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aENS Cachan, Université Paris-Saclay, Av. du Président Wilson 61, Cachan 94235, France
bINEGI, Rua Dr. Roberto Frias, Porto 4200-465, Portugal

cCIMNE, Gran Capita s/n 08034, Barcelona, Spain
dMichelin, Technology centre, Ladoux, 63040 Clermont-Ferrand cedex 9,France

eDEMec, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias, Porto
4200-465,Portugal

Abstract

Fibres Reinforced Polymers (FRPs) are found in several applications in aero-

nautics, space and in the automotive industry. These applications are exposed to

loading conditions, including impact, which results in a complex mechanical re-

sponse that is vital to accurately predict. This is particularly important for a new

generation of thermoplastic-based composites. The model proposed in this work

is an invariant-based approach to represent viscous effects in polymer composites.

The model developed only requires two viscous parameters to calibrate the vis-

coelastic behaviour. A good correlation between the simulations and experimental

data obtained in off-axis tests in tension and compression is obtained.
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1. Introduction

1.1. Context

Initially found mostly in leading technological sectors like aeronautics and

space, the number of applications in which Fibres Reinforced Polymers (FRPs)

are used, as well as the diversity of these applications, are increasing. Along with

it, there is the necessity to accurately predict the behaviour of composite struc-

tures under various loading scenarios. Furthermore, carbon-epoxy systems are

currently widespread but thermoplastic composites are likely to be the next main

composite system used, especially in the automotive industry. It is also noted that

composite structures may be subjected to high-speed loading cases. Some exam-

ples are bird or hail impact, tire explosion and crash events. Taking into account

that, in general, both thermoplastic and thermoset matrix based composite present

a viscous behaviour, strain rate effects must be captured by advanced constitutive

models. Such models enable a reduction of safety factors when designing new

parts, and enable the use of less material, which results in weight savings. Due

to the complexity of the material, two different types of numerical model can be

considered: a micro-scale model – the fibre, interface and the matrix behaviour

are explicitly modelled, or an equivalent homogeneous material. The micro-scale

model is more expensive from a numerical point of view, but the definition of the

equivalent material model can be arduous and may require many material param-

eters. The objective of this work is to define and validate a homogeneous material

law at the ply level for UniDirectional (UD) fibre reinforced polymers that takes

into account viscous effects in both the elastic and inelastic deformation regimes.
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1.2. State of the art

Due to their attractive mechanical properties, rapid processing and relatively

low manufacturing cost, thermoplastic polymer composites represent a promising

alternative to thermoset based composites for aerospace and automotive applica-

tions. This is not a recent finding as studies were already led back in the 90’s. For

example, Jar and Kausch (1994) investigated the influence of moulding conditions

on the delamination behaviour of carbon-fibre/PEEK composites in 1994. It ap-

peared that the cooling rate and the forming temperature have an impact on the

delamination resistance. Indeed, in order to form better quality laminates, a higher

forming temperature and a slower cooling rate are needed, which led to increased

production costs. Other studies, like that from Gao and Kim (2000), also inves-

tigated the cooling rate effect and arrived to the same conclusions. These studies

improved the understanding of the material composition and provided additional

basis to develop more accurate constitutive models.

The behaviour of thermoplastic polymers is rather complex as it is time, strain

rate and temperature dependent, coupling both the viscoelastic and viscoplastic

modes of deformation. El-Qoubaa and Othman (2015, 2016) investigated the yield

stress of PEEK for different temperatures and strain rates. These studies reveal

that the yield stress of PEEK depends on the strain rate and also on the tempera-

ture. El-Qoubaa and Othman (2015, 2016) work also covers the glass transition

of the material which induces important changes in the material properties. Rae

et al. (2007) work on the mechanical properties of PEEK clearly demonstrated

viscous effects in the mechanical response of the PEEK in both the elastic and

plastic regimes. The model for the matrix developed by Garcia-Gonzalez et al.

(2017), calibrated with Rae et al.’s work, takes this phenomenon into account but
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was developed for the neat resin, not for composite materials. Therefore, models

for the prediction of the behaviour of thermoplastic composites should account

for these viscous effects in the elastic and plastic domains.

Vogler et al. (2013) developed an elastic-plastic model capable of predicting

the behaviour of UD plies of FRPs with good accuracy. However this model did

not account for the viscous effects. This model relies on the invariant theory,

which is mathematical framework that enables the representation of anisotropy

using isotropic tensorial functions. Hence, using such framework, the formulation

can be the same regardless of the orientation angle of the fibres. Currently, the

available constitutive models capable of predicting the material response prior to

cracking in FRPs laminates include those proposed by Vaziri et al. (1991), Gates

and Sun (1991) or Chen and Sun (1993) in the 90’s.

Vaziri et al. (1991)’s work aims to address nonlinear behaviour up to and in-

cluding the failure of single layers of a laminate composite. It is derived within

the framework of rate-independent theory of orthotropic plasticity. A quadratic

criterion for the plastic yield is used, and the plastic surface is assumed to be simi-

lar in tension or compression. The criterion is different depending on, whether the

material is UD or BiDirectional (BD). The Tsai-Hill criterion is used for the UD

case, along with an associated flow rule. That model does not take into account

the viscous effect but it is very efficient compared to more complex constitutive

models.

Chen and Sun (1993) proposed a quadratic plastic potential associated with

an isotropic hardening. This potential must meet the orthotropic symmetry, and

an associated flow rule was used. The necessary elastic constants to formulate

the potential were determined using a micro-mechanical model based on an RVE.
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The plastic potential uses four parameters, but viscous effects are not accounted

for.

Gates and Sun (1991) use the elastic/plastic flow rule presented by Sun and

Chen (1989). In order to account for the viscoplasticity, the authors assume an

additive decomposition of the elastic and the plastic part of the strain rate. The

Perzyna (Perzyna (1963)) overstress function was used to express the plastic strain

rate. A power law expression using two parameters to link the effective plastic

strain rate and the overstress was also used. This simple model can accurately

predict the behaviour of graphite/thermoplastic composites, with few parameters

that can easily be obtained via tensile tests. The model does not account for the

viscous effect in the elastic domain and the orientation of the specimen must be

carefully controlled in the identification of the properties used in the model.

The predictive capabilities of the models described in the previous points are

summarised in Tab. 1. It is clear that there is the need to continue the development

of constitutive models in order to fully determine the rate-dependent stress-strain

response prior to cracking, and to prepare the arrival of the next generation of

thermoplastic composites where pre-locatization non-linearities are likely to play

an important role in the material/structural performance.

1.3. Modelling strategy proposed

Following an experimental investigation of the Hexcel R© IM7-8552 (carbon/epoxy)

material system (Koerber et al. (2010); Kuhn et al. (2015)), the importance of the

viscous effects in the material system were clearly highlighted. The model pro-

posed by Vogler et al. (2015) was first upgraded to take into account the observed

viscous behaviour for high strain-rates in the plastic response (Vogler et al. (2015);

Koerber et al. (2018)). In order to calibrate that model, scaling functions were
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Model elastic-plastic Viscoelastic Viscoplastic
Orientation

independent

Sun and Chen (1989) – – –

Vaziri et al. (1991) – – –

Gates and Sun (1991) – X –

Chen and Sun (1993) – – –

Vogler et al. (2013) – – X

Koerber et al. (2018) – X X

Table 1: Behaviour addressed by the reviewed models.

used to model the experimentally observed viscoelastic behaviour. This solution

is very limited and a better formulation in the framework of the invariant theory is

required.

Based on the previous work (Gerbaud et al. (2018)), the objective of this pa-

per is to present a new fully three-dimensional transversely isotropic viscoelastic-

viscoplastic model for FRPs laminates. This model is capable of predicting ac-

curately the viscous effects and the non-linearities in the material response prior

to the onset of cracking. It can be further calibrated for the next generation of

thermoplastic composites. The proposed model is implemented in a user material

subroutine using an explicit formulation in the finite element commercial soft-

ware package Abaqus/Explicit (Dassault Systèmes). The available tension and

compression tests are simulated using a VUMAT user subroutine.
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1.4. Outline of the paper

Firstly, the constitutive model formulated in the framework of the invariant

theory is presented. The material calibration is discussed, followed by a compari-

son between the numerical and experimental results. The efficiency of the model

proposed, in term of computing time and ability to correctly predict the viscous

effects, as well as its comparison with the old versions are investigated. Finally,

the main conclusions of the work conducted are presented.

2. Constitutive model

2.1. Invariant based transversely-isotropic formulation

The constitutive model originally proposed by Vogler et al. (2013), is fur-

ther developed here by including a viscous extension to the original elastic-plastic

model. The small deformation theory is used to formulate the model, therefore,

the following strain additive decomposition is assumed

ε = εve + εvp, (1)

where -ve- stands for “viscoelastic” and -vp- for “viscoplastic”, while ε represents

the total strain.

A structural tensor A that represents the symmetry conditions of transversely

isotropic materials is defined by the dyadic product of the unit vector of the pre-

ferred (fibre) direction a as

A = a⊗ a. (2)

The use of such as structural tensor enables a formulation of the anisotropy free of

any reference coordinate system. Therefore, the material symmetries are viewed

7



as an intrinsic material property and, the structural tensor is an additional argu-

ment in the constitutive equations.

Following Vogler et al. (2013), the structural tensor is used as an additional

argument in order to formulate the elastic free energy density, the yield function

and the plastic potential formulation. In the model proposed here,A is used in the

formulation of the viscoplastic creep function, the viscoplastic potential and the

viscoelastic model. The elastic free energy density for the proposed transversely

isotropic model reads

Ψ(ε,A) :=
1

2
λ[tr(ε)]2 + µT tr(ε2) + α(aεa)tr(ε)

+ 2(µL − µT )(aε2a) +
1

2
β(aεa)2,

(3)

with the five elasticity constants λ, µT , µL, α, β as invariant coefficients.

The stress tensor σ and the elasticity tensor Ce can be obtained by computing

the first and the second derivatives of the free energy density with respect to the

strain tensor, respectively:

σ = ∂εΨ(ε,A) , Ce = ∂2
εεΨ(ε,A). (4)

2.2. Transversely-isotropic viscoelastic formulation

The viscoelastic extension implemented is based on the model proposed by

Kaliske and Rothert (1997) and Kaliske (2000). This model is based on gener-

alised Maxwell model as can be seen in Fig. 1. In this model, there is one main

branch, with index 0, corresponding to one linear spring. The elastic modulus

C0 is the original elastic modulus or quasi-static material property. There is an-

other branch in parallel, with index 1, which consists of one Maxwell element,

characterised by its elastic modulus C1 and its relaxation time τ1. The equations
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for the one-dimensional rheological model are presented hereafter, afterwards a

generalisation to a fully 3D formulation is shown.

C0

C1 𝛕1 = η1 /C1 

σσ

 εve

 εelastic,1  εinelastic,1  

Figure 1: Schematic representation of the generalised 1D viscoelastic Maxwell model.

The total stress can be decomposed as:

σ = σ0 + σ1, (5)

with

σ0 = C0 εve and σ1 = C1 εelastic,1 = C1 τ1 ε̇inelastic,1. (6)

The strains are calculated as:

εve = εelastic,1 + εinelastic,1, (7)

The differential equation for the stress in the one Maxwell element model is there-

fore calculated as:
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Γ1 σ̇0 = σ̇1 +
1

τ1

σ1, (8)

where Γ1 = C1C
−1
0 . The analytical solution of the previous equation reads:

σ1(t) =

∫ t

0

Γ1 e

(
−
t− t∗

τ1

)
∂σ0

∂t∗
dt∗. (9)

In a incremental-iterative time scheme numerical solution, at t = tn+1 and by

assuming a linear evolution of the stress σ0 between tn+1 and tn , with ∆tn+1 = tn+1− tn ,

an approximation of the solution can be obtained

σn+1
1 ' fn+1

1 σn1 + fn+1
2 Γ1 (σn+1

0 − σn0 ), (10)

where

fn+1
1 = e(−∆tn+1/τ1), and fn+1

2 =
1− e(−∆tn+1/τ1)

∆tn+1/τ1

. (11)

With Eq. (10) it is possible to fully determine the stresses at a given time step

n + 1 using the previous stresses, i.e. σn1 and σn0 . Only the stresses in the branch

1 depend on the strain rate.

The same equations can be implemented for the 3D scenario, however, addi-

tional experimental data is necessary to determine the relaxation times in every

direction. Poon and Ahmad (1998) have proposed a relaxation time tensor, us-

ing relaxation times close to each other for each direction. In Poon and Ahmad

(1998)’s work, the characteristic relaxation time tensor, i.e. T1, was defined as:

T1 = τ1I, (12)
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where I is the fourth order unit tensor defined as Iijkl = δikδjl. This choice simpli-

fies the model formulation by using only one characteristic relaxation time param-

eter for every direction. Therefore, the system of equations for the 3D formulation

is the following:

σn+1
0 = σn0 + C0 : ∆εn+1

ve ,

σn+1
1 = fn+1

1 σn1 + fn+1
2 �1 : C0 : ∆εn+1

ve , (13)

σn+1 = σn+1
0 + σn+1

1 .

The viscoelastic prediction is now expressed in terms of the predicted stressσpred,n+1

as  εn+1 = εn+1
ve ,

σpred,n+1 = σn0 + fn+1
1 σn1 + Cn+1

ve : ∆εn+1,
(14)

with

Cn+1
ve = [I + fn+1

2 �1] : C0. (15)

The fourth order tensor �1, or Γ̂ using Voigt notation, for a transverse isotropic

material in the material coordinate system, where the fibres direction coincides

with direction 1, can be written as

Γ̂ =



γ11 γ12 γ12 0 0 0

γ21 γ22 γ23 0 0 0

γ21 γ23 γ22 0 0 0

0 0 0 γ44 0 0

0 0 0 0 γ44 0

0 0 0 0 0 γ66


. (16)
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There are different methods to determine �1 in the correct coordinate system. As

an example, each component of �1 can be computed after defining each compo-

nent of C1 and apply �1 = C1 : C−1
0 . Once the independent parameters, which

can be up to seven, of this fourth order tensor in the material coordinate system

are known, the tensor can be transformed into a matrix using Voigt notation, the

matrix can be rotated in the current coordinate system and finally be rewritten

as a fourth order tensor in the current coordinate system. This approach is com-

plicated because all the parameters must be calibrated. Moreover, the rotation is

computationally expensive and it may compromise the accuracy of the numerical

model.

2.3. Proposed invariant based viscoelastic-viscoplastic formulation

The presented work includes a viscoelastic extension to the viscoplastic model

proposed by Vogler et al. (2015) and Koerber et al. (2018). In the later model, sim-

ilarly to the plastic formulation, a decomposition of the stress state in “viscoplas-

ticity inducing” stresses and assumed “elastic reaction” stresses was used. The

“viscoplasticity inducing” part of the stresses has an influence on the viscoplas-

tic behaviour, i.e. on the plastic yield and viscoplastic evolution, and it is used

further in the formulation of the viscoplastic creep surface. The “elastic reaction”

part of the stresses plays no role in the viscoplasticity. Following the same idea,

a similar decomposition of the stress is proposed here but in a more general way.

A more general “viscous inducing” part of the stress tensor is now considered.

Therefore, this part of the stress tensor contains also viscoelastic inducing effects.

Accordingly, the stresses can be written as

σ = σe,reac + σv,ind, (17)
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where the subscript e,reac refers to the “elastic reaction” part and the subscript

v,ind to the “viscous inducing” part of the stresses. In other words, the inducing

part of the stresses depends on the strain rate and lead to a viscoelastic-viscoplastic

response. Kaliske and Rothert (1997) have reported that the viscoelastic behaviour

is, mainly linked to the isochoric part of the deformation, which excludes the hy-

drostatic pressure contribution. In the present model, viscoelasticity is considered

independent of the hydrostatic pressure in the polymeric matrix. In addition, the

behaviour of the fibres is assumed to be purely elastic. The same hypothesis are

used in the previous viscoplastic model but for the viscoplastic contribution. This

allows the definition of the same “viscous inducing” part of the stresses for both

the viscoelastic and the viscoplastic behaviour. Consequently, the different parts

of the stresses are expressed as follows

σe,reac = pI + σfA, (18)

σv,ind = σ − σe,reac = s, (19)

where the term σfA corresponds to the stress projected in the fibre direction, i.e.

the fibre contribution to the stress, and the terms s and pI are the deviatoric part

and the hydrostatic pressure of the stress in the matrix only. The scalars p and σf

are determined by imposing the following conditions

s : I = 0 and s : A = 0. (20)

These conditions correspond to a trace of the deviatoric part equal to zero and no

contribution of the fibre direction, leading to the following expressions for p and

σf
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p =
1

2
(σ : I − σ : A), and σf =

1

2
(3 σ : A− σ : I). (21)

Introducing Eqs. (21) in Eq. (19) leads to the direct relationship between the

total stresses and the “viscous inducing” part of the stresses

σv,ind = Pv,ind : σ, (22)

with

Pv,ind = I− 1

2
I ⊗ I − 3

2
A⊗A+

1

2
(A⊗ I + I ⊗A). (23)

The Pv,ind tensor is identified as the fourth order operator that is used to identify,

the components of the stress tensor that affect the viscous response, i.e. shear in

the polymeric matrix, and to remove the components that do not depend on the

strain-rate.

Considering the isotropic material behaviour of the polymer, an alternative

approach is proposed to obtain the fourth order tensor �1, using the previous stress

decomposition. The approach consists in using one single scalar as a viscoelastic

parameter, γve,1, as for an isotropic material, and the Pv,ind tensor for the definition

of �1. The resulting expression of �1 is then

�1 = γve,1Pv,ind. (24)

In the last equation, the parameter γve,1 is the viscoelastic parameter that quantifies

the viscous effect, while the fourth order tensor Pv,ind provides the direction of the

viscoelastic evolution. With the proposed approach, the number of parameters

that need to be identified is significantly reduced: the full identification of the
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viscoelastic model uses only two scalar parameters, τ1 and γve,1. Moreover, the

proposed extension remains in the framework of the invariant theory previously

formulated, in order to keep the benefits of this formulation.

The defined “viscous inducing” stresses are considered to formulate the vis-

coplastic creep surface using the invariant theory. The set of invariants that are

used in the model are the following

I1 =
1

2
tr(σ2

v,ind)− a (σ2
v,ind) a,

I2 = a (σ2
v,ind) a,

I3 = tr(σ) − a σv,ind a, (25)

with

σ2
v,ind = σv,ind · σv,ind. (26)

The corresponding transversely isotropic viscoplastic creep surface for UD com-

posites reads

f(σ, ε̄vp,A) = α1I1 + α2I2 + α3I3 + α32I2
3 − 1 ≤ 0, (27)

where

α3 = αt3 α32 = αt32 if I3 > 0,

α3 = αc3 α32 = αc32 if I3 ≤ 0, (28)

and the equivalent viscoplastic strain is defined as

ε̄vp =

√
1

2
(εvp)ij(εvp)ij. (29)

The proposed viscoplastic creep function is formulated using six viscoplastic

creep α-parameters. They must be determined using the hardening data of the
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material in six different loading scenarios. These scenarios are: transverse shear,

in-plane shear, uniaxial and biaxial transverse tension and uniaxial and biaxial

transverse compression. Fig. 2 shows a schematic representation of the trans-

versely isotropic f surface in stress space. The displayed points are the “trigger

points” of the viscoplastic creep surface, for a given strain rate and a given plas-

tic strain, in which the plastic yield stress value is known thanks to the tabulated

hardening data, given as an input parameter of the model. Therefore, the vis-

coplastic creep surface parameters α(... ) are a function of the strain rate Koerber

et al. (2010) and of the plastic strain Vogler et al. (2013).

σ22

σ33

σ22

!12

Figure 2: Schematic representation of the yield surface for UD composites in stress space (the

yellow points are repetitions of the blue ones because of the material symmetry).

The evolution of the viscoplastic strain is defined by using a non-associative

flow rule. Two viscous parameters define the Perzyna (see Perzyna (1963)) type

overstress model, m a dimensionless exponent parameter to be definded accord-

ingly to the material type and η the viscosity parameter, which has the unit Ns/mm2.
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A non-negative parameter, known as the consistency parameter, γ̇vp, is to be de-

termined for the flow rule, which reads

ε̇vp = γ̇vpng =
〈fm(σ, ε̄vp,A)〉

η
ng, (30)

where ng = ∂σg(σ,A) is the non-associated viscoplastic flow direction, analo-

gous to plasticity. The viscoplastic potential function is defined as

g(σ,A) = β1I1 + β2I2 + β3I
2
3 − 1. (31)

It uses the same invariants as the viscoplastic creep function f(σ, ε̄vp,A) and the

β-parameters are determined for the material using the procedure described by

Vogler et al. (2013). The viscoplastic potential can be directly expressed using the

stresses as

g(σ,A) =
1

2
σ : M : σ +N : σ − 1, (32)

where M and N are expressed using the β-parameters and the structural tensors.

The viscosity parameter acts as delay parameter, activating the viscous behaviour

for high strain rates. The time discretisation transforms Eq. (30) into

∆εn+1
vp

∆tn+1
=

∆γn+1
vp

∆tn+1
ng. (33)

This discretised flow rule results in the criterion that is used to verify wether the

evolution is purely viscoelastic or not. This criterion reads

f(σpred,n+1, ε̄n+1
vp ,A) < 0. (34)

If the criterion is satisfied, then the evolution is purely viscoelastic and the pre-

dicted stresses are correct. Otherwise, there is a viscoplastic evolution, and both

the viscoplastic strains and the stresses must be computed. The total stresses read

σn+1 = σpred,n+1 − Cn+1
ve : ∆εn+1

vp , (35)
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with

∆εn+1
vp = ∆γn+1

vp (M : σn+1 +N ), (36)

according to Eq. (33). The following expression of ng in terms of tensors is used

ng = M : σn+1 +N . (37)

Then, the following expression of the stresses as a function of γn+1
vp is obtained

σn+1 = F−1 : (σpred,n+1 −∆γn+1
vp Cn+1

ve : N ), (38)

with

F = I + ∆γn+1
vp Cn+1

ve : M (39)

The expression of the stresses (see Eq. (38)) is introduced in Eq. (34), which is

solved using a local Newton-Raphson algorithm to obtain the value of the consis-

tency parameter ∆γn+1
vp . Indeed, as the stresses are only function of ∆γn+1

vp , the

viscoplastic creep function f at t = tn+1 can be written as a function of ∆γn+1
vp

only making it the only variable to be determined. The residual reads at the local

step (k)

Rn+1
f |(k) = 〈fm(∆γn+1

vp |(k))〉 − η
∆γn+1

vp |(k)

∆tn+1
. (40)

It is linearised and gives the value of the local increment ∆2γn+1
vp |(k) = ∆γn+1

vp |(k+1)−

∆γn+1
vp |(k)

∆2γn+1
vp |(k) = −

Rn+1
f |(k)

∂Rn+1
f |(k)

∂γn+1
vp |(k)

, (41)
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with

∂Rn+1
f |(k)

∂∆γn+1
vp |(k)

=
∂(fm − η[∆γn+1

vp |(k)/∆tn+1])

∂∆γn+1
vp |(k)

(42)

= m fm−1[∂f/∂∆γn+1
vp |(k)]− [η/∆tn+1]. (43)

The local Newton-Raphson algorithm stops when the prescribed tolerance param-

eter is achieved for the residual, i. e. Rn+1
f ≤ tolerance. Then, the viscoplastic

strains εn+1
vp can be updated at the end of the current time step.

A schematic representation of the described constitutive model implementa-

tion through a VUMAT user subroutine is presented in Fig. 3.

3. Calibration of the viscous parameters

It is assumed that the viscoelastic behaviour is independent of the hydrostatic

pressure. Hence, the strain rate dependency on the yielding behaviour and on the

elastic behaviour is similar both in tension and in compression. The finite element

simulations used in the calibration process are done with specimens and boundary

conditions identical to those presented in Sec. 4.1. The calibrated parameters are

summarised in table 2.

3.1. Calibration of the viscoelastic model parameters

The identification of the two viscoelastic parameters τ1 and γve,1 of the pro-

posed viscoelastic model, introduced in Eq. (12) and (24), is based on the 90◦

compression tests. Indeed, under transverse solicitations, the response is rate-

dependent and controlled by the matrix. Currently, it is easier to calibrate the

viscoelastic response caused by the matrix using this case. The 45◦ tests are used
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• Read material properties

Begin

•Compute structural tensors 1, 𝕀, A, A⊗A, 1⊗A, A⊗1,  
ℙvp,ind, ℙve,ind  

•Compute elasticity  tensor ℂ0 
•Compute viscoelasticity tensor ℂven+1 

End

•Read strain increment  Δ𝛆n+1 

•Compute predicted viscoelastic stress 𝛔pred,n+1 

•Read plastic yield values corresponding to the current 
viscoplastic strains 𝛆vp

• Local Newton algorithm to solve: 
f (𝛔n+1(Δ𝛾vpn+1)) = Δ𝛾vpn+1 ⋅ 𝜂vp  / Δt 

with: 
 𝛔n+1 (Δ𝛾vpn+1) = 
 𝔽 -1 : [𝛔pred,n+1 - Δ𝛾vpn+1 ⋅ ℂven+1 : N]  

• Gives the value of Δ𝛾vpn+1 
• Update the plastic yield values

• Update the viscoplastic strains: 
Δ𝛆vpn+1 = Δ𝛾vpn+1 ⋅ [ 𝕄 : 𝛔n+1 +  N ]

• Save the new stresses 

𝛔0n+1 = 𝛔0n + ℂ0 : [Δ𝛆n+1 - Δ𝛆vpn+1] 
𝛔1n+1 = f1 𝛔1n + f2⋅ℾ1:ℂ0:[Δ𝛆n+1 - Δ𝛆vpn+1] 

𝛔n+1   = 𝛔0n+1 + 𝛔1n+1  

• Save the energies

DO for each integration point

YesNo

• Update the viscoplastic strains: 
 Δ𝛆vpn+1 = Δ𝛆vpn 

Plastic yield check  
f(𝛔pred,n+1) ≤ tolerance

Figure 3: schematic representation of the proposed model implemented in the VUMAT

to control the validity of the model under shear loading but are less sensible to

the value of γve,1 so they cannot be used independently. Approximated values are

obtained using a 1D calculation, and then refined using a finite element simula-
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tion with a fine mesh, reproducing the experimental conditions. Only two strain-

rate regimes are available, therefore there is some uncertainty for the value of τ1.

Indeed, no noticeable difference is observed for values in the range of 10−1 to

10−4 s. This parameter controls the value of a strain rate threshold, below which

no noticeable strain rate effect would be noticeable. It is to be adjusted with more

experimental data. Here, τ1 is set to τ1 = 1 · 10−2 s and the value γve,1 = 0.32 is

found for the best approximation.

3.2. Calibration of the viscoplastic model parameters

The calibration of the two viscoplastic parameters, m and η, introduced in Eq.

(30) is discussed herein. For the current material, IM7-8552, only two loading

speeds are available. Consequently, the parameter m is set to m = 1, which leads

to an approximately linear dependency of the viscoplastic yield stress on the log-

arithmic strain rate. Schaefer et al. (2014) reported the existence of such a depen-

dency for carbon-epoxy systems. However, thermoplastic toughened resins ex-

hibit a nonlinear dependency on the logarithmic strain rate Vogler (2012). There-

fore, the parameter m can be modified in the model to fit to one material or the

other. In the case of such a nonlinear dependency on the logarithmic strain rate,

test data for at least 3 strain rate regimes are needed to calibrate the parameter m.

To calibrate the remaining viscoplastic parameter η, the axial true stress-true

strain curves of the 45◦ off-axis compression tests are used. These tests were per-

formed at two different strain rates, at a quasi-static strain rate of 0.0004 s-1, and

at a dynamic axial strain rate, with an approximate value of 280 s-1 (see Koerber

et al. (2010, 2018)). The calibration is first performed by running simulations on

a single element mesh and followed by simulation using a fine mesh, whereby the

parameter η = 3.5 · 10−4 Ns/mm2 gives the best approximation.
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Parameter name Value Unit

m 1 −

η 3.5 · 10−4 Ns/mm2

τ1 1 · 10−2 s

γve,1 0.32 −

Table 2: Viscous parameters after calibration for the material system Hexcel R© IM7-8552

4. Results

The numerical results are presented in this section and compared to the experi-

mental results. As the model is implemented as a VUMAT, the integration scheme

is explicit. In such a scheme, the time stable increment during one step is very

small in order to ensure the stability of the simulation. This time stable increment

depends mostly on the elements size and on the mass of these elements, i.e. their

material’s density. Consequently, for the same mesh and the same density, the

quasi-static and dynamic simulations have the same stable time increment value.

As the simulations are given a total loading duration, the number of increment

will be the ratio between this duration and the time stable increment. This can be

a problem for the quasi-static loading cases, as the loading duration is approxi-

mately 30 seconds, while it is only approximately 10−4s for the dynamic loading

cases. Indeed, running a quasi-static prediction would then require 105 times more

increments than running a dynamic one. It would result in a total CPU time far

too high for the model to be efficient in the case of very low-speed loading cases.

A way to deal with it is to use mass scaling. By changing the material density, it
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is possible to increase the value of the stable time increment. Here, the density

of the material is multiplied by a factor 106 for the quasi-static simulations. By

doing this, the time stable increment is multiplied by the square root value of this

factor, which means here by 1000, so the number of increments needed is divided

by 1000. In the end, approximately 100 times more increments are needed to run

a quasi-static simulation, so the model can be relevant to simulate this type of

loading case. A verification of the ratio kinetic energy/internal energy, done at the

end of the simulation, shows that this mass scaling has a negligible effect on the

final result. The ratio never exceed more than 0.4 % with mass scaling, compared

to 4 · 10−4 % without it, and no effect on the predictions was observed.

4.1. Boundary conditions and meshes

The simulations are performed using the finite element commercial software

Abaqus. The experimental specimens are reproduced using three-dimensional,

eight-node C3D8R solid elements with reduced integration. For low strain rate

simulations, the viscoelasticity transforms into pure linear elasticity. Consequently,

the element size effect on the results is very small. However, it is more important

to refine the mesh under high strain rates because all areas in the specimen do

not necessarily deform at the same speed. For these reasons, the following results

have been obtained using a coarse mesh for the quasi-static simulations, and a fine

mesh for the dynamic simulations, for which the hourglass effect was investigated

and not detected. A single element mesh has also been tested, as it provides a very

efficient simulation without compromising the accuracy. The meshes used for the

compression simulations are represented in Fig. 4. The meshes used for the ten-

sion simulations are different because the specimens have different dimensions,

but the element sizes are similar.
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Figure 4: Meshes used for the compressive load simulation, a single element, a coarse, and a fine

mesh

The applied boundary conditions are represented in Fig. 5 and correspond

to the experimental testing boundary conditions for both tensile and compression

loading cases. To replicate the experimental tests, a displacement boundary con-

dition was applied on one of the ends of the specimen.

Z

Y

X

Y

XZ

Y

X
Z

Y

ZX

Figure 5: Boundary conditions for the compression loading simulations

The simulated cases are off-axis 15◦, 30◦, 45◦ and 90◦ transverse tension and

off-axis 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ transverse compression.

The experimental and simulated axial true strain–true stress curves are plotted
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in Figs 6–15, for dynamic and quasi-static regimes, for both tension and compres-

sion. The tolerance in the local Newton-Raphson algorithm is fixed at 10−10, and

its effect is studied further in the paper. The dotted lines refer to the dynamic data,

the continuous lines refer to the quasi-static data. Also, the red colour is used for

the simulation results, while the black colour is used for the experimental results.

Note that, the damage and the failure are not taken into account in the current

model, and no information about damage in the test specimens was available.

4.2. Tension results

The method used to read the axial stress and strain in the specimen in the

simulation is the same for all the specimens. The axial true strain, computed

using the value of the axial displacement of the free extremity of the specimen

reads

εaxial = Log
(

1 +
∆l

l0

)
= Log

( l
l0

)
. (44)

The axial stress is then computed by reading the sum of the reaction forces at

the end of the specimen, P, and using the value of the axial strain and the initial

section as follows

σaxial =
P

A0

(
1 +

l

l0

)
, (45)

In Eq. (45), the hypothesis of incompressibility is applied to estimate the current

cross section. This condition reads:

A = A0
l0
l

= A0

(
1 +

∆l

l0

)−1

(46)

This condition is used here because it was used to obtain the experimental curves

(see Koerber et al. (2018)). By doing so, the same quantities are read in both
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simulations and experiments. The Figs. 6–9 show the measured and simulated

static and dynamic axial true stress-true strain curves under 15◦, 30◦, 45◦ off-

axis tension and 90◦ transverse tension. Considering the experimental data of

the dynamic tests, it can be seen that with a higher strain rate the initial slope

increases. This means that viscous effects are observed in the elastic range and

these must be taken into account. The model proposed is able to provide a good

accuracy in the prediction of these effects. Also, the true stress-true strain curves

become more linear under dynamic loading, delaying the onset of plasticity (See

Figs. 6-9). This observation is in agreement with the viscoelastic-viscoplastic

behaviour of the material which is modelled here. In that respect, the viscous

effects noticed in both, elastic and plastic ranges, are very accurately predicted for

the four orientations. It is therefore concluded that the model is valid for tensile

simulations.
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Figure 6: Axial true stress-true strain curves for

the tensile tests and simulations, 15◦.
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Figure 7: Axial true stress-true strain curves for

the tensile tests and simulations, 30◦.
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Figure 8: Axial true stress-true strain curves for

the tensile tests and simulations, 45◦.
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Figure 9: Axial true stress-true strain curves for

the tensile tests and simulations, 90◦.

4.3. Compression results

The Figs. 10–15 show the measured and predicted axial true stress-true strain

curves for 15◦, 30◦, 45◦, 60◦, 75◦ off-axis compression and 90◦ transverse com-

pression under quasi-static and dynamic loadings. As can be observed, a good

prediction of the nonlinear behaviour was achieved for both quasi-static and dy-

namic loading cases. For compression loadings as well as tensile loadings, the

viscous effects are properly taken into account by the model proposed here. Nev-

ertheless, it showed be noted that for the 15◦, 30◦, 45◦ off-axis dynamic com-

pression, the last part of the experimental curves i.e. the plateau cannot be fully

reproduced. Indeed, the model does not consider damage in the material, and

the evolution observed could result from macroscopic damage. No experimental

investigation of the damage mechanisms was performed so this remains a hypoth-

esis. A more thorough viscoplastic damage model could improve the predictions

for those specimens.
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Figure 10: Axial true stress-true strain for the

compression tests and simulations, 15◦.
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Figure 11: Axial true stress-true strain curves

for the compression tests and simulations, 30◦.
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Figure 12: Axial true stress-true strain curves

for the compression tests and simulations, 45◦.
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Figure 13: Axial true stress-true strain curves

for the compression tests and simulations, 60◦.

5. Model efficiency

In this section, an analysis of the calculation efficiency is presented. The

computation time in different scenarios is compared for the former elastic-plastic

Vogler et al. (2013) and elastic-viscoplastic Koerber et al. (2018) model and the

presented viscoelastic-viscoplastic model. The influence of the criterion’s value

in the local Newton-Raphson algorithm in the viscoplastic part is also discussed.
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Figure 14: Axial true stress-true strain curves

for the compression tests and simulations, 75◦.
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Figure 15: Axial true stress-true strain curves

for the compression tests and simulations, 90◦.

5.1. Comparison in term of computation time between the present model and its

predecessors

A comparison of the three successive models, which are successively, elastic-

plastic, elastic-viscoplastic, and the presented viscoelastic-viscoelastic model, is

shown in Fig. 16 and 17. It should be noted that no scaling functions for the elas-

tic properties, such as those proposed in Koerber et al. (2018), were used in the

simulations. The quasi-static simulations were performed using a coarse mesh,

while a finer mesh was used in the dynamic case. As expected, the three simu-

lated curves for the quasi-static simulations are the same, the viscous effects being

inexistent at that speed. However, a noticeable difference exists between the mod-

els in the dynamic loading case, where the viscous effects in the elastic part are

well represented by the current model. Evidently, the elastic-plastic model cannot

give an accurate prediction for a dynamic loading case, as the formulation is not

strain rate-dependent. The CPU times required for each of the simulation cases,

i.e. dynamic/quasi-static and fine/coarse mesh, are plotted in Fig. 18, in the case

of a 45◦ off-axis compression loading. As can be seen, the total CPU times are
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Figure 16: Axial true stress-true strain curves

for the quasi-static 45◦ off-axis compression,

simulations and experiments.
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Figure 17: Axial true stress-true strain curves

for the dynamic 45◦ off-axis compression, sim-

ulations and experiments.
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Figure 18: Comparison of the total CPU time between the successive models.

very similar between the different models. The present viscoelastic-viscoplastic

model provides more accurate results without any loss in the efficiency. In sum-

mary, it can be concluded that the new model accounts for viscous effects in both

the elastic and the plastic range without any supplementary computational cost.
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5.2. Influence of the tolerance’s value in the local Newton-Raphson algorithm in

the viscoplastic part

Another study concerning the efficiency of the proposed model is presented

in this section. Here, the influence of the value of the tolerance parameter in the

local Newton-Raphson algorithm, on both the total CPU time and the accuracy

of the prediction, is shown. In Fig. 19 can be seen the evolution of the total

CPU time, in the case of 45◦ off-axis compression, as a function of the tolerance.

The dynamic simulations were performed using the finer mesh while a coarse

mesh is used for the quasi-static predictions. The influence is almost unnoticeable
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Figure 19: Evolution of the total CPU time as a function of the tolerance parameter.

for the dynamic predictions, as they do not require more than 20 seconds to be

performed. Indeed, there are few increments because of the very short loading

duration. However, the evolution is very important in the case of the quasi-static

simulations. With a value of 10−10 for the tolerance, the total CPU time is almost

eights minutes and drops to less than two minutes for a value ≤ 10−2. By doing

this, the computation time is divided by four, which is far from being negligible.

It must be then assessed that such an increase of the tolerance’s value is without

consequences on the quality of the predictions. Fig. 20 and 21 show the influence
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of varying the tolerance’s value regarding the prediction quality, in both quasi-

static and dynamic loading cases. It can be noticed that for values above 10−2,
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Figure 20: Axial true stress-true strain curves

for the quasi-static 45◦ off-axis compression,

with varying the tolerance’s value.
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Figure 21: Axial true stress-true strain curves

for the dynamic 45◦ off-axis compression, with

varying the tolerance’s value.

the quality of the prediction is degraded for the quasi-static loading case, and for

a tolerance of one, the predictions show premature divergence. For the dynamic

loading case, however, no difference is observed, even for a value of one for the

tolerance the prediction remains unchanged, all the curves are exactly similar.

Therefore, a value of 10−2 for the tolerance seems to be ideal to both improve the

efficiency of the model and preserving its accuracy. This value is then tested for

all the loading cases, i.e. dynamic/quasi-static regimes and compression/tensile

loadings, and proves fully satisfying. It allows a drastic increase of the model

performance when compared to the initial value of 10−10.

6. Conclusion

A fully 3D viscoelastic-viscoplastic model was proposed. The viscoelastic

formulation, expressed within the framework of the invariant theory, along with
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the changes that accompany it, were explained in detail. The model accuracy in

predicting the axial true stress-true strain behaviour was assessed for the material

system Hexcel R© IM7-8552. The quality of the predictions is remarkably good.

A comparison between the capabilities and efficiency of the present model and

its predecessors was also investigated. The present model correctly fills the lack

of its predecessor in term of predicting the viscous effects in the elastic range.

These effects are of primordial importance, as for the proper calibration of the

viscoplastic part, and for the simulation of complex loading scenarios. Moreover,

no loss in the model’s efficiency that could be a handicap for further development

is observed.

As the model works at the laminate scale, one specimen can be modelled using

only one element in a finite element algorithm, and still provide accurate results

in a very short time. This makes the model relevant to the domain of designing

and optimising structural parts at the meso-scale. Furthermore, the calibration can

be done quickly for any UD composite material thanks to the limited number of

material properties required.
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