®

Check for
updates

Exploring Datasets to Solve Partial
Differential Equations with TensorFlow

Oscar G. Borzdynski®, Florentino Borondo®3(®) and Jezabel Curbelo!:2

! Departamento de Mateméticas, Universidad Auténoma de Madrid,
Cantoblanco, 28049 Madrid, Spain
2 Instituto de Ciencias Matemadticas (ICMAT),
Cantoblanco, 28049 Madrid, Spain
3 Departamento de Quimica, Universidad Auténoma de Madrid,
Cantoblanco, 28049 Madrid, Spain
f.borondo@uam.es

Abstract. This paper proposes a way of approximating the solution of
partial differential equations (PDE) using Deep Neural Networks (DNN)
based on Keras and TensorFlow, that is capable of running on a conven-
tional laptop, which is relatively fast for different network architectures.
We analyze the performance of our method using a well known PDE,
the heat equation with Dirichlet boundary conditions for a non-derivable
non-continuous initial function. We have tried the use of different fami-
lies of functions as training datasets as well as different time spreadings
aiming at the best possible performance. The code is easily modifiable
and can be adapted to solve PDE problems in more complex scenarios
by changing the activation functions of the different layers.

Keywords: Deep learning - Partial derivative equations -
TensorFlow - Keras - Neural Network

1 Introduction

The use of Machine Learning (ML) is spreading across many fields in Applied
Science, often showing a very good performance in the resolution of many dif-
ferent practical tasks, such as weather forecasting [14], self driving cars [12], or
translation [2], just to name a few. However, ML is not very popular in Math-
ematics or other theoretical sciences, despite the fact that strong evidence of
its great potential has been recently reported in the literature [6]. Reservoir
computing [11], for example, is one such method, which unfortunately is very
demanding computationally.

In this paper we explore a more economic computationally alternative way
of approximating the numerical solution of Partial Differential Equations using
Deep Neural Networks (DNN) based on the Keras [4] and Tensorflow soft-
wares [1]. This framework is widely used for its performance and versatility [5].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021

A. Herrero et al. (Eds.): SOCO 2020, AISC 1268, pp. 441-450, 2021.
https://doi.org/10.1007/978-3-030-57802-2_42



442 O. G. Borzdynski et al.

Table 1. DNN Structure and activation functions

Layer No. of neurons | Activation function
Entry layer 100 Linear
First hidden layer 1250 Linear
Second hidden layer | 2500 Linear
Third hidden layer | 5000 Linear
Exit layer 5000 Linear

Deep learning techniques are promising in solving PDEs because they are able
to represent complex-shaped functions very effectively, specially when compared
to other traditional methods which experience the “curse of dimensionality”
difficulties. For instance, the experiments in [8] show that the artificial neural
networks exhibit a better performance than finite element methods for several
cases of PDEs.

Similar work to ours has been reported in the literature. In particular, Deep-
XDE [9] is a code made to solve PDE using Tensorflow that allows the user to
make an approximation without making a big effort in choosing the structure of
the DNN. Good results have been obtained using this library. For example, it has
been applied to the study of inverse problems in nano-optics and metamaterials
[3], and space-time fractional advection-diffusion equations [10]. We decided to
use plain Tensorflow to be capable of finely tuning the network for our problem.

To illustrate and analyze the feasibility and performance of our method we
apply it to a well known PDE, as it is the heat equation [15] with Dirichlet
boundary conditions for a non-derivable non-continuous initial function. We tried
different families of particular solutions as training datasets, and check the use
of different ways to span the time interval, seeking for the best performance.
Excellent solutions are found for generic initial functions in all cases explored so
far.

The paper is organized in four sections. In Sect. 2, we describe the Deep
Neural Network structure, activation functions, and training dataset. Sect. 3 is
devoted to briefly explain the heat equation and its possible theoretical solutions.
In Sect. 4, we illustrate our method by presenting the results obtained in several
numerical experiments. Finally, in Sect.5 we summarized our conclusions, and
discuss possibilities for future work.

2 Data and Methods

2.1 Owur Deep Neural Network

A DNN is formed by a series of layers, each one consisting a certain number
of neurons with a given activation function. The activation function defines the
information flows along the network.



Exploring Datasets to Solve PDEs with TensorFlow 443

The parameters defining the structure of our DNN are given in Table 1. The
entry layer receives 100 equidistant samples of the initial function. The hidden
layers are incremental with 1250, 2500 and 5000 neurons, respectively. The exit
layer has 5000 outputs which correspond to a matrix of 100 x 50 with the first
dimension being the position and the second the time.

This structure is chosen for several reasons. The first one is the possibility of
predicting non-bounded negative values, the linear activation function makes this
possible since it is defined in the range (—oo, 00). We consider that the neurons
receive a vector X and they have a vector of weights W where W, corresponds
to the input X; referring ¢ neurons in the previous layer. A linear activation
function means that the exit signal of the neurons is WTX, this implying a
linear transformation of the input to the output data. Second, the behavior of the
activation function near zero is not as steep as others functions, like for example
the sigmoid [6]. The third is the growing effect obtained from an increasing
number of neurons, adding information instead of removing or shuffling it.

As the last parameters of out network we need to specify an optimizer and
a loss function. The loss function is the objective to minimize, it compares the
exit of the DNN with the expected result, and returns a metric which indicates
the distance between them. The optimizer is the algorithm that determines how
the parameters of the network change to minimize the loss, fitting the data to
the expected result.

We decided to use the root mean square error (RMSE) as loss function
because it penalizes big errors, and we want a uniform fit to the solution. Also
we used the well known ADAM optimizer [7] as it has been empirically shown
[13] to work well, improving the performance of other alternative methods.

2.2 Our Training Datasets

The dataset that we use consists of 2000 equations, and we train our DNN with
1600 (80%) of them in batches of 100. After several tries we decided that 20
epochs were sufficient to achieve acceptable results.

3 Example: The Heat Equation

To illustrate the performance of our method we use the well known heat equation
with Dirichlet boundary conditions

Ut = QUgy t>0,0<x<L,
u(z,0) = f(z) 0<z<L, (1)
u(0,t) =u(L,t)=0 t>0,

which solution is

u(z,t) = i bn, Sinm%rexp {— (T)Qt} } ,

n=1
9 L
7/, f(z)sin %dx.



444

O. G. Borzdynski et al.

Table 2. Definition of datasets and testing ways in the different experiments. Linear
and exponential time means, respectively, that the time steps are equally, or exponen-
tially, separated times (see text for details).

Experiment | Training dataset Testing

A Family of functions f(z) defined in | h(x) defined in Eq. (5) and linear
Eq. (4) with different random time
intervals and linear time

B Family of functions f(z) defined in | h(x) defined in Eq. (5) and linear

Eq. (3) with different random a time

parameter and linear time

C Family of functions f(z) defined in
Eq. (3) with different random a
parameter and exponential time

D Family of functions f(z) defined in
Eq. (3) with different random a
parameter and linear time

h(z) defined in Eq. (5) with
exponential time

h(z) defined in Eq. (5) with
linear time and double interval

assuming a one-dimensional rod of length L = 7, 0 < ¢ < 0.05, and defining two
different initial conditions:

f(z) = sin(az), (3)
f(){llfmeland, ()

0 otherwise,
where a is a characteristics parameter, and I is a given known set consisting of
two non-overlapping intervals defined by four limits.

4 Results

In order to train the DNN a dataset is needed. We are going to explore four
different ways of generating it, and one way of testing it, as summarized in
Table 2.

In the first experiment A, the initial data f(x) for Eq. (1) is given by (4)
defined with random intervals I. For the second experiment B, f(z) is given
by (3) with random a. In both experiments the temporal grid is uniform,
ie. t; =0.001¢ with ¢ = 0,..., N — 1 where N is the number of temporal nodes.
Experiment C is equal to experiment B but with the node distance following the
expression t; = [—1 + exp(i/N)]/20 for ¢ = 0,..., N — 1. Experiment D is the
same as experiment B but with an extended (doubled) time interval.

In all the previous scenarios we use a test function h(z), as initial condition
of (1), which is the non-derivable non-continuous function:

0 if =0
)03 if O0<z<m/2
Me)=N08 if n/2<z<n (5)
0 if z=m.



Exploring Datasets to Solve PDEs with TensorFlow 445

Exact solution Log of absolute error

0.961
x 1.5708 0.761
0.561

0

Neural Network solution x 15708
-

0.361

Fig. 1. Result of experiment A of Table 2. (Left) Theoretical and approximate solution
obtained by the DNN. (Right) Logarithm of the error of the DNN approximation,
where yellow/blue color means bigger/smaller errors. The maximum error occurs in
the extremes of the rod at ¢t = 0, where the model does not comply with the Dirichlet
boundary condition. Its value is 0.8181 (top left corner). The maximun error for ¢t > 0
is 0.2813 and the mean error is 0.0305.

Note that this function barely complies with the Dirichlet condition, and the
solution is not easily computed as it need to be transformed to a Fourier series.
Although h(z) plays the same role as f(x) in Eq. (1), we use different notation
to easily differentiate the functions used for training and testing.

The hardware used in all the experiments is a very modest:

— i7-4790 8 threads 3.6 Ghz
— 16 GB of RAM
— 250 GB SSD

No use of the GPU (graphics processing card) was made, as it is customarily
done, to test if a conventional computer was able to be trained and used to
predict in a model like our. The typical time needed to generate the dataset was
roughly 3 hours, and the training was performed in about 15 min.

In Figs. 1, 2, 3 and 4 we present the results obtained with the DNN specified
in Table1 for the four different scenarios described in Table 2.

In the first experiment A, we used a Dirac-delta shaped functions in random
intervals. For testing, we used the function defined in Eq. (5). As can be seen in
Fig. 1, the shape of the predicted and exact solutions are very similar, and the
error is very uniform everywhere. The maximum error is 0.8181, which happens
at the extreme of the rod, where the initial function has a very big gap. We
will see that this effect happens in every test we have made. The mean error is
0.0305.

In the second experiment B we used a sin family of functions, while for testing
the function defined in Eq. (5) is used. As it is seen in Fig. 2 errors mostly occurs
at the initial time. We think that this is probably due to the big variation of
sin(ax) when a is big. The maximum error takes a similar value as in experiment
A, being this equal to 0.8134. The mean error is also similar to the previous case,
and equal to 0.0330.



446 O. G. Borzdynski et al.

Exact solution Log of absolute error

-0.15
1238
-1.55
1038 295
0.838 —4.35
0.638 7
Neural Network solution x 15708 -7.15
0.438
-8.55
] -9.95
0.038 -11.35
o162 -12.75
0
Ol L o o O O
§ S g5 < o
< < S K S S & KS
t

Fig. 2. Same as Fig. 1 for experiment B of Table 2. The corresponding maximums and
mean error values are 0.8134, 0.3068, and 0.0330, respectively

Exact solution

o _
0

Neural Network solution

Log of absolute error

1.286

1.086

0.886

0.686
x 1.5708 1.

0.486

0.286
x 15708

0.086

| -12.75
0 -0.114 0
SO & & & P @ §° S & & P P P $°
S ¥ o o S & ¥ ¥ o &

Fig. 3. Same as Fig. 1 for experiment C of Table 2. The corresponding maximums and
mean error values are 0.8024, 0.2070, and 0.0179, respectively

In order to optimize the results obtained in the initial time portion, we bring
closer the initial time steps and separate them a bit the further ones in experi-
ment C (see results in Fig. 3). First, we see a big improvement in the mean error,
being it reduced to 0.0179. The error at the end of the rod and the initial time
is still the maximum obtained error, equal to 0.8024. We appreciate a smaller
and more uniform error as time advances.

Finally, in the last experiment D, which results are shown in Fig. 4 we tried
a new approach to see how the model works when the total time interval is
extended (to twice the value used before in experiment C). To achieve this task,
we reevaluated the last value obtained by the previous evaluation, obtaining
twice the time. We see that the shape is similar, but the error gets a lot bigger,
rising to 0.0506.

In all the experiments we have monitored the maximum error without con-
sidering the initial error at ¢ = 0. The conclusion is that the error drastically
decreases in all cases, but the maximum still happens as time goes to 0. Another
conclusion that can be drawn from the previous results is that after those ini-
tial experiments, the best possible strategy is to stick to the exponential time
approximation, since it renders the best results.



Exploring Datasets to Solve PDEs with TensorFlow 447

Exact solution Log of absolute error

1238
1038
x 15708
0.838
0 0638

Neural Network solution

=0.15
-1.55
-2.95
-435
-5.7%
=123

0.438
—8.55

] -9.95
x 15708

0.038 -11.35

0162 -12.75

[
S O O N O O O
S ¥ & P XL
[N RS RS RS AR RS

O L &
SN

t

Fig. 4. Same as Fig. 1 for experiment D of Table 2. The corresponding maximums and
mean error values are 0.8134, 0.3068, and 0.0506, respectively

-01
12 -06
10 -11
o8 -16

21
0.6 x 15708 6
04 -31
02 -36

41
o0 -4.6
02 0

>L D> D o P 3 &
N Q o L ¥ & K 3 & A
S of ; ) S > S o o ¥ o o o

Exact solution

o -
0

Neural Network solution

x 15708

Fig. 5. (Left) Theoretical and approximate solution obtained by the DNN with expo-
nential time for the function h(z) defined in Eq. (6). (Right) Logarithm of the error of
the DNN approximation, where yellow/blue color means bigger/smaller errors.

Therefore, we next try to evaluate smoother initial functions. Note that the
used training dataset will be the same as before. In this new batch of numerical
experiments, we try a function that is equal to h(z) but not ending so close to
the end of the rod, thus preventing the error at ¢ = 0. For this purpose we use
the following definition:

0 if <02

03 if 02<z<m/2

@) =008 i n/2<z<r—02 (6)
0 if 7—02<u.

The corresponding results are shown in Fig. 5, where we present the solution and
the approximation made by our algorithm. Note that in this case the maximum
error reduces to 0.0915, and that the mean error reduces to 0.0132. Also, it can
be seen that the maximum error does not happen at t = 0. This result indicates
that when the function does not fit the Dirichlet condition our method can not
obtain a good approximation.



448 O. G. Borzdynski et al.

Exact solution

o -
0

Neural Network solution

x 15708

x 15708

0 -0.2 0
WL & & PP & S
o o o o N N o B o

Fig. 6. Same as Fig. 5 for the function h(z) defined in Eq. (7).

We next try a new testing function that it is continuous, but non-derivable,
defined in the following way:

2x . s

_ — if z< 57
hz)=< ™ o, H (7)

2— — if x> —.

s 2

The corresponding results are presented in Fig. 6, where it is seen that the error
is much smaller than in previous experiments; the maximum error is 0.0447, and
the mean error 0.0055. Notice that this is the best case obtained along all our
work, so that one can conclude that the use of continuous testing functions
greatly improve the performance of our method.

As the last testing function, we try a continuous and derivable initial condi-
tion:

h(z) = =(z = 0)(z — ). (8)

The corresponding results are presented in Fig. 7, where it is seen that a
maximum error of 0.1177 and a mean error of 0.0156 are obtained. Notice that

Exact solution

x 15708

Neural Network solution 13 x 15708

x 15708

Fig. 7. Same as Fig. 5 for the function h*(z) defined in Eq. (8).



Exploring Datasets to Solve PDEs with TensorFlow 449

the maximum value of the solution is much larger than in the previous cases, so
the percentage of error is more or less the same here.

5 Summary and Conclusions

In this work we have developed a simple DNN based on readily available software
which is able to find accurate approximate numerical PDEs on modest laptop
computers. We have use the well know heat equation to check the performance
of the method. This represents a good alternative in terms of computational
effort and cost to more sophisticated methods, such as the increasingly popular
Reservoir Computing [11], whenever an extremely high accuracy is not required.

To optimize our DNN we have tried four different approaches, two fami-
lies of functions and three different time spans, having obtained better results
when compressing the time steps in the initial time and expanding them as time
increases. Other initial functions where tested with this method, as the function
smoothed the results improving them, achieving in this way a mean error of 1073
in the best case.

The numerical experiments done in this paper show that deep learning may
be used to approximate non-easily computable functions with a decent error
in an everyday computer, even when the initial function does not fully comply
with the boundary conditions. The only small problem of our approach is the
generation of the training dataset, since a large number of solutions need to be
computed. When the problem is theoretically solvable the required datasets can
be easily obtained.

The main objective of our work was to develop a method able to run in
an modest computer, thus making Deep Learning available to any researcher in
computer science. Running it with a bigger dataset or more complex network
structures will need bigger computational means that would improve the perfor-
mance of our approximation. Also a combination of various families of functions
has proven to improve the results, but we wanted to keep the dataset in this first
paper as simple as possible.

Acknowledgments. This work has been partially supported by the Spanish Min-
istry of Science, Innovation and Universities, Gobierno de Espana, under Contracts No.
PGC2018-093854-BI00, and ICMAT Severo Ochoa SEV-2015-0554, and from the Peo-
ple Programme (Marie Curie Actions) of the European Union’s Horizon 2020 Research
and Innovation Program under Grant No. 734557.

References

1. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems (2015)

2. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learn-
ing to align and translate. In: 3rd International Conference on Learning Represen-
tations, ICLR 2015 - Conference Track Proceedings. International Conference on
Learning Representations, ICLR (2015)



450

10.

11.

12.

13.

14.

15.

O. G. Borzdynski et al.

Chen, Y., Lu, L., Karniadakis, G.E., Dai Negro, L.: Physics-informed neural net-
works for inverse problems in nano-optics and metamaterials, December 2019
Chollet, F., et al.: Keras (2015). https://github.com/fchollet /keras

Gulli, A., Pal, S.: Deep learning with Keras (2017)

Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equa-
tions using deep learning. Proc. National Acad. Sci. (USA) 115(34), 8505-8510
(2018)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings. International Conference on Learning Representations, ICLR (2015)
Lagaris, I.LE., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordi-
nary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987-1000
(1998)

Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library
for solving differential equations, July 2019

Pang, G., Lu, L., Karniadakis, G.E.: FPINNs: fractional physics-informed neural
networks. SIAM J. Sci. Comput. 41(4), A2603-A2626 (2019)

Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large
spatiotemporally chaotic systems from data: a reservoir computing approach. Phys.
Rev. Lett. 120(2), 1 (2018)

Ramos, S., Gehrig, S., Pinggera, P., Franke, U., Rother, C.: Detecting unexpected
obstacles for self-driving cars: fusing deep learning and geometric modeling. In:
IEEE Intelligent Vehicles Symposium, Proceedings, pp. 1025-1032. Institute of
Electrical and Electronics Engineers Inc., July 2017

Ruder, S.: An overview of gradient descent optimization algorithms. ArXiv e-prints.
https://arxiv.org/abs/1609.04747 (2016)

Salman, A.G., Kanigoro, B., Heryadi, Y.: Weather forecasting using deep learn-
ing techniques. In: ICACSIS 2015 - 2015 International Conference on Advanced
Computer Science and Information Systems, Proceedings, pp. 281-285. Institute
of Electrical and Electronics Engineers Inc., February 2016

Salsa, S.: A Primer on PDEs : Models, Methods, Simulations. La Matematica per
il 342, 1st edn. (2013)



