [14], this

way of annualizing the Sharpe Ratio only holds true for i.i.d. returns and under our assumption

it is just an approximation that may lead to some notable errors. Nonetheless, as we will use

this measure only to compare performances of portfolios tested under the same universe, the serial

correlations may impact the Sharpe Ratio of each portfolio in a similar way. Hence, to make things

simple we will stick to the definition given above.
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Chapter 3

Literature review

Modern portfolio theory (MPT), introduced in 1952 by Markowitz [16], still plays an important

role both in research and in practice. Despite its popularity, it faces a great number of limitations

as it makes some assumptions that are not obeyed in real financial markets. Mainly, MPT relies

on the fact that the returns follow a Gaussian distributions and thus investors only need to care

about the expected return and variance of the portfolio returns to make their decisions. However,

empirical observations prove that the distributions of returns are fat-tailed and asymmetric [5].

One idea to overcome these issues is to either improve the way the estimators are calculated

by using shrinkage, robust estimators or the Black-Litterman model [2], or by reformulating the

optimization problem to make it robust [6, Chapter 20].

Latest trends on the topic, however, leave aside all these ideas and focus on neural networks.

This approach goes back to more than 20 years ago, as [17, 18] already proposed the first end-

to-end framework via a very simple feed-forward structure, even without any hidden layer. They

only focused on the univariate case, optimizing the performance for a single asset, with decent

results. However, there is little discussion on how their models can be extrapolated to portfolio

optimization. Moreover, their testing period goes from 1970 to 1994 so the market conditions back

then are not comparable to the current ones.

Subsequent approaches to portfolio optimization via deep learning have been devoted to directly

forecast the prices or returns of the assets by using different types of neural networks (such as

multilayer perceptrons, convolutional networks or LSTMs) that take as input the historical prices,

returns or any kind of alternative data [9, 15]. These models are straightforward to implement

as they are simply supervised learning regression problems. Nonetheless, future market prices or

returns are difficult to predict due to their low signal-to-noise ratio so in general these type of

approaches perform poorly. Additionally, these methods only forecast the future prices, but they
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do not specify how these predictions are turned into market actions. Another layer of logic is

required for this reason, which may make the models less versatile.

The last two papers mentioned, together with a big part of the literature published on this area,

contain some major flaws in their backtests that make the results difficult to interpret. The first

and most important one (present in both papers) is not comparing the models implemented to

standard benchmark portfolios such as the EWP or any other more refined strategies actually

embraced by practitioners. It is impossible to get the big picture of the situation if it is just stated

that the models provide good returns without showing how non-deep learning models would have

performed in the same situation, because the architectures implemented may not be better than

those. Another observed flaw is using cutting-edge technologies on data from decades ago when

this technologies did not exist and the market conditions were totally different from nowadays.

Hence, it is way easier to beat the markets by using them. This happens, for example, in [9], where

LSTM networks are used to trade in the 1990s stock market. The last flaw, more difficult to spot,

is incurring in a look-ahead bias, meaning that at each timestep information from the future that

would not have been available at that moment is used to simulate a trading decision. Thus can

happen for multiple reasons and one must be very careful when implementing the models to avoid

it as it can completely change the results.

Building networks that output a portfolio allocation instead of a price forecast is an even newer

approach. The latest developments are done in [23] and continued in [22]. The former presents

an end-to-end framework that bypasses the traditional forecasting steps and allows the models

to determine the portfolio weights by updating the parameters of a neural network optimizing

the Sharpe ratio. The portfolios designed under this framework do not allow shorting and are

budget constrained. The latter paper extends the former by including two new loss functions

that can be optimized apart from the Sharpe Ratio (variance and mean-variance) and by allowing

to incorporate other constraints to the portfolios designed such as leverage, maximum position

and cardinality. Even though the first results on these papers seem promising, they are tested

considering very low transaction fees (0.01% and 0.02%). Greater fees, more similar to what we

would encounter when trading in real life) may cancel out all profits and forbid these methods to

be taken into production.

Lastly, the idea of combining the power of neural networks to the knowledge of modern portfolio

theory and mean-variance portfolios (instead of designing end-to-end models containing only neural

networks) is still in a very early stage. The first (and only, so far) detailed study of this approach is

done in [3]. The idea is to let µ and Σ of a mean-variance portfolio be a function of the input returns

with some trainable parameters, and then learn this parameters by updating them according to

how the corresponding MVP performs. In the work carried out in this thesis we explore both

approaches: end-to-end models and architectures that include the MVP in the training process.
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Chapter 4

Preliminary experiments

It is well-known that deep learning is nowadays a very powerful technique able of providing solutions

to problems that were incredibly difficult to solve before. But it is also true that it is a really

complex tool that requires complete understanding of its intricacies and how the problem itself

can be approached in this way. For this reason, before going into the deep learning ideas we deem

necessary to analyze in detail if the portfolio optimization problem can be simplified somehow, and,

if so, whether classical and less complicated techniques already work for this easier formulation.

4.1 Univariate sizing

Classical portfolio optimization deals with a set of N assets and tries to find the best budget

allocation wt ∈ RN . This is a multivariate problem where one does not only have to understand

how the historical data affects the future returns, but also how the returns of the assets interact

among them. One way to get rid of this is to look at each asset independently, so that the universe

becomes a single asset (N = 1). We now have a univariate problem, as wt ∈ R. Since the constraint∑N
i=1 wi = 1 does not make sense under this universe, the goal is not to decide how we distribute

our budget, but to determine which portion of the budget are we investing on the asset and which

portion are we holding in cash (meaning that it does not change) at every timestep. This is known

as the sizing problem. Ideally, we would like to invest the whole budget on the asset whenever the

returns are positive (wt = 1) and to sell the asset as soon as the returns become negative (wt = 0).

This would make us obtain the maximum cumulative return possible with a drawdown of 0.

The main question of the sizing problem is how do we decide the sizing wt at each timestamp. As

the signal-to-noise ratio of the returns is very low, forecasting them given the past ones is not an

easy task. In the following subsections we will explore different approaches.
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4.2 Experiments on daily data

4.2.1 Dataset

The initial dataset used for this purpose contains the daily adjusted close prices of 456 component

stocks of the S&P500 index from July 2013 to June 2021, providing 2000 timestamps of data.

This dataset has been downloaded from Yahoo Finance. The reason why not all 500 stocks are

included in the dataset is that some of them did not exist since 2013 so they had an unacceptable

number of consecutive missing values at the beginning. These stocks with incomplete data were

not considered for the subsequent experiments, remaining in this way the aforementioned 456. No

other preprocessing tasks were carried out at this point.

4.2.2 Moving average-based strategies

The first methods that we will introduce rely on one of the most basic indicators used by practi-

tioners to decide when to trade. If, for each time stamp, we calculate the average of the prices over

a past lookback period, we obtain a smoothened version of the price evolution with some delay.

For this reason it is considered that moving averages might be useful to describe the tendency of

the prices getting rid of part of the noise. The number of prices we consider as a lookback is very

relevant, as the longer the lookback the smoother and more lagged the plot is going to be. For

illustrative purposes, we show below the moving averages we obtain using the past 8 and 40 daily

prices as a lookback for the HOLX stock from March 2019 to June 2021:

Figure 4.1: Price and moving averages of HOLX stock using different lookbacks
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Two different ways of deciding the sizing based on moving averages have been explored. They are

both binary, meaning that the sizing will be either 0 or 1 so that we either hold all our budget in

cash or via the asset. The idea is to emulate, in a more formal way, the simplest idea one could

think of when trying to trade: buy when the price seems to raise, sell when it is going down. How

we determine when the tendency of the price is uprising or not is the main problem here.

The first method implemented simply fixes the length of the lookback period and looks at the

crossovers of that moving average and the price of the asset. Whenever the price of the asset is

above the moving average we hold the asset. Thus, the sizing is defined as:

wt =

 1 if 1
l

l∑
i=1

pt−i < pt−1

0 otherwise

The second method intends to mitigate the negative effect of the noise that can appear on the first

one, since abrupt changes on the price would provoke undesired switches on the sizing. So instead

of comparing a moving average to the actual price, we calculate two different averages, one with a

significantly shorter lookback than the other. We refer to them as fast and slow moving averages.

Again, the asset is hold whenever the fast moving average is above the slow one:

wt =

 1 if 1
l1

l1∑
i=1

pt−i <
1
l2

l2∑
i=1

pt−i

0 otherwise

In the experiments carried out, we used a lookback of l = 10 days for the simple MA, and l1 = 25,

l2 = 7 for the slow and fast ones, respectively. The returns after applying the sizing are calculated

as Rs
t = wt−1Rt (without taking into account transaction costs). We look at the annualized

non-cumulative return, the maximum drawdown and the Sharpe Ratio evaluated on these Rs
t

to analyze their performance. Each point in the boxplots corresponds to the evaluation of the

respective measure on the returns Rs
t of one individual asset along all the investment period.

Figure 4.2: Performance of the moving average-based sizing strategies
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Clearly these two methods cannot be regarded as appropriate sizing strategies as they perform far

worse than the Buy & Hold benchmark. To understand better what is happening we plot below the

evolution of wealth over time when applying this sizing throughout the whole investment period.

Figure 4.3: Wealth over time for TSN stock after applying sizing via a simple MA

It is easy to identify from Figure 4.3 when the changes in sizing occur. Ideally, the flat periods

should coincide in time with the downfalls of the Buy & Hold plot. However, the lag introduced

by the moving averages is so large that sometimes they end up happening mainly during the next

uprising period. This means that not only we do not avoid losing money in these downfalls, but

also we do not fully exploit the price rises.

4.2.3 Volatility targeting

Since volatility is easier to forecast due to its clustering nature, a more reasonable strategy to find

a sizing that improves the benchmark is trying to reduce it. One of the most typical ways to do so

is called volatility targeting. The main idea is to choose from the beginning what is the maximum

volatility we can tolerate, and then adjust our position accordingly so that we do not exceed it.

We estimate the volatility by fixing a lookback and taking the standard deviation of the returns

during this lookback. Given a target V of the maximum amount of annualized volatility we want

to allow and a lookback l, the sizing is calculated as follows:

wt = max


V√

252 · 1l
l∑

i=1

(
rt−i − 1

l

l∑
i=1

rt−i

)2
, 1


Whenever the recent volatility is lower than the target, we allocate the full budget to the asset.

If it is greater, we decrease the sizing proportionally. The value of the lookback has to be chosen

carefully since a lookback too large might not be able to capture the high-volatility events, while

a lookback that is too short will not get rid of the intermittences and may lead to unpredictable
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results. To decide which lookback to use in our experiments, we verified visually that the moving

volatilities smoothened properly the plot of the log-returns for a few assets on all the investment

period as shown in Figure 4.4.

Figure 4.4: Log-returns and moving volatility of COP stock

The line in red shows the moving volatility using 35 days as a lookback, which is the value we

finally chose. It can be observed that it is not too noisy and that after a cluster it goes quickly

back to the baseline as desired. It is worth noting that this method of deciding the lookback is not

correct as it incurs in a look-ahead bias: a decision made considering all the future data is used at

every timestamp to test our strategy. The proper way to do this would be by having extra data

previous to the investment period used only for this purpose. However, the scarcity of data made

this a bit difficult and all in all it is not a decision that has a huge impact on the outcome.

To test the viability of volatility targeting, 4 different targets have been tried (without accounting

for transaction costs). This time we use the annualized non-cumulative return, volatility and

Sharpe Ratio to measure the performance of the strategy, plotted in Figure 4.4.

The annualized volatility boxplot proves that the forecasts done are pretty accurate since in gen-

erally the volatilities remain below the targets. As we make the targets smaller, the returns also

become smaller proportionally so when balancing returns and risk via the Sharpe Ratio we observe

that they all perform similarly, even when comparing to the benchmark. That was expected for

the higher targets as in these cases the sizing stays at 1 for most of the time (hence it replicates

the Buy & Hold), but it was not so clear how the lower targets would perform. Although the

results may make us think that volatility targeting is a suitable strategy for the more risk-averse

investors, it must be remarked that transaction costs have not been considered. Therefore, in real

life the average return would decrease providing Sharpe Ratios probably below the Buy & Hold.
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Figure 4.5: Performance of the volatility targeting sizing strategies

4.2.4 Machine learning models

Since the basic heuristic strategies did not provide good results, the next logical step is to dig

into classic supervised machine learning algorithms. At time t− 1, we want to predict the optimal

sizing for time t by looking at different indicators calculated on the log-returns from time t− l to

t− 1. As input for the algorithms, 10 features have been used. They correspond to the following

5 indicators calculated with two different lookbacks, l = 15 and l = 40. If we denote by r the set

of log-returns {rt−l, rt−l+1, . . . , rt−1}, then the features are defined as:

• Standard deviation: x1,t =
√
Var [r]

• Semi-variance: x2,t = E

[(
(E[r]− r)

+
)2]

• Signal strength: x3,t =
E[|r|]√
Var[r]

• Sharpe Ratio: x4,t =
E[r]√
Var[r]

• Probabilistic Sharpe Ratio: x5,t = Z

[
(Ŝ−S∗)

√
l−1√

1−γ̂3Ŝ+
γ̂4−1

4

]
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where Ŝ denotes the observed Sharpe Ratio (calculated as x3,t), S
∗ a user-defined benchmark

Sharpe Ratio, γ̂3 and γ̂4 the skewness and kurtosis of the returns in r, respectively, and

Z denotes the cumulative distribution function of the standard normal distribution. This

measure was introduced in [7, p. 203] and it intends to provide an adjusted estimate of the

actual Sharpe Ratio by removing the inflationary effect caused by short series with skewed

or fat tails. This measure estimates the probability that Ŝ is greater than a hypothetical S∗.

In our experiments we will take S∗ = 0.

Apart from the input features, we have to decide which labels we use to feed the algorithms. Two

options have been explored. The first one is to use as labels the ideal sizings: allocating the whole

budget to the asset when the returns are positive and holding it in cash when they are negative:

yt =

 1 if Rt+1 > 0

0 otherwise

Nevertheless, predicting the sign of the returns is already quite a difficult task because of the noise

present in financial data. One idea to overcome this issue would be to set a threshold greater

than 0 that the returns have to surpass so that their label becomes 1. The main downside of this

idea is that we would be exposed to the volatility cluster: in events of high volatility a big part

of the returns would be above this threshold while in more stable periods we would be aiming

too high and the sizing would remain at 0 for most of the time. This is precisely the contrary of

what we want. One solution for this is described in [7, p. 44] and consists of making this threshold

dynamic, increasing in periods of high volatility and getting close to zero when the returns are

more trustworthy. The resulting labels can be expressed as:

yt =


1 if Rt+1 > δ

√
1
l

l∑
i=1

(
Rt−i − 1

l

l∑
i=1

Rt−i

)2

0 otherwise

The δ factor indicates how conservative we want the sizing to be and must be chosen carefully.

If it is too small the labels would be very similar to the ones defined previously, while if it is too

large the labels would only be 1 when some positive outliers happen. We will take δ = 2
3

5 different machine learning algorithms have been implemented:

• Linear regression

• Linear regression with L1 regularization (a.k.a. LASSO). The α regularization hyper-

parameter is learnt testing values between 10−6 and 102 on a validation set between the

training and test splits.
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• Linear regression with L2 regularization (a.k.a. ridge regression). The α regularization

hyperparameter is learnt testing values between 10−6 and 102 on a validation set between

the training and test splits.

• K-Nearest Neighbors regressor using 200 neighbors.

• Random forest regressor with 50 trees

For the algorithms that need a loss function to be trained, we use the mean squared error respect

to these labels.

To train the machine learning models we need to split our data into training and test sets. To

make the most out of the temporality of the data, we will apply an anchored walk-forward approach

where each window contains 6 months of testing data. This means that on the first window we use

the first 6 months of data to train the model parameters and we use them for ”real-life” trading in

the next 6. After that, we retrain the model on the first 12 months of data to apply the optimal

learnt parameters on the months 13-18. As the training set grows in size, we use linearly decaying

weights so that the errors in predicting the most recent samples have a bigger impact on the overall

loss function.

Figure 4.6: Anchored walk-forward approach to train the ML models

The tests on these algorithms have been carried out without including transaction costs. To

understand how they perform, in this case it is enough to look at the annualized volatility and

annualized Sharpe Ratio boxplots. Figures 4.7 and 4.8 show the performance obtained by each

algorithm with the labels based only on the sign and with the labels that account for the volatility,

respectively.
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Figure 4.7: Performance of ML algorithms for sizing with fixed labeling thresholds

Figure 4.8: Performance of ML algorithms for sizing with dynamic labeling thresholds

All 5 models provide very similar results when using the same labels. They end up achieving Sharpe

Ratios nearly identical to the benchmark and in that sense there is not much difference between

both labelings. However, the volatilities when using the dynamic threshold are smaller. That was

expected as in this case we intend to buy the asset less often, only in periods of low volatility or

when the returns are huge. The fact that the models are able to obtain the same risk-adjusted

returns than the Buy & Hold but reducing the risk is the same we observed when determining the

sizing via volatility targeting. Since the moving volatilities were two of the input features for the

algorithms, this may indicate that the machine learning is mostly learning to decrease the volatility

to obtain decent performances. That is another proof that the returns are incredibly more difficult

to predict than the volatility and supports the stylized facts mentioned in Section 2.1 related to

the noisiness of the data and the clustering nature of the high volatility events.

4.2.5 Direct reinforcement learning

The last sizing strategy designed is based on what was called direct reinforcement learning,. We

will follow a simplified version of the framework described in [17]. The key idea is to define the

sizing as a non-linear function of the past lookback returns and the last sizing (in case we want to
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include transaction costs in the training), with some parameters that will be trained to optimize

the Sharpe Ratio of the in-sample data. In order to get a testing environment comparable to the

previous ones, we have to slightly modify the strategy described in the reference. Mainly, our

model uses as input the log-returns instead of price differences (so that we allow to trade portions

of the financial products instead of fixed units), and we do not allow shorting. All in all, the sizing

becomes a logistic curve (instead of a tanh as in the reference) of a linear combination of the past

returns and the last sizing:

wt =
(
1 + e−θTut

)−1

where ut = (1, Rt−l, Rt−l+1, · · · , Rt−1, wt−1) ∈ Rl+2 and θ ∈ Rl+2 denote the parameters we want

to learn. These parameters are optimized via a gradient ascent that maximizes the Sharpe Ratio.

Firstly we backtest the model without taking into account transaction fees so that it is comparable

to the previous strategies implemented. In this case ut becomes ut = (1, Rt−l, Rt−l+1, · · · , Rt−1) ∈

Rl+1 and θ ∈ Rl+1.

If we denote by T the length of the investment period, Rs
t = wt−1Rt, A = 1

T

∑T
t=l R

s
t , B =

1
T

∑T
t=l R

s
t
2, then S = A√

B−A2
. In the case where the model is trained without considering trans-

action costs, the gradient of the Sharpe Ratio S respect to the θ ∈ Rl+1 vector can be obtained

analytically after successive applications of the chain rule:

dS

dθ
=

dS

dA
· dA
dθ

+
dS

dB
· dB
dθ

=

T∑
t=l

(
dS

dA
· dA
dRs

t

+
dS

dB
· dB
dRs

t

)
dRs

t

dθ
=

=

T∑
t=l

(
S(1 + S2)

A
· 1
T

+
−S 3

2

A2
· 2

TR

)
Rt

(
1− (2wt−1 − 1)2

)
4(1 + wt−1Rt)

· ut

Since this method requires learning some parameters, the data must be split into training and test

subsets. We will use a rolling-window approach: we begin using the first 1000 days of data to find

the optimal θ in this period and we use them to trade from day 1001 to day 1100. Then we train

again the model using as a train set the data from day 100 to day 1100 and the learned parameters

and tested on the following 100 days. This is repeated 10 times until we have traded on all the last

1000 days of data we have. It is worth noting that this way of training the model taking advantage

of the temporal component of the data causes that we only have half of our original data to check

the performance of the model. Figure 4.9 illustrates how this rolling window is used.
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Figure 4.9: Rolling-window approach to train the direct RL model

The subsequent algorithm describes how the training is carried out inside each window.

Algorithm 1 Training of the direct reinforcement learning trader at each window

Input: Training return series r with length T , learning rate η, lookback l, number of epochs N
Output: Model parameters θ
θ0 ← 0
θ1..l ← U(0, 1)
for 1 to N do

for t← l to T do

wt ←
(
1 + e−θTut

)−1

Rs
t ← wt−1Rt

end for
S ← E[Rs

t ]√
Var[Rs

t ]

θ ← θ + η dS
dθ

end for

In the experiments carried out we use N = 2000 epochs, a lookback of l = 20 days and a learning

rate of η = 0.3. Before going in depth in the results obtained, it is important to verify that the

model is actually learning and maximizing the Sharpe Ratio in the training data.

Figure 4.10: Proof of convergence of the reinforcement learning trader
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On the left of Figure 4.10 we can see how the Sharpe Ratio increases with the number of epochs

until converging for the first training window of a random asset. This means that the number of

epochs and the learning rate chosen were suitable for our environment. The boxplots on the right

prove that the Sharpe Ratios calculated on in-sample data for the first training window of all assets

are significantly higher than the ones obtained on the same data with the Buy & Hold benchmark.

Thus, we can affirm that the direct reinforcement learning is training as it is supposed to.

Figure 4.11: Performance of the reinforcement learning trader on daily data

The boxplots in Figure 4.11 tell us that the RL trader could not learn parameters able to perform

well enough in the out-of-sample data as the Sharpe Ratios obtained are far below the benchmarks’,

with some important negative outliers. The only reason that could explain this behaviour is a high

degree of unpredictability and the fact that past returns do not affect the future in the same way

every time. If the trader wanted to perform better on the test data it should have learnt at least

to replicate the benchmark by setting θ0 big enough and the rest of parameters to 0. However,

forcing it to maximize the Sharpe Ratio in the in-sample data provoked this poor performance.

4.3 Experiments on minute-by-minute data

The results obtained for the direct reinforcement learning on stock daily data were far worse than

the original references suggested. Nonetheless, recently the same ideas were tried but using high-

frequency cryptocurrency prices instead [11]. The higher predictability observed in this reference

agrees with numerous studies, such as [4], that show that cryptocurrency prices do not strictly

follow a random walk since all the speculation behind make them somehow influenced by sentiment.

Because of that, we decided to replicate ourselves the same tests on this type of data.

4.3.1 Dataset

Following the aforementioned reference, these experiments were conducted on a dataset containing

the close prices of 6 of the main cryptocurrencies (BTC, ETH, LTC, ADA, XRP and XMR) from

01 January 2021 to 11 November 2021, accounting for around 450,000 minutes of data. It was

downloaded from Binance and did not contain missing values so no preprocessing was needed.

22



4.3.2 Direct reinforcement learning

In order to be able to apply the same framework described in Section 4.2.5 we need series containing

only 2000 minutes of data. For each cryptocurrency we created 200 series of that length by splitting

the 450,000 minutes in subsets of 2240 consecutive minutes and then getting rid of the last 240

minutes of each. In this way there is no overlap between series and the 4-hour gap between them

makes the backtests more independent. We will evaluate the performance measures on each of

these 1200 series separately, after applying the same rolling-window approach and training the θ

parameters for each window as we did with the daily stock data.

Since we have not changed the implementation of the algorithm respect to the last tests with daily

data, there is no need to check again that the model is training correctly and converging with the

hyperparameters we chose. Nonetheless, it is still interesting to analyze how the Sharpe Ratios

evolve over the epochs both when evaluated on training and test data. We chose 6 random series

out of the 200 obtained from the cryptocurrency XMR and at each epoch we calculated the Sharpe

Ratio on training and test data of the first window with the parameters found up to that point.

Figure 4.12: Sharpe Ratios over epochs for training and test data of 6 random series

Blue lines in Figure 4.12 show the Sharpe Ratios in training data and the orange ones in test data.

In an ideal case, the orange lines qould keep increasiong along the 2000 epochs and converging at

the end (despite being a bit more noisy). What we observe though is that in some cases a peak

ratio is achieved quite before finishing the 2000 epochs, and in others the learning is totally useless

as the test Sharpe Ratios keep decreasing since the beginning. These two cases are not specially

worrying though as negative Sharpe Ratios are difficult to analyze: they can worsen either by

providing more negative returns or less volatility. While the former is to be avoided, the latter

may be desired. But the first and last plots indicate that sometimes our method overfits and is

not capable of extrapolating the information learnt on training data to the future.
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Figure 4.13: Performance of the reinforcement learning trader on minute-by-minute data

The results in Figure 4.13 differ a lot from the ones we got from daily data as now the RL trader

outperforms the benchmark in terms of risk-adjusted measures. Also, a close-up at the return

boxplot reveals that the median is now quite above the benchmark (5.2 for the RL trader against

0.8 for the Buy & Hold). Since the model appears to perform really well on these backtests, it is

necessary to analyze what happens when we account for transaction costs, simulating a real-life

trading environment.

We take a transaction fee of C = 0.001 and we incorporate the associated costs (and the previous

sizing) in the training as described in Section 4.2.2.4. All the improvements that we observed above

now vanish as it can be seen in the results in Figure 4.14.

Figure 4.14: Performance of the reinforcement learning trader on minute-by-minute data (with transaction costs)

Since now the big sudden changes in the sizing are penalized by the transaction costs, the model

can not fully learn how to exploit the predictability on the returns while keeping similar portfolios

from one timestep to the next. The median of the annualized returns has gone down from 5.2

without transaction costs to 0.7 now and the differences in terms of risk have reduced. Hence, the

Sharpe Ratios become more equal to the benchmark, both in terms of median of all the backtests

(around 0.8 both for the RL trader and for the Buy & Hold) and in terms of outliers.
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4.4 Overall assessment

The simulations carried out in this chapter confirm that portfolio optimization is a difficult problem

that neither it can be broken down into univariate easier subproblems nor it can be approached

successfully with classical techniques. When dealing with daily data, the methods implemented

were not capable of clearly beating the Buy & Hold benchmark, even without taking into account

the transaction fees. When switching to higher frequency data, it seemed that the reinforcement

learning trader could at least detect some predictability in the data although in real life trading

the transaction costs would wipe out all the gains. These results reinforce our initial hypothesis

stating that we need to look for more complex techniques such as deep learning if we want to

obtain better results and mark our next steps in this project.
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Chapter 5

Main experiments

The results obtained in the tests done in Chapter 4 proved that predicting the behaviour of financial

products is not an easy task and it can not be reduced as applying some heuristic techniques to

univariate time series of prices or returns. Therefore, in this chapter we go one step further and we

carry out the first experiments with deep learning models for multivariate portfolio optimization.

The core idea is that these models output at each timestep the optimal portfolio allocation wt ∈ RN ,

and these allocations define the portfolio we hold for a given period.

5.1 Dataset

Since obtaining a great amount of low-frequency data requires using stock data from more than 20

years ago (when the market conditions were not comparable to nowadays), the last experiments

in Section 4.3 indicate that on minute-by-minute data it is possible to obtain better results, and

minute-by-minute data is easier to obtain if it is from cryptocurrencies, in these experiments we

use a dataset of minute-by-minute cryptocurrency prices. Specifically, the dataset contains close

prices of 14 of the main cryptocurrencies from 1 January 2021 to 6 May 2021. This provides

around 180,000 minutes of data. The 14 cryptocurrencies have been chosen mainly by market

capitalization and their prices have been obtained from Binance. They 14 considered assets are:

• Cardano (ADA)

• Algorand (ALGO)

• Avalanche (AVAX)

• Bitcoin (BTC)

• Polkadot (DOT)

• Ethereum (ETH)

• ChainLink (LINK)

• Litecoin (LTC)

• Terra (LUNA)

• Polygon (MATIC)

• Solana (SOL)

• Uniswap (UNI)

• Monero (XMR)

• Ripple (XRP)

26



No missing values were found on the dataset. Hence, there was no need for any preprocessing

tasks. It is worth noting that the period comprised from January 2021 to May 2021 was of bull

markets, without important or sustained price downfalls.

5.2 Trading framework

How the neural networks are trained along time and how the trading is executed are key aspects

to understand the functioning of the deep learning models designed. The Python package deepdow

[13] has been used to implement this framework as it helps to ease all its intricacies.

First of all, we see the financial time series as a 3D tensor with dimensions indicator, time and

asset. To illustrate this, in our case we will be dealing with minute-by-minute (time dimension)

log-returns (channel dimension) of multiple cryptocurrencies (asset dimension). Graphically, one

can imagine something like:

Figure 5.1: Financial time series seen as a 3-dimensional tensor. From [13].

If we fix a timestep (representing now), and we choose the length of the lookback, the horizon

and a gap period, we can split our tensor into 3 disjoint subtensors X, g and y (as in Figure 5.2).

X contains information about the past and present. The second tensor g represents information

contained in the immediate future that we cannot use to make investment decisions (because, for

example, we do not have enough time to train or to bring our algorithms into production). Finally,

y is the future evolution of the market.

For illustrative purposes, let’s consider a tensor of 12 timesteps, where lookback=5, gap=1 and

horizon=4. We can move along the time dimension and apply this same decomposition at every

time step on a rolling-window fashion. We would obtain 3 pairs of feature tensor and label tensor.

This can be seen in Figure 5.3.
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Figure 5.2: Splitting the time series into past, immediate present and future data tensors. From [13].

The networks we study receive as input the feature tensor X and return a weight allocation w.

In other words, given the past knowledge X we construct a portfolio w that we buy right away

and hold for horizon time steps. So, if f denotes some neural network with parameters θ, then

f(X, θ) = w. To train the parameters θ, we apply a gradient descent to a defined loss function.

This loss function must receive as input the weights and the future information tensor and output

a real number. We will denote it by L(w, y).

In our experiments, we always use a lookback of 150 minutes, a gap of 1 minute and a horizon of

30. The loss function is the annualized Sharpe Ratio of the returns obtained in the horizon with

the portfolio w output by the network.

As we want to simulate real-life trading, just splitting the original dataset of 180,000 minutes of

data into one train and one test datasets is not the best idea as one would want to rebalance the

portfolio often and it might not be necessary to look at past data that is so far in time. For this

reason, we apply an external rolling-window (similar to the one illustrated in Figure 4.9) that tells

how often we retrain the parameters θ and how many data samples we use to train them. The

train splits contain 1050 minutes of data, which, considering the lookback, gap and horizon fixed,

account for 869 pairs of samples containing a feature tensor and a label tensor. We apply the

trained model to trade on the following 180 minutes, although we do not update the portfolio at

every minute. Instead, we reoptimize it every half an hour. At time index 1051 we input the past

lookback returns to the model and we use its output as the portfolio we hold for the next horizon

timesteps (until the 1080th minute). Then again at time index 1081 we design a new portfolio

based on the last lookback returns and we change our previous position to hold this one for the

next half an hour. We repeat this 6 times in total (trading until the 1230th minute). After that,

we shift the training set 180 minutes forward, training in the new train split and trading from time

index 1231 to time index 1410. In this way we define a new window. We repeat this procedure

1000 times so that the whole investment period comprises 180,000 minutes of data.
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Figure 5.3: Generation of features and label tensors on a rolling-window basis. From [13].
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At the first window, the network parameters are initialized via PyTorch’s default initialization

for each layer. But in all the next training periods we initialize the parameters with the optimal

values found in the previous window. This helps to make the most out of the temporality of the

data and to make the models more easily adaptable to changes in the market. However, if we

look at every window as a separate backtest, they become less independent and can contribute to

magnify problems such as overfitting or falling into local minima. Some preliminary experiments

indicate though that this method of training the parameters is preferred to completely resetting

the network at each window.

Finally, to evaluate the models we look both at the short-term and the long-term performance. For

the short term, we consider each window as an individual backtest and we evaluate the measures

described in Section 2.3 on each trading period consisting of 180 minutes of data. We can then

boxplot these 1000 values for each model to facilitate the comparison among them. If we want to

keep the temporality and get a 1-to-1 comparison in time we can plot them in a rolling fashion,

so that we fix a lookback and at each timestamp we evaluate the measures on the past lookback

portfolio returns and we plot the obtained values on the time axis. For the long-term, we evaluate

the performance measures on the whole 180,000 minutes of trading obtained after concatenating

all windows. In this case we only get one value for each measure and model so we can simply

display them on a table.

Since the goal of these experiments is to analyze if deep learning can outperform the classical

portfolios, their performances must be compared to the ones obtained with these portfolios that

we regard as benchmarks. Specifically, 3 benchmarks are used: the Equally Weighted Portfolio, a

MVP with the expected return vector µ calculated as the sample mean of the past lookback returns

(leaving the same 1-minute gap in between) and with Σ being the sample covariance matrix, and

a MVP where µ is calculated as an exponentially weighted average of the past lookback returns,

with factor of 2
l+1 . Both MVPs have a risk-aversion parameter of λ = 6 and include a long-only

constraint.
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5.3 Proposed architectures

5.3.1 Two-block architecture

Modern portfolio theory divides the portfolio design procedure in two steps. The first one intends to

forecast the behaviour of the considered financial products and the second optimizes the allocation

given this forecast and some constraints. The reason why many of the classical portfolios do not

work completely well is because of the errors in the forecast due to the noise present on the original

data. This noise affects Σ only slightly (which can be calculated as the sample covariance matrix

without too much error), but has a very important impact on the µ vector of expected returns.

Since the main issues of classical portfolios come from the forecasting step and not from the

convex optimization problem, our goal is to analyze if applying a neural network to predict µ can

provide better estimations than standard methods such as sample means or exponentially weighted

averages. For this reason, the models built in this section consist of two clearly distinct blocks that

perform separate tasks: estimating the expected return vector µ and calculating a MVP using this

µ and the sample covariance matrix. This is illustrated in Figure 5.4.

Figure 5.4: Pipeline of the models under a two-block architecture

The first block receives as input the past lookback returns of all the assets and outputs the µ

vector via a neural networks composed of MLP and/or LSTM units. The second block solves the

convex optimization problem of the mean-variance portfolio with a long-only constraint and fixing

the risk-aversion parameter to λ = 6:

max
w

wTµ− 6wTΣw

s.t. 1Tw = 1

w ≥ 0
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The µ vector used in the problem is the output from the first block and Σ is the sample covariance

matrix without shrinkage or any additional transformations. To update the parameters of the

neural network in the first block we backpropagate the error from the output of the second across

the optimization problem with the help of the Python package cvxpylayers. Understanding the

exact way the gradient is propagated through the differentiable convex optimization layer falls out

of the scope of this project. More details can be found in [1].

It is worth mentioning that even though we set a high value for the risk-aversion parameter of the

mean-variance portfolio, the model is able to absorb it by scaling the µ vector conveniently. As

we do not use any activation function on the output of the first block, its output can be scaled by

simply increasing or decreasing the parameters of the network proportionally. The main reason to

set this hyperparameter in this way is because it is the same value we use for the mean-variance

portfolio benchmarks, so we can do more meaningful comparisons.

5.3.2 End-to-end

Current research on deep learning for portfolio optimization suggests that the forecast and op-

timization steps can be skipped in the models. The idea is that neural networks that from the

returns directly output the portfolio allocation w in one step may provide better performances as

they avoid the forecasting of the expected returns and covariances which are the root cause of the

poor performance of classical portfolio designs.

In this section we follow the approach described in [22]. The core idea is to first get a fitness

score for each asset via a neural network, and afterwards apply some differential functions to

this scores vector to transform them into portfolio weights satisfying some specific constraints.

Mathematically, we denote by N the number of assets, l the lookback, Rt ∈ Rl×N the input of

the neural network which contains the current information of the market (log-returns in our case),

g1 a neural network with trainable parameters θ, g2 : RN → RN a differentiable function and

st = (s1,t, . . . , sN,t) ∈ RN the vector of scores. Then the pipeline of these models simply becomes

st = g1(Rt; θ), wt = g2(st). As we backpropagate the gradient from the Sharpe Ratio obtained in

the next horizon returns with this portfolio, it is necessary for h2 to be differentiable.

Figure 5.5: Pipeline of the end-to-end models
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One could look at this architecture as something similar to the two-block architecture described

in Section 5.3.1, where the second block that solves the mean-variance optimization problem has

been replaced by some differentiable function g2 (so the covariance matrix Σ is not needed). Now

the question becomes what function should g2 be. In [22] 4 different functions are proposed in

order to satisfy different constraints: long-only, maximum position, leverage and cardinality. To

make these backtests coherent and comparable to the ones with the two-block architecture, we

only consider the long-only constraint. Therefore, h2 becomes a softmax activation of the scores:

wi,t = g2,i(st) =
esi,t∑N
j=1 e

sj,t

5.4 Neural networks

5.4.1 Proposed feed-forward networks

4 different feed-forward neural networks have been implemented and tested. Not all of them can

be considered deep learning models as they do not even have a hidden layer and simply perform

a linear transformation to the input. They all take as input the tensor containing the returns of

all assets in the past lookback timesteps and output a vector of size equal to the number of assets.

If applied into the two-block architecture, this vector is the µ used in the MVP block. In the

end-to-end models, this vector represents the unnormalized weights of the portfolio (or scores),

before applying the softmax function to them. To avoid confusion in the notation, the output of

this neural networks will be denoted as a vector zt ∈ RN , regardless of what their final purpose is

going to be. The details of the 4 networks implemented can be found below:

1. 1 single independent linear layer per asset: The first network implemented calculates

each component of the output vector as a linear combination of the past lookback returns

of that corresponding asset. The way the returns are combined to generate the output is

different for each of them. As the network works independently for each asset, it is not

capable of learning any interactions between them. If zi,t denotes the i-th component of

the output of this network, and θi,j its parameters, we have that the i-th component of the

output is computed as

zi,t = θi,0 +

l∑
j=1

θi,jri,t−j

From the equation above it is immediate to see that the number of trainable parameters of

this network is N(l+ 1) = 2, 114. This network is used as a baseline, meaning that the next

ones are built by adding more complexity to this one, which is sketched in Figure 5.6.
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Figure 5.6: Baseline linear network implemented

2. 1 fully-connected linear layer: The main downside of the previous two networks is that

each component of the output vector is calculated independently by just using the returns

of the corresponding asset. The most straightforward way to overcome this issue is by

connecting all returns of all assets to each component of the output vector, so that, comparing

to Figure 5.6, the connections between the input and the output become a dense layer.

Noting by θi,j,k the weight that connects the return of asset k at time t − j to the i-th

component of the output vector, and by θi,0i its bias, the output can be calculated as:

zi,t = θi,0 +

N∑
k=1

l∑
j=1

θi,j,krk,t−j

So we now have only one linear layer whose input is the matrix of Nl returns and whose

output is the whole vector of size N , without a non-linear activation function. One drawback

of this network is the increase in the number of parameters, which now is N(Nl+1) = 29, 414.

This structure does generalize the previous one as its same behaviour could be replicated by

setting to 0 all the weights of returns contributing to a component of the output vector that

does not correspond to their asset.

3. 2 layers, first one independent for each asset: In this network we take the structure of

the baseline, we apply a rectified linear unit to the output of that layer and we add an extra

fully-connected linear layer after that takes this vector of size equal to the number of asset

and returns another same-sized vector. So we end up adding a hidden layer (see Figure 5.7).
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Figure 5.7: Feed-forward network with one hidden layer

Denoting by θ2i,j the parameters of this new layer and by θ1i,j the parameters of the previous

one, the final output of this network can be expressed as:

zi,t = θ2i,0 +

N∑
k=1

θ2i,k max

0, θ1k,0 +

l∑
j=1

θ1k,jrk,t−j


This additional layer at the end allows the model to learn some correlations between the

assets while not adding as much complexity as the network with only one fully-connected

layer. The number of trainable parameters is now N(l + 1) +N(N + 1) = 2324.

It is worth remarking that, even though we built this network by adding complexity to net-

work number 1, it can not directly replicate its performance due to the non-linear activation

function added in between of the two layers.

4. 2 layers, first one shared for all assets: The last feed-forward network implemented is

the least complex one (in terms of number of trainable parameters) that can account for the

interactions among assets. Its structure is similar to the one in Figure 5.7, with the difference

that now the weights of the first layer are the same for each group of log-returns. So the

trainable parameters θ1i,j are shared among all assets: θ10,j = θ11,j = · · · = θ1N,j and we denote

them all by θ1j . Its output is:

zi,t = θ2i,0 +

N∑
k=1

θ2i,k max

0, θ10 +

l∑
j=1

θ1j rk,t−j


The number of trainable parameters of this network is l + 1 +N(N + 1) = 361.
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5.4.2 LSTM

5.4.2.1 Definition

The second type of neural networks implemented are LSTMs. Before describing the networks of

this type implemented, we define briefly how they work and why they are more suitable to temporal

data than standard feed-forward networks. The guide below follows Olah’s notation on [20].

Oppositely to traditional feed-forward networks, recurrent neural networks have loops in them

which allow information to persist. The network looks at some input xt and outputs a value ht.

The loop feeds this output value to the network again so that it can be used to determine the

next output given the next input. Although the loop might seem to complicate the network, a

RNN can be understood as multiple copies of the same feed-forward network, each of them passing

information to the successor. Figure 5.8 shows an unrolled recurrent neural network.

Figure 5.8: An unrolled recurrent neural network. From [20].

The chain-like structure of RNNs makes them very suitable for sequential data and time series,

specially for problems where it is known that the output at a given timestamp depends somehow

on the previous states of the time series. Some of these problems include speech recognition,

translation, image captioning and language modeling.

Theoretically, recurrent neural networks should be capable of dealing with dependencies that go

really far back in time. In practice, they face one important problem: the vanishing gradient. A

RNN is also trained via gradient descent, meaning that all parameters that contributed to the

final output should have its weight updated using backpropagation through time. Looking at the

unrolled representation in Figure 5.8 it is easy to see that it is not only the neurons right below

the output that we have to update, but also all the neurons far back in time.

When applying the chain rule to do the backpropagation, we would be multiplying the gradient

consecutively by the weights that transmit information from the network at one timestep to the

next one, which are initialized randomly and close to 0. Thus, the components of the gradient that

go furthest in time would be very small in absolute value and the corresponding weights would

never be modified substantially, making it difficult for the network to learn dependencies between

events that happen very far in time.
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Here is where Long Short Term Memory networks (LSTM) come into play. They are a type of

recurrent neural networks (so they can still be unrolled) where the repeating module contains four

single neural network layers (instead of one as the standard RNNs), interacting in a very specific

way. The core idea behind the LSTMs is the cell state, represented by the horizontal line running

through the top of the diagram in Figure 5.9. They run down the entire chain structure, only with

some minor linear changes. The cell state allows information to flow along time and the changes

on it are carefully regulated via structures called gates.

Figure 5.9: Insight on the LSTM repeated module. From [20].

Before going through the LSTM architecture step-by-step, it is necessary to introduce the notation

we are going to use. d1 and d2 denote the dimensionality of the inputs and outputs, respectively.

For the i-th module, xi ∈ Rd1 denotes its input, hi ∈ Rd2 its output and Ci ∈ Rd2 its cell state.

θ denotes the set of weights and b the set of biases. By [·, ·] we denote the concatenation of two

vectors, by ⊙ the element-wise Hadamard product and the sigmoid function σ is σ(x) = 1
1+e−x ,

outputting values in the range (0, 1). Let’s describe now what is done in each layer:

1. The first step in the LSTM is to decide what information we are keeping and what information

we are discarding from the cell state that comes from the previous module. This is done in the

forget gate layer, which corresponds to the left-most sigma box in Figure 5.9. It is calculated

as ft = σ(θf · [ht−1, xt] + bf ). For each component of ft, a value close to 0 means that we

want the corresponding component in the cell state Ct−1 to forget its value while a number

close to 1 means that we want it to keep the previous information.

2. The next step is to decide what new information is going to be stored in the cell state. This

is done in two parts. On one hand, the input gate layer determines which values of the cell

state we want to update: it = σ(θi · [ht−1, xt]+ bi). On the other hand, a tanh layer creates a

vector of new candidate values to be added to the cell state: C̃t = tanh(θC · [ht−1, xt] + bC).

This operations happen in the second and third yellow boxes in Figure 5.9.

3. Thirdly, we combine the previous layers to update the old cell state Ct−1 into the new one

Ct. This is done as Ct = ft ⊙ Ct−1 + it ⊙ C̃t. These element-wise operations take place in

the three left-most pink circles.
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4. At this point the network is ready to decide its output, according to the cell state and the

current input. We decide which parts of the cell state we want to output: ot = σ(θo ·

[ht−1, xt] + bo), and we ensure the final output is in the range (-1, 1) by applying a tanh

function: ht = ot ⊙ tanhCt. This output, calculated on the two right-most pink boxes in

Figure 5.9, is copied also to the next module.

From the calculations above it can be immediately deduced that the number of parameters of a

whole LSTM unit is 4 ((d1 + d2) d2 + d2). It grows linearly on d1 and quadratically on d2, so it

is important to be very careful on increasing the hidden size as it makes the model considerably

more complex.

5.4.2.2 Proposed networks

4 networks containing LSTM units have been implemented and tested in this project. Some of

them are analogous to some feed-forward networks described in Section 5.4.1, where at least one of

the linear layers has been replaced by an LSTM unit. The details of the 4 networks are described

below:

1. 1 independent LSTM unit per asset: In the first network there is one separate LSTM

unit for each asset that takes as input the last lookback returns of the corresponding asset

and calculates the respective component of the output vector. Thus the model consists of

N LSTMs, each of them with input size l and hidden (output) size 1. For every LSTM,

its output is multiplied by a real number (again different for each asset), which is also a

trainable parameter of the model. Since the output of an LSTM is in the range (-1, 1) due

to the last tanh function, this factor is needed so that the model can learn to differentiate

the good assets from the excellent ones, and the bad from the poor, as they all might have

values very close to 1 or -1. Also, in the two block-architecture this factor lets the model

deal with the risk-aversion parameter of the MVP portfolio as it can conveniently scale the

µ to make it more or less risky.

This structure is similar to the network number 1 described in Section 5.4.1 as each component

of the output vector is calculated independently and it can not detect any correlations among

assets. The main difference is that the linear combination performed in the only layer there

is here replaced by the output of an LSTM unit multiplied by a scaling factor. However, the

LSTM adds a lot of parameters, reaching a total of N(4((l + 1)1 + 1) + 1) = 8, 528. Figure

5.10 illustrates how the inputs and output on this network are connected.
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Figure 5.10: First LSTM network implemented

2. 1 fully-connected LSTM unit: This second LSTM is analogous to the fully-connected

linear layer already described, in terms of how it is able to learn the interactions. Basically

we substitute the linear layer there for an LSTM of input size Nl (the whole matrix of returns

of all the assets flattened) and hidden size N . For the same reasons explained in the previous

network, the output vector is multiplied element-wise by another vector of scaling factors.

Although this model can fully exploit the interactions between returns of different assets, it

gets more complex as the number of trainable parameters of an LSTM increases quadratically

with the hidden size. Precisely, it has 4((Nl +N)N +N) +N = 118, 456 parameters.

Figure 5.11: Fully-connected LSTM network implemented
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3. 1 independent LSTM unit per asset + 1 fully-connected linear layer: The third

network applies the same idea described in the third feed-forward network described to deal

with the interactions among the assets. What we do here is taking the first LSTM described

here, without the last scaling factor, and adding a fully-connected linear layer at the end

which receives this vector of N components and output another one of the same size. There

is no need to add the scaling factor now as the linear layer has no activation function,

so by simply scaling their weights the model can learn to do the same. It has a total of

N · 4((l + 1)1 + 1) +N(N + 1) = 8722 trainable parameters.

Figure 5.12: LSTM network with one additional dense layer

This network generalizes the first LSTM as it can completely replicate its behaviour. To do

that, it would need to set all weights and biases of the additional linear layer to 0 except for

the one that comes from the same asset, which should be equal to the scaling factor.

4. 1 independent LSTM unit per asset with 8 features: The last model implemented is

also independent on each asset but is significantly more complex than the first one. It still

has one LSTM unit per asset whose input are the returns of that asset, but in this case the

hidden size is increased up to 8. After applying these LSTMs to the returns, we get a set of

N vectors of size 8. To transform these vectors into the output, we apply an independent

linear layer to each of them. In this way, the learnt linear combination of the 8 elements of

one vector becomes the corresponding component of the output vector. As we increased the

hidden size of the LSTMs we should expect a much more complex model. Specifically, it has

N · 4((l + 8)8 + 8) +N · 9 = 71, 358 parameters.

This network could perform equally to the first one by setting all weights and biases of the

8-to-1 linear layers added to 0 except for 1, which is left as the scaling factor.
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5.5 Results

In this section we show the results obtained with all the networks and architectures described

above when trading with the framework described in Section 5.2 along the period comprised by

the dataset. Since a total of 16 different models have been tested, to facilitate their reading we the

results are shown grouped by architecture and type of neural network, and separating the analysis

of their short and long-term performances.

5.5.1 Two-block architecture

This subsection studies the performance of the models whose architecture integrates the resolution

of a mean-variance problem. To avoid overloading this section with redundant plots, we just look at

the Sharpe Ratios of the models and we leave the rest of measures (which study separately returns

and risk) for the evaluation on the long-term done in Section 5.5.3. Here, instead of plotting directly

the annualized Sharpe Ratio of each model measured per window, we plot the excess Sharpe Ratio

respect to the Equally Weighted Portfolio benchmark. This excess Sharpe Ratio is basically the

difference between the annualized Sharpe Ratio given by the model and the annualized Sharpe

Ratio given by the EWP on that same window. The model is beating the benchmarks whenever

this excess is positive.

The reason why we plot the excess Sharpe Ratio instead of the annualized Sharpe Ratio is because

as the backtests are not fully independent and are done one immediately after another, looking

directly at the Sharpe Ratio at each window ignores the temporal component of the backtests and

leads to results that are difficult to read. Let’s give a toy example. Imagine we test two models A

and B on 8 windows. Model A gives the following sequence of Sharpe Ratios on each window: {-1,

0, 1, 2, 3, 4, 3, 2} and B gives the sequence {-2, -1, 0, 1, 2, 3, 2, 1}. Clearly model A would be

performing better than B as it consistently provides a Sharpe Ratio higher in one unit. However,

if we forget about the temporal component and we compare both sets straight we see that 6 out

of the 8 values are the same in both sets and only two of them are different and can not be paired

with a Sharpe Ratio of the same value in the other set: the 4 and the second 3 of the first set and

the -2 and the last 2 of the second. So the conclusion we would immediately extract from that is

that models A and B perform equally almost always except for some outlier cases where model A

beats model B, and that is completely false. If instead of looking at the values by itself we analyze

the 1-to-1 differences of the Sharpe Ratios that happen in the same window, we would obtain a

set of 8 ones and that is a true indicator that model A is beating model B. This is the justification

for using the excess Sharpe Ratio against a benchmark instead of the Sharpe Ratios by itself.
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After this introduction on why we use this measure, we first analyze the results obtained by

the models containing two blocks where the first one is a feed-forward network in a short-term

perspective. Figure 5.13 shows the excess Sharpe Ratios compared to the EWP for all four models

described in Section 5.4.1.2 and the two MVP benchmarks. We do not include the EWP in these

plots as obviously all the excesses would be 0.

Figure 5.13: Short-term performance of the feed-forward models on a 2-block architecture

Although the great amount of outliers widens the scale of the boxplot and makes the differences

less obvious, it can still be observed that the most simple of all models, the one with 1 independent

linear layer per asset, is the only providing a median of the excess Sharpe Ratios above 0. The

other models, which can learn the correlations among the assets, perform worse in this short-term

basis, even worse than the benchmarks. This last comparison is a bit complicated to make though

as the MVP benchmarks give a much narrower range of excesses than feed-forward models meaning

that they perform more similar to the EWP than the other models. It is also interesting to note

that, in terms of outliers, the simplest model has more outliers on the positive side and less and

less significant on the negative, so it also provides good results in that sense. Finally, the fact that

a more complex model like the one with a dense linear layer, which is a generalization of the model

with 1 independent linear layer per asset as it could learn to trade in the same way by setting its

parameters conveniently, performs worse suggests that some problems might be happening in its

training process such as overfitting. This is analyzed in more detail in Section 5.5.4.

As a side note, regarding the benchmarks the previous boxplots show that the MVP with the sample

mean and the MVP with an exponentially weighted moving average perform almost identically.

Since their only purpose is to be references to compare the deep learning models to, there is no

reason to keep showing them both so we will remove the MVP with the exponentially weighted

moving average from the next plots.
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Figure 5.14: Short-term performance of the LSTM-based models on a 2-block architecture

Figure 5.14 repeats the same study we did in Figure 5.13 but for the models containing LSTM

units in a 2-block architecture. We add to this boxplot the 1 independent linear layer model which

provided the best results out of all the feed-forward models considered. In this case none of the

models provides better results than the linear one. Although this poor performance of all 4 models

was unexpected as the LSTMs are apparently more suitable for time series and problems of this

kind there is one case worth exploring in more depth. The fact that the simplest of the LSTMs,

which is basically a copy of the the best-performing feed-forward network in terms of how the

network is connected only replacing the linear layers by LSTMs units that are more complex, can

not perform better indicates that some problems are happening here on how the LSTM is being

trained. Either the input and output do not have the best structure to fully exploit the temporality

of the data, more epochs of training need to be done (although this crashes with the fact that the

training time for one window should not exceed the 1 minute gap in order to be able to replicate

this trading strategy in real life) or overfitting is happening. Again, more detail on this is carried

out in Section 5.5.4.

Figure 5.15: Rolling Sharpe Ratios on 2-week periods for the best-performing models on a 2-block architecture
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To end this analysis, we calculate the Sharpe Ratios for the seemingly best-performing feed-forward

and LSTM models in a rolling basis. Every 2 days (2880 timesteps) we evaluate the annualized

Sharpe Ratio on the portfolio returns of the past two weeks (20,160 minutes). This way of plotting

the measures exploits even more the temporal component of the backtests as a direct 1-to-1 com-

parison can be made at each timestamp considered and distinguish in which periods one model

performs better than another and in what periods it does not. Figure 5.15 confirms that the sim-

plest model is the best one so far as it is always considerably above the benchmarks, specially at

the beginning and at the end of the investment period. On the other hand, it is not even clear if the

LSTM model (also learning independently for each asset) performs better than the benchmarks.

To extract a more accurate conclusion, it is necessary to look at their long-term performances in

Section 5.5.3.

5.5.2 End-to-end models

After revising the performance of the models under a two block architecture, where the parameters

of the neural network that predicts the expected return vector are updated taking into account its

performance on a mean-variance portfolio, we repeat the same analysis on the end-to-end models,

with the same neural networks described in Sections 5.4.1 and 5.4.2. We plot again the excess

Sharpe Ratios for each model here, and we add the best model found so far to get the big picture

of the performance of the end-to-end ones.

Figure 5.16: Short-term performance of the feed-forward models on an end-to-end architecture

Figure 5.16 indicates that the end-to-end feed-forward models are quite far from the best 2-block

one. Moreover, none of them is clearly beating the benchmarks. If we compare them 1-to-1 with

their equivalents on the 2-block architecture (Figure 5.13) it seems that end-to-end is generally

a worse performing architecture. Also, the same conclusions can be extracted about the end-to-

end LSTM models, from Figure 5.17. Their performance is in general poor and do not improve

their corresponding 2-block models. Further analysis should be done to understand why the fully-

connected LSTM performs so much more similar to the EWP than the rest of the models.
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Figure 5.17: Short-term performance of the LSTM-based models on an end-to-end architecture

For the rolling Sharpe Ratios analysis, we include the feed-forward model with one fully-connected

layer as it had the best median of the excesses and the LSTM which learns 8 features of each asset

independently beacuse none of the LSTM stood out from the rest but at least this was the best

one in the 2-block case so we can compare them directly.

Figure 5.18: Rolling Sharpe Ratios on 2-week periods for the best-performing models on an end-to-end architecture

Here none of the models is significantly better than the benchmarks. The fully-connected linear

one has better performance on the last half of the data and the LSTM does not provide clear

differences.

5.5.3 Summary of long-term performances

Table 5.1 displays the usual performance measures (annualized non-cumulative return, annualized

volatility, maximum drawdown and annualized Sharpe Ratio) for each model implemented evalu-

ated on the whole 180,000 portfolio returns provided by each on the whole investment period. In

general terms, it corroborates the arguments presented in Section 5.5.1 and 5.5.2.
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Return Volatility Max DD Sharpe
Benchmarks
EWP 7.482 1.230 0.204 6.087
MVP with sample mean 5.535 1.029 0.183 5.377
MVP with EWMA 5.541 1.030 0.181 5.378
2-block architecture

1 independent linear layer 19.12 1.607 0.200 11.89
1 fully-connected linear layer 10.74 1.692 0.241 6.350
2 linear layers, 1st independent 9.429 1.859 0.202 5.073
2 linear layers, 1st shared 12.53 1.943 0.236 6.449
1 independent LSTM unit 10.34 1.629 0.191 6.345
1 fully-connected LSTM unit 6.207 1.035 0.183 5.996
1 independent LSTM unit + 1 f.-c. linear layer 9.000 1.355 0.244 6.643
1 independent LSTM unit w/ 8 features 11.48 1.505 0.236 7.631
End-to-end
1 independent linear layer 14.39 2.296 0.294 6.271
1 fully-connected linear layer 14.53 1.873 0.252 7.760
2 linear layers, 1st independent 8.675 1.895 0.238 4.578
2 linear layers, 1st shared 12.68 1.830 0.235 6.930
1 independent LSTM unit 8.926 1.529 0.224 5.839
1 fully-connected LSTM unit 7.928 1.326 0.201 5.979
1 independent LSTM unit + 1 f.-c. linear layer 12.06 1.901 0.240 6.342
1 independent LSTM unit w/ 8 features 12.25 1.858 0.231 6.591

Table 5.1: Long-term performances of all models implemented (without transaction costs)

In first place, the models that seem to perform best on a short-term basis (of which we also

plotted the rolling Sharpe Ratios) also perform best on the long-term. Specifically, the difference

between the 2-block architecture with 1 independent linear layer per asset and the rest becomes

now completely evident, with an annualized Sharpe Ratio of about twice the others. This difference

comes mainly from a big increase in the returns but not in terms of risk. Nonetheless, it must be

remarked that the huge value for the annualized return might be considerably impacted by some

outliers that appeared in Figure 5.13, thus reducing the statistical significance of this value.

Secondly, it appears plain to see that it is worth adding the MVP block in the architecture of

our models so that we take into account the covariance matrix also and we design the portfolio

by solving an actual optimization problem (which we know that ideally should provide a desired

portfolio) and not by simply letting a neural network decide. This comes obvious by seeing how the

volatility of end-to-end models increases respect to their 2-block analogues without clear differences

in terms of returns. The reason for this is that the MVP forces the model to minimize the variance

up to some extent while end-to-end gives more freedom to allocate as much as possible to the

assets with more promising returns without taking into account their correlations. As the returns

are so difficult to predict, end-to-end models do not end up providing better returns but they do

increase the risks.
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Reminding that the Sharpe Ratio is the function being optimized for our networks, and that some

of the models could replicate the benchmarks, one would expect them to perform at least equally

to the reference portfolios. However, this not always the case. For example, the end-to-end model

with 2 linear layer where the first one is independent for each asset could easily replicate the EWP

by setting all the trainable parameters of the second layer (the dense one) to 0 so that the outputs

of the softmax have all the same value. Overfitting may be the root cause of this. See Section

5.5.4 for a more detailed discussion on this.

The last relevant aspect in the table above is how the LSTMs do not perform better than the

simplest linear models. The temporality of the data should make LSTM-type networks very con-

venient for this problem, however the results show the contrary. Again, a deeper analysis of this

issue is carried out in the following section.

To finish this presentation of the results, we plot the cumulative wealth over time for the bench-

marks and the best model for each combination of architecture and neural network type in Figure

5.19. It shows the dominance of the 2-block architecture with a simple linear layer per asset but

also the return outliers can be observed, for example around timesteps 35,000 and 50,000.

Figure 5.19: Cumulative wealth for the best-performing architectures
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5.5.4 Analysis on the capacity of overfitting of the models

The results in Sections 5.5.2 and 5.5.3 suggested that the training of some models was not optimal

since their performance differed from what we would have expected according to the complexity

of the models and what features they should be able to extract from the data. To get a deeper

insight on this matter, in this section we dig into how the models can learn by how we defined

them and what may cause this poor performances.

Since the end-to-end models do not produce any relative differences among the models compared to

what can be observed with the 2-block ones, here we focus only on the 2-block models, specifically

on the feed-forward with 1 independent linear layer per asset, the feed-forward with 2 linear layers

where the first is independent per asset and the second is dense, the analogous of the first feed-

forward but with LSTMs and the best-performing LSTM that learns 8 features per asset. From

Sections 5.4.1 and 5.4.2 we know that these models have 2114, 2324, 8528 and 71,358 trainable

parameters, respectively.

As the models are trained with only 8 epochs, it is difficult to illustrate how the train losses evolve

on these 8 epochs at each window in a meaningful way. Since we mainly want to see how one

model overfits the data compared to another, it is enough to look if they yield better or worse

in-sample performances and can learn more specific features of the training data that can not be

extrapolated to the out-of-sample. Therefore, the boxplot in Figure 5.20 shows the training loss

(annualized Sharpe Ratio) obtained by each of the aforementioned 4 models at the 8th epoch of

the training at each window.

Figure 5.20: Sharpe Ratios on in-sample data at the end of the training for each window

We take as a reference the left-most column of the boxplot as it corresponds to the best-performing

method out-of-sample. The first thing to observe is that the feed-forward network with 2 layers

consistently ends up with higher Sharpe Ratios on the training data. However, it is not capable of

translating this information to the test data. This is a clear symptom that overfitting is occurring
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in this case. The number of parameters of both networks is not substantially different, so we

deduce that the capacity of overffiting that the model has does not come strictly from the number

of trainable of parameters of the model but also from how it is connected. There is no simpler

(in terms of number of additional trainable parameters) and still sensible way of letting the model

learn the interactions among assets than adding this extra dense layer at the end, so changing the

structure of the model might not be the most appropriate approach to reduce this overfitting and

we should deal with it in training time.

There exist various ways of reducing overfitting without changing the architecture of the model.

One would be to add a validation set and early stopping. The validation set would be a split of

the training data containing a small proportion at its end. We would use the remaining of the

training data to train the parameters and at the end of each epoch we would evaluate the loss

function on this validation set with the parameters calculated at that same epoch. If after a given

number of windows the value of the loss function on the validation set has not improved, we would

stop the training for that window and use the parameters that provided best results over the last

epochs to trade on the test split. Another way to prevent overfitting is by adding dropout layers.

However, some smaller untabulated experiments showed that dropout did not help much in our

models. And even another approach to overcome overfitting would be to increase the size of the

training datasets, so that the ratio of trainable parameters and number of samples decreases. This

would imply changing the trading framework described in Section 5.2 so an integral review of the

experiments should be carried out.

When looking at the loss values for the simplest LSTMs, we see that they are below the linear

model. By how we set the LSTM, it should be able to at least perform equally to the linear model

by just ignoring the memory and feedback and just caring about the input parameters. This does

not happen as the low values of the Sharpe Ratios on in-sample data indicate that the model is not

capable of learning as much. Thus overfitting is not the main issue here. The problem probably

comes from a bad training procedure for this model. At each timestep the LSTM was input the

whole lookback of returns. This may not be optimal as the LSTM memory should be able to

understand how to interpret this lookback and keep it in his cell state if we just input one return

at a time. To let the model learn more features, we would increase the hidden size instead and

add a dense layer at the end. More research should be done in that sense to conclude which is the

optimal way of setting up the LSTMs in this problem.

Another problem the LSTMs may be encountering here is an incomplete training, needing more

epochs or a bigger learning rate to end up converging at the end of the training. However, in-

creasing the number of epochs implies increasing the training time, and to avoid cheating in the

backtests this time should not exceed the 1-minute gap imposed in our framework as otherwise

these experiments could not be replicated in real life (with the experiments and the computational
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resources we had available for them, with 8 epochs we are already close to reach this 1-minute

threshold). But increasing the gap would most probably imply a decrease in performance as the

model has to predict further in the future. So the pros and cons should be balanced carefully

before deciding if it is worth letting the model train for more epochs or not.

Finally, from the last LSTM plotted, we can deduce that it is suffering both from overfitting (as its

in-sample Sharpe Ratios are higher than the ones from the linear model but not when measuring

them out-of-sample) and probably from bad training practices as the main issues commented about

the simpler LSTM model must also be happening in this one.
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Chapter 6

Experiments on data of different

frequencies

The previous chapter showed which models performed best under the environment considered.

Some important assumptions have been done when designing the framework but there is one

specially worth analyzing in depth: the frequency of the data. Some of the models designed could

clearly beat the benchmarks when working on minute-by-minute data if transaction costs were not

taken into account. However, since in the experiments on Sections 4.2 and 4.3 the results changed

completely when switching from daily to high-frequency data, our hypothesis is that as we lower

the frequency of the data, the performance of the models worsens because the markets are more

efficient. We test this hypothesis on the best-performing feed-forward model found in Section 5.5.

6.1 Dataset

4 datasets have been used in this section to carry out the planned experiments. Each dataset

contains prices of the 14 cryptocurrencies mentioned in Section 5.1 measured with different fre-

quencies. The first dataset contains minute-by-minute data from 5 July 2021 to 6 December 2021.

The second has prices measured every 15 minutes from 24 June 2021 to 6 December 2021. The

third contains hourly data from 23 May 2021 to 6 December 2021 and the last contains the prices

gathered every 4 hours, from 12 January 2021 to 6 December 2021. The reason why each dataset

comprises a period of different length is because after applying the trading framework described

in Section 6.2, generating the maximum number of windows possible and creating the feature and

label tensors, in all cases we obtain the same trading period, which goes from 6 July 2021 to 6

December 2021. Not all cases contain the same amount of data in all this period though.
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6.2 Trading framework

For each frequency, the trading framework considered is analogous to the one described in Section

5.2. We set the lookback, gap and horizon to 150, 1 and 30 timesteps respectively. That means

that in one case the lookback is 150 minutes, in the next one is 2250 minutes, in the third is 150

hours and in the last is 25 days. The train and test splits are generated with the same proportion

of data: 1050 timesteps are used to train the model and the trading with the learnt parameters

is performed in the following 180 timesteps. Since the amount of data is different in each case,

the number of windows that can be rolled also changes. Specifically, in the 4h data we create 5

windows, with the hourly data we can create 20, in the 15-minute dataset we can roll 80 windows

and with the minute-by-minute data we obtain 1200. This means that the whole investing period

lasts 216,000 minutes and the portfolios are reoptimized 30, 120, 480 and 7200 times in each case,

respectively.

In all cases, the feed-forward model with a single independent linear layer per asset on a two-block

architecture is trained, always under the same hyperparameters. We use batch size of 64 samples,

a learning rate of 0.01, a risk-aversion parameter for the MVP of 6 and 8 epochs per window.

The trainable parameters of the network are reused by using the optimal ones of one window to

initialize them at the next one.

The way these investment models are evaluated changes slightly from what is described in Section

5.2. The point of trading in the same temporal period for all 4 frequencies considered is to have

the same environment and market conditions in all cases so we can carry out a 1-to-1 comparison.

As the amount of timesteps and the number of windows on which the models have been trained are

the different in each case, it makes no sense to compare the short-term performances of them. For

this reason we only evaluate the models on a long-term basis (over the whole 5 months investment

period) with the usual measures. Firstly we have to compare the performance of the model on each

frequency with the benchmarks (EWP and MVP with the sample mean as the expected return

vector) applied on that same frequency. Secondly, we also have to compare the results of the

model working in different frequencies among them to understand if higher frequencies are capable

of exploiting the fast changes of the market or not.

52



Return Wealth Volatility Max DD Sharpe
Frequency of 1 min

EWP 2.727 2.705 0.782 0.302 3.486
MVP with sample mean 1.930 2.021 0.660 0.272 2.926
2-block, 1 independent linear layer 6.873 12.76 1.164 0.310 5.905
Frequency of 15 min
EWP 2.751 2.595 0.926 0.303 2.968
MVP with sample mean 2.135 2.098 0.813 0.278 2.627
2-block, 1 independent linear layer 2.654 2.400 1.021 0.288 2.598
Frequency of 1 h
EWP 2.681 2.542 0.905 0.302 2.963
MVP with sample mean 2.140 2.101 0.851 0.276 2.625
2-block, 1 independent linear layer 3.104 2.943 0.979 0.268 3.170
Frequency of 4 h
EWP 2.554 2.467 0.842 0.302 3.032
MVP with sample mean 2.103 2.098 0.772 0.281 2.723
2-block, 1 independent linear layer 3.044 2.989 0.871 0.280 3.495

Table 6.1: Long-term performances with different frequencies

6.3 Results

Table 6.1 shows the standard performance measures (annualized cumulative return, annualized

volatility, maximum drawdown and annualized Sharpe Ratio) for each of the frequencies tested.

We also add the final wealth obtained in each case after the investment period, assuming an initial

budget of 1$ and full reinvestment at each timestep. This allow us to see the difference of investing

in a cumulative or a non-cumulative way and makes it easier to compare the performances of the

neural network model when working on data of different frequencies

The first and most important interpretation that can be made from this table is that the neural

network model is only capable of clearly beating the benchmarks on minute-by-minute data as

there is a huge difference in return with only a small increase in volatility. In the other cases there

are very thin differences, and when dealing with 15-minute data the neural network performs even

worse than both the Equally Weighted Portfolio and the MVP with the sample mean.

If we want to compare the performance of the neural network model depending on the frequency

of the data, the conclusions are quite similar. In minute-by-minute data the final wealth after

the 5 month investing is around 4 times greater than in the other cases, without any significant

differences in terms of risk. This proves our hypothesis that the markets become more efficient

as we look at lower-frequency data and less predictability can be found by the neural networks.

For illustrative purposes and to exemplify the differences of performances in the long term due to

the exponential behaviour of the cumulative return, we plot in Figure 6.1 the evolution of wealth

over time for neural network model depending on the frequency of the data they have been trained

with.
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Figure 6.1: Cumulative wealth when using data of different frequencies

As a side note, it is true that one could argue that the results obtained in this chapter might be

biased because the architecture of the model chosen for these experiments was one that we knew

that already provided good results in minute-by-minute data. Although more extensive research

should be done by trying different architectures in every frequency, these results give a first idea

of what happens on the predictability of the returns that the neural networks can find when we

decrease the frequency.

54



Chapter 7

Incorporating transaction costs

The results in Section 5.5 showed very promising results for some of the models backtested as

there were significant differences when compared to the benchmarks. Nevertheless those results

do not reflect the truth of how these models would perform when applied to real-life trading.

The reason is that when bringing them into into production and trading the cryptocurrencies

considered, the exchanges would impose some transaction fees that penalize excessive trades. The

goal of this chapter is to analyze the impact of transaction costs on the best-performing models

found in Section 5.5. According to the results seen in Section 4.3 when repeating the experiments

including transaction costs, and the literature overview developed in Chapter 3, our hypothesis is

that transaction costs will make all the gains vanish and the models will not perform better than

the benchmarks anymore.

7.1 Dataset

Since the objective of these experiments is to replicate the work done in Chapter 5 but including

transaction costs when calculating the portfolio returns (as described in Section 2.2) and evaluating

the models, the dataset used for this experiments has to be the same we used in those. As a

reminder, it conatins the minute-by-minute close prices of 14 of the main cryptocurrencies by

market capitalization (ADA, ALGO, AVAX, BTC, DOT, ETH, LINK, LTC, LUNA, MATIC,

SOL, UNI, XMR and XRP) from 1 January 2021 to 6 May 2021, accounting for around 180,000

timesteps in a period of bull markets.
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7.2 Trading framework

In the following experiments transaction costs are included in the model evaluation but not in the

training procedure, meaning that the Sharpe Ratio used as the loss function of the network that

we want to optimize does not take them into account. For this reason, no changes have to be made

to the trading framework described in Section 5.3. The rolling-window approach to split the data

into successive training and test sets remains exactly the same, rolled on 1000 windows with the

same lookback, horizon and gap.

Only three models are tested. Compared to the results in Section 5.5 they are only going to

worsen their performance so the ones that did not perform well enough in those experiments are

not worth of deeper analysis here. These three models are: the best-performing overall (two-block

architecture with one independent linear layer per asset), the best LSTM (two-block architecture

with one independent LSTM unit per asset with 8 features) and the end-to-end model with a

fully-connected linear layer as it was the best of all the end-to-end ones. The allocations used are

the same as the ones tested in Section 5.5, so there is no need to retrain the models again.

In the computation of the returns (done as defined in Section 2.2), three different values for the

transaction fee C have been considered. C = 0 represents the absence of transaction costs, which

is basically what was done in Chapter 5. C = 0.001 is a standard fee that one would encounter

often when trading in real life. For example, Binance imposes a fee of 0.1% per spot trade (the

same as C = 0.001) to all newly registered and beginner traders. Finally, we also use C = 0.0002

as in [22] this was the highest value that still allowed them to obtain better performances than

the benchmarks. However, this value is unrealistic and in any exchange we would encounter

considerably higher fees.

The performance of the models is studied here by looking only at the long term, considering the

whole 4 months as the investing period and evaluating the performance measures there. These

results are again compared to some standard benchmarks (which now also include transaction

costs). Since the mean-variance portfolios where the µ vector is calculated as the sample mean

and as an exponentially weighted moving averaged provided very similar results, we discard the

latter and only show the former in the plots, together with the Equally Weighted Portfolio.
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7.3 Results

Figure 7.1 shows the evolution of cumulative wealth over time for the 3 aforementioned models

and the 2 benchmarks with transaction fees of C = 0.0002 and C = 0.001.

Figure 7.1: Cumulative wealth with different transaction fees

First thing that stands out from the plot above is that with a fee of 0.1% in all deep learning

models the transaction costs become much bigger in absolute value than the returns so that we

not only perform worse than the benchmarks, but also we end up quickly losing all the initial

budget and after the 4 months only arround a 1% of it would be remaining. However, this does

not happen with the benchmarks, specially with the EWP. To dig deeper into the reasons of this,

it is necessary to understand what causes the transaction costs to be greater or smaller.

In our framework, transaction costs happen from two main reasons. Firstly, as we reoptimize our

portfolio every half an hour with a new output of the neural network, the allocations might change

completely from the timestep before the reoptimization to the one right after so, recalling the

way of calculating the returns described in Section 2.2, this greatly impacts the return after the

reallocation. The second cause of transaction costs is that at every minute the returns we get are

not proportional to the portfolio positions, so if we want to reinvest this new returns while keeping

the same portfolio as before we need to do small trades that distribute this new returns as desired.

While the former transaction costs happen only every half an hour, the latter affect the portfolio

at every minute.
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The fact that the benchmarks (and specifically the EWP) are less affected from transaction fees

indicates that what causes this huge drops in performance of the deep learning models are the

reoptimizations we do every half an hour. This reoptimizations do not happen for the EWP as the

allocations remain the same along the 180,000 minutes, and are less significant for the MVP because

the only thing done to reoptimize it is calculate a new µ and solve the same convex optimization

problem with this new expected return vector. In this sample mean, 120 out of the 150 returns

used for its calculation were also present in the computation of µ for the previous portfolio, and

they all have the same weight, so it is expected that the changes in final allocations will not be

drastic.

Figure 7.2: Turnovers when reoptimizing the portfolios

Figure 7.2 plots the turnovers of the portfolios calculated by each model at every reoptimization.

In total each model does 6000 reoptimizations throughout the whole investment period (6 per

window). Turnovers are a measure of how much the portfolio changes and are directly proportional

to the transaction costs that they cause. The turnover is defined as follows:

Definition 7.3.1. The turnover TO at time t is TOt = ||wt − wt−1||1 =
N∑
i=1

|wt,i − wt−1,i|

Since in each portfolio we allocate the whole budget (i.e. the sum of their weights is 1), turnovers

are in the range [0, 2]. 0 means that the portfolio remains exactly the same, while a turnover of 2

indicates that all the old positions have been sold and the budget is now allocated completely to

assets that were not hold before.

Obviously, the turnovers for the Equally Weighted Portfolio are all 0 (except for the first time we

buy the portfolio, when it is 1). The changes in the MVP benchmark are still small, but about

the three other models it can be observed that the turnovers are usually close to their maximum

value. That means that our models need to alter their positions a lot to exploit the predictability

they have found and can not adapt smoothly to changes in the markets.
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Return Volatility Max DD Sharpe
C=0%
EWP 7.484 1.229 0.204 6.087
MVP with sample mean 5.535 1.029 0.183 5.377
2-block, 1 independent linear layer 19.11 1.606 0.200 11.89
2-block, LSTM independent w/ 8 features 11.48 1.505 0.236 7.631
E2E, 1 f.-c. linear layer 14.53 1.873 0.252 7.760
C=0.02%
EWP 7.472 1.229 0.204 6.077
MVP with sample mean 5.193 1.055 0.186 4.921
2-block, 1 independent linear layer 12.68 1.607 0.208 7.890
2-block, LSTM independent w/ 8 features 6.548 1.497 0.253 4.374
E2E, 1 f.-c. linear layer 8.451 1.863 0.253 4.534
C=0.1%
EWP 7.423 1.229 0.204 6.037
MVP with sample mean 3.810 1.055 0.187 3.609
2-block, 1 independent linear layer -10.0 1.622 0.212 -6.18
2-block, LSTM independent w/ 8 features -11.4 1.509 0.255 -7.61
E2E, 1 f.-c. linear layer -16.9 1.880 0.257 -8.99

Table 7.1: Long-term performances incorporating transaction costs

On the other hand, the wealth evolution of the trades carried out with a fee of 0.02% seems at

first sight acceptable. The transaction costs appear to wipe out most of the gains we had without

them compared to the benchmarks, but it is not clear at all whether they still perform better. For

a more extensive analysis, Table 7.1 shows the main performance measures evaluated on the whole

trading period of 4 months for each model and transaction fee value.

With C = 0.02% the LSTM and the end-to-end models considered lose most part of the gains up

to the point that the Sharpe ratios indicate that it does not compensate for the risk. However,

the 2-block structure with one different linear layer per asset, which provided the best results

without transaction costs, still performs better than the benchmarks, both in terms of returns

and risk-adjusted returns. This does not mean that the model is more resistant to the changes in

allocations, only that it had a bigger margin to lose.
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Chapter 8

Conclusions

Motivated by the lack of excellent deep learning based financial investment strategies, this thesis

presents a detailed study of various factors that must be taken into account when approaching the

portfolio optimization problem via deep learning. The experiments conducted analyze the main

obstacles that current research on the topic is facing in terms of model architecture, frequency of

the data and the impact of transaction costs. Although the results might seem disappointing at

first because none of the models developed performs well enough to be used as a real-life trading

algorithm, some important conclusions can be extracted that give hints on how future research on

this area should be approached.

Our experiments on models’ architectures prove that it is not necessary to leave behind all the

classical ideas of financial theory if we want to apply deep learning to portfolio optimization, as

end-to-end models perform slightly worse than the ones that only estimated the expected return

vector via a neural network and input it to a mean-variance portfolio. This reinforces the idea that

the main downside of modern portfolio theory is not what the portfolio formulations are trying to

optimize, but how the estimators that model the distribution of the returns are calculated.

Moreover, we notice that to estimate the expected return vector for a mean-variance portfolio it

is needless to take into account the correlations and interactions among the assets, meaning that

the expected return of each asset can be acceptably estimated as a function of the past returns of

only that same asset. This task can be left to the covariance estimator. This helps to alleviate the

model complexity, decreases the probability of overfitting and makes it more scaleable so it gives

a good starting point for further models.

In terms of the type of data the models should use, posterior simulations confirm that only on

minute-by-minute data neural networks can learn features that were invisible to classical portfolios.

In this case the Sharpe Ratios provided by the benchmarks can be nearly duplicated on a period
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of bull markets (without accounting for transaction costs), while as soon as we lower the frequency

to quarterly data these improvements disappear. For further experiments, it would be interesting

to work with data of even higher frequency and verify if the noise microstructure becomes more

evident and exploitable there.

And the forth key idea is that, even though some of the models implemented seem to detect a lot

of predictability in the data, it can not be exploited in real life trading as the transaction costs

imposed by exchanges cancel out all the gains. The maximum fee our models could tolerate in

order to still perform better than the benchmarks is only 0.02%. This coincides with some of the

literature published recently on this topic [22], but is still far from what one would encounter in

the most famous exchanges.

Throughout the work carried out in this thesis some obstacles were encountered that should be

addressed in future work if we want to obtain statistically significant backtests and understand

better what deep learning is truly capable of in portfolio optimization. First of all we should try to

reduce the overfitting that was present in most of the models implemented by, for example, using

validation sets, dropout layers or more extensive training splits. Although completely avoiding

overfitting is almost impossible due to the lack of autocorrelations on the returns, big improvements

could be made in this sense. Additionally, a deeper study on the poor performance of the LSTM

networks should be done to comprehend if more training epochs are needed or the structure of

the inputs and outputs is not appropriate. And, to get the big picture of the performance of the

models, tests on bearish markets should also be carried out. In this case we might consider allowing

short positions so that the models become less dependent on the markets.

Finally, and most importantly, if we want to design investment strategies based on neural networks

that can actually be applied in real life, the trading framework we use must be rethought. Right

now the neural networks learn to allocate the budget considering only how well this portfolios are

going to perform in the future. However, as transaction costs appear to cancel all the gains, we

should force the deep learning to take into consideration how much the positions are being changed

at each timestep to find a trade-off between allocating the money to promising assets and avoid

the corresponding transaction costs. This falls on the area of reinforcement learning, and, more

precisely, deep reinforcement learning (DRL). Approaching the portfolio optimization problem via

DRL is still on a very early stage and the developments of this line of research should be followed

closely in the future.
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