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Visualization of data becomes more challenging as the dimensionality of the data increases,
impacting not only the display of the data itself but also the modeling results.

This paper discusses common visualization techniques for compositional data. None of them
seem to be well suited for changes in compositions that depend on either a metric covariate or a
factor. The clr-deviation chart as a chart with a factor or covariate as abscissa and all centered log
ratio-transformed component values superimposed on the ordinate axis is then introduced jointly
with the clr-component chart. The clr-deviation chart takes advantage of the sum-equals-zero
property of clr-transformed compositional data. It has some theoretical and practical advantages
over alternatives and one major disadvantage – an arbitrarily scaled ordinate axis; its properties
are discussed.

The usefulness of the methods are illustrated using an example analyzing the changes of pro-
portions of the different diseases treated by hospitalization over a period of 13 years in Germany.

Introduction

Visualizing data is always a challenging task. Data evaluation can be efficiently supported by visua-
lizing the raw data for consistency checks and exploration of inherent patterns. Communication of
statistical models, parameters and predictions shall be accompanied by appropriate graphical repre-
sentation of analysis results.

Graphing data becomes more challenging as the dimensionality increases. Compositional data as
multi-component data of a constant sum are multi-dimensional by nature. The constant sum property
for D components restricts the data to a simplex SD = {x ∈ RD | xi > 0, x1 + . . . + xD = const}
within the D-dimensional Euclidean space RD. Without loss of generality let’s set the constant to 1
(= 100 %). Any compositional vector ~x = (x1, . . . , xD)′ ∈ SD is a point of the simplex.

Ternary diagrams are a suitable means for exploratory data analysis of compositional data (Paw-
lowsky-Glahn et al., 2007). Here the equilateral triangle is equivalent to the simplex S3 accommodating
three components such that each vertex of the triangle represents a point where either of the com-
ponents takes the maximum value of 1, the opposed edge represents all points where that particular
component has the minimum value of 0. Since the ternary diagram is rotationally symmetric by 120◦

around the barycenter as well as symmetric around any angle bisector it is fair with respect to the
interchangeability of the components, i. e., with regard to the visual quality ternary diagrams are
permutation invariant.

Although less common one could use the regular tetrahedron in a similar and fair (symmetric
between components) fashion as before as a representation for the S4 ⊂ R4 using a tool for dynamic
graphs.

For more than four components visualization of compositional data must rely on other techniques.
Biplots tailored for compositional data were introduced by Aitchison and Greenacre (2002), they
become better known as log-ratio biplots (Greenacre, 2010, chapter 7). They are a projection of both
the compositions of a sample and all the components on a plane and therefore a means of dimension
reduction.

Two different techniques of dimensionality reduction have already been defined in Aitchison (1986,
2003, sections 2.5 and 2.6): subcomposition and amalgamation. Analyzing subcompositions means
giving attention to the relative magnitudes of a subset of components (by ignoring the remaining).
Amalgamation is reducing the number of components by adding up two or more into an amalgamated
component.

Subcompositions and amalgamated compositions of three components might be visualized by afo-
rementioned ternary diagrams leaving out some parts of the original information.
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Visualizing compositions along with an influential factor

Graphing gets more complex if one wants to visualize changes in compositions with regard to changes
in either a metric covariate or different levels of a factor. Fig. 1 shows changes in sand, silt, clay
compositions of sediment samples at different water depths in an Arctic lake (Aitchison, 2003, data
set 5, p. 359).

(a) (b)

Fig. 1: Changes in sand, silt, clay compositions of 39 sediment samples at different water depth in an Arctic lake
(a) measured data (connected in order of increasing water depth)
(b) measured data and regression curve, log-depth as regressor

Panel (b) of fig. 1 shows the expected compositional triplets (sand,silt,clay) as function of the
logarithm of water depth; from the graph it is neither obvious that the sand component is decreasing
with increasing water depth nor how good the regression curve fits the data.

(a) (b)

Fig. 2: Compositions up to 100 %: (a) artificial example data, (b) superimposed line chart

For compositions of dimensions higher than 3 and to put more focus on the direction of increasing
values of the covariate line charts are commonly used. For visualization of a covariate’s influence
on compositions, these line charts have the covariate on abscissa axis and the components’ values
on ordinate axis, the latter either in superimposed or stacked manner. Superimposed here means all
components are shown as magnitude above zero, i. e., to leave out from the diagram the constant sum
property. Fig. 2 gives an artificial example of 5-component compositional data along with a related
superimposed line chart.

Stacked line charts as well as stacked bar charts try to visualize components with regard to their
sum and therefore seem to be preferable for compositional data. Bar charts — either vertically or
horizontally stacked — suit better to levels of a factor or discrete fixed in advance steps of a metric
variable like time measured in years.
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(a) (b) (c)

Fig. 3: Compositions up to 100 % (data as in fig. 2) — different orders of the components
(a) 1–2–3–4–5, (b) 2–3–4–5–1, (c) 3–4–5–1–2

As can be seen in fig. 3, the impression generated by stacked bar charts depends heavily on the
order of the components in the diagram. The same holds true with stacked line charts. Changes in
components anchored either at 0 or max (100 % here) can better be judged visually than any other
component in-between. Neither stacked bar charts nor stacked line charts are fair with respect to the
interchangeability of the components.

Even more, with an increasing number of dimensions, a component that is low in magnitude become
rarely visible, although its original value might ’double’ (as component # 2 of the example: 1.4 at level
’z1’, 2.8 at level ’z3’) and therefore has quite an impact on the changes of the complete composition
itself.

Compositional deviation charts shall overcome these disadvantages.

The compositional or clr-deviation chart

Aitchison (1986) introduced two different classes of bijective transformations between the (topological-
ly open) simplex SD and a (D-1)-dimensional Euclidean space, the additive and the centered log-ratio
transformations. The class of alr-transformations consists of D different transformations depending
on which of the components x1, . . . , xD will be used as reference component. Any of the alr-transfor-
mations maps the simplex SD, the components of each composition, into coordinates of the RD−1.
This transformation is not isometric with regard to the Aitchison metric on the simplex (Pawlowsky-
Glahn et al., 2007). The class of clr-transformations consists of exactly one member mapping SD

isometrically to a (D-1)-dimensional hyperplane through the origin of RD (with the geometric mean

g (~x) = D

√∏D
i=1 xi being a scalar):

clr (~x) = ln

(
~x

g (~x)

)
=

1

D
·


D − 1 −1 · · · −1
−1 D − 1 · · · −1
...

...
. . .

...
−1 −1 · · · D − 1

 · ln (~x)

Performing clr-transformation on a D-composition results in coordinates within RD such that
their sum equals zero. Remarkable properties of clr-transformation therefore are: (a) the number of
coordinates equals the number of components, (b) each component relates directly one-to-one to one
coordinate, (c) it is symmetrical in the components, (d) it is an isometric transformation, and (e) each
logarithmized component value gets standardized by subtracting from it the logarithm of the geometric
mean g (~x) of all the components of that particular composition.

The zero-sum property of the clr-transformed components can be expressed by 1′D · clr (~x) = 0,
the equation defining that aforementioned (D-1)-dimensional hyperplane through the origin of RD.

More than a decade later Egozcue et al. (2003) introduced a third class of bijective transformations
between SD and a (D-1)-dimensional Euclidean space called isometric log-ratio transformation. ilr-
transformations are distance-preserving. Each orthonormal rotation of an ilr-transformation belongs
to the class of ilr-transformations.

As is explained in Pawlowsky-Glahn et al. (2007, sect. 4.4) there is always a (D-1)×D-dimensional
matrix Ψ such that both Ψ · Ψ′ = ID−1 and Ψ′ · Ψ = ID − 1

D · 1
′
D · 1D are satisfied. This matrix Ψ
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can be used for a rotation between the (D-1)-dimensional clr-hyperplane and the (D-1)-dimensional
Euclidean space RD−1 forming an isometric link between clr- and the class of ilr-transformations:

ilr (~x) = Ψ · clr (~x) and clr (~x) = Ψ′ · ilr (~x)

Log-ratio coordinates and coefficients of random composition are real random variables ranging
freely form −∞ to∞. Therefore, it is common to analyze them with standard multivariate procedures.
For ilr-coordinates these methods can be used straightaway (Pawlowsky-Glahn and Egozcue, 2006).
Furthermore, data in ilr-coordinates as well as residuals of ilr-based models can be visualized by
orthogonal projection of the (D-1)-dimensional Euclidean space onto lower dimensional subspaces.
However, interpretation of these graphs in terms of the compositions’ components is difficult because
coordinates refer to ’mixtures’ of the components.

Orthogonally projecting clr-coordinates instead gives similar graphs; due to the direct one-to-one
relationship between component and coordinate these graphs are easier to interpret in terms of the
original components. Line charts showing one clr-coordinate on ordinate and either different levels of
a factor or a metric covariate on abscissa axis are of particular interest here.

These clr-coordinate charts can be used in the usual way for visualizing components of raw data
over a predictor — with or without a regression line . Since they are linear projections of an Euclidean
space they can also be used for plotting residuals against the predictor as in common multivariate
regression.

There are D component specific clr-coordinate charts. Unlike in the common multivariate situa-
tion where each dimension is a variable likely to be on a different scale (and therefore quite often
dimension-wise standardized by xi−x

s for making them comparable), all clr-coordinate charts are al-
ready composition-wise standardized by −ln(g (~x)). Each of the clr-coordinate charts addresses the
component’s deviation from the geometric mean g (~x) by showing the coordinate’s deviation from 0.

A clr-deviation chart (or compositional deviation chart) is the superposition of all related clr-
coordinate charts. It shows jointly the deviation of any of the clr-coordinates of compositions against
levels of a factor or an interval-scaled covariate as (potential) predictor (fig. 4).

Fig. 4: clr-deviation chart (data from fig. 2, connecting lines for improved readability)

The clr-deviation chart it is symmetrical in the components and fair, any changes of the order of
the components does not change the clr-deviation chart at all.

Because of the sum-equals-zero property clr-deviation charts do not only show changes in cer-
tain clr-coordinates and therefore their related components but also the components ’compensating’
for these changes. Because of the isometric relation between clr- and ilr-coordinates compositional
deviation charts show either data as they will be analyzed in coordinate space or modeling results
(regressions) of these analyses. Panels of clr-deviation charts can be used for visual comparison of
different compositional time series as well as group specific regression results of compositional panel
or repeated (over time) measurement data, amongst others.

Two properties might become a little more difficult for communicating compositional data analy-
sis by clr-deviation charts. Firstly, the scale of the ordinate axis seems to be arbitrary, and secondly,
clr-deviation charts present data not on the original scale of the component values. Graphs based
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on transformed scales are quite often considered to be challenging to the not so experienced viewer,
compositional deviation plots share this obstacle with ternary plots and others. Analyzing compo-
sitional data properly requires a minimum understanding of Aitchison geometry and the staying-in-
the-simplex approach (Aitchison and Egozcue, 2005, and the therein reference on p. 831 to for years
discussions in Mathematical Geology).

Example

Since the early 1990s Germany has had a yearly requirement for all infirmaries hospital statistics
in three parts: basis data (location, staff and equipment, number of cases), cost data, and diagnosis
data. The latter consists of all hospital stays (cases) concluded in that particular year, each case
is recorded with some basic demographics and its main diagnosis. The diagnoses get coded by the
hospitals themselves. Up to 1999 the main diagnosis had been coded according to the ICD-9 coding
scheme, after that the ICD-10 coding scheme was to be used. According to both coding schemes
diseases are categorized into chapters (e. g., ’injury and poisoning’) and subchapters (e. g., ’fractures’,
’open wounds’, ’burns’, etc.). ICD-9 in its most general form is a numeric code of 3-digit numbers
between 001–’cholera’ and 999–’complications of medical care, not elsewhere classified’; overall about
820 codes (with some omissions within the number range). It had been replaced by an alphanumeric
one of one leading letter followed by two digits; mapping ICD-10 codes onto ICD-9 ones is said to be
possible and supported by an algorithm. (For data non-disclosure reasons according to German legal
regulations only the 3-digit disease codes have been made available for evaluation.)

Analyzing diagnosis data of the German hospital statistics from an econometric perspective we
became interested in changes of proportions of the different diseases treated by hospitalization over a
period of 13 years (1993–2005 inclusive). Disease data (the main diagnosis per case only) is classified
and coded; it is compositional in such that it is closed by the yearly number of concluded hospital
stays: at a particular hospital, in all hospitals of an administrative region, to name a few.

Seven (of the 16) federal states have been chosen (including one of the 3 city states) for the analysis.
Since the number of cases without a given diagnosis is negligible it is not considered here.

(a) (b)

Fig. 5: composition of the number of diagnoses in 17 chapter of ICD-9
(a) stacked bar chart, (b) clr-deviation chart

The most general overview of all diagnosis data can be given by dividing all the diagnoses coded in
German hospitals into the 17 ICD-9 chapters (from 01–’infectious and parasitic diseases’ to 17–’injury
and poisoning’). Any chapter as component of the composition here can be seen as amalgamation of
all diseases coded belonging to that chapter. Results are shown in fig. 5 indicating that over that 13
year period only marginal changes in diagnosis-chapter composition took place in German hospitals,
as can be seen in both panels.

Since the diagnoses of particular chapters and subchapters are of interest on their own, any of
these can be analyzed as a subcomposition. Chapter 12–’diseases of the skin and subcutaneous tissue’
covers the disease codes 680–709 (26 different codes, 687–689 and 699 not being valid code numbers).
Codes 680, 681, 682, 685, 692, 696, 707, 708, 709 are the most often registered ones; all others have
been amalgamated into one component (marked by ’###’).
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(a) (b)

Fig. 6: ICD-9 chapter 12–’diseases of the skin and subcutaneous tissue’ (###: amalgamated others)
(a) stacked bar chart, (b) clr-deviation chart

Both panels of fig. 6 show discontinuities in the yearly changes in composition, panel (b) highlights
the fact that the decrease in diagnosis code 682 is mostly corrected by an increase in diagnosis code
680, although not fully symmetric. Some dermatological patients of the year 2000 and later seem to
be differently ill as compared to the previous period. This ’effect’ would be of particular interest for
both epidemiologists as well as economists since there is no other remarkable change visible over the
whole period and that change might have economic consequences as well. Since the ’effect’ coincides
fully with the change in the disease coding system by the end of 1999 checking the ICD-10-to-ICD-9
mapping algorithm seems recommended in the first instance. It reveals that there is a shift in what
is covered by these particular ICD-9 codes and their ICD-10 counterparts, where code 680 covers one
particular sub-disease (indication, symptom) less than its counterpart; this sub-disease is now to be
covered by the ICD-10 counterpart of code 682. The ’effect’ therefore turns out to be caused by the
change in the coding system and cannot be resolved by the mapping algorithm.

More interesting from both the view of an economist and of an epidemiologist is the data related
to hospitalized woman because of pregnancy and labor. Two subchapters of chapter 11–’complications
of pregnancy, childbirth, and the puerperium’ are devoted to the course of labor and delivery: codes
650–659 describe different indications of ’normal delivery, and other indications for care in pregnancy,
labor, and delivery’ whereas codes 660–669 are to be used for ’complications occurring mainly in
the course of labor and delivery’–both number ranges are valid codes without any omissions, it is 20
different codes in total. (No code mapping inconsistencies have been detected here.)

(a) (b)

Fig. 7: ICD-9 subchapters of labor, delivery and complications with them (###: amalgamated others)
(a) stacked bar chart, (b) clr-deviation chart

As can be seen in the clr-deviation chart of fig. 7 there are two diagnoses becoming steadily
less used during the 1990s: code 664 ’trauma to perineum and vulva during delivery’ and code 665
’other obstetrical trauma’ in an otherwise rather unchanged composition over time. But starting 2001
remarkable changes in magnitude of some components (diagnose codes) occur with a considerable
shift in trend. First and overwhelmingly visible just in the stacked bar chart the proportion of code
650–’normal delivery’ drops from about 65 % in 2001 to less than 17 % in 2005. As can be seen in the
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clr-deviation chart a similar drop occurred with code 669–’other indications for care or intervention
related to labor’–an indication likely to be not too far from ’normal delivery’. (The share of deliveries
in hospitals among all deliveries remained quite constant over the whole period.) The decrease in codes
650 and 669 is mainly compensated by an increase in before mentioned codes 664 and 665 while the
slow decrease in code 652–’malposition and malpresentation of fetus’ since the mid-1990s comes to an
halt.

Surprisingly, as of now this change away from ’normal delivery’ seems not to be yet well reflected
in neither epidemiologic, health care management nor economic literature, although it should be of
epidemiological and health policy concern. (For a first discussion of the changes until the end of 2003
see Heller and Schmidt, 2005.)

With the Statutory Health Insurance Reform Act 2000 the German government started to intro-
duce a new case-based hospital funding system by adapting an internationally used diagnosis related
groups (DRG) system. DRGs are meant to reflect the diagnosed disease(s) and the costs for treating
them at hospital. Development of the German refined DRG System (G-DRG) started in June 2000;
providing data by the German hospitals started on voluntary basis in 2003 and became mandatory
in 2004 with the intention to accumulate data for calibrating the reimbursement rates for DRGs by
keeping the overall hospital costs constant for the calibration period.

Further econometric analyses of the data at hand, e. g., differences between hospitals of different
regions, is needed for better understanding of reasons and impact of the massive changes in diagnosis
codes immediately before and during the first DRG-calibration period.

Conclusion

The clr-deviation chart has proven itself to be very useful. As a superposition of all clr-coordinate
charts it is fair since it is symmetrical in the components of a composition. It can be used for data
checking, presentation of raw data as well as model predictions.

clr-coordinate charts themselves are more likely to be helpful for component related residual
analyses. Both charts rely on orthogonal projections and the isometric relationship (rotation) between
ilr- and clr-coordinates.

Although being visualizations of transformed data both diagrams are appropriate means for com-
municating compositional data and model predictions. They show (projections of) the data as it is,
or will be, analyzed.
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