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Energy-conserving discretizations are widely regarded as a fundamental requirement for 
high-fidelity simulations of turbulent flows. The skew-symmetric splitting of the nonlinear 
term is a well-known approach to obtain semi-discrete conservation of energy in the 
inviscid limit. However, its computation is roughly twice as expensive as that of the 
divergence or advective forms alone. A novel time-advancement strategy that retains the 
conservation properties of skew-symmetric-based schemes at a reduced computational cost 
has been developed. This method is based on properly constructed Runge–Kutta schemes in 
which a different form (advective or divergence) for the convective term is adopted at each 
stage. A general framework is presented to derive schemes with prescribed accuracy on 
both solution and energy conservation. Simulations of homogeneous isotropic turbulence 
show that the new procedure is effective and can be considerably faster than skew-
symmetric-based techniques.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Demand for accurate numerical computations of turbulent flows, with both DNS and LES, has posed many challenges 
to the numerical community, pushing research efforts toward the construction of suitable new discretization techniques. 
In the context of laminar and Reynolds-Averaged Navier–Stokes equations, the classical compromise between accuracy and 
stability of the discretization has often been represented by upwind-like schemes. This solution, however, has been shown 
not to be feasible in DNS and LES, owing to the large amount of artificial numerical dissipation introduced by non-centered 
approximations [1]. On the other hand, the straightforward utilization of central non-dissipative schemes can pose severe 
stability issues, due to the nonlinear amplification of aliasing errors that occur in computing convective terms [2].

A possible solution to these counteracting requirements lies in the employment of nondissipative discretizations able 
to mimic, on a discrete level, the conservation of important invariants of the continuous equations [3]. In the context 
of incompressible flows, discrete conservation of kinetic energy is highly desirable in order to obtain physically relevant 
solutions [4]. Energy-conserving methods are capable of enforcing a nonlinear stability bound to the discrete solution, 
allowing for stable long-time integration. Moreover, it is well-known that LES has to be performed with low-dissipation 
numerical schemes, so that the subgrid-scale model contribution is not overwhelmed by numerical diffusion, and the energy 
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cascade is correctly represented [5]. From a mathematical point of view, conservation of kinetic energy in the inviscid 
limit can be shown to be strongly related to the preservation of some of the fundamental symmetries of the continuous 
differential operators on the discrete level [6].

In the framework of spatial discretizations of the convective term, use of the so-called skew-symmetric (or splitting) 
form, defined as a proper average of divergence and advective forms, has been shown to guarantee a priori semi-discrete 
conservation of energy for several high-order centered schemes, over both regular and staggered grid systems [7]. The 
skew-symmetric form has also been shown to cause a reduction of aliasing errors with respect to the other formulations 
[8]. In this regard, spectral simulations of turbulent flows with divergence or advective forms proved to be unstable without 
dealiasing, while the rotational form gave inaccurate results [9]. For these reasons, the splitting form of the nonlinear con-
vective term has been successfully adopted to yield stable simulations of turbulent flows in the incompressible framework 
[10,11]. A variable-density version of the skew-symmetric form was first introduced in [12] and recently discussed in [13]. 
The underlying philosophy has been used to construct robust methods in both finite-difference [14,15] and finite-volume 
contexts [16,17]. The splitting form is nowadays regularly applied in several highly accurate finite-difference and spectral 
numerical codes for DNS and LES of turbulent flows [18–20].

However, the major drawback of skew-symmetric-based methods is the increased computational cost with respect to 
classical divergence or advective forms [21], since evaluation of two derivatives is required for each nonlinear component 
of the convective term [22]. Any attempt to reduce the number of derivative evaluations in computing the convective 
term requires the employment of divergence or advective formulations, which are not guaranteed to preserve energy, at 
least on non-staggered or non-uniform grids. In this context, the request for efficiency suggests the exploration of cheaper 
alternatives to the skew-symmetric splitting, which are able to retain its favorable conservation and aliasing properties.

In addition to the mentioned issues related to spatial discretization, the time integration procedure also plays a role. In 
classical analyses, time advancement is performed in a semi-discretized approach, and the conservation properties of the 
temporal scheme are not usually investigated in detail. Full energy conservation (i.e., in space as well as in time) can only 
be obtained by means of implicit methods [23], but the strong demand for computational efficiency usually dictates the use 
of explicit time-stepping algorithms. In summary, the overall discrete energy conservation error typically results in the sum 
of a spatial and a temporal contribution: the former can be nullified by the use of the skew-symmetric form, the latter by 
implicit time integration.

In this paper, a novel time-advancement strategy is presented, which generalizes some developments made in a recent 
paper on scalar nonlinear equations [24]. Here, the underlying philosophy is applied to the more interesting case of turbu-
lent simulations of incompressible Navier–Stokes equations. By weighting temporal and spatial errors, this new method is 
able to recover the conservation properties of skew-symmetric-based schemes just by using the more economical advective 
or divergence forms. It has been found that optimal energy-conservation properties can be achieved by properly constructed 
explicit Runge–Kutta (RK) schemes in which a different form for the convective term is adopted at each stage. The main 
advantage is that, on equivalent results, this approach is able to halve the CPU time required for the computation of the 
nonlinear term and, in certain situations, yield a considerable overall time saving for the whole algorithm with respect to 
skew-symmetric-based techniques.

The paper is organized as follows. In Section 2, the conservation properties of semi-discretized Navier–Stokes equations 
are reviewed and discussed. The novel ‘alternating’ strategy is presented in Section 3, while the new Runge–Kutta schemes 
are derived in Section 4. In Section 5 the results of the numerical tests are reported and analyzed. Concluding remarks are 
given in Section 6.

2. Problem formulation

In this work, the incompressible Navier–Stokes equations

∂ui

∂t
+Ni(u) = − ∂ p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
, (1)

∂ui

∂xi
= 0, (2)

are considered, where Ni(u) is the nonlinear convective term and Re is the Reynolds number. The convective term can be 
cast in several analytically equivalent forms, for instance

(Div.)i ≡ ∂u jui

∂x j
, (3)

(Adv.)i ≡ u j
∂ui

∂x j
, (4)

(Skew.)i ≡ 1

2

∂u jui

∂x j
+ 1

2
u j

∂ui

∂x j
. (5)

These are referred to as divergence, advective and skew-symmetric forms, respectively. Other forms can also be constructed 
(e.g., rotational), but will not be considered in this study. When posed on a domain � with periodic boundary conditions, 
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Eqs. (1)–(2) possess a number of invariants, most notably the momentum m = ∫
�

uidV and, for Re → ∞, the kinetic energy 
e = ∫

�
u2

i /2 dV , which represent the linear and quadratic invariants, respectively. In a continuous setting, these properties 
hold for any expression adopted for the nonlinear term. When discretized, Eqs. (3)–(5) have been shown to behave differ-
ently, both in terms of conservation properties [7] and aliasing issues [9]. In the following section, the discrete conservation 
properties of a class of semi-discretization methods will be analyzed.

2.1. Conservation properties of semi-discretized N–S equations

A semi-discretized version of Eqs. (1)–(2) can be expressed as

du

dt
+ C(u)u = −Gp + 1

Re
Lu, (6)

Mu = 0, (7)

where u is the discrete velocity vector containing the three components on the three-dimensional mesh, u = [
ux uy uz

]T , 
the matrices G ∈ R Nu×N p and M ∈ R N p×Nu are the discrete gradient and divergence operators, respectively, while L ∈ R Nu×Nu

is the block-diagonal Laplacian diag(L, L, L) with L ∈ R N p×N p . In what follows, it will be assumed that the gradient, 
divergence and Laplacian operators are discretized consistently, in such a way that the relations GT = −M and L = MG
hold. The convective term is expressed as the product of a linear block-diagonal convective operator C(u) and u:

C(u)u =
[C(u)

C(u)

C(u)

][ ux

uy

uz

]
, (8)

in which the operator C(u) can assume one of the following forms:

C(u) =

⎧⎪⎨⎪⎩
D ≡ diag

(
DxUx + DyUy + DzUz

)
divergence, (a)

A ≡ diag
(
UxDx + UyDy + UzDz

)
advective, (b)

S ≡ 1
2 (A+D) skew-symmetric, (c)

(9)

In Eq. (9), the matrices D(·) and U(·) represent the discrete derivative operators and the diagonal matrices of the discretized 
velocity components along the three directions (e.g., Ux = diag(ux)).

A regular arrangement of the variables on the grid is employed, for which the velocity components ui and pressure p
are stored at the same points [7]. Centered finite-difference and spectral discretizations on a Cartesian, periodic and equally 
spaced grid will be considered here. Under such hypotheses, the derivative operators satisfy a discrete summation-by-parts 
rule; from an algebraic point of view, this implies that the derivative matrices are all skew-symmetric, DT = −D. As a 
consequence, it can easily be shown that the convective operator S also inherits this property for all u, unlike the other 
two forms.

The discrete conservation properties can be analyzed by deriving the evolution equation of the discrete kinetic energy 
E = uT u/2, which reads

dE

dt
= −uT C(u)u − uT Gp + 1

Re
uT Lu. (10)

In Eq. (10), the pressure term contribution vanishes if GT = −M and Mu = 0. The convective and diffusive terms appear 
as quadratic forms with associated matrices C (u) and L, respectively. The diffusive term is clearly not energy-conserving 
(if properly discretized, the operator L is a negative-definite matrix), while the convective term conserves energy if the 
skew-symmetric operator of Eq. (9c) is adopted. In the other two cases, the convection matrices C (u) are in general not 
skew-symmetric and hence conservation of energy is not guaranteed.

A more in-depth analysis reveals that errors coming from the divergence and advective forms have opposite signs. The 
key observation is that, for skew-symmetric discrete derivative operators, the following relation holds

AT = −D, (11)

which immediately implies −uT Au = uTDu and hence that the energy variations due to the divergence and advective 
forms are equal and of opposite sign.

Adoption of the skew-symmetric splitting, albeit attractive for its beneficial conservation properties, turns out to be more 
expensive than classical advective and divergence forms. A rough estimate of the computational cost in the two cases shows 
that the skew-symmetric form requires twice the number of matrix–vector products. The present work aims to develop a 
new time-advancing strategy that is able to retain the beneficial properties of the skew-symmetric splitting at a reduced 
computational cost.



F. Capuano et al. / Journal of Computational Physics 298 (2015) 480–494 483
3. The alternating Runge–Kutta strategy

The rationale underlying this method stems from the fact that the global errors on energy conservation associated with 
discretized divergence and advective forms have opposite signs. The basic idea is to take advantage of the time-advancement 
scheme to cancel the errors of these two forms up to a certain order of accuracy. By using only divergence or advective 
forms, the resulting scheme can be more cost-effective than a skew-symmetric-based one. In the following analysis, only 
inviscid flow is considered (Re → ∞), since interest is focused exclusively on the conservation properties of the convective 
term. The core of the method consists in advancing the governing equations by means of a modified explicit Runge–Kutta 
algorithm, which can be expressed as

un+1 = un − �t
s∑

i=1

biCi(ui)ui + �tGpn+1, (12)

ui = un − �t
i−1∑
j=1

aij
(
C j(u j)u j − Gp j

)
, (13)

where s is the number of stages, aij and bi are the Runge–Kutta coefficients, and pressure is to be solved from the Poisson 
equations p j = L−1MC j(u j)u j and pn+1 = L−1M 

∑s
j=1 b jC j(u j)u j . Eqs. (12)–(13) differ from the standard Runge–Kutta 

procedure in that they can accommodate a different formulation for the nonlinear term within the stages. In fact, the 
operator C is indexed by a suffix, meaning that it can be expressed in either divergence or advective form at each stage 
(Eqs. (9a) and (9b), respectively).

The overall aim of this method is to find a set of coefficients, along with a sequence of divergence and advective forms, 
that maximizes the formal order of accuracy on solution and energy conservation. A prescribed order of accuracy for the 
discrete solution u can be attained by imposing the classical order conditions [25]. The resulting nonlinear system is usually 
underdetermined: the remaining degrees of freedom can be exploited to impose an additional set of equations for energy 
conservation. The derivation of these conditions is the central part of the novel procedure and will be described in the next 
section.

3.1. Energy analysis

The total energy error introduced over a single time step advancement by Eqs. (12)–(13) can be obtained by taking the 
inner product between un+1 and itself. By defining �E = En+1 − En , Eqs. (12)–(13) can be manipulated to yield

�E

�t
= −

s∑
i=1

biu
T
i C̃i (ui)ui︸ ︷︷ ︸

I

− �t

2

s∑
i, j=1

(
biai j + b ja ji − bib j

)
uT

i C̃T
i (ui) C̃ j

(
u j
)

u j︸ ︷︷ ︸
II

, (14)

where the matrices ̃Ci are the discrete convective operators projected with the pressure gradient to yield a divergence free 
velocity field, i.e. ̃Ci = PCi , where P = I − GL−1M. The two terms on the right-hand side of Eq. (14) can be defined as

I) Spatial error: 
∑s

i=1 biuT
i C̃i (ui) ui ,

II) Temporal error: 
�t

2

∑s
i, j=1

(
biai j + b ja ji − bib j

)
uT

i C̃T
i (ui) C̃ j

(
u j
)

u j .

The first depends primarily on spatial discretization, as the s quadratic forms are identically zero if skew-symmetric 
matrices C̃i are adopted. The second quantity has a more complex structure, and can be nullified by so-called symplectic 
methods [23], a special class of implicit Runge–Kutta schemes for which biai j + b ja ji − bib j = 0. For standard methods 
(̃Ci ≡ C̃), the temporal error inherits the same order of the scheme and does not vanish in general, even in the case of 
skew-symmetric operators ̃C.

The use of different discretized forms inside the stages of the Runge–Kutta procedure gives rise to new possibilities 
for obtaining cost-effective energy-preserving algorithms. An appropriate choice of Runge–Kutta coefficients can lead to 
methods in which the mixed spatial and temporal errors are nullified up to a certain order of accuracy.

The starting point of the analysis is the expansion of Eq. (14) as a Taylor series in the time increment �t . To this end, 
Eqs. (12)–(13) can be plugged into Eq. (14); by using the linearity of the convective operator ̃Ci(ui) with respect to ui , after 
some manipulation one obtains (cf. [24])

�E

�t
= −

1st order term︷ ︸︸ ︷
uT

[∑
i

bi C̃i

]
u+ �t

2
uT

⎡⎣∑
i j

2biai j
(̃
Ci C̃ j + C̃i j

)+ gij C̃
T
i C̃ j

⎤⎦u

︸ ︷︷ ︸
nd

+O
(
�t2

)
, (15)
2 order term
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where u = un , gij = biai j + b ja ji − bib j , C̃i j = C̃i
(̃
C j
(
un
)

un
)
, with parentheses denoting functional dependence. In Eq. (15)

and hereinafter, the operator C is assumed to be evaluated at un if not otherwise specified.
Equation (15) constitutes the basic relation for construction of optimized Runge–Kutta schemes. A proper choice of the 

coefficients bi and aij can nullify both the first- and second-order terms appearing in Eq. (15), leading to schemes with 
optimal conservation properties. Determination of a suitable set of conditions is obtained in four steps:

(a) fix the number of stages of the method;
(b) choose a sequence of advective (A) and divergence (D) forms;
(c) group the resulting terms of Eq. (15) into combinations of few independent terms;
(d) impose conditions on aij and bi to nullify the terms.

As regards step (c), it is easy to show that Eq. (11) allows the various products or compositions of matrices C̃i to 
be transformed into groups of fewer independent terms. In particular, the linear combination appearing in the first-order 
contribution can be collected into a single term proportional to a quadratic form in which only one of the two operators D̃
or Ã is present (the projection operator is easily seen to be irrelevant in this term, provided that Mu = 0). By employing 
Eq. (11), and after some manipulation, it can also be shown that each of the 3s terms C̃i C̃ j , C̃i (̃C ju) and C̃T

i C̃ j can be 
substituted, inside the quadratic form, by one of the three basic forms ÃÃ, ÃD̃, and D̃Ã. For a detailed description of 
this procedure in a one-dimensional setting the reader is referred to [24]. Note that in that case the analysis is conducted 
by employing, in place of Eq. (11), the relation AT = −2D, which is the corresponding relation between advective and 
divergence operators in the one-dimensional formulation. A similar analysis performed on the basis of Eq. (11) easily leads 
to the relations

Ã
(
Ãu

)∼ −D̃Ã, (16)

Ã
(
D̃u

)∼ −D̃D̃, (17)

D̃
(
Ãu

)∼ D̃Ã, (18)

D̃
(
D̃u

)∼ D̃D̃, (19)

where parentheses denote functional dependence. The equivalence relation ∼ applies to matrix operators and holds when 
the corresponding quadratic forms associated with a vector u are equal for any value of u, e.g.

A (Au) ∼ −DA ⇐⇒ uTA (Au)u = −uTDAu ∀ u ∈ R Nu . (20)

The presence of the projection operator, which is peculiar to Navier–Stokes discretizations, does not influence the equiv-
alence relation between the various operators inside the quadratic forms, provided that the velocity fields involved are 
divergence free, i.e. Pu = u. The application of step (d) leads to the conclusion that one additional linear constraint on 
the coefficients bi has to be added to enforce first-order conservation of energy, whereas three nonlinear equations on the 
coefficients bi and aij are needed for second-order conservation. The constraints on energy can be coupled to classical order 
conditions to give a global system for determining new Runge–Kutta schemes.

4. New Runge–Kutta schemes

In principle, alternating Runge–Kutta schemes with an arbitrary number of stages can be derived and analyzed. Here, 
attention will be focused on three- and four-stage methods, which allow for a relatively large number of degrees of freedom 
and have been applied historically to numerical simulations of turbulent flows.

An s-stage RK method gives s(s + 1)/2 degrees of freedom. Second-, third- and fourth-order conditions on the solution 
take 2, 4 and 8 equations, respectively, whereas the first- and second-order conditions on energy conservation for alter-
nating schemes take 1 and 3 equations. Depending on the number of available parameters provided by the method, order 
conditions and energy-preserving properties can be combined in many different ways to obtain several families of schemes. 
In order to handle all possibilities, the new classes of methods are labeled by an acronym indicating the order of accu-
racy on solution (S) and on energy conservation (E). A cost-coefficient proportional to the number of derivatives required 
per time step is also reported in brackets, to serve as a simple cost metric for comparing the performances of the various 
schemes. In general, the number of matrix–vector products is reasonably approximated by sd2 for advective and divergence 
forms and 2sd2 for the skew-symmetric form, where d is the number of dimensions. For simplicity, d = 1 will be assumed 
hereinafter for the estimation of the cost-coefficients. In this simplified metric, the cost of the skew-symmetric splitting is 
doubled with respect to divergence and advective forms. The results of a more detailed cost analysis show that this is in 
many cases a very good approximation, at least for explicit finite-difference schemes [24].

In order to keep the presentation as clear as possible, only the Butcher arrays of the new schemes will be given here. 
Details about the nonlinear systems and their general solutions are reported in Appendix A.



F. Capuano et al. / Journal of Computational Physics 298 (2015) 480–494 485
4.1. Three-stage methods

Explicit three-stage methods provide 6 degrees of freedom. As a consequence, two families of new schemes should be 
expected: 2S2E(3) (6 conditions) and 3S1E(3) (5 conditions), for a total number of 2s − 2 possible sequences of advective 
and divergence forms (the sequences constructed uniquely by one form are excluded). In the following, each sequence will 
be indicated by a string composed by the letters A or D, to denote the use of the advective or divergence form, respectively. 
For instance, the sequence ADA means that the advective form is used in the first and third stages, while for the second 
stage the divergence form is adopted.

As regards 2S2E(3) schemes, no solutions were found, for any of the 6 sequences available. This result is in contrast with 
the one-dimensional case, where plenty of results are obtainable [24].

On the other hand, the derivation of 3S1E(3) schemes is straightforward and can be achieved by imposing the order-1 
condition on energy conservation on the parametrized families given in [25]. For instance, the “case II” and “case III” 
one-parameter families of schemes reported in [25]:

case II case III
0
2
3 0

2
3 − 1

4b3

1
4b3

0
1
4

3
4 − b3 b3

0
2
3 0

− 1
4b3

1
4b3

0
1
4 − b3

3
4 b3

,

generate 3S1E(3) schemes when the free parameter is fixed in such a way that the linear constraint on 1st-order energy 
conservation is enforced for each sequence of divergence and advective forms. The results of this analysis are that “case II” 
schemes obtained with b3 = 1/4 or b3 = 1/2 ensure first order conservation of energy when employed with the sequences 
DAD (or ADA) and DDA (or AAD), respectively. The “case III” schemes corresponding to b3 = −1/4 or b3 = 1/2, on the other 
hand, are 3S1E(3) schemes when employed with the sequences ADD (or DAA) and DDA (or AAD), respectively. These latter 
schemes possess negative bi coefficients. This is not desirable in Runge–Kutta methods for stability reasons [25], hence the 
two schemes derived from “case II” are to be preferred.

4.2. Four-stage methods

In four-stage methods, 10 degrees of freedom are available. Hence, either 4S1E(4) or 3S2E(4) schemes can be constructed, 
which have to be compared to 4S4E(8) skew-symmetric methods.

A large number of 4S1E(4) schemes can easily be obtained by applying the first-order condition on energy to the 
parametrized fourth-order families provided in classical books (e.g., [25]). Perhaps the most convenient choice is to use 
an alternating version of the classical Runge–Kutta scheme (RK4), as it can be conveniently implemented. If one employs 
an ADAD or a DADA sequence inside the stages, the RK4 satisfies the first-order condition on energy conservation while 
retaining fourth-order accuracy on solution,

ADAD/DADA − 4S1E(4)

0
1
2 0
0 1

2 0
0 0 1 0
1
6

1
3

1
3

1
6

.

The alternating RK4 will be considered as the reference 4S1E(4) scheme for the subsequent sections.
In the case of 3S2E(4) schemes, solutions exist only for the two couples of sequences ADAD/DADA and ADDA/DAAD. For 

details on the nonlinear systems, the reader is referred to Appendix A. Here, two Butcher arrays will be given which are 
particularly compact

ADAD/DADA − 3S2E(4) ADDA/DAAD − 3S2E(4)

0
1
2 0
5

12
5

12 0

0 5
14

1
7 0

1
5

3
20

3
10

7
20

0
1
3 0
0 1 0
1
3 0 1

3 0
1
8

3
8

1
8

3
8

,

having both third-order accuracy on the solution and second-order accuracy on energy conservation. In Appendix B, it is 
shown that the two-parameter family of schemes for the sequences ADAD/DADA has the absolute stability footprint of a 
three-stage scheme. On the contrary, the ADDA/DAAD scheme is fourth-order accurate for linear equations. Therefore, the 
latter will be the reference 3S2E(4) scheme for the numerical tests presented in the following section.
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Fig. 1. Results for 2D periodic, inviscid flow simulations. (a) Time-step convergence of the relative error on energy conservation. (b) Time evolution of 
kinetic energy conservation error; — (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E). All simulations performed with �t = 0.1.

5. Numerical results

In this section, the alternating strategy is applied to a number of numerical tests. The aim of the analysis is twofold: to 
prove the consistency of the theoretical framework and to assess the performances of the new schemes. To pursue these 
scopes, an order of accuracy analysis is first performed; then, the novel methods are systematically compared to a reference 
4S4E(8) solution obtained by using the skew-symmetric form in conjunction with the classical RK4 scheme. Two different 
solution algorithms will be considered in this study: a finite-difference method (in physical space) and a pseudo-spectral 
method (in wavenumber space). The final goal is to show that the optimized schemes give similar results to the reference 
one at a reduced computational cost, in benchmark cases as well as in more realistic situations.

Five methods will be considered; they are listed as follows, along with a short string that will be used to indicate them 
hereinafter:

• nonlinear term discretized in skew-symmetric form in conjunction with RK4, (Skew.);
• nonlinear term discretized in advective form in conjunction with RK4, (Adv.);
• nonlinear term discretized in divergence form in conjunction with RK4, (Div.);
• alternating DAAD − 3S2E(4) scheme, (3S2E);
• alternating DADA − 4S1E(4) scheme, (4S1E).

It is worth noting that the resulting linear stability region is, in all cases, that of a four-stage, fourth-order Runge–Kutta 
scheme. Hence, the maximum CFL allowed by discretization of convection is ≈ 0.907 for a fully spectral accuracy and 
≈ 2.85 for a second-order finite-difference scheme [26].

5.1. Order of accuracy study

Two-dimensional, inviscid flow simulations are carried out on a periodic domain to confirm the theoretical results ob-
tained in the previous sections. To this aim, following [7], a square region of size 2π L × 2π L is considered, discretized on 
a mesh of 16 × 16 mesh points. The solenoidal initial velocity field is constructed from a stream function of random num-
bers, normalized such that 1T ux = 1T uy = 0 and E0 = 1.0, where 1 is the column vector of all ones (discrete integrator on 
uniform mesh) and E0 = E(t = 0). A random initial condition guarantees that the flowfield is devoid of any symmetries, and 
hence prevents any apparent order improvement. A centered second-order finite-difference scheme is used for convection; 
for time-advancement, the various Runge–Kutta schemes developed in Section 4 are used.

The following error measure is defined

ε(t) = E(t) − E0

E0
, (21)

which represents the relative error on kinetic energy conservation at each time instant t .
Fig. 1(a) shows the time step convergence of the energy error for four Runge–Kutta methods. The convergence is mea-

sured at t = t f = 10, where time is expressed in units of L/
√

E0, as in [7]. The slopes confirm the predicted orders of 
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Table 1
Results for 2D periodic, inviscid flow simulations. Kinetic energy conservation errors at t = 2
and t = t f = 10 (see Fig. 1) for different Runge–Kutta methods and convective forms.

Scheme ε(t = 2) ε(t = 10)

(Div.) 0.0315 0.7503
(Adv.) 0.0200 0.8404
(Skew.) 1.3420 × 10−12 3.9737 × 10−12

(3S2E) −4.9925 × 10−8 −9.4583 × 10−7

(4S1E) −6.8404 × 10−4 −3.2929 × 10−3

accuracy for the new schemes (4S1E) and (3S2E), proving the consistency of the theoretical framework. The divergence 
form gives a constant error, which corresponds to the spatial contribution of Eq. (14); a similar behavior is found for the 
advective form (not shown here). The first part of the time-evolution of the energy error is shown in Fig. 1(b). The non-
conservative formulations show a large error growing steeply during the first instants of the simulation. On the contrary, 
the (Skew.) method as well as the alternating Runge–Kutta schemes remain bounded; in particular, the (3S2E) scheme is 
identical to the skew-symmetric method within the plotting accuracy. It is interesting to observe that, in the very first part 
of the simulation, the (Div.) and (Adv.) methods provide errors which are approximately equal and of opposite sign, as 
predicted by Eq. (11), that is a linear approximation. Then, nonlinearity takes place and the violation in energy conservation 
leads to a sudden blow-up.

Table 1 gives a more detailed comparison among the errors provided by the various methods. It is worth noting that the 
novel methods are dissipative, hence the simulation is stable for long-time integration.

5.2. Finite-difference simulation of temporal mixing layer

As a second test case, a temporal mixing layer is considered, which is a well-known benchmark to study the properties of 
a numerical algorithm in terms of handling steep gradients and formation of smaller scales. The domain is a square region 
of size 2π × 2π with periodic boundary conditions. A very coarse mesh of 202 points is used to prove the robustness of the 
various schemes. Simulations are carried out with a constant time step �t = 10−2 and no viscosity. The algorithm adopted 
for this test is a second-order finite-difference code. The Poisson equation for pressure is solved in physical space after each 
Runge–Kutta sub-step using an unpreconditioned Bi-CGStab iterative method [27]. The initial flowfield is given by

u =
⎧⎨⎩ tanh

(
y−π/2

δ

)
, y ≤ π,

tanh
(

3π/2−y
δ

)
, y > π,

(22)

v = ε sin(x), (23)

and is actually a double mixing layer to allow for the use of periodic boundary conditions. The perturbation on the 
v-velocity is used to promote the roll-up of the shear layer; as in [23], ε = 0.05 is used. A single instability mode is 
activated by choosing δ = π/15 [28].

In Fig. 2, the iso-contours of the vorticity field at t = 8 are shown for four methods. The (Skew.) contour is identical to the 
ones resulting from (4S1E) and (3S2E) methods. While for this test the divergence form blew-up due to over-production of 
energy, the advective form dissipates the kinetic energy of the flow, and the resulting vorticity field is much more smeared 
in comparison to the conservative formulations. Further insight is given by observing the time-evolution of the energy error 
|ε(t)| as well as the two-dimensional energy spectra calculated at t = 8, both shown in Fig. 3. The advective form provides 
a large amount of dissipation, especially at the highest wavenumbers. The alternating schemes perform remarkably well, 
particularly the (3S2E). In Fig. 3(b), the curves of the methods (4S1E), (3S2E) and (Skew.) are coincident.

Measurements of the CPU time spent for the computation of the nonlinear term have confirmed the doubled cost of 
the skew-symmetric splitting with respect to the other formulations. For what concerns the entire solution algorithm, most 
of the time is clearly spent by the Poisson solver. In the present implementation, enforcing mass conservation at each RK 
sub-step took the 80% of the total time, on average. As a consequence, the novel schemes allowed an overall time saving 
of about 7% with respect to the skew-symmetric form, although these data are strongly dependent upon a large number 
of factors, including computational and programming issues. The cost of the projection step could be reduced by enforcing 
mass conservation only at the final RK stage, as in [29].

5.3. Spectral simulations of Homogeneous Isotropic Turbulence (HIT)

In this section, simulations of homogeneous isotropic turbulence (HIT) are performed. A standard pseudo-spectral code 
has been adopted here, using a projection method in spectral space to enforce the divergence-free condition. The pseudo-
spectral solver uses a classical parallel design based on two-dimensional subdivisions. The 3D Fast Fourier Transform (FFT) 
is split in three one-dimensional transforms. The parallelization is carried out by subdividing the 3D geometry along only 
2 directions: along Y and Z in the real space and along X and Y on the spectral space. The code has been recently used to 
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Fig. 2. Vorticity contours of mixing layer at t = 8. Iso-contours ranging from −4 to 4 with steps 0.5.

Fig. 3. Results for the mixing layer; — (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E). (a) Time-evolution of kinetic energy conservation error. (b) Two-
dimensional energy spectra at t = 8. Energy is normalized by its initial value.
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Fig. 4. Time evolution of the energy-conservation error for inviscid HIT, for two spatial discretizations. The inset plots show the absolute value of the error 
in logarithmic scale at longer times. — (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E).

test a hybrid spectral-particle method for the turbulent transport of a passive scalar [30]. All derivatives are performed in 
spectral space and all products are performed in physical space.

5.3.1. Inviscid HIT
At first, an inviscid case is considered. This kind of test proved to be useful to assess the robustness of numerical algo-

rithms in both incompressible and compressible frameworks [14]. Simulations are carried out on a coarse grid of 323 points, 
on a domain of length 2π . The initial condition is designed to satisfy a given energy spectrum, typical of decaying isotropic 
turbulence. The aim of the test is mainly to prove that the novel alternating procedure retains the energy-conservation 
properties of the reference skew-symmetric method also in situations characterized by a multi-scale initial flowfield. A 
fully spectral and a second-order finite-difference scheme are considered, the latter being emulated by means of the mod-
ified wavenumber approach [9]. The tests are performed without subgrid-scale (SGS) model and the simulations are not 
de-aliased. The various cases differ only by the form of the convective term and the Runge–Kutta scheme used for time 
advancement.

Fig. 4 shows the time-evolution of the kinetic energy error ε(t) for both the second-order and the spectral scheme. 
The linear-scale graphs focus on the early instants of the simulations, while the inset plots in logarithmic scale provide a 
comparison for long-time integration in terms of the absolute value of the error. For both the spatial discretization schemes 
considered, the advective and divergence forms diverge due to violation of kinetic energy conservation. On the other hand, 
the energy-preserving formulations are stable. In particular, the (3S2E) scheme is very close to the (Skew.) method, while 
the (4S1E) shows some deviation, which is particularly evident for the spectral case. Also, in the spectral simulations the 
non-conservative forms take longer times to develop the nonlinear instability. Recall that the error ε(t) for the (Skew.)

method is due solely to the RK4 used for time integration (i.e., the temporal error), while for the alternating schemes it is 
a mix of spatial and temporal errors. The outcome of the comparison is positive because the alternating procedure mimics 
the results of the skew-symmetric splitting.

These considerations are confirmed by the numerical results shown in Table 2. The relative energy error ε(t) is reported 
for both the second-order and the spectral accuracy; the times are chosen in order to show the numerical errors before and 
after the blow-up of the divergence and advective formulations. The errors provided by the alternating schemes and by the 
skew-symmetric form are dissipative. As a consequence, for such methods the discretization of the convective term does 
not spuriously produce kinetic energy, and the simulation is stable. As in Fig. 1(b), the (Adv.) and (Div.) errors shown in 
Fig. 4(a) are approximately equal and of opposite sign in the first instants of the simulation.

5.3.2. Forced HIT
As a final test, direct and large-eddy simulations of forced HIT are performed. The forcing strategy consists in freezing the 

low wavenumbers (|�k| ≤ 2), to avoid the introduction of randomness as in classic forcing schemes [31]. The convective term 
is discretized with full spectral accuracy, while the diffusive term is computed exactly, thus without introducing any viscous 
time step restriction. Two Reynolds numbers (based on the Taylor micro-scale λ) are considered: Reλ = 100 and Reλ = 170. 
The time step is computed from the CFL condition imposed by the convective term, with a maximum CFL number of 0.5. 
All the results shown here correspond to no-dealiased simulations.

For DNS, the Navier–Stokes equations are discretized using 2563 grid points on a domain of length 2π . Fig. 5 shows the 
kinetic energy evolution in time and the three-dimensional energy spectra for various Runge–Kutta schemes and convective 
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Table 2
Kinetic energy conservation errors (see Fig. 4) for different methods and spatial discretizations.

Scheme Second-order Spectral

ε(t = 40) ε(t = 100) ε(t = 100) ε(t = 300)

(Div.) −8.925 × 10−3 +∞ (blow-up) 7.772 × 10−3 +∞ (blow-up)
(Adv.) 1.806 × 10−2 +∞ (blow-up) 4.016 × 10−3 +∞ (blow-up)
(Skew.) −9.571 × 10−6 −1.157 × 10−3 −2.006 × 10−4 −9.792 × 10−3

(3S2E) −9.578 × 10−6 −1.157 × 10−3 −1.793 × 10−3 −9.111 × 10−3

(4S1E) −9.552 × 10−6 −1.393 × 10−3 −5.192 × 10−3 −3.251 × 10−2

Fig. 5. Results for direct numerical simulation of forced HIT for Reλ = 170; — (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E). (a) Time evolution of kinetic 
energy normalized by the steady-state value. Time is expressed in a viscous scale. (b) Three-dimensional energy spectra at t∗ = 720. Energy is normalized 
by the steady-state value. The inset plot shows a close-up of the tail of the spectrum.

forms, for Reλ = 170. The divergence form is unstable, while all the other methods are found to be stable. However, an anal-
ysis in spectral space reveals that the advective form exhibits a deviation from the other curves at the highest wavenumbers, 
that is caused by violation of energy conservation and is best revealed by the close-up of Fig. 5(b).

In this test, the projection method does not require any costly Poisson solver, hence the computation of the convective 
term has an important impact on the global computational time. The proposed Runge–Kutta schemes allowed a global 
saving in CPU time of about 43% with respect to the skew-symmetric form. This important time-saving was measured for 
a single time step and is independent of the mesh-size. In the spectral algorithm used in this work, it is due to the fact 
that the skew-symmetric form needs roughly to perform twice as many forward and inverse FFTs for each sub-step of the 
Runge–Kutta scheme as those required by divergence or advective forms alone.

In large-eddy simulations, a dynamic Smagorinsky model is used to account for subgrid-scales [32,33]. The computa-
tional grid consists of 643 points. The results for Reλ = 100 are shown in Fig. 6. Apparently, none of the methods undergo 
a nonlinear instability in the time intervals considered. However, the spectral analysis shows that the divergence and ad-
vective forms exhibit a significant pile-up at high wavenumbers, while the results provided by the alternating methods are 
very similar to those obtained using the skew-symmetric form. This proves that the beneficial aliasing properties of the 
skew-symmetric form are also retained by the new schemes. For each graph, the corresponding DNS curve computed with 
the skew-symmetric splitting is also shown for comparison, and the agreement with LES is overall satisfactory.

In the case of Reλ = 170, shown in Fig. 7, these effects are even more pronounced. In fact, as the Reynolds number 
grows, the flowfield gets increasingly under-resolved and the effects of non-conservation of discrete energy are enhanced.

Note that for LES, the skew-symmetric form adds only 15% of additional CPU time, because the SGS model computation 
with the dynamic procedure has a significant impact on the overall CPU time. It is known that the use of an SGS model 
written in physical space is computationally expensive, especially when a dynamic procedure is used to evaluate the model 
coefficient. In fact, a pseudo-spectral code needs to compute various forward and inverse FFTs to apply the model. The SGS 
model contribution to the overall computational cost could be reduced by using spectral SGS models.

6. Conclusions

A novel time-advancing strategy has been developed for efficient energy preserving simulations of incompressible tur-
bulent flows. The method is based on a Runge–Kutta scheme in which the divergence or advective forms for convection 
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Fig. 6. Results for large-eddy simulation of forced HIT for Reλ = 100; — (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E). (a) Time evolution of kinetic 
energy normalized by the steady-state value. Time is expressed in a viscous scale. (b) Three-dimensional energy spectra at t∗ = 330. Energy is normalized 
by the steady-state value. Dashed line: DNS.

Fig. 7. Results for large-eddy simulation of forced HIT for Reλ = 170; — (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E). (a) Time evolution of kinetic energy 
normalized by the steady-state value. Time is expressed in a viscous scale. (b) Three-dimensional energy spectra at t∗ = 330. Energy is normalized by the 
steady-state value. Dashed line: DNS.

are suitably alternated within the stages to retain the conservation properties of the skew-symmetric form up to a cer-
tain order of accuracy. A comprehensive theoretical framework has been established to derive new alternating Runge–Kutta 
methods with prescribed order of accuracy on both solution and energy conservation. Direct and large-eddy simulations of 
homogeneous isotropic turbulence have proved that, in practical situations, these new methods provide results consistent 
with those of standard skew-symmetric schemes, while halving the computational effort required for the evaluation of the 
convective term. The advantage in terms of the global CPU time depends upon the details of the algorithm. In general, the 
new schemes are highly convenient is situations where the computation of the nonlinear term takes a large part of the 
overall CPU time. For instance, in a periodic, fully-spectral framework, the Poisson equation as well as the viscous terms 
need a negligible computational effort, and the time-saving proved to reach up to 43% of the total time. The method is 
then very suitable for spectral codes for direct numerical simulations of homogeneous isotropic turbulence. In particular, 
the 3S2E(4) scheme, i.e., third-order accurate on solution and second-order accurate on energy-conservation, yielded re-
markably good results, and is thus recommended to be used in place of the more costly skew-symmetric form. The 4S1E(4) 
scheme, despite showing in some cases slightly inferior performances, has also demonstrated an acceptable robustness and 
can be conveniently implemented as an alternate version of the commonly used RK4. When a dynamic subgrid-scale model 
was applied, the total saving dropped to 15%. The SGS model computational cost would be less important for numerical 
algorithms working in finite-difference or finite-volume contexts, although in this case the projection method has a more 
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significant impact on the overall CPU time. A notable decrease in the time saving offered by the method would also occur 
in cases in which some of the extra derivatives of the velocity needed to compute the skew-symmetric form have to be 
already calculated for other terms (e.g., for the viscous term in a problem including heat transfer with variable viscosity).

A promising extension of the method would be the application of the underlying idea to situations with at least one 
direction of non-homogeneity, e.g. a channel flow. Discretizations that satisfy a discrete summation-by-parts rule [34] could 
be coupled to the alternating paradigm proposed here, leading to a significant gain in computational efficiency.
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Appendix A. Solution of nonlinear systems

The four-stage, 3S2E(4) schemes admit solutions only for the two couples of sequences ADAD/DADA and ADDA/DAAD. 
The nonlinear systems have all four equations in common, which correspond to the third-order conditions for a four-stage 
method,

b1 + b2 + b3 + b4 = 1,

b2a21 + b3(a31 + a32) + b4(a41 + a42 + a43) = 1

2
,

b2a2
21 + b3(a31 + a32)

2 + b4(a41 + a42 + a43)
2 = 1

3
,

a21(b3a32 + b4a42) + b4a43(a31 + a32) = 1

6
. (A.1)

These equations have to be augmented by one linear constraint and three nonlinear equations to have second-order accuracy 
on energy conservation. The form of these equations depends on the specific sequence under study. In particular, for the 
couple of sequences ADAD/DADA one has, respectively,

b1 − b2 + b3 − b4 = 0, 1st order on energy
2a31b3 − 2a32b3 + 4a42b4 − 2 (b1 + b3) (b1 + b4) = 0
(b2 + b4)

2 − 2a32b3 = 0
(b1 + b3)

2 + 2a31b3 − 4a21b2 − 4a41b4 − 4a43b4 = 0

⎫⎬⎭ 2nd order on energy (A.2)

and

b1 − b2 + b3 − b4 = 0, 1st order on energy
4a31b3 − 2a21b2 − 2b4 (a41 + 2a42 − 2a43) − 2 (b1 + b3) (b1 + b4) = 0
(b2 + b4)

2 + 2a42b4 − 4a32b3 = 0
(b1 + b3)

2 − 2a21b2 − 2a41b4 − 2a43b4 = 0

⎫⎬⎭ 2nd order on energy (A.3)

The two systems provide two identical families of solutions, each with two free parameters, which can be expressed in 
closed-form by the following Butcher array

0
3θ1±A

6θ1
0

1
8θ1

1
8θ1

0

− 3θ1−16θ1θ2+4θ2B+4θ1B±2A
24θ1θ2

1
8θ2

θ1±A
6θ2

0
1
2 − θ1

1
2 − θ2 θ1 θ2

,

where

A = 3θ2

√
−θ1(10θ1 − 3)

3θ2(2θ2 − 1)
, B = θ1 ±A.

The system admits solutions for{
θ1 ∈]−∞,0[ ∪ [3/10,+∞[
θ2 ∈]0,1/2[ ∪

{
θ1 ∈]0,3/10]
θ2 ∈]−∞,0[ ∪ ]1/2,+∞[. (A.4)

In this range, the parameters θ1 and θ2 can be optimized to achieve various goals, e.g., low-dissipation and low-dispersion 
characteristics [35], improved accuracy on pressure [36] or a computationally efficient implementation. For the latter case, a 
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convenient choice is θ1 = 3/10 and θ2 = 7/20, which leads to the Butcher array given in Section 4. However, these families 
of schemes have a limited stability range, see Appendix B.

The sequences ADDA/DAAD lead to the following conditions:

b1 − b2 − b3 + b4 = 0, 1st order on energy
4a32b3 + 2a41b4 − 2a42b4 − 2a43b4 − 2 (b1 + b4) (b2 + b3) = 0
(b2 + b3)

2 − 2a42b4 − 2a43b4 = 0
(b1 + b4)

2 + 2a41b4 − 4a21b2 − 4a31b3 = 0

⎫⎬⎭ 2nd order on energy (A.5)

and

b1 − b2 − b3 + b4 = 0, 1st order on energy
2a32b3 − 2a31b3 − 2a21b2 + 4a41b4 − 2 (b1 + b4) (b2 + b3) = 0
(b1 + b4)

2 − 2a21b2 − 2a31b3 = 0
(b2 + b3)

2 + 2a32b3 − 4a42b4 − 4a43b4 = 0

⎫⎬⎭ 2nd order on energy (A.6)

In order to solve the systems, it turns out to be convenient to add two conditions on some coefficients to set them to zero. 
For instance, adding such conditions on a31 and a42, it is easy to derive the Butcher array reported in Section 4.

Appendix B. Stability of new Runge–Kutta schemes

The absolute stability of the newly derived Runge–Kutta schemes can be studied in a classical way by evaluating the 
so-called stability function [25,37]. The latter is derived by applying an RK scheme to a linear differential equation u′(t) =
λu(t). For s-stage, s-order standard Runge–Kutta methods, the stability function is easily proved to be a polynomial of degree 
s of the type

R(σ ) = 1 + σ + σ 2

2! + · · · + σ s

s! , (B.1)

where σ = λ�t . If the Butcher array is indicated concisely as

c A
bT ,

then the stability function is given by

R(σ ) = 1 + σbT (I − σA)−1 1T . (B.2)

Equation (B.2) can be used to calculate the stability function of the newly derived Runge–Kutta schemes given in Appendix A. 
In particular, one of the two-parameter families of ADAD/DADA-3S2E(4) schemes has the stability function

R(σ ) = 1 + σ +
(

1

2
−

√
3θ2A
9θ1

)
σ 2 +

(
1

6
+

√
3A

36θ1

)
σ 3

+
( √

3A
216θ1

− 15θ1 − 9/2

θ1 (576θ2 − 288)
− 24θ1 − 9

576θ1

)
σ 4. (B.3)

A term-to-term comparison between Eq. (B.1) and Eq. (B.3) shows that in order to match the low-order coefficients, it must 
result A = 0, hence θ1 = 3/10. However, this choice leads to a violation of the fourth-order coefficient. The same result is 
obtained with the other two-parameter family. As a consequence, the ADAD/DADA−3S2E(4) schemes cannot be fourth-order 
accurate for linear equations, and therefore have the linear stability footprint of a three-stage, third-order scheme.

On the contrary, by applying Eq. (B.2) to the Butcher array resulting from ADDA/DAAD − 3S2E(4) schemes, and reported 
in Section 4.2, it can be found that it has the stability function of a four-stage, fourth-order scheme, and hence the same 
stability region. It is thus to be preferred to ADAD/DADA schemes.
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