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Abstract

The kth power of a graph G = (V,E), Gk, is the graph whose vertex set is V and
in which two distinct vertices are adjacent if and only if their distance in G is at most
k. This article proves various eigenvalue bounds for the independence number and
chromatic number of Gk which purely depend on the spectrum of G, together with a
method to optimize them. Our bounds for the k-independence number also work for
its quantum counterpart, which is not known to be a computable parameter in general,
thus justifying the use of integer programming to optimize them. Some of the bounds
previously known in the literature follow as a corollary of our main results. Infinite
families of graphs where the bounds are sharp are presented as well.

1 Introduction

For a positive integer k, the kth power of a graph G = (V,E), denoted by Gk, is a graph
with vertex set V in which two distinct elements of V are joined by an edge if there is a
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path in G of length at most k between them. For a nonnegative integer k, a k-independent
set in a graph G is a vertex set such that the distance between any two distinct vertices
on it is bigger than k. Note that the 0-independent set is V (G) and an 1-independent set
is an independent set. The k-independence number of a graph G, denoted by αk(G), is the
maximum size of a k-independent set in G. Note that αk(G) = α(Gk).

The k-independence number is an interesting graph-theoretic parameter that is closely
related to coding theory, where codes relate to k-independent sets in Hamming graphs [45,
Chapter 17]. The k-independence number of a graph is also directly related to the k-distance
chromatic number, denoted by χk(G), which is just the chromatic number of Gk. Hence,
χk(G) = χ(Gk). It is well known that α1(G) = α(G) ≥ n/χ(G). Therefore, lower bounds
on the k-distance chromatic number can be obtained by finding upper bounds on the corre-
sponding k-independence number, and vice versa. The parameter αk has also been studied
in several other contexts (see [6, 13, 22, 23, 16, 48] for some examples) and it is related to
other combinatorial parameters, such as the average distance [24], the packing chromatic
number [26], the injective chromatic number [29], the strong chromatic index [47] and the
d-diameter [9]. Recently, the k-independence number has also been related to the beans
function of a connected graph [15].

The study of the k-independence number has attracted quite some attention. Firby
and Haviland [24] proved an upper bound for αk(G) in an n-vertex connected graph. In
2000, Kong and Zhao [38] showed that for every k ≥ 2, determining αk(G) is NP-complete
for general graphs. They also showed that this problem remains NP-complete for regular
bipartite graphs when k ∈ {2, 3, 4} [39]. For each fixed integer k ≥ 2 and r ≥ 3, Beis,
Duckworth and Zito [7] proved some upper bounds for αk(G) in random r-regular graphs.
O, Shi, and Taoqiu [49] showed sharp upper bounds for the k-independence number in an
n-vertex r-regular graph for each positive integer k ≥ 2 and r ≥ 3. The case of k = 2
has also received some attention: Duckworth and Zito [13] showed a heuristic for finding a
large 2-independent set of regular graphs, and Jou, Lin and Lin [35] presented a sharp upper
bound for the 2-independence number of a tree.

Most of the existing algebraic work on bounding αk is based on the following two classic
results. Let G be a graph with n vertices and adjacency matrix eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn. The first well-known spectral bound (or ‘inertia bound’ ) for the independence number
α = α1 of G is due to Cvetković [10]:

α ≤ min{|{i : λi ≥ 0}|, |{i : λi ≤ 0}|}. (1)

When G is regular, another well-known bound (‘ratio bound’ ) is due to Hoffman (unpub-
lished):

α ≤ n

1− λ1
λn

. (2)

Abiad, Cioabă, and Tait [1] obtained the first two spectral upper bounds for the k-
independence number of a graph: an inertial-type bound and a ratio-type bound. They
constructed graphs that attain equality for their first bound and showed that their sec-
ond bound compares favorably to previous bounds on the k-independence number. Abiad,
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Coutinho, and Fiol [3] extended the spectral bounds from [1]. Wocjan, Elphick, and Abiad
[52] showed that the inertial bound by Cvetković is also an upper bound for the quantum
k-independence number. Recently, Fiol [20] introduced the minor polynomials in order to
optimize, for k-partially walk-regular graphs, a ratio-type bound.

In this article we present several sharp inertial-type and ratio-type bounds for αk and
χk which depend purely on the eigenvalues of G, and we propose a method to optimize
such bounds using Mixed Integer Programming (MILP). The fact that the inertial-type of
bound that we consider is also valid to upper bound the quantum k-independence number
[Theorem 7, [52]] justify the method we propose in this paper to optimize our bounds. It is
not known whether quantum counterparts of α or χ are computable functions [46], and our
bounds sandwich these parameters with the classical versions.

If one wants to use the classical spectral upper bounds on the independence number (1)
and (2) to bound α(Gk) = αk(G), one needs to know how the spectrum of Gk relates to
the spectrum of G. In the case when the spectrum of G and Gk are related, we show that
previous work by Fiol [18] can be used to derive a sharp spectral bound for regular graphs
which concerns the following problem posed by Alon and Mohar [5]: among all graphs G of
maximum degree at most d and girth at least g, what is the largest possible value of χ(Gk)?

In general, though, the spectra of Gk and G are not related. We also prove various
eigenvalue bounds for αk and χk which only depend on the spectrum of G. In particular,
our bounds are functions of the eigenvalues of A and of certain counts of closed walks in
G (which can be written as linear combinations of the eigenvalues and eigenvectors of A).
Under some extra assumptions (for instance, that of partial walk-regularity), we improve the
known spectral inertial-type bounds for the k-independence number. Our approach is based
on a MILP implementation which finds the best polynomials that minimize the bounds. For
some cases and some infinite families of graphs, we show that our bounds are sharp, and
also in other cases that they coincide, in general, with the Lovász theta number.

2 A particular case: the spectrum of Gk and G are

related

Our main motivation for this section comes from distance colorings, which have received a
lot of attention in the literature. In particular, special efforts have been put on the following
question of Alon and Mohar [5]:

Question 2.1. What is the largest possible value of the chromatic number χ(Gk) of Gk,
among all graphs G with maximum degree at most d and girth (the length of a shortest cycle
contained in G) at least g?

The main challenge in Question 2.1 is to provide examples with large distance chromatic
number (under the condition of girth and maximum degree). For k = 1, this question was
essentially a long-standing problem of Vizing, one that stimulated much of the work on
the chromatic number of bounded degree triangle-free graphs, and was eventually settled
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asymptotically by Johansson [34] by using the probabilistic method. The case k = 2 was
considered and settled asymptotically by Alon and Mohar [5].

The aim of this section is to show the first eigenvalue bounds on χk which concern
Question 2.1 for regular graphs and when the spectrum of Gk is related to the one of G.
The spectra of G and Gk are related when the adjacency matrix of Gk belongs to the
algebra generated by the adjacency matrix of G, that is, there is a polynomial p such that
p(A(G)) = A(Gk). For instance, this happens when G is k-partially distance polynomial [11].
In this framework, and when deg p = k (or, in particular, when G is k-partially distance-
regular [11]) we can use Proposition 2.2 from [18] to derive spectral bounds. Before stating
the results, we need to introduce some concepts and notations.

Let G = (V,E) be a graph with n = |V | vertices, m = |E| edges, and adjacency matrix
A with spectrum spG = spA = {θm0

0 , θm1
1 , . . . , θmdd }, where the different eigenvalues are in

decreasing order, θ0 > θ1 > · · · > θd, and the superscripts stand for their multiplicities (since
G is supposed to be connected, m0 = 1). When the eigenvalues are presented with possible
repetitions, we shall indicate them by evG : λ1 ≥ λ2 ≥ · · · ≥ λn. Let us consider the scalar
product in Rd[x]:

〈f, g〉G =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(θi)g(θi). (3)

The so-called predistance polynomials p0(= 1), p1, . . . , pd, which were introduced by Fiol and
Garriga in [21], are a sequence of orthogonal polynomials with respect to the above product,
with dgr pi = i, and they are normalized in such a way that ‖pi‖2

G = pi(θ0) for i = 0, . . . , d.
Therefore, they are uniquely determined, for instance, following the Gram-Schmidt process.
These polynomials were used to prove the so-called ‘spectral excess theorem’ for distance-
regular graphs, where p0(= 1), p1, . . . , pd coincide with the so-called distance polynomials.

Proposition 2.2. [18] Let G = (V,E) be a regular graph with n vertices, spectrum spG =
{θm0

0 , θm1
1 , . . . , θmdd }, and predistance polynomials p0, . . . , pd. For a given integer k ≤ d and a

vertex u ∈ V , let sk(u) be the number of vertices at distance at most k from u, and consider
the sum polynomial qk = p0 + · · ·+ pk. Then, qk(θ0) is bounded above by the harmonic mean
Hk of the numbers sk(u), that is

qk(θ0) ≤ Hk =
n∑

u∈V
1

sk(u)

,

and equality occurs if and only if qk(A) = I + A(Gk).

Since it is known that qk(θ0) ≥ qk(θi) for i = 1, . . . , d, Proposition 2.2 and the bounds
(1)–(2) yield the following bounds on αk and χk:

Corollary 2.3. Let G be a regular graph with eigenvalues λ1 ≥ · · · ≥ λn, satisfying qk(λ1) =
Hk. Let q′k = qk − 1, so that A(Gk) = q′k(A). Then,

χk ≥
n

min{|{i : q′k(λi) ≥ 0}|, |{i : q′k(λi) ≤ 0}|}
, (4)
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χk ≥
n

1− q′k(λ1)

min{q′k(λi)}

, (5)

and the corresponding upper bounds

αk ≤ min{|{i : q′k(λi) ≥ 0}|, |{i : q′k(λi) ≤ 0}|}, (6)

αk ≤ 1− q′k(λ1)

min{q′k(λi)}
. (7)

Corollary 2.3 provides the first two spectral bounds to Question 2.1 for regular graphs.
This is due to the fact that another case where A(Gk) = qk(A) − I (that is, the spectrum
of Gk and G are related) is when G is δ-regular graph with girth g and k = bg−1

2
c. In this

situation, we know that G is k-partially distance-regular with ai = 0 for i ≤ k [2] and hence
q0 = 1, q1 = 1 + x, and qi+1 = xqi − (δ − 1)qi−1 for i = 1, . . . , k − 1.

Regarding Question 2.1, Kang and Pirot [36] provide several upper and lower bounds for
k ≥ 3, all of which are sharp up to a constant factor as d→∞. While their upper bounds rely
in part on the probabilistic method, their lower bounds are various direct constructions whose
building blocks are incidence structures. Actually, some tight examples for our bound (5) can
be constructed from the latter. In particular, from even cycles using the balanced bipartite
product ‘./’ introduced in [36, 37]. Let G1 = (V1 = A1∪B1, E1) and G2 = (V2 = A2∪B2, E2)
be bipartite graphs with |A1| = |B1| and |A2| = |B2|, also known as balanced bipartite
graphs. Assume vertex sets Ai = {ai1, . . . aini} and Bi = {bi1, . . . bini} be ordered such that
(aij, b

i
j) ∈ Ei for j = 1, 2, . . . , ni. Then the product G1 ./ G2 is defined as (VG1./G2 , EG1./G2)

with
VG1./G2 := A1 × A2 ∪B1 ×B2

EG1./G2 := {((a1
i , a

2), (b1
i , b

2)) | i ∈ {1, . . . , n1}, (a2, b2) ∈ E2}∪
{((a1, a2

i ), (b
1, b2

i )) | i ∈ {1, . . . , n2}, (a1, b1) ∈ E1},
which is again a balanced bipartite graph. Moreover, if G1 and G2 are regular with degree
d1 and d2, then G1 ./ G2 is regular with degree d1 + d2 − 1. The graphs C8 ./ C8, C8 ./ C12,
C8 ./ C16 and C12 ./ C12, where Cn denotes the cycle on n vertices, each have girth 6 and
satisfy Equation (7) with equality for α2. The bound (7) is also tight for several named Sage
graphs, which are shown in Table 1.
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Name Girth k αk
Moebius-Kantor Graph 6 2 4
Nauru Graph 6 2 6
Blanusa First Snark Graph 5 2 4
Blanusa Second Snark Graph 5 2 4
Brinkmann graph 5 2 3
Heawood graph 6 2 2
Sylvester Graph 5 2 6
Coxeter Graph 7 3 4
Dyck graph 6 2 8
F26A Graph 6 2 6
Flower Snark 5 2 5

Table 1: Named Sage graphs for which bound (7) from Corollary 2.3 is tight.

3 The general case: the spectrum of Gk and G are not

related

In the general situation when the spectrum of Gk and G are not related, one can make use
of the following recent spectral bounds for αk given in [3]. Let G be a graph with eigenvalues
λ1 ≥ · · · ≥ λn. Let [2, n] = {2, 3, . . . , n}. Given a polynomial p ∈ Rk[x], consider the
following parameters:

• W (p) = maxu∈V {(p(A))uu},

• w(p) = minu∈V {(p(A))uu},

• Λ(p) = maxi∈[2,n]{p(λi)},

• λ(p) = mini∈[2,n]{p(λi)}.

Theorem 3.1. (Abiad, Coutinho, Fiol [3]) . Let G be a graph with n vertices and eigenvalues
λ1 ≥ · · · ≥ λn.

(i) An inertial-type bound. Let p ∈ Rk[x] with corresponding parameters W (p) and
λ(p). Then,

αk ≤ min{|i : p(λi) ≥ w(p)|, |i : p(λi) ≤ W (p)|}. (8)

(ii) A ratio-type bound. Assume that G is regular. Let p ∈ Rk[x] such that p(λ1) > λ(p).
Then,

αk ≤ n
W (p)− λ(p)

p(λ1)− λ(p)
. (9)

In Section 4 we shall prove new eigenvalue lower bounds for χk which only require the
use of the spectrum of G, this also useful when the spectrum of G and Gk are not related.
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3.1 Partially walk-regular graphs

A graph G is called k-partially walk-regular, for some integer k ≥ 0, if the number of closed
walks of a given length l ≤ k, rooted at a vertex v, only depends on l. Thus, every (simple)
graph is k-partially walk-regular for k = 0, 1, every regular graph is 2-partially walk-regular
and, more generally, every k-partially distance-regular is 2k-partially walk-regular. Moreover
G is k-partially walk-regular for any k if and only if G is walk-regular, a concept introduced
by Godsil and Mckay in [27]. For example, it is well-known that every distance-regular
graph is walk-regular (but the converse does not hold). In other words, if G is k-partially
walk-regular, for any polynomial p ∈ Rk[x] the diagonal of p(A) is constant with entries

(p(A))uu = w(p) = W (p) =
1

n
tr p(A) =

1

n

n∑
i=1

p(λi) ∀u ∈ V.

Then, with p ∈ Rk[x], (8) and (9) become

αk ≤ min{|i : p(λi) ≥ 1
n

∑n
i=1 p(λi)|, |i : p(λi) ≤ 1

n

∑n
i=1 pk(λi)|} (10)

and

αk ≤
∑n

i=1 p(λi)− n · λ(p)

p(λ1)− λ(p)
. (11)

In particular, notice that if tr p(A) =
∑n

i=1 p(λi) = 0, inequality (11) becomes

αk ≤
n

1− p(λ1)
λ(p)

. (12)

This can be seen a generalization of Hoffman bound (2), since it is obtained when, in (12),
we take k = 1 and pk(x) = x (in this case, note that p(λ1) = λ1 and λ(p) = p(λn) = λn).
In fact, for this case of partially k-walk-regular graphs, Fiol [20] proved that the upper bound
in (11) also applies for the Shannon capacity Θ [50] and the Lovász theta number ϑ [44] of
Gk.

An alternative, and more direct proof of (12) is the following. Let G have adjacency
matrix A, and let U = {1, 2, . . . , αk} be a maximal k-independent set in G, such that the
first vertices of A correspond to U . Put u = (x1 |1)>, where x is a variable such that the
values of x correspond to the vertices in the maximal k-independent set U . Now consider
the function

φ(x) =
〈u, p(A)u〉
||u||2

=
2αkp(λ1)x+ (n− 2αk)p(λ1)

αkx2 + n− αk
,

which attains a minimum at xmin = 1− n
αk

. Thus, φ(xmin) gives

λ(p) ≤ φ(xmin) =
p(λ1)

1− n
αk

,

whence (12) follows. The same proof idea was used to extend the ratio bound for oriented
hypergraphs, but using the normalized Laplacian spectrum [4].
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3.1.1 Optimizing the upper bounds for αk

Notice that the bounds (10) and (11) are invariant under scaling and/or translating the
polynomial p. Thus, when we are looking for the best polynomials, we can restrict ourselves
to the following cases:

Bound (10): upon changing the sign of an optimal solution p, we can always assume we
are trying to find p that minimizes |{i : p(λi) ≥ w(p)}|. Moreover, a constant can be
added to p to make w(p) = 0. Thus, we get

αk ≤ min{|i : p(λi) ≥ 0|}. (13)

The optimization of this bound will be investigated in Section 4.1.

Bound (11): we consider two simple possibilities:

(a) If p = f ∈ R[k] is a polynomial satisfying λ(f) = 0 and f(θ0) = 1, the best result
is obtained with the so-called minor polynomial fk that minimizes

∑d
i=0mifk(θi).

This case was studied by Fiol in [20]. This polynomial can be found by solving the
following linear programming problem (LP): Let fk be defined by fk(θ0) = x0 = 1
and fk(θi) = xi, for i = 1, . . . , d, where the vector (x1, x2, . . . , xd) is a solution of

minimize
∑d

i=0 mixi
subject to f [θ0, . . . , θm] = 0, m = k + 1, . . . , d

xi ≥ 0, i = 1, . . . , d

(14)

Here, f [θ0, . . . , θm] denote the m-th divided differences of Newton interpolation,

recursively defined by f [θi, . . . , θj] =
f [θi+1,...,θj ]−f [θi,...,θj−1]

θj−θi , where j > i, starting

with f [θi] = p(θi) = xi, 0 ≤ i ≤ d. Note that by equating these values to zero,
we guarantee that fk ∈ Rk[x]. For more details about the minor polynomials, see
[20]. Then, we get

αk ≤
d∑
i=0

mipk(θi) = tr pk(A), and χk ≥
n∑d

i=0mipk(θi)
. (15)

(b) If p = g ∈ Rk[x] is the polynomial satisfying
∑d

i=0mig(θi) = 0 and λ(g) = −1,
Eq. (12), with λ1 = θ0, gives

αk ≤
n

1 + g(θ0)
, and χk ≥ 1 + g(θ0). (16)

Hence, the best result is now obtained by maximizing g(θ0). If g(θi) = xi for
i = 0, . . . , d, this leads to the following LPP:

maximize x0

subject to
∑d

i=0mixi = 0
f [θ0, . . . , θm] = 0, m = k + 1, . . . , d
xi = zi − 1, zi ≥ 0, i = 1, . . . , d

(17)

8



Consequently, both results (a) and (b) are equivalent in the sense that the best polyno-
mial in (a) yields the same results as the best polynomial in (b). In the first case, fk is
the polynomial that minimizes

∑d
i=0mifk(θi), subject to fk(θi) ≥ 0 for any i = 1, . . . , d,

and fk(θ0) = 1. In the second case, g is the polynomial that maximizes g(λ0) under
the conditions g(θi) ≥ −1 for any i = 1, . . . , d and

∑d
i=0 mig(θi) = 0. Now, suppose

that g satisfies the conditions in (b). Then, then the polynomial fk = g+1
g(θ0)+1

satisfies

the conditions in (a) and we get

αk ≤
∑d

i=0mifk(θi) = 1
g(θ0)+1

[∑d
i=0mig(θi) + n

]
= n

1+g(θ0)
,

as expected. Similarly, if fk satisfies the conditions in (a), then the polynomial g =
nfk−

∑d
i=0mifk(θi)∑d

i=0mifk(θi)
satisfies the conditions in (b), and yields the expected bound

αk ≤ n
1+g(θ0)

= 1
n

∑d
i=0mifk(θi).

4 New spectral bounds for χk

In this section we prove several eigenvalue lower bounds for χk which only require the spec-
trum of G.

4.1 First inertial-type bound for χk

The first inertial-type bound is a consequence of the bound for αk in (8) (for a general value
of k, an infinite class of graphs which attain such a bound is shown in [1]):

χk(G) ≥ n

min{|i : pk(λi) ≥ w(pk)|, |i : pk(λi) ≤ W (pk)|}
. (18)

In the case of k-partially walk-regular graphs, the optimization of such bounds has already
been discussed in Section 3.1.

We should note that if one considers p2(A) = A2 the bound (18) becomes:

χ2(G) ≥ n

min{|i : λ2
i ≥ δ|, |i : λ2

i ≤ ∆|}
, (19)

and this bound is tight for an infinite family of graphs. Indeed, consider the incidence graph
G of a projective plane PG(2, q), then G2 has two cliques of size q2 + q+ 1 (corresponding to
the points and lines, since any two points are incident to a common line and any two lines
are incident to a common point). Therefore, χ(G2) ≥ q2 + q + 1. This is an example that
Alon and Mohar use in [5]. Note that (19) gives the same bound, as the eigenvalues of G
are q + 1,

√
q, 0,−√q and −q − 1. In particular, w2(G) = W2(G) = q + 1 (the degree of the

graph), whereas there are only two eigenvalues q + 1 and −q − 1 whose square is ≥ +1. So,

as per the inertial-type bound from [1], α(G2) ≤ 2, and hence χ(G2) ≥ 2(q2+q+1)
2

.
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4.1.1 Optimization of the first inertial-type bound

Our goal is to introduce a mixed integer linear program (MILP) to compute the best poly-
nomial giving the above bound in (8) (and hence the same for the bound in (18)). Since
such a bound is also valid for the quantum k-independence number and this parameter is
not computable in general, the use MILPs to find the best polynomial is justified.

Let G have spectrum spG = {θm0
0 , . . . , θmdd }. Upon changing the sign of an optimal

solution p, we can always assume we are trying to find p ∈ Rk[x], and minimizing |{i :
p(λi) ≥ w(p)}| or, in term of multiplicities, min

∑
j:p(θj)≥w(p) mj. Moreover, assuming that

w(p) = p(A)uu for some vertex u ∈ V (G), a constant can be added to p(x) making w(p) = 0.
Let p(x) = akx

k + · · · + a0, b = (b0, . . . , bd) ∈ {0, 1}d+1, and m = (m0, . . . ,md). The
following mixed integer linear program (MILP), with variables a0, . . . , ak and b1, . . . , bd, finds
the best polynomial for the bound (8):

minimize mTb

subject to
∑k

i=0 ai(A
i)vv ≥ 0, v ∈ V (G) \ {u}∑k

i=0 ai(A
i)uu = 0∑k

i=0 aiθ
i
j −Mbj + ε ≤ 0, j = 0, ..., d (∗)

b ∈ {0, 1}d+1

(20)

Here M is set to be a large number, and ε small. The idea of this formulation is that
each bj = 1 represents an index j so that p(θj) ≥ w(p) = 0. In fact, condition (∗) gives
that p(θj) ≥ 0 implies bj = 1. So, upon minimizing the quantity of such indices j, we are
optimizing p(x) and the corresponding bound αk ≤mTb. For each u ∈ V (G), we write one
such MILP and find the best objective value of all. With respect to the choices for ε and M ,
note that we can always set ε = 1 as scaling of the ai’s is allowed. If the M chosen is not
large enough, the MILP will be unfeasible and we can repeat with a larger M .

In Table 2, the results of the MILP optimal bound (20) are shown for all named graphs
in Sage with less than 100 vertices and diameter at least 3. We compare these to the Lovász
theta number of Gk and the exact value of α2. For regular graphs, the bound from Corollary
3.3 in [3] is also included. Observe that the bound in [3] generally outperforms our MILP
for the graphs in Table 2. However, it should be noted that this bound requires regularity,
whereas the MILP bound (20) is also applicable to irregular graphs. Table 3 shows for
n = 4, . . . 9 the proportion of irregular graphs on n vertices for which the optimal solution
of our MILP matches the actual value of α2.

In the case of k-partially walk-regular graphs, we only need to run the MILP (20) once,
since all vertices have the same number of closed walks of length smaller of equal than k.
Then, the problem can be formulated follows:

LetG be a k-partially walk-regular graph with diameterD and spG = {θm0
0 , θm1

1 , . . . , θmdd }.
For a given k < D (≤ d), let p(x) = akx

k + · · · + a0, b = (b0, . . . , bd) ∈ {0, 1}d+1 and
m = (m0, . . . ,md). Now, the following MILP (21), with variables a1, . . . , ak and b0, . . . , bd,
finds the best polynomial and the corresponding bound for αk:

10



Name Bound in [3] ϑ2 [44] Inertial-type bound MILP (20) Inertial-type bound MILP (27) α2

Balaban 10-cage 17 17 19 19 17
Frucht graph 3 3 3 3 3
Meredith Graph 14 10 10 10 10
Moebius-Kantor Graph 4 4 6 4 4
Bidiakis cube 3 2 4 3 2
Gosset Graph 2 2 8 2 2
Gray graph 14 11 19 19 11
Nauru Graph 6 5 8 8 6
Blanusa First Snark Graph 4 4 4 4 4
Pappus Graph 4 3 7 6 3
Blanusa Second Snark Graph 4 4 4 4 4
Poussin Graph - 2 4 - 2
Brinkmann graph 4 3 6 6 3
Harborth Graph 12 9 13 13 10
Perkel Graph 10 5 18 18 5
Harries Graph 17 17 18 18 17
Bucky Ball 16 12 16 16 12
Harries-Wong graph 17 17 18 18 17
Robertson Graph 3 3 5 5 3
Heawood graph 3 2 2 3 2
Herschel graph - 2 3 - 2
Hoffman Graph 3 2 5 4 2
Sousselier Graph - 3 5 - 3
Sylvester Graph 6 6 10 10 6
Coxeter Graph 7 7 7 7 7
Holt graph 6 3 7 8 3
Szekeres Snark Graph 12 10 13 14 9
Desargues Graph 5 5 6 6 4
Horton Graph 26 24 30 30 24
Kittell Graph - 3 5 - 3
Tietze Graph 3 3 4 3 3
Double star snark 7 7 9 10 6
Krackhardt Kite Graph - 2 4 - 2
Durer graph 3 2 3 3 2
Klein 3-regular Graph 13 13 19 19 12
Truncated Tetrahedron 3 3 4 4 3
Dyck graph 8 8 8 8 8
Klein 7-regular Graph 3 3 9 3 3
Ellingham-Horton 54-graph 14 12 20 20 11
Tutte-Coxeter graph 8 6 10 10 6
Ellingham-Horton 78-graph 21 19 27 27 18
Tutte Graph 11 10 13 13 10
Errera graph - 2 4 - 2
F26A Graph 6 6 7 7 6
Watkins Snark Graph 14 9 13 13 9
Flower Snark 5 5 7 7 5
Markstroem Graph 6 6 7 7 6
Wells graph 6 3 9 10 2
Folkman Graph 4 3 5 5 3
Wiener-Araya Graph - 8 12 - 8
Foster Graph 22 22 23 23 21
McGee graph 6 5 7 6 5
Franklin graph 3 2 4 3 2
Hexahedron 2 2 2 2 2
Dodecahedron 5 4 4 4 4
Icosahedron 2 2 4 2 2

Table 2: Comparison between different bounds for α2.
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Number of vertices 4 5 6 7 8 9
Proportion 0.86 0.84 0.76 0.62 0.46 0.27

Table 3: Proportion of small graphs for which the optimal value of the MILP coincides with
α2.

minimize mTb

subject to
∑d

i=0mip(θi) = 0∑k
i=0 aiθ

i
j −Mbj + ε ≤ 0, j = 0, ..., d

b ∈ {0, 1}d+1

(21)

Observe that the target polynomial p in (21) could be written as a linear combination
of the predistance polynomials p1, . . . , pk, since all of them are orthogonal to p0 = 1 with
respect to the scalar product in (3): 〈pj, 1〉G = 1

n
tr pj(A) = w(pj) = 0, j = 1, . . . , k, and,

hence, so is p. This allows us to remove the first constraint in (20).
Next we illustrate how the MILP (21) can be used to find the best polynomials to upper

bound αk for an infinite family of Odd graphs. For every integer ` ≥ 2, the Odd graphs O`

constitute a well-known family of distance-regular graphs with interactions between graph
theory and other areas of combinatorics, such as coding theory and design theory. The
vertices of O` correspond to the `− 1 subsets of a (2`− 1)-set, and adjacency is defined by
void intersection. Note that O3 is the Petersen graph. In general, O` is an `-regular graph
of order n =

(
2`−1
`−1

)
= 1

2

(
2`
`

)
, diameter D = ` − 1, and its eigenvalues and multiplicities are

θi = (−1)i(`− i) and m(θi) = mi =
(

2`−1
i

)
−
(

2`−1
i−1

)
for i = 0, 1, . . . , `− 1.

For the case k = D − 1 = `− 2, where αk is the maximum number of vertices mutually
at distance D, we have the following result:

Proposition 4.1. For the Odd graph O`, with diameter D = `−1, the (D−1)-independence
number αD−1 = α`−2 satisfies the bound

α`−2(O`) ≤
{

2`− 2 for odd `,
2`− 1 for even `.

(22)

Proof. We claim that, for such graphs, the polynomial p ∈ R`−2[x] obtained from the MILP

problem has zeros zi for i = 2, . . . , ` − 1, where zi = θi + (−1)d
i+1
2
eε for odd i, zi = θi +

(−1)b
i−1
2
cε for even i, and ε is the solution in (0, 1) of the equation

φ(ε) =
∑̀
i=0

mip(θi) = 0. (23)

The reason is that this polynomial satisfies the main condition (23) of the MILP problem,
and (p or −p) minimizes the number of 1’s in the vector b. More precisely, from the definition
of p it is readily checked that
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• If ` is odd, then −p(θ1) > 0 and −p(θi) < 0 for i = 0, 2, . . . , `.

• If ` is even, then p(θi) > 0 for i = 0, 1, and p(θi) < 0 for i = 2, . . . , `.

In other words, in the first case b = (0, 1, 0, . . . , 0), and hence, α`−2 ≤ m1 = 2`− 2; whereas,
in the second case, b = (1, 1, 0, . . . , 0), and hence, α`−2 ≤ m0 +m1 = 2`− 1, as claimed.

In Table 4 we show some examples of the results obtained for ` = 4, . . . , 8, 10, 12, 14.
For the first values, we also indicate the polynomial φ(ε), which is shown to be monic
with a convenient scaling (obtained dividing (23) by ±

(
2`−1
`−1

)
), together with its “key zero”

ε0 ∈ (0, 1). Also, we compare the obtained MILP bound with the exact value of αk.

α2(O4)

Bound from the MILP 7 = m0 +m1

Polynomial ε2 + 3ε− 2 0.561552813
Exact value α2 7

α3(O5)

Bound from the MILP 8 = m1

Polynomial ε3 − 12ε+ 4 0.336508805
Exact value α3 7

α4(O6)
Bound from the MILP 11 = m0 +m1

Polynomial ε4 + 4ε3 − 46ε+ 12 0.238605627
Exact value α4 11

α5(O7)
Bound from the MILP 12 = m1

Polynomial ε5 − ε4 − 41ε3 + 41ε2 + 246ε− 36 0.1434068868
Exact value α5 12

α6(O8)
Bound from the MILP 15 = m0 +m1

Polynomial ε6 + 7ε5 − 45ε4 − 287ε3 + 256ε2 + 1372ε− 144 0.1032025452
Exact value α6 15

α8(O10) Bound from the MILP 19 = m0 +m1

Exact value αb 19
α10(O12) Bound from the MILP 23 = m0 +m1

Exact value α10 23
α12(O14) Bound from the MILP 27 = m0 +m1

Exact value α12 27

Table 4: Infinite family of Odd graphs for which the output from MILP (21) gives the best
polynomials for upper bounding αk.

Note that, when ` increases, ε tends to zero and hence the target polynomial p is closer
and closer to the minor polynomial fk up to a constant multiplicative factor. This gives an
interesting view of the relationship between the inertial- and ratio-type methods. Moreover,
the same result of Proposition 22 can also be proved by using only the minor polynomials,
see [20]. Also, notice that, except for the Odd graph O5, all the obtained bounds are tight.
In fact, in the even case ` = 2k, one can check that the vertices at maximum distance 2k− 1
from each other constitute a 2 − (4k − 1, 2k − 1, k − 1) symmetric design (see [30] for its
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Figure 1: Maximal set of vertices in O4 (α2 = 7) at mutual distance 3 (each pair of vertices—
lines of the Fano plane F7—has exactly one common digit—vertex of F7).

definition). Such combinatorial structures exist, at least, for k = 2, . . . , 7 [51], which give the
optimal values in Table 4 when ` = 2, 4, . . . , 14. In particular, the 7 vertices of O4 correspond
to the lines (or the points) of the Fano plane (see Figure 1), and the 11 vertices of O6 are
the points of the Payley biplane.

Another infinite family of graphs for which (21) behaves nicely is a particular family of
Cayley graphs. Let G be a finite group with identity element 1 and let S ⊆ G. The (directed)
Cayley graph Γ(G,S) is a graph with vertex set G and an arc for every pair u, v ∈ G such
that uv−1 ∈ S. If S is inverse-closed and does not contain 1, then Γ(G,S) is symmetric and
loopless, in which case we may view it as a simple undirected graph. Consider for each n ≥ 3
the Cayley graph Γn := Γ(D2n, S2n) on the dihedral group D2n = 〈a, b | an = b2 = (ab)2 = 1〉
and inverse-closed subset S2n = {a, a−1, b} ⊂ D2n. Then {Γn}n≥3 is a family of connected,
3-regular graphs on 2n vertices. The graph Γn is known as the prism graph [25] and the
above construction as a Cayley graph is due to Biggs [8, pag. 126]. These graphs are vertex-
transitive and, hence, walk-regular, but not distance-regular. Thus the Delsarte LP bound
does not apply. Table 5 shows the behaviour of the MILP bound on Γn for 3 ≤ n ≤ 16.
Note that the optimal value equals exactly α2 when n 6= 2 mod 4. This trend continues if
we solve the MILP for larger values of n. An easy way to prove that the exact values of α2

are those expected from the table (α2 = 2k if n = 4k + i for i = 0, 1, 2, and α2 = 2k + 1 if
n = 4k+ 3) is to view Γn as the Cayley graph on the Abelian group Zn×Z2 with generating
set S = {±(1, 0),±(0, 1)}. Then the graph can be represented by a plane tessellation with
rectangles n×2 [54] (or embedding on the torus) which allows us a neat identification of the
maximum 2-independent vertex sets.
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n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
MILP bound 1 2 2 4 3 4 4 6 5 6 6 8 7 8
α2 1 2 2 2 3 4 4 4 5 6 6 6 7 8

Table 5: An infinite family of Cayley graphs Γn for which the MILP bound equals α2 when
n 6= 2 mod 4.

4.2 Second inertial-type bound for χk

The bound (18) can be strengthened when k = 1 and pk(A) = A as follows (see Elphick and
Wokjan [14, Th. 1]). Let n+ = |i : λi > 0|, n0 = |i : λi = 0|, and n− = |i : λi < 0|. Then,

χ(G) ≥ 1 + max

(
n+

n−
,
n−

n+

)
≥ n

n0 + min{n+, n−}
, (24)

with equality for the two bounds only if n0 = 0, since

1 + max

(
n+

n−
,
n−

n+

)
=

n+ + n−

min{n+, n−}
.

The goal of this section is to extend the inertial-type bound (24) to the distance chromatic
number χk(G) in the case when G is k-partially walk-regular.

Theorem 4.2. Let G be a k-partially walk-regular graph with adjacency matrix eigenvalues
λ1 ≥ · · · ≥ λn. Let pk ∈ Rk[x] such that

∑n
i=1 pk(λi) = 0. Then,

χk ≥ 1 + max

(
|j : pk(λj) < 0|
|j : pk(λj) > 0|

)
. (25)

Proof. An analogous argument as it is used in [14, Th. 1] applies here by using pk(A) instead
of A. The proof in [14] relies on the fact that there exist χ unitary matrices Ui such that:

χ−1∑
i=1

UiAU
∗
i = −A.

Now we consider pk(A) instead ofA and a k-partially walk-regular graphG with
∑n

i=1 pk(λi) =
0 (recall that pk(A) has constant zero diagonal if and only if trpk(A) = 0, or equivalently,∑n

i=1 pk(λi) = 0)). Then it follows that

χk−1∑
i=1

Uipk(A)U∗i = −pk(A). (26)

Observe that the above holds because Theorem 6 in [53] is also valid for weighted adjacency
matrices with zero diagonal. Let v1, . . . , vn be the eigenvectors of unit length corresponding
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to the eigenvalues pk(λ1) ≥ · · · ≥ pk(λn). Let pk(A) = pk(B)− pk(C), where

pk(B) =

|j:pk(λj)>0|∑
i=1

pk(λi)viv
∗
i , pk(C) =

n∑
i=n−|j:pk(λj)<0|+1

−pk(λi)viv∗i .

Observe that pk(B) and pk(C) are positive semidefinite matrices, and we also know that
rank(pk(B)) = |j : pk(λj) > 0| and rank(pk(C)) = |j : pk(λj) < 0|. Denote by P+ and P−

the orthogonal projectors onto the subspaces spanned by the eigenvectors corresponding to
the positive and negative eigenvalues of pk(A), respectively:

P+ =

rank(pk(B))∑
i=1

viv
∗
i and P− =

n∑
i=n−rank(pk(C))+1

viv
∗
i .

Note that
pk(B) = P+pk(A)P+ and pk(C) = −P−pk(A)P−.

Then, equation (26) can be rewritten as follows

χk−1∑
i=1

Uipk(B)U∗i −
χk−1∑
i=1

Uipk(C)U∗i = pk(C)− pk(B),

and, if we multiply both sides by P−, we obtain

P−
χk−1∑
i=1

Uipk(B)U∗i P
− − P−

χk−1∑
i=1

Uipk(C)U∗i P
− = pk(C).

Now, since we know that P−
χk−1∑
i=1

Uipk(C)U∗i P
− is positive semidefinite, we obtain

P−
χk−1∑
i=1

Uipk(B)U∗i P
− � pk(C)

(where, with X, Y being matrices, X � Y means that X − Y is positive semidefinite).
Finally, using the fact that the rank of a sum is less or equal than the sum of the ranks of
the summands, that the rank of a product is less than or equal to the minimum of the ranks
of the factors, and Lemma 2 in [14] (if X, Y ∈ Cn×n are positive semidefinite and X � Y ,
then rank(X) ≥ rank(Y )), we obtain the desired inequality

(χk − 1) |j : p(λj) > 0| ≥ |j : p(λj) < 0|.
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Note that the bound from Theorem 4.2 is equivalent to

χk ≥ 1 + max

(
|j : pk(λj) > 0|
|j : pk(λj) < 0|

,
|j : pk(λj) < 0|
|j : pk(λj) > 0|

)
.

Observe also that the maximum is taken over all polynomials pk.
Regarding the second inertial-type bound (25), we note that not all graphs allow for an

improvement of such bound due to the presence of zeros, and in that case one can better
use the inertial-type bound (8) which we optimize for αk (and hence also for χk) in Section
4.1.1.

4.2.1 Optimization of the second inertial-type bound

Similarly to our discussion in Section 4.1.1 for the optimization of the first inertial-type
bound, we can use MILPs to optimize the polynomials appearing in the second inertial-type
bound (25). For this bound, however, we must solve n MILPs to obtain the best possible
bound. The procedure goes as follows: for each ` ∈ {1, ..., n − 1}, we solve the following
MILP:

maximize 1 + n−1Tb
`

subject to
∑n

j=1

∑k
i=0 aiλ

i
j = 0∑k

i=0 aiλ
i
j −Mbj + ε ≤ 0, j = 1, ..., n∑k

i=0 aiλ
i
j −Mcj ≤ 0, j = 1, ..., n∑n

i=1 ci = `
b ∈ {0, 1}n, c ∈ {0, 1}n

(27)

Unlike the previous MILP (20), which optimized the first inertial-type bound for χk, for
the above MILP we require b ∈ {0, 1}n, c ∈ {0, 1}n since here we look at all eigenvalues,
including the repeated ones. As before, the ai are the coefficients of the polynomial of degree
at most k, say p(x) = akx

k+· · ·+a0, and the first restriction is the hypothesis of the theorem,
that is tr p(A) = 0. The second restriction implies that if p(λj) ≥ 0, then bj = 1, whereas
the third restriction implies that if p(λj) > 0, then cj = 1. Thus, we have:

• |j : pk(λj) > 0| = 1Tc =
∑n

i=1 ci = ` (fourth restriction),

• |j : pk(λj) = 0| = 1T(b− c), and

• |j : pk(λj) < 0| = n− 1Tb,

from where we set the function to maximize.
In theory, this MILP is a sound way to approximate Theorem 4.2. However, in practice

the limited precision of MILP solvers leads to implementation problems for certain graphs.
Consider for example the prism graph Γ4, for which MILP (20) was tight. Solving MILP
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(27) with Gurobi for k = 2, we find optimal value 7. This is clearly not a valid lower bound,
as χ2(Γ4) = 4. The corresponding optimal parameters are p2(x) = 833.3249999999999x2 −
1666.6499999999999x − 2499.975 and b = (1, 0, 0, 0, 0, 0, 0, 1), c = (0, 0, 0, 0, 0, 0, 0, 1). In
other words, eigenvalue 3 is supposedly a root of p2 and the other eigenvalues are not.
However, due to rounding this is not exactly true: 3 is not a root of p2, but it is a root of
the polynomial 8331

3
x2 − 16662

3
x − 2500 (or its monic equivalent x2 − 2x + 3), which has

eigenvalue −1 as a second root. Eigenvalue 1 with multiplicity 3 is then the only eigenvalue
such that this polynomial is negative, so the bound becomes 1 + 3

1
= 4, which is tight.

In general, it is hard to prevent these types of errors, as no MILP solver has perfect
accuracy. For k = 2, we will consider a restriction of MILP (27), where this can be detected
and prevented. For a regular graph G with eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥ λn, consider the
polynomial p2(x) = x2 + bx − d. This polynomial has two distinct roots x1 < 0 < x2 such
that x1x2 = −d and b = −(x1 + x2). Moreover, note that for any choice of b, it satisfies the
trace condition

∑n
i=1 p2(λi) = 0. Therefore, it corresponds to a valid solution of MILP (27).

Since the optimal polynomial is fixed up to the coefficient b, we can now calculate which
eigenvalues are root pairs of p2 and fix the bound accordingly.

To find an optimal value of b we do not need to solve an MILP. Instead, the following
greedy strategy suffices. Suppose λ is the smallest negative eigenvalue such that p2(λ) < 0.
To maximize the numerator of Equation (25), it is better to choose x1 close to λ, as this will
increase the value of x2. For every negative eigenvalue λ, we therefore compute the bound
for x1 = λ− ε with ε > 0 small. By placing x1 or x2 close to 0, we also cover the cases where
exactly all negative or all positive eigenvalues lie in the negative range of p2. Finally, we set
every eigenvalue as a root of p2 and compute the corresponding lower bound. Observe that
this strategy can easily be adapted for the polynomial −p2, which also satisfies the trace
condition. To obtain the best value bound, we consider all above cases for p2 and −p2 and
take the maximum.

In Table 2, we compute the corresponding upper bound on α2 for the named Sage graphs
and compare it to previous results. Note that these values are an upper bound for the actual
optimum of MILP (27), as we restricted the optimal polynomial. On this particular set of
graphs, the bound generally performs better than MILP (20), most notably on the Gosset
graph and Klein 7-regular graph. Like MILP (20), MILP (27) is tight for the incidence
graphs of projective planes PG(2, q) with q a prime power and the prism graphs Γn with
n 6= 2 mod 4. Note that the latter are generalized Petersen graphs with parameters (n, 1).
The bound is also tight for (generalised) Petersen graphs with (n, k) ∈ {(5, 2), (8, 3), (10, 2)}.
The second graph is also known as the Möbius-Kantor graph and is walk-regular, but not
distance-regular.

4.3 First ratio-type bound for χk

Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn and let [2, n] = {2, 3, . . . , n}. Given
a polynomial pk ∈ Rk[x], recall the following parameters: W (pk) = maxu∈V {(pk(A))uu},
w(pk) = minu∈V {(pk(A))uu}, Λ(pk) = maxi∈[2,n]{pk(λi)}, λ(pk) = mini∈[2,n]{pk(λi)}.

Then notice that, for a regular graph, the upper bound (9) for αk of Theorem 3.1(ii)[3]
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becomes (28). In the next theorem we show that such inequality also holds for a general
graph.

Theorem 4.3. Let G be a graph with n vertices, adjacency matrix A, and eigenvalues
λ1 ≥ · · · ≥ λn. Let pk ∈ Rk[x] such that pk(λ1) > pk(λi) for i = 2, . . . , n. Then,

χk ≥
pk(λ1)− λ(pk)

W (pk)− λ(pk)
. (28)

Proof. The proof uses an argument which follows the main lines of reasoning as Haemers
does for deriving a lower bound for χ of any graph in [28, Th. 4.1 (i)]. However, as the last
steps are different, we include the complete proof. Let ν = (ν1, . . . , νn) be the (positive)
Perron (column) λ1-eigenvector of A. Let V1, . . . , Vχk be the color classes of Gk. Let S̃ be
the n× χk matrix with entries

(S̃)uj =

{
νu, if u ∈ Vj,
0, otherwise.

Notice that, with the appropriate length of the vector 1, we have

S̃1 = ν and S̃>ν = (
∑

u∈V1 ν
2
u, . . . ,

∑
u∈Vχk

ν2
u)>.

Let S be the matrix S̃ with all its normalized column vector. That is, S = S̃D
1
2 where

D = S̃>S̃ = diag(
∑

u∈V1 ν
2
u, . . . ,

∑
u∈Vχk

ν2
u). Now consider the χk×χk matrix B = S>pk(A)S

which, as it is readily checked by using the above, has eigenvalue pk(λ1) with eigenvector

D
1
2 1. Moreover, since each principal submatrix of B corresponding to a color class has all

its off-diagonal entries equal to zero, we have

(B)ii =
∑
u∈Vi

(S>)iu(pk(A))uu(S)ui =
∑
u∈Vi

(pk(A))uu
ν2
u∑

v∈Vi ν
2
v

≤ W (pk)
1∑

v∈Vi ν
2
v

∑
u∈Vi

ν2
u = W (pk), i = 1, . . . , χk.

Besides, by using interlacing, all the eigenvalues of B must be between λ(pk) and pk(λ1).
Hence,

χkW (pk) ≥
χk∑
i=1

(B)ii = tr(B) ≥ pk(λ1) + (χk − 1)λ(pk)

and the result follows.

4.4 Second ratio-type bound for χk

In this section we extend the algebraic bound for χ by Haemers [28, Th. 4.1(ii)] to the
distance chromatic number.
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Theorem 4.4. Let G be a k-partially walk-regular graph with adjacency matrix eigenvalues
λ1 ≥ · · · ≥ λn. Let pk ∈ Rk[x] such that

∑n
i=1 pk(λi) = 0, and let Φ1 ≥ Φ2 ≥ · · · ≥ Φn be the

eigenvalues of pk(A). If Φ2 > 0, then

χk ≥ 1− Φn−χk+1

Φ2

. (29)

Proof. An analogous interlacing argument as the one used in as in [28, Th. 4.1 (ii)] applies
here, where instead of the adjacency matrix A and the quotient matrix B, now we consider
linear combinations of both matrices, pk(A) and pk(B).

5 Concluding remarks

We should note that computing our eigenvalue bounds (using the MILPs) is significantly
faster than solving the SDP of the Lovász theta bound, and in many cases our bounds
perform fairly good, as shown in Table 2.

The optimization of the first inertial-type bound (8) using the MILP (20) has special
interest since our first inertial-type bound (8) provide an upper bound for the quantum k-
independence number [Theorem 7, [52]], which is, in general, not known to be a computable
parameter.

While for distance-regular graphs one can use the celebrated linear programming bound
by Delsarte [12] on Gk in order to bound αk, our inertial-type bound (8) and its MILP (20)
are more general since they can also be applied to vertex-transitive graphs which are not
distance-regular, or in general, to walk-regular graphs which are not distance-regular.

For walk-regular graphs, it is expected that our first inertial bound implementation (21)
does not outperform the ratio-type bound implemented using the so-called minor polynomials
[20]. This is due to the fact that our MILP (21) uses a linear combination of the eigenvalue
multiplicities which is more restrictive than the multiplicity linear combination used with the
minor polynomials. However, our first inertial-type bound implementation with the MILP
(20) is more general than the ratio-type bound implementation from [20], since the latter
requires walk-regularity while our first inertial-type bound (8) and its MILP (20) apply to
general graphs.

We end with two open problems that we feel are most natural to try next. The same MILP
method as we use in Sections 4.1.1 and 4.2.1 could be useful to find the target polynomial in
other graphs and/or for other values of k. Some graph candidates would be vertex-transitive
graphs which are not distance-regular (since otherwise one can just use Delsarte LP bound).
Finally, note that our MILP formulations to optimize the spectral bounds for αk and χk
have a polynomial number of input variables, hence it would be interesting to study whether
these formulations admit an algorithm in polynomial time [43].
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