
Bachelor’s Thesis

LIMO-Velo

A Real-Time, Robust, Centimeter-Accurate Estimator for
Vehicle Localization and Mapping under Racing Velocities

Andreu Huguet Segarra

Advisor (HKUST):
Qifeng Chen

Tutor (UPC):
Josep R. Casas

February 2022

In partial fulfilment of the requirements for the

Bachelor’s degree in Mathematics
Bachelor’s degree in Data Science and Engineering

ii

Acknowledgments

I would like to thank all the institutions that have made this thesis possible:

� La Universitat Politècnica de Catalunya, en especial menció al Cen-
tre de Formació Interdisciplinària Superior que m’ha contactat amb el
professor Chen i ha fet possible la mobilitat a Hong Kong. També a
l’Escola de Telecomunicacións (ETSETB), per haver apostat pel pro-
jecte del cotxe autònom, confiant en els estudiants i sense saber si
podrien haver-hi resultats. Finalment, al meu tutor Josep R. Casas
per sempre donar-me bons consells de com estructurar les meves idees
per escriure la tesi.

� Al meu equip BCN eMotorsport, per haver mantingut en bon estat un
cotxe que es sortia de la primer corba al Gener i va acabar anant volant
a 60km/h tan sols quatre mesos després, al maig. També per seguir
amb l’objectiu de continuar sent un pol de talent, arribar a tocar el
podi almenys d’una categoria a Alemania i posar a Barcelona a dalt
dels rànquings, on li toca estar.

� To the Hong Kong University Science and Technology, giving me the
facilities and resources to work on my thesis without difficulties. Espe-
cially to my advisor, Dr. Qifeng Chen for his advice and expertise on
the academy world, formerly unknown for me. Also for his guidelines on
how to adequately prove that our work outperforms other algorithms.

I l’agräıment més important, agräır a la meva famı́lia i amics per tot el
seu suport donat en els moments més d́ıficils i el donar el seu màxim en els
moments més eufòrics. Ja sabeu qui sou, moltes gràcies per tots aquests anys
i pels molts més que venen.

iii

iv

Abstract

Català

Treballs recents sobre localització de vehicles i mapeig dels seus entorns es
desenvolupen per a dispositius portàtils o robots terrestres que assumeixen
moviments lents i suaus. Contràriament als entorns de curses d’alta velocitat.
Aquesta tesi proposa un nou model d’SLAM, anomenat LIMO-Velo, capaç
de corregir el seu estat amb una latència extremadament baixa tractant els
punts LiDAR com un flux de dades. Els experiments mostren un salt en
robustesa i en la qualitat del mapa mantenint el requisit de correr en temps
real. El model aconsegueix una millora relativa del 20% en el KITTI dataset
d’odometria respecte al millor rendiment existent; no deriva en un sol esce-
nari. La qualitat del mapa a nivell de cent́ımetre es manté amb velocitats
que poden arribar a 20 m/s i 500 graus/s. Utilitzant les biblioteques obertes
IKFoM i ikd-Tree, el model funciona x10 més ràpid que la majoria de models
d’última generació. Mostrem que LIMO-Velo es pot generalitzar per exe-
cutar l’eliminació dinàmica d’objectes, com ara altres agents a la carretera,
vianants i altres.

English

Recent works on localizing vehicles and mapping their environments are de-
veloped for handheld devices or terrestrial robots which assume slow and
smooth movements. Contrary to high-velocity racing environments. This
thesis proposes a new SLAM model, LIMO-Velo, capable of correcting its
state at extreme low-latency by treating LiDAR points as a data stream.
Experiments show a jump in robustness and map quality while maintaining
the real-time requirement. The model achieves a 20% relative improvement
on the KITTI Odometry dataset over the existing best performer; it does
not drift in a single scenario. Centimeter-level map quality is still achieved
under racing velocities that can go up to 20m/s and 500deg/s. Using the IK-

v

vi

FoM and ikd-Tree open libraries, the model performs x10 faster than most
state-of-the-art models. We show that LIMO-Velo can be generalized to work
under dynamic object removal such as other agents in the road, pedestrians,
and more.

Castellano

Trabajos recientes sobre la localización de veh́ıculos y el mapeo de sus en-
tornos se desarrollan para dispositivos portátiles o robots terrestres que
asumen movimientos lentos y suaves. Al contrario de los entornos de carreras
de alta velocidad. Esta tesis propone un nuevo modelo SLAM, LIMO-Velo,
capaz de corregir su estado en latencia extremadamente baja al tratar los
puntos LiDAR como un flujo de datos. Los experimentos muestran un salto
en la solidez y la calidad del mapa mientras se mantiene el requisito de tiempo
real. El modelo logra una mejora relativa del 20% en el conjunto de datos
de KITTI Odometry sobre el mejor desempeño existente; no deriva en un
solo escenario. La calidad del mapa de nivel centimétrico todav́ıa se logra a
velocidades de carrera que pueden llegar hasta 20 m/s y 500 grados/s. Us-
ando las bibliotecas abiertas IKFoM e ikd-Tree, el modelo funciona x10 más
rápido que la mayoŕıa de los modelos de última generación. Mostramos que
LIMO-Velo se puede generalizar para trabajar bajo la eliminación dinámica
de objetos, como otros agentes en la carretera, peatones y más.

Keywords

Català

SLAM, percepció, estimació, conducció autònoma, Fòrmula Student Driver-
less, cotxes autònoms, robots autònoms, localització, mapeig, LiDAR, Unitat
de Mesures Inercials, filtre de Kalman, temps real, odometria directa.

English

SLAM, perception, estimation, full self-driving, Formula Student Driverless,
autonomous cars, autonomous robots, localization, mapping, LiDAR, Inertial
Measurement Unit, Kalman Filter, real-time, direct odometry.

Castellano

SLAM, percepción, estimación, conducción autónoma, Fórmula Student Driver-
less, coches autónomos, robots autónomos, localización, mapeo, LiDAR,
Unidad de Mesuras Inerciales, filtro de Kalman, tiempo real, odometria di-
recta.

AMS codes

68T45

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Barcelona’s first autonomous car 1

1.1.2 Formula Student . 2

1.1.3 An unresolved problem 2

1.2 General problem statement . 3

1.2.1 Understanding our environment 3

1.2.2 Localizating ourselves inside the map 3

1.2.3 Simultaneous Localization and Mapping 4

1.2.4 Implementations of the SLAM problem 4

1.3 Problem statement - Formula Student 4

1.4 Objectives . 5

1.4.1 Requirements . 5

1.4.2 Desired properties . 6

2 Preliminaries 9

2.1 Quaternions and SO(3) . 9

2.2 Kalman Filters . 10

2.2.1 A two-phase process 10

2.2.2 Error-State Kalman Filters 11

2.2.3 Iterated Kalman Filters 12

2.3 KD-Tree . 12

2.4 Sensors’ characteristics . 12

2.4.1 LiDAR . 12

2.4.2 Cameras . 13

2.4.3 Inertial Measurement Units (IMUs) 13

2.4.4 Global Navigation Satellite System (GNSS) 14

2.4.5 Ground Speed Sensor (GSS) 15

ix

x CONTENTS

3 SLAM Implementations 17
3.1 Feature SLAM . 17

3.1.1 EKF SLAM . 17
3.1.2 FastSLAM . 19
3.1.3 GraphSLAM . 20

3.2 LiDAR-specific SLAM methods 21
3.2.1 LiDAR Odometry and Mapping (LOAM) 21
3.2.2 LiDAR-Inertial Odometry (LIO) 22

3.3 Solid-state LiDAR SLAM . 24
3.3.1 LOAM-Livox . 24

4 Fast-LIO I and II - The mark to beat 25
4.1 Fast-LIO I: A new computationally efficient Kalman Filter

formula . 25
4.1.1 IKFoM: Iterated Kalman Filter on Manifolds 26

4.2 Fast-LIO II: Registering raw points to an incremental KD-Tree 26
4.2.1 Direct approach . 27
4.2.2 ikd-Tree: Incremental KD-Tree 27

5 LIMO-Velo 29
5.1 Core idea . 29

5.1.1 Localize Intensively . 29
5.1.2 Map Offline . 30

5.2 Pipeline structure . 31
5.2.1 Accumulator: Receiving streams of data 32
5.2.2 Compensator: Adjusting for motion 32
5.2.3 Localizator: Estimating the state 33
5.2.4 Mapper: Building the map 33

5.3 Implementation . 33
5.3.1 Modular programming 33
5.3.2 Functional programming 34
5.3.3 Object-oriented programming 34

5.4 Killer app . 35
5.4.1 Racing: fast and aggressive motion 35

6 Results 37
6.1 Robustness . 37

6.1.1 Data loss/downsampling 37
6.1.2 Size of partitions (field of view) 38
6.1.3 IMU parameters . 38

6.2 Computation performance . 39

CONTENTS xi

6.2.1 Speed of computation 39
6.3 Performance . 39

6.3.1 KITTI dataset . 39
6.3.2 Xaloc’s map comparison 45
6.3.3 Xaloc’s odometry comparison 45

7 Conclusions 51
7.1 Main key contributions . 51

7.1.1 Localize Intensively . 51
7.1.2 Map Offline . 51

7.2 Derived improvements . 51
7.2.1 Improvement over the SOTA 51
7.2.2 Improvement in infrastructure 52

7.3 Achieved objectives . 52

8 Future work 55
8.1 Natural step: Dynamic objects’ removal 55
8.2 Other possible lines of work 56

8.2.1 Estimation of future actions of moving objects 56
8.2.2 Loop closure detection 56
8.2.3 Multiple LiDARs and IMUs 57
8.2.4 Removing long term drift with GNSS 57

8.3 The next step: LiDAR-Visual-Inertial Odometry and Mapping 58
8.3.1 Adding cameras without correcting pose 58
8.3.2 Adding cameras for correcting pose: R2LIVE and R3LIVE 58

8.4 The goal: Visual-Inertial SLAM 59
8.4.1 LiDAR liabilities . 59
8.4.2 Difficulties and requirements 59

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

1.1.1 Barcelona’s first autonomous car

The motivation for this project comes from my time at BCN eMotorsport,
Barcelona’s project for designing, building and coding an autonomous real-
size single-seater electric car at Universitat Politècnica de Catalunya.

Figure 1.1: Barcelona’s first ever autonomous car, ”Xaloc” (2018-2021).

I was part of Xaloc’s Perception team and later in the season I became the
main lead of its ”Localization and Mapping”. ”Localization and Mapping”
is a concept used to describe the algorithms that make sure the car is aware
of its environment, avoids collisions and detects the track it can take.

The team was lagging behind in that sense (as most Formula Student
teams do) since it: depended on a strong GPS signal, had stability issues and
didn’t filter appropriately noisy observations which complicated identifying
the track.

1

2 CHAPTER 1. INTRODUCTION

1.1.2 Formula Student

Formula Student is a international student’s engineering competition that
aims to promote excellence in engineering via organizing events around the
globe where university students design and construct a single-seater electric
or combustion car and compete with it in dynamic tests. Points are also
awarded for its technical design and economic cost. [5]

Formula Student Driverless

Since 2017, many Formula Student competitions such as F.S. Germany, F.S.
Spain, F.S. East (East Europe) or F.S. Czech have added a new variant a
part from combustion cars and electric cars: autonomous cars. Teams are
expected to design, build and code single-seater cars that can be both driven
by a human pilot and driven autonomously.

This new layer of complexity has attracted few teams to join but UPC
Barcelona decided to take on the challenge on 2018, making it the first and
only Spanish team to compete with the likes of Zurich, Karlsruhe, Ausburg,
Roma or Trondheim until this date. In 2022, a new regulation has been
passed that electric or combustion teams are expected to go driverless if they
want the full score and that’s flooded the competition with newcomers. A
new and exciting chapter in the Formula Student has begun and it is only
the beginning.

Control and Perception

Driverless teams usually split the coding in two: Control and Perception.

� Perception is focused on detecting the cones that determine the track
and remember their location for the next laps.

� Control is focused on deciding which actions does the car have to take
to drive around the track minimizing lap time without hitting any cone.

1.1.3 An unresolved problem

Finally, the last motivation I had to take on this thesis was the fact that
knowing your surroundings on a racing environment did not have any public
implementation that was good enough for us. State-of-the-art algorithms all
had different setbacks (stability, accuracy, computation cost) that created a
gap which to improve on.

The ”Localization and Mapping” field is on a tremendous pace of improve-
ment these last few years with multiple implementations that use different

1.2. GENERAL PROBLEM STATEMENT 3

sensors and algorithms and it is getting better and better to the point where
it not only can be used on university laboratories, but also can be used on
open areas, city streets, roads and yes, even racing circuits.

1.2 General problem statement

1.2.1 Understanding our environment

Autonomous vehicles require to know their surroundings to move avoiding
collisions. This is a simple idea can be extended to: creating a three-
dimensional map, stitching these local surroundings through time to the
global frame, and at the same time estimating where the car is located inside
this global map at every time.

Maps bring us better understanding of our environment, what can we
expect to happen (such as children appearing behind parked cars or car
doors opening) or what other agents (such as vehicles, people or animals) are
able to do.

Figure 1.2: Our solution’s three-dimensional map of a street

1.2.2 Localizating ourselves inside the map

Sensors such as cameras, LiDARs or radars give us data about our local
surroundings: distance from objects to the sensor, shapes, colors... However,
if we are to stitch local surroundings together to create a global map, we
need to know the locations of where we took each measurement.

A new problem arises: where did we take each measurement? A solution
is found when we assume that probably (assuming high frequency of the
sensors and smooth movement) a big majority of the surroundings (walls,

4 CHAPTER 1. INTRODUCTION

objects...) we see in the new measurements is things we already measured at
a previous location. Therefore, we can associate the new measurements with
old measurements.

Then a recursive strategy is laid out: if we know the location from where
we took the old measurements, we can find them in the map, associate them
with the new ones and triangulate our new location.

1.2.3 Simultaneous Localization and Mapping

Knowing how to localize ourselves given a map and knowing how to expand
the map once we know our location. This idea is what gave birth to the
Simultaneous Localization and Mapping (SLAM) field: localizing itself with
known measurements, mapping the new ones and back to localizing again.

The term was coined back in the 1990s by H. Durrant-Whyte’s research
group [4] but it gained international attention after S. Thurn’s Standford
team crossed a desert without a driver [25], winning the first Autonomous
Driving DARPA challenge a decade later in 2005. After that, Thurn created
the Google’s self-driving project in 2009 which is now Waymo; one of the
major players in the self-driving scene.

1.2.4 Implementations of the SLAM problem

Lots of implementations of the SLAM problem have been proposed. Many
of them try to find effective map representations and mapping techniques
taking advantage of the usual errors each sensor has. Others, try to fuse
different sensors to make up for the weaknesses the other sensor has.

This thesis is going to focus first on surveying different implementations of
the SLAM problem. In particular, solutions using LiDARs sensors. LiDARs
offer accurate distances and dense definitions of close objects so its easier to
triangulate our location and stitch local surroundings than other sensors like
cameras.

1.3 Problem statement - Formula Student

The Formula Student competition has specific rules and requirements that
make the SLAM problem unresolved for this environment. We will now
dive into which are these requirements that make current best performers,
unusable.

1.4. OBJECTIVES 5

No margin for error

� Rule D6.1.1 [7] determines the minimum track width to be 3 meters.
Usual formula cars are about 1.5m wide, leaving a error margin of
75cm to not collision with each side of the track.

� Competitions’ circuits (usually the official F1 circuits) may have weak
GPS signals.

� To be competitive, a car has to reach speeds of 20m/s and turn speeds
of 500deg/s.

� Real-time decision making is necessary.

� Reaction times are of less than 50ms.

� The track layout is unknown, there are multiple competitions around
the globe and all circuits have different surroundings.

� The team budget is limited, we have to minimize sensor spending.

� The CPU usage is also limited since we are running all the au-
tonomous pipeline.

1.4 Objectives

1.4.1 Requirements

When designing an algorithm, we must ask ourselves what key requirements
should this algorithm have. Considering the problem as set in the Formula
Student Driverless competition, we will separate the requirements into three
groups.

A - Hard requirements

1. Drive close to the track limits without crossing them.

2. Output information more frequently than the time of reaction of 50ms.

3. Handle fast and aggressive motion.

6 CHAPTER 1. INTRODUCTION

B - Soft requirements

1. Ability to detect cones at 40 meters.

2. Real-time sensor calibration.

3. Stable to occasional sensor failure or degeneracy.

C - Design requirements

1. Works anywhere and anytime.

2. Easy and modular design to be easily maintained.

3. Seamless integration with the full pipeline.

1.4.2 Desired properties

We can ask which are good properties for a SLAM algorithm. Then, see
which ones are the most critical and which ones are feasible to add.

Determining the state of a vehicle means estimating its position, orienta-
tion, velocities and calibration parameters at every point in time. The state
then is a collection of vectors and matrices of real scalars. We will consider a
well defined distance and norm d(stk , stl) = ‖stk−stl‖ that give us the differ-
ence between two states. This will be helpful when talking about properties.
Consider st the estimated state and gt the ground truth state at time t.

We first will define a set of base properties to fulfill our requirements (A,
B, C) to later derive which properties should our algorithm aim to have.

Desired SLAM properties

� Stable: position errors should be bounded. (∃ε ∀t, ‖st − gt‖ < ε) [A1,
A3, C1]

� Accurate: the position error bound ε should be less than the minimum
distance of collision with the environment. [A1]

� Real-time: for every time t we should have calculated the solution st
before the new data for estimating st+1 is available. [A2]

� Fine: the time between the estimated solution st and st+1 should be
less than the time of reaction of our vehicle. [A2]

1.4. OBJECTIVES 7

� Dense: objects in the map should be clearly differentiated. Formally,
given two areas of the map A and B containing each an object and
an ideal segmentation algorithm g that maps an area to an object
identifier, g(A) = g(B) ⇐⇒ A and B contain the same object. [B1]

� Light: the CPU usage of the algorithm should be less than the one
left while the other algorithms on the pipeline are running. [C3]

� Minimal: the sum of all sensors’ price, space and dependency needed
to make the algorithm work should be minimized. [B3]

� Modular: should be able to fuse different sensors and its respective
calibration seamlessly. [B2, C2]

Derived SLAM properties

We can derive the following properties as a corollary.

� Weather-resistant: with a stable algorithm, weather cannot cause
our algorithm to drift.

� Works on open areas: with a stable and accurate algorithm, feature-
less environments such as open areas cannot cause trouble.

� Able to detect cones: with a dense and modular algorithm, cone
detection can be performed aided by camera data.

� Can run for 10 laps: with a stable and real-time algorithm, the car
has to yield feasible solutions continuously for (more than) 10 laps.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Quaternions and SO(3)

Localizing our vehicle will require knowing two things: its position and ori-
entation (also known as ”attitude”) on the track. The position of our vehicle
will be represented by a R3 vector (x, y, z). Attitude, however, is a different
story. First thing that comes to our mind are Euler Angles (yaw, pitch, roll),
introduced by Euler in 1775. But Euler Angles are well known in the lit-
erature to suffer from singularities and not being uniquely defined. For our
case, we will need to find an alternative representation without singularities
and with nice composition properties to lead to smooth estimations.

Definition 2.1.1 (SO(3) - 3D rotation group). We define SO(3) as the group
of all rotations about the origin of the three-dimensional Euclidean space R3

under the operation of composition.

Definition 2.1.2 (Quaternion). Quaternions, introduced by Hamilton in
1843, are an extension of complex numbers in the three-dimensional space.
Apart from i, we have to consider additional axes j, k.

Proposition 2.1.1. Unit quaternions form a group structure isomorphic to
SO(3):

q = a+ bi+ cj + dk ∈ SO(3), ‖q‖2 = 1

With the following relationships:

i2 = j2 = k2 = ijk = −1, a, b, c, d ∈ R

Proof. Refer to [9].

So, attitude can be represented as a unit quaternion and enjoy their nice
composition properties. These will come handy for the next section: esti-
mating the least-squares position/attitude given a stream of measurements.

9

10 CHAPTER 2. PRELIMINARIES

2.2 Kalman Filters

We can consider that the readings from our sensors will be noisy. We model
this noise as a normal distribution: with a mean vector and a covariance
matrix. Given these noisy measurements from different sensors over time,
we wish to estimate the least-square attitude and position. The Kalman
filter, introduced by Kálmán around 1960 [10] to estimate the trajectory of
NASA’s Apollo rockets, give least-square estimates of unknown parameters
under the Gaussian assumption. Kalman filters work in a two-phase process:
we first predict what movement we did and then correct this movement to
fit observations.

2.2.1 A two-phase process

Prediction phase

We consider a movement function fk that outputs where our car will be in
time step k given the state in xk−1 and the latest control measures uk (such
as accelerations or velocities). Then, we can predict the state at time k
(including position, attitude, velocities...) xk given the observations up until
k − 1, as x̂k|k−1:

x̂k|k−1 = fk(x̂k−1|k−1, uk) ≈ Fkx̂k−1|k−1 +Bkuk + wk, wk ∼ N(0, σ2
k)

and its predicted covariance estimate as:

Pk|k−1 = FkPk|k−1F
T
k +Qk

The vanilla Kalman filter assumes the movement function fk to be lin-
ear. However, in the general case, it’s approximated by linear maps Fk =
∂fk
∂x

(x̂k−1|k−1, uk) and Bk = ∂fk
∂u

(x̂k−1|k−1, uk). This is called an ”Extended
Kalman Filter”, since the movement function fk is not assumed to be linear
but approximated well enough by a first Taylor expansion in a tiny time span
∆tk = tk − tk−1. This ”tiny time span” assumption will play a major role in
the solution we develop in this thesis, as described in Chapter 5.

Update/Correction phase

Now that we have a rough estimation of where our car has moved to, we
can correct it by associating our new measurements with known old ones.
Consider hjk, a smooth function for each observation j in time k satisfying 0 =

2.2. KALMAN FILTERS 11

hjk(xk). We can approximate this function by evaluating it on a previously
predicted state x̂k|k−1.

0 = hjk(xk) ≈ hjk(x̂k|k−1) +Hj
k · (xk − x̂k|k−1) + vk, vk ∼ N(0, ν2k)

These functions hjk can also be approximated by a first-order Taylor approx-

imation considering Hj
k =

∂hj
k

∂x
(x̂k|k−1).

Considering the new predicted state x̂k|k−1 as a close solution to the real

one xk, we calculate close solutions for each hjk we call ”residuals” zjk :=
hjk(x̂k|k−1)(≈ 0) and want to find the xk that minimizes:

min
xk

(
‖xk − x̂k|k−1‖2P−1

k
+

N∑
j=1

∥∥zjk +Hj
k · (xk − x̂k|k−1)

∥∥2
R−1

j

)

where ‖x‖2M = xTMx. We can interpret this as finding the state xk that
gives the least-squared error considering the covariance of the previous state
and the covariance of the observations. To find the least-squares xk, we will
consider the following equations

ỹk = zk −Hk x̂k|k−1 (A priori ”innovation”)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Rk

)−1
(Optimal Kalman gain)

x̂k|k = ˆxk|k−1 + Kkỹk (A posteriori mean)

Pk|k = (I−KkHk) Pk|k−1 (A posteriori covariance)

and repeat them for M iterations updating the residuals zk = hk(x̂k|k) using
the new-found corrected state and using x̂k|k, Pk|k as the new x̂k|k−1, Pk|k−1.

2.2.2 Error-State Kalman Filters

In the 90s, three decades later after the Kalman Filter was introduced re-
searchers began noticing that the errors δk = xk − x̂k|k behaved in a less
complex manner than the states. While the states can have highly non-
linear trajectories, the state’s errors with the filter estimates were seen to
behave almost linearly.

That gave birth to the error-state formulation of the Kalman Filter [22].
Instead of calculating the a posteriori mean directly, we update the error
estimate ek = x̂k|k − x̂k−1|k−1.

ek = Kkỹk

x̂k|k = x̂k−1|k−1 + ek

12 CHAPTER 2. PRELIMINARIES

2.2.3 Iterated Kalman Filters

Iterated Kalman Filters are yet another solution for improving the lineariza-
tion of the EKF. The idea is to perform the update phase for M iterations in
the hopes of improving the hjk(xk) ≈ hjk(x̂k)+Hj

k ·(xk− x̂k) Taylor estimation
by applying it to the m-iterated x̂mk|k−1 closer to the ground truth xk.

Accidentally (or not), this formulation makes a lot of sense for SLAM
because not only can we improve the linearization of each hjk, we can also
rematch the features using the new updated state x̂mk|k−1, changing the ob-

servation functions hjk and getting rid of erroneous data associations.
This formulation does not interfere with the error-state formulation, and

we can mix them both in what is called an Error-State Iterated (Extended)
Kalman Filter (ESIKF). This is relevant since we are going to be using this
formulation for LIMO-Velo [8].

2.3 KD-Tree

Now that we now what we are going to use to estimate our state, we need to
talk about how we are going to represent our map. Usual SLAM algorithms
work by associating new measurements with known ones in the map that are
close to the ones projected with predicted state. Therefore, we need a data
structure optimized for searching in a queried position’s neighborhood.

K-dimensional trees (or KD-Trees), introduced by Bentley in 1975 [1],
are exactly this type of structure. In these, searching the closest neighbour
of a three-dimensional point p has a best-case scenario time complexity of
O(logN); being N the number of points in the tree.

2.4 Sensors’ characteristics

As a preliminary, we also have to understand what different characteristics
each sensor brings; what are their weaknesses and how can they be combined
with one another.

2.4.1 LiDAR

What LiDAR offers us are highly accurate distances in a semi-dense for-
mat. That is, the point cloud’s density decreases quadratically with dis-
tance. These accurate distances give us clear picture of our environment:
walls, other cars, the ground, traffic signals and even can detect close pedes-
trians.

2.4. SENSORS’ CHARACTERISTICS 13

However, if we want to see finer details, like: recognizing objects, recog-
nizing agents at large distances or high-frequency features; this semi-density
is not dense and feature-rich enough.

Pros

+ Accurate distances

+ High range

Cons

- Expensive

- Not good for details

2.4.2 Cameras

Vision gives all the details and information we humans need to drive for
ourselves. We can put many cameras in our vehicle since they are cheap and
overlapping their fields of view can give us stereo vision to better estimate
close objects (just as humans have two eyes).

The human brain, however, still works in ways much more advanced than
any machine can and emulating it is the hard part when using cameras. Also,
vision is very resource-heavy and requires a lot processing power.

Pros

+ Accurate and abundant details

+ Cheap

Cons

- Require complex algorithms and resources to treat their data

- Easily blocked by weather conditions or direct sunlight

2.4.3 Inertial Measurement Units (IMUs)

IMUs are electronic devices that combine accelerometers, gyroscopes and
magnetometers to measure forces, angular rates and orientation of the car’s

14 CHAPTER 2. PRELIMINARIES

body. These measurements give us a reading that is independent of the
environment we are in (feature-independent).

Integrating gyroscope velocities gives us an accurate prediction of our
orientation (error of ±5 deg/h) and integrating accelerometer accelerations
with the car current position and velocity can bring rough estimates for the
new position and velocity.

IMUs are particularly interesting for the prediction phase of Kalman Fil-
ters since they act as the control input uk that we later correct with feature-
dependent sensors.

Pros

+ Independent of its environment

+ Wide price range and accuracies

Cons

- Only for prediction purposes

- Integrated error increases quickly in the long term

2.4.4 Global Navigation Satellite System (GNSS)

GNSS (known for it’s North American system, GPS) is a sensor thought for
correcting long-term drift since it’s also independent of its environment but
has too high of an error to be used in the short-term.

Figure 2.1: A näıve team’s out-of-track autonomous car thinking GNSS as
an initial solution would ”kind of work”, Formula Student Germany 2021.

2.4. SENSORS’ CHARACTERISTICS 15

Pros

+ Independent of its environment

+ Wide price range and accuracies

Cons

- Only for correction purposes

- Error too high for the short-term

2.4.5 Ground Speed Sensor (GSS)

GSS is a relatively unknown sensor that only one company has its patent
(and subsequent monopoly) [11]. It offers near-perfect velocity estimates in
dry ground. Its prices are in the thousands of euros and are affordable for
only select teams/organizations in limited vehicles.

Pros

+ High accuracy

+ Independent of environment features

Cons

- Has to be placed just above the ground at all times

- Only for prediction purposes

- Problems on wet ground

- Prohibitively expensive

16 CHAPTER 2. PRELIMINARIES

Chapter 3

SLAM Implementations

The Simultaneous Localization and Mapping problem is an abstract problem
that can come to live in so many ways. However, most SLAM implementa-
tions share a common structural order [23], inspired in the two-phase process
of the Kalman Filter:

Step 1 Predict the robot’s motion.

Step 2 Associate new data with known data.

Step 3 Correct the motion given the associations.

Step 4 Update the data in the map.

Step 5 Repeat.

3.1 Feature SLAM

Feature SLAM implementations start with the premise that the full data
given by the cameras or LiDAR is too abundant and it needs to be processed
(and downsized) in favor of extracting the relevant parts of it: the features.
These were the first working implementations in the literature because of
their lightweight computational load given the hardware requirements 20
years ago. Features are usually known objects or object properties that can
be easily segmented from the environment.

3.1.1 EKF SLAM

The Extended Kalman Filter SLAM implementation was the natural way of
thinking of the prediction/correction duality, and it was the de facto method
for SLAM until the introduction of FastSLAM in 2002 [16]. Its structure is:

17

18 CHAPTER 3. SLAM IMPLEMENTATIONS

Step 1 Predict the robot’s next state x and next covariance matrix P with a
motion function f and its Jacobian matrices with respect to the control
input (u) and with respect to the noise (v): Fu, Fv.

Step 2 Project the extracted local features at time k to the global frame and as-
sociate them with the old global features (also known as ”landmarks”)
using a maximum likelihood approach with a threshold. If the thresh-
old is not surpassed, we consider the observation as new.

Step 3 Given the associations, we first correct the motion using the Kalman
Filter’s observation motion h update method minimizing the Maha-
lanobis distance between the projected feature and the landmark.

Step 4 With the new updated state, we correct every landmark’s position mean
and covariance to fit the new updated state.

Step 5 Additionally, we can delete corrupted features in the map if the Maha-
lanobis distance between the new feature and known feature surpasses
a threshold.

The map is a large state vector x = (RM)T being R the robot state and
M a collection of landmark states (L1, . . . ,LN). EKF SLAM assumes the
landmarks’ states depend on the robot state and depend on the states of the
other landmarks. Therefore, making every covariance update on a landmark,
a covariance update on all the other landmarks.

Pros and cons

+ Proven convergence if the associations are all correct.

+ Smooth correction process, the state will not jump around across time.

- The EKF covariance update complexity for k landmarks is of O(kN2),
being N the total number of landmarks.

- Data association failures can cause the algorithm to fail.

- The ”Gaussian error” assumption requires the observation model h to
be well approximated by its linearization.

3.1. FEATURE SLAM 19

3.1.2 FastSLAM

FastSLAM (Montemerlo et. al, 2002) [16] was the first implementation of a
particle filter in SLAM, dropping the ”Gaussian error” assumption in favor
of a Rao-Blackwellized non-linear ”particle” filter. Particle filters consider
the robot’s current state as the maximum likelihood state x in a collection
of probable states X (called ”particles”). The distribution of these particles
for the next iteration is updated on a process called ”resampling”, meaning
we keep and reproduce variations of the most likely states.

FastSLAM also has another assumption that makes it way faster than
EKF, it assumes every landmark is independent of the others. Therefore,
each landmark is updated with its own independent Kalman Filter with
O(1) update time. With a tree-structure, the computational complexity is
O(M logK) being M the number of particles and K the number of land-
marks. Hence, the name ”FastSLAM”. Its structure is:

Step 1 For each particle m, sample the robot’s next state from the probabilistic
motion model’s distribution: s

[m]
k ∼ p(sk|uk, s[m]

k−1).

Step 2 Project the extracted local features at time k to the global frame and
associate them with landmarks using either a maximum likelihood ap-
proach (like EKF). So, each particle has its own (possibly different)
associations.

Step 3 Update the state’s EKF given the associations with the landmarks.

Step 4 Update the landmarks’ EKFs given the updated state.

Step 5 Additionally, delete corrupted landmarks if needed.

Step 6 Re-sample the particles, weighting each particle in favor of maximizing
the likelihood of each observation being assigned the landmark it has
been assigned to after the updates.

The main difference from the EKF SLAM implementation is that now
each particle acts as its own EKF SLAM, we can evaluate each particle’s
performance and finally propagate the best performers (based on the resid-
uals of their data associations). This allows us to follow multiple hypothesis
throughout the process. Not only are we propagating the better looking
hypothesis but we are also propagating less-good looking hypotheses that
may turn out to be correct and replace the best-looking ones of a previous
iteration.

20 CHAPTER 3. SLAM IMPLEMENTATIONS

Pros and cons

+ Can follow multiple hypothesis so it’s resistant to bad data associations.

+ Scales logarithmically in number of landmarks.

+ We can trade-off performance for accuracy (nº of hypotheses) by chang-
ing the number of particles.

- The state throughout time is not smooth. It can jump around through
hypotheses.

- Different hypotheses can have big differences; risking big sudden errors
with respect to the ground-truth.

3.1.3 GraphSLAM

For the final feature SLAM implementation, we have GraphSLAM (Thurn
et. al, 2006) [24]. GraphSLAM was the first widely used implementation
of the idea of a factor-graph in the SLAM field. The idea behind Graph-
SLAM is to use standard least-square optimization techniques used in other
more mature areas on the SLAM problem. In GraphSLAM, the map is a
graph and each state (node) is connected with its previous and next state
via edges they call ”motion arcs”. Similarly, each state is connected with its
associated landmarks (nodes) used to update the state via edges they call
”measurement arcs”. Every edge represents a non-linear constraint associ-
ated with the likelihood of the measurement and motion models, and the
sum of all constraints results in a non-linear least squares problem that aims
to maximize the state’s and landmark’s position likelihood.

The idea of a factor-graph became really relevant with the introduction
of ”loop closures”, with we can also associate our current state with an older
state if the two measurements are similar enough and create a ”loop”. With
a factor-graph it is really natural to then re-optimize the full graph using this
new constraint, leading to a drift (propagated error) reducing technique.

GraphSLAM’s structure is the following:

Step 1 Add a new state xk+1 node depending on the previous states x1:k and
the control input uk. Then, create a ”motion arc” with the previous
state.

Step 2 For every feature, create a new landmark node and a ”measurement
arc” connecting it on the state node xk+1 just created.

3.2. LIDAR-SPECIFIC SLAM METHODS 21

Step 3 Optimize the new state and landmarks (mean and covariance) with all
this new information.

Step 4 Perform a correspondence test to match the new landmarks with old
landmarks, merge them if passed and optimize the state and landmarks
positions again.

Step 5 Repeat the test until no matches are found.

Pros and cons

+ Novel architecture that allows for optimization of older states and land-
marks as well as current ones.

+ The computations can be handled by specialized least-squares optimiz-
ers, one of the most common optimization problem there is.

+ More stable than EKF SLAMs since it considers past states and more
consistent than Particle Filter SLAMs since it does not jump through
different hypotheses.

- Higher memory and computational load.

- More complex code and need for third-party solvers.

3.2 LiDAR-specific SLAM methods

Up until now, we have discussed feature-based SLAM methods that can work
either with LiDAR, cameras or any other type of sensor. Now, we will dive
in the most widely used methods for LiDAR-specific solutions.

3.2.1 LiDAR Odometry and Mapping (LOAM)

Zhang et. al (2014) [29] proposed LiDAR Odometry and Mapping (LOAM),
a SLAM method that extracted an abundant number of features in any un-
structured environment using LiDAR. This lead to the explosion of so-called
LOAM-based solutions, solutions that built on this idea of having lots of
features available to match.

The feature extraction is fairly simple, extract two types of features:
planes and edges.

� Planes are calculated from a collection of close points in the current
scan that form a plane.

22 CHAPTER 3. SLAM IMPLEMENTATIONS

� Edges are calculated from a collection of close points in the current
scan that conform a line.

The method tries to minimize the total point-to-plane or point-to-line
distance between a mapped plane or edge and our matched point in the
current scan. Since we assume our environment is locally smooth, there will
be an abundant number of planes and edges in every LiDAR scan.

LOAM’s structure is the following:

Step 1 Detect points that belong to planes and edges in the current scan. Save
them separately in two vectors: one for plane points and one for edge
points.

Step 2 Match current scan planes/edges with known planes/edges in the map,
calculate their distance with respect to the projected point (using the
latest state) and add a new constraint to optimize.

Step 3 Optimize the least-square problem minimizing the distances.

Step 4 Repeat steps 2-3 with the new updated state until convergence.

Step 5 Map the projected points as plane or edge points with the latest state.

Pros and cons

+ High accuracy caused by an abundant number of constraints to mini-
mize, one for each extracted feature.

+ Independence of control input.

- There is no prediction step, the predicted state is estimated to be the
previous one. Fails under fast and aggressive movement.

- High memory and computational load.

3.2.2 LiDAR-Inertial Odometry (LIO)

Zhang et. al already mention in the LOAM (2014) paper that an IMU can
be used to have a better prediction for the next state. Shan et. al bring
this idea to another level of robustness and accuracy in LeGO-LOAM (2018)
[20] and more importantly in LIO-SAM (2020) [21] which they provide an
open-source factor-graph based method that can do long drives without drift,
handles relatively fast rotations and can perform loop closures leading to
great mapping accuracy.

3.2. LIDAR-SPECIFIC SLAM METHODS 23

Tightly-coupled vs. loosely-coupled methods

The main difference between the two approaches is that LIO-SAM (2020) is
a tightly-coupled vs. LeGO-LOAM a loosely-coupled (2018) method. The
difference between these two concepts is that loosed-coupled methods use the
IMU (or other sensors) as a first solution to then correct with the LiDAR (or
other sensors) observations. Tightly-coupled methods view the different sen-
sors as capable of delivering their own odometry solution (with different levels
of accuracy) and corrections are made every X frames (known as keyframes).
This can make up for the slow computation of the LiDAR correction and can
output odometry at IMU rate (usually 200Hz or more).

LIO-SAM (2020) marks a step forward towards centimeter-level accuracy
but its computational load still makes it fail under fast and aggressive motion.

Motion compensation

LeGO-LOAM and LIOSAM not only use the IMU as a prediction method,
they also use it to remove the distortion caused by the robot’s motion on
the LiDAR observations. When our robot is moving, the pointcloud result of
accumulating a full LiDAR rotation has points extracted from a time span
(t1, t2). That means, points extracted at t1 and t2 will have been extracted
from different states xt1 and xt2 . This means that the pointcloud will be
skewed by the motion of going from xt1 to xt2 , and it would be wrong to
project the (t1, t2) point cloud with just one state.

To fix this distortion, we can use the IMU readings (usually at a ×20
more frequency than the LiDAR point clouds) to estimate this motion and
undistort the points in (t1, t2) to a common time frame. Without loss of
generality, we choose this common time frame to be t2 since we are trying
to estimate the latest state possible. Being {x̂t}t=t1,...,t2 the estimated states
between (t1, t2) by the IMU, we can transport local points measured in time
t to the local frame at t2 via the following formula:

pLt2 = X̂−1t2
· X̂t · pLt , p ∈ R3, X ∈ Aff(3)

The points pLt2 are now ready to be brought to the global frame by left

multiplying X̂t2 to them. Note that these are the points used to find the
corrected xt2 . Therefore, the difference xt2 and x̂t2 has to be really low if we
don’t want non-accurate results. There are two ways to reduce this difference:
having a better x̂t2 estimation (better IMU quality/processing) or shortening
the difference between t1 and t2, which we will discuss in Chapter 5.

24 CHAPTER 3. SLAM IMPLEMENTATIONS

3.3 Solid-state LiDAR SLAM

Solid-state LiDARs are a low-cost alternative to traditional spinning LiDARs.
Instead of having multiple channels as spinning LiDARs have, solid-state
LiDARs have a single moving laser head. They have various difficulties that
make SLAM harder:

1. Smaller FoV: less field of view will lead to fewer features, making it
prone to degeneracy and moving objects.

2. Irregular scanning patterns: irregular non-rotating patterns are harder
to extract features from.

3. Non-repetitive scanning: to maximize coverage even with the LiDAR
static, the scanning process tries to not pass to points it already has
via non-repetitive patterns.

4. Motion blur: the irregular and non-repetitive scanning allows for close
points in the same scan have a big time difference, creating a blur under
fast and aggressive motion.

3.3.1 LOAM-Livox

Parallelly to LeGO-LOAM (2018) and LIO-SAM (2020), Lin et. al developed
loam livox (2019) [13] that set the foundations of Fast-LIO’s (2020) and Fast-
LIO2’s (2021) successes. Their main contributions are:

1. The idea of extracting planes and edges directly from the map (given
the difficulty of extracting features from the current scan) started to
take place.

2. Pointing out that an improvement of the mapping routine’s computa-
tional cost was needed and feasible.

3. Pointing out that not all sections of the scan are equally informative,
a routine for downsampling irrelevant parts was needed.

Chapter 4

Fast-LIO I and II - The mark
to beat

The Fast-LIO’s papers set a new era of possibilities via extremely improved
computation costs (x10 improvement with respect to other LOAM-based
methods) and a type-of-LiDAR-agnostic solution that works independently
of the pattern’s regularity or the different sizes of the field of view.

4.1 Fast-LIO I: A new computationally effi-

cient Kalman Filter formula

Xu et. al present Fast-LIO (2020) [26], a method inspired in loam livox (2019)
but instead of an optimization problem like other LOAM-based solutions, it is
formulated as an ESIKF SLAM problem. With a twist: a new Kalman Filter
formulation is proposed that can calculate the Kalman Gain quadratically
on the dimensionality of the state vector (O(1)) instead of quadratically on
the number of landmarks O(N2). This allows the usage of Extended Kalman
Filters (EKFs) with an abundant number of features, making it the fastest
centimeter-level method yet.

However, the Fast-LIO’s filter formulation is far more complex than older
EKF SLAM solutions that usually only estimated the robot’s 2D pose and
orientation: (x, y, θ). In this case, the state x accounts for the robot’s 3D pose
and orientation, its velocity, the gravity vector and calibration parameters
for the IMU.

x := [GRT
I

GpTI
GvTI bTω bTω

GgT]T

This is by no means a trivial state to estimate. The orientation and grav-
ity vector belong to SO(3) and S2, respectively. A Kalman Filter formulation

25

26 CHAPTER 4. FAST-LIO I AND II - THE MARK TO BEAT

had to be defined in this two spaces, and that’s what they did in the paper
”Kalman Filters on Differentiable Manifolds” (2021) by He et. al [8].

Pros and cons

+ ×2 faster than other LOAM-based solutions.

+ Smooth, iterated and robust estimation of the full robot’s state (pose,
orientation, velocity, calibration parameters and gravity direction).

+ Handles fast and aggressive movements given a small (but low-latency)
field of view.

- Mapping time can still be improved.

- The number of features extracted from such a small FoV can be low
and lead to degeneracy.

4.1.1 IKFoM: Iterated Kalman Filter on Manifolds

In this work, He et. al (2021) [8] propose a canonical representation of robot
systems and develop a symbolic error-state iterated Kalman filter (ESIKF)
for it. The spaces considered are: Rn, SO(3) and S2. They additionally
develop a C++ toolkit used and tested in Fast-LIO (2020) [26] for quick
deployment of generic robotic solutions using Kalman Filters.

4.2 Fast-LIO II: Registering raw points to an

incremental KD-Tree

Xu et. al are back presenting Fast-LIO2 (2021) [27] with a bold and exciting
claim: a 10-fold decrease in computational time with respect to other state-
of-the-art algorithms and the highest-seen accuracy under fast and aggressive
movements.

The accuracy increase, as they say in the paper, is related to being able
to utilize more points in the odometry as they have more mapping efficiency
and have removed the feature extraction module in favor of what they call a
”direct approach”.

+ Faster than any other approach. Generally ×10 faster than other
LOAM-based approaches.

4.2. FAST-LIO II: REGISTERING RAWPOINTS TO AN INCREMENTAL KD-TREE27

+ More accurate than any other approach under fast and aggressive move-
ment.

+ Generalizable to any LiDAR pattern.

- Struggles under big fields of view.

- Lacks a degeneracy module.

4.2.1 Direct approach

Inspired by visual SLAM’s direct approaches (Matthies ’88, Hanna ’91, Com-
port ’06, Newcombe ’11, Engel ’13...) that register the full image in the map
and minimize the photometric error, Fast-LIO2 (2021) matches its current
scan points to local planes it finds in the map; and minimizes the point-to-
plane distance.

That is,

1. A point in the current scan is projected to the map frame using the
estimated state.

2. We get the m closest points with respect to our projected point in the
map. If the closest points form a plane, then we match our projected
point with such plane.

3. The point-plane pairs then are sent as observations to optimize in an
error-state iterated Kalman filter.

This allows us to not care about extracting features and directly register-
ing raw points to the map. That means a sparse input is also welcome and
no matter the type of LiDAR pattern we are using, this will also work.

4.2.2 ikd-Tree: Incremental KD-Tree

To have a successful direct approach, skipping scans to map is not an option,
since we want the map to be as dense as possible. That means the mapping
routine’s computational time has to be improved by a significant amount.
This is where ikd-Tree comes in.

LOAM-based algorithms use a KD-tree [1] to represent the map for its
fast logarithmic lookup time. However, KD-trees are to be built once and are
not meant to be modified; since that causes them to worsen its look-up time
until ending up with linear look-up time. The Fast-LIO authors also publish
”ikd-Tree: An Incremental K-D Tree for Robotic Applications” (2021) by Cai

28 CHAPTER 4. FAST-LIO I AND II - THE MARK TO BEAT

et. al [2], a data structure that offers two orders of magnitude improvement
with respect to the vanilla KD-tree.

An incremental solution: re-balancing

The ikd-Tree can add/remove points incrementally to the tree via perform-
ing the add/remove operation and then re-balancing the tree. It also ac-
tively monitors a balance criterion and dynamically re-builds it partially
when needed to.

Time complexity

� Point-wise operations: an incremental operation with a point to a N -
sized ikd-Tree costs O(logN).

� Box-wise operations: the insertion of M points in a N -sized ikd-Tree
costs O(M logN).

� Re-building: rebuilding K points of an ikd-Tree with two threads costs
O(K) and O(K logK) with a single thread.

� Nearest search: the average cost for searching the nearest neighbour of
a point is O(logN).

Space complexity

Each node on the ikd-Tree records point information, tree size, invalid point
number and point distribution of the tree. Even though the space complexity
is O(N), it is a few times larger than a static KD-tree [1].

Chapter 5

LIMO-Velo

Knowing the perks and flaws of the other state-of-the-art solutions. Now we
are searching a solution for fast and aggressive motion with spinning LiDARs.

5.1 Core idea

5.1.1 Localize Intensively

Smaller steps work better

The only method able to handle fast and aggressive motion to date was Fast-
LIO2 (2021). The reason: its low latency. With smaller steps (∆t), state
estimates are closer together, providing two key benefits:

1. Closer steps means linearization will approximate better: ∆t→ 0 =⇒
O(∆t2)→ 0 in the Taylor expansion of the motion model f and more
importantly in the Taylor expansion of the functions hjk,∀j. Being
closer to the ground truth state will inevitably lead to better matchings,
abstractly speaking, defining better the functions hjk.

2. The predicted state x̂k will have less integrated error (”dead-reckoning”)
caused by having to integrate less noisy IMU measurements.

So the first key concept of LIMO-Velo is ”Localizing Intensively” (L.I.).
To obtain better results under fast and aggressive movements, we have to be
able to get smaller - but more frequent - fields of view. The way we do this
is by treating the received point clouds as a stream of timestamped points
and updating our state every ∆t with the points in (t−∆t, t].

29

30 CHAPTER 5. LIMO-VELO

Dealing with degeneracy

Smaller fields of view are prone to degenerate scenarios, we have to be aware
of that and implement a module that detects and fixes the degraded DOFs.
Zhang et. al (2016) [28] proposes a method that given a function to minimize
f and its Jacobian J := ∂f/∂x, identifies the eigenvectors associated to
the smallest eigenvalues of the JTJ matrix as the axis of degeneracy of the
solution x∗. In our case, our Kalman Filter aims to minimize the distance
between the projected points and the matched planes, giving us as Jacobian,
the observation Jacobian H := ∂h/∂x. Following Zhang et. al (2016)’s
method, we identify the axis of degeneracy in our updated solution (xu) with
a threshold and fill those m directions with the integrated IMU predicted
estimate (xp):

Vp = [v1, . . . , vm, 0, . . . , 0]T

Vu = [0, . . . , 0, vm+1, . . . , vn]T

x∗ = V −1f Vpxp + V −1f Vuxu

Ensuring true real-time performance

A third and last requirement for ensuring the success of localizing intensively
is that we need to ensure real-time performance. That means we will have
to update our state with the latest (tk − ∆t, tk] points, losing the points in
(tk−1, tk−∆t) in the case our pipeline runs longer than ∆t, if it runs shorter
we will always have the estimated state at < ∆t ∼ 10−2 seconds of real-time.
Having true real-time performance is essential for split-second decisions.

5.1.2 Map Offline

A lossless decrease of frequency

Localizing intensively can cause degeneracy cases and also can be affected
by moving objects (caused by corrupted point-plane matches). We have seen
how to fix the first issue and we explain the solution for the second issue for
Chapter 8.

On the other hand, there’s a problem with mapping intensively - specially
in new unexplored areas where there’s little map information. Mapping in-
tensively can cause the algorithm to hold onto the only points it sees and
try to match points to planes from the same scan. In the general case, in a
rotating LiDAR, points from the same scan do not intersect and therefore
should not be matched together. This calls for a fix. LIMO-Velo’s second
key idea is ”Mapping Offline (M.O.)”.

5.2. PIPELINE STRUCTURE 31

The idea of mapping offline is to use the fact that points from the same
rotating scan do not intersect. Therefore, mapping a point before its rotation
ends is not only useless, but dangerous. Now, instead of mapping intensively
we will choose to wait until the rotation ends to map. This will lead to a -
lossless - decrease in mapping frequency.

Processing before mapping

Now, we know that we can wait to map the points we are accumulating
without losing performance, as long as we map them when the rotation ends.
That opens a gap that we can exploit by processing the points waiting to be
added before we register them to the map.

In the case of a dynamic environment, we could identify moving objects,
remove them from the pointcloud, map the pointcloud without the moving
object and then add the moving object again as a new independent layer on
the map (not to be used for localization). Chen et al. (2021) present LMNet
(or LiDAR-MOS) [3], a CNN that works at 20Hz capable of segmenting
moving objects given a ranged image of a 10Hz pointcloud. We could use
this neural network on the points we are about to map and remove cars,
pedestrians, bicycles...

Masking the localization

We can go deeper on the details of how to not let these corrupt parts of the
map (such as moving objects) corrupt our localization: we can use a mask.
We define a mask as a 3D grid with binary values. This grid’s cells will have
0 as value if at least one corrupted point is in it or 1 if it doesn’t contain
corrupted points. Then, we can decide if we want to use or not a certain
point for localization if it belongs or not on a corrupted cell.

Using a hashmap, the mask’s spatial complexity is O(N) (being N the
number of points in a full rotation) if we assume that the points are dis-
tributed on the space and the cells are little enough to convey detail. Since
it is a hashmap, it can run O(1) in time. For racing, we will not use the
mask so we will leave this idea for Future Work in Chapter 8.

5.2 Pipeline structure

In this section, we are going to look into the different parts of the pipeline,
what they do and how they communicate with one another.

32 CHAPTER 5. LIMO-VELO

Accumulator

LiDAR (t1, t2)

Compensator

Compensated points (t1, t2)

Localizator Mapper

IMU (t1, t2)

Corrected state (t2)

IKFoM ikd-Tree

LiDAR streamIMU stream

Data collection

Data processing

State estimation Map expansion

States (t1, t2)

Add to buffer

Figure 5.1: LIMO-Velo’s pipeline.

5.2.1 Accumulator: Receiving streams of data

The Accumulator’s job is to receive the sensor data, store it and deliver to
whoever needs it. It also accumulates all the corrected states we calculate.
Basically, if we want data: we call the Accumulator.

� Input: timestamps t1, t2 and type of data (points/IMU measure-
ments/states).

� Output: collection of chosen data between t1 and t2.

5.2.2 Compensator: Adjusting for motion

The compensator is in charge of correcting the motion distortion of a collec-
tion of timestamped points knowing what position, velocity and acceleration
was the robot having at those timestamps.

� Input: timestamps t1, t2.

� Output: collection of motion compensated points between t1 and t2 in
the local frame.

5.3. IMPLEMENTATION 33

5.2.3 Localizator: Estimating the state

The Localizator updates the predicted state and turns it to a ”corrected”
state using IKFoM’s Kalman Filter [8] toolkit.

� Input: local observations between t1 and t2, predicted state at t2.

� Output: corrected state at t2.

5.2.4 Mapper: Building the map

The Mapper registers global points onto the map (an ikd-Tree).

� Input: points on the global frame.

� Output: None. It updates itself.

5.3 Implementation

A hard requirement needed for this project was to for it to be a long-term
resource to Barcelona’s Formula Student team. Therefore, it needed to be
clearly readable, easy to understand, easy to maintain and easy to improve.
We followed three key software design methodologies to satisfy these objec-
tives:

5.3.1 Modular programming

Modular programming emphasizes on separating the functionality of a pro-
gram into independent, interchangeable modules such that each contains
everything necessary to execute only one aspect of the desired functionality.
Benefits to this are:

� Ease to debug: one can try every module for itself to see if the output
corresponds to the one expected.

� Ease to improve: if one wants to change a module, one doesn’t have to
worry about it affecting the overall code since it’s independent of them.

� Ease to understand: every module has one specific functionality self-
explained in the function name. Makes the main code read like pseudo-
code.

34 CHAPTER 5. LIMO-VELO

5.3.2 Functional programming

Functional programming is a programming paradigm on which programs
are constructed by applying and composing mathematical functions, clearly
specifying input and output. Functional programming does not accept the
use of global variables if they are not universal constants: functions take an
input and give an output. Neither the input changes nor any other global
variable changes, a function only creates an output. Benefits of this are:

� Ease to debug: there are no unexpected side-effects when applying a
function.

� Ease to understand: functions are simple and the input/output concept
is something any engineering student is already used to after their first
two years of university.

5.3.3 Object-oriented programming

Object-oriented programming is a programming paradigm based on the con-
cept of ”objects”. Every object has properties (data) and methods (func-
tions). Objects have public methods which are clearly readable (close to
pseudo-code) that call private methods that are the raw implementation
(usage of specific data-structures or formulas to convey an output). This
distinction separates the methods’ design (the what) from the actual imple-
mentation of them (the how). Benefits of this are:

� Ease to improve: whenever we identify bottlenecks in design (order
of operations, data flow...) or bottlenecks in implementation (data
structures used, formulas used, packages used...) we know where to
look and what to change.

� Ease to understand: if we want to understand what a method does, we
read its public part, if we want to understand how a method does it we
read the private part.

� Ease to maintain: if a private method uses a package that needs to be
changed, we don’t need to change anything from the public method.

� Self-contained code: defining canonical objects and their relations be-
tween them, we let ourselves go of third party objects that have incom-
patibility issues and lack of methods that combine them.

5.4. KILLER APP 35

5.4 Killer app

Now we are going to talk about which is the specific case on where LIMO-
Velo shines. Every good SLAM implementation is thought and designed to
improve on one specific (but broad enough) case. So let’s see where LIMO-
Velo works when no other solution does.

5.4.1 Racing: fast and aggressive motion

Under a racing environment, there are no open-source methods to this date
- to the best of the author’s knowledge - that can handle racing speeds
and turns with a spinning LiDAR. The main reasons are: high latency in
localization and high latency in mapping.

1. High latency in localization causes jumps to up to 2 meters (100ms at
20m/s) from correction to correction and that inevitably causes bad
data associations.

2. High latency in mapping causes a lack of information near the new
state of the robot, leading to worse corrections and uncertainty.

LIMO-Velo addresses this two issues by:

1. Achieving low-latency localization: Using the Accumulator to select
the desired localization time span (t1, t2] and using IKFoM’s Kalman
Filter constant time computation. Results show that the algorithm
works on time spans as short as t2− t1 = 0.0001.

2. Achieving low-latency mapping: Using an incremental KD-tree as the
map’s data structure, mapping is two orders of magnitude faster than
a static KD-tree.

Additionally, LIMO-Velo re-calculates matches for each Kalman Filter
iteration arguing that fast and aggressive movement can lead to big enough
differences even with short time spans. In constrast, Fast-LIO does reuse
matches if the iterated Kalman Filter says it has converged (sometimes
wrongly due to degeneration). Fast-LIO at 10Hz fails in aggressive scenarios,
LIMO-Velo does not.

36 CHAPTER 5. LIMO-VELO

Chapter 6

Results

Note 6.0.1. When comparing with other algorithms, all overlapping param-
eters have been set to the same ones to not favor any.

6.1 Robustness

LIMO-Velo takes into consideration different parameters that control how
much data is processed, the level of refinement we want, estimates of the
noise covariance, calibration extrinsics... A truly robust model should not
depend on exact parameters to work and should have a certain margin for
variation without failing, even in the most adverse scenarios.

6.1.1 Data loss/downsampling

We now study how much LIMO-Velo depends on dense and stable sensor
readings. First we consider data downsampling, arguing other sensors may
have different data densities.

� LiDAR downsampling: Results on the KITTI dataset [6] show that
the first rate of downsampling to fail at least in one run is 64. Compared
to Fast-LIO2’s, which is 8.

� IMU downsampling Results show that the IMU can be downsampled
down to 50Hz and still work on racing conditions. Usual IMUs work
at more than 100Hz, at least.

Then, we consider occasional data loss, arguing that our algorithm cannot
fail if a hardware issue causes it to lose sensor data for a small amount of
time.

37

38 CHAPTER 6. RESULTS

� IMU loss Results show that losing IMU data completely for a short pe-
riod of time (< 1s) when there’s no aggressive movement taking place,
the algorithm still recovers.

� LiDAR loss Results show that losing LiDAR data for a short period
of time (< 1s), the algorithm still recovers.

6.1.2 Size of partitions (field of view)

Different sizes of point cloud partitions (or field of view) should not cause our
algorithm to fail. Bigger size of partitions means more stability in a complex
scenario but in fast and aggressive motion scenarios, smaller partitions offer
more frequent corrected estimations.

Results show that on complex scenarios on the KITTI dataset [6] such as
a drive besides a forest (runs 27, 28 of the KITTI odometry dataset) need big
fields of view because it’s a high-frequency adverse environment where bad
data associations are common. Alternatively, results show that in a racing
scenario, big fields of view work worse because the bigger differences between
predicted and corrected cause the data associating algorithm to be caught in
local minima.

6.1.3 IMU parameters

When integrating IMU measurements, we are propagating their noise. There-
fore, we need to detect and model the IMU measurement’s noise in order to
know what amount can we expect to correct. We do that by assuming that
the accelerometer and gyroscope error from the ground truth both come
from a multivariate R3 normal with means µa, µg and covariance matrices
σaI3×3, σgI3×3.

We will assume the biases µa, µg come from another multivariate R3 nor-
mal with mean 0̄ ∈ R3 and covariance matrices νaI3×3, νgI3×3. Therefore,
we have 4 parameters to tune: two error biases variances ν and two error
variances σ.

Error biases variances

Biases usually are very small, in the order of 10−4. Results show that mod-
elling the bias error variance under its true amount causes a slight drop in
map quality but it doesn’t cause it to drift. Modelling it over its true amount,
causes the algorithm to estimate oversized biases and eventually fail.

6.2. COMPUTATION PERFORMANCE 39

Error variances

Variances are usually bigger, specially the accelerometer variance, in the
order of 10−2. Results show that modelling the error variance under its true
amount causes the algorithm to trust too much the IMU and fail. Modelling
it over, causes an over-calculated propagated covariance that doesn’t cause
failure but we are not able to get accurate intervals of confidence of our
estimated state.

6.2 Computation performance

6.2.1 Speed of computation

Results show that on the KITTI dataset [6], LIMO-Velo is about×1.35 slower
than Fast-LIO2 [27]. However, thanks to the results of the Fast-LIO2 paper,
we can conclude that LIMO-Velo is about ×8 faster than other state-of-the-
art algorithms LIO-SAM [21], LILI-OM [12] and LINS [18]. Setting the field
of view smaller, however, makes the algorithm run slightly slower.

6.3 Performance

6.3.1 KITTI dataset

From the results in Table 6.1 we see LIMO-Velo having a more consistent
performance than Fast-LIO2 [27] with a total averaged (total error divided
by total length) relative improvement of −20.04% (absolute improvement of
−1.09%).

Error is calculated by getting the difference of position at time t + 1:
pt+1 − pt and the orientation rotation matrix at time t: Qt of the algorithm
output and the ground truth data. Then, the error is the sum of:

et := Q−1t−1,a · (pat − pat−1)−Q−1t−1,g · (p
g
t − p

g
t−1)

divided by the total sum of the total length of ground truth data: dpgt :=
‖pgt − pgt−1‖ and multiplied by 100. The idea around this is that we are
comparing locally the position increments at each time t allowing us to detect
drift at every incremental dt instead of comparing the accumulated drift at
the end.

40 CHAPTER 6. RESULTS

Run name LV error ↓ FL error ↓ Relative difference
kitti 2011 09 26 drive 0001 0.95% 0.97% -1.21%
kitti 2011 09 26 drive 0002 1.16% 1.04% 9.75%
kitti 2011 09 26 drive 0009 5.15% 7.42% -44.14%
kitti 2011 09 26 drive 0011 2.05% 2.00% 2.29%
kitti 2011 09 26 drive 0013 1.20% 1.25% -4.22%
kitti 2011 09 26 drive 0014 1.00% 0.89% 10.66%
kitti 2011 09 26 drive 0015 0.57% 3.59% -522.97%∗

kitti 2011 09 26 drive 0019 1.86% 3.04% -63.07%
kitti 2011 09 26 drive 0022 6.81% 13.19% -93.61%
kitti 2011 09 26 drive 0027 0.46% 0.71% -53.33%
kitti 2011 09 26 drive 0028 2.75% 2.79% -1.75%
kitti 2011 09 26 drive 0029 3.09% 6.89% -122.85%∗

kitti 2011 09 26 drive 0032 0.60% 1.16% -90.49%
kitti 2011 09 26 drive 0036 6.28% 6.20% 1.22%
kitti 2011 09 26 drive 0039 2.49% 2.37% 4.86%
kitti 2011 09 26 drive 0051 1.89% 3.65% -93.11%
kitti 2011 09 26 drive 0056 0.60% 0.54% 9.27%
kitti 2011 09 26 drive 0059 2.08% 2.13% -2.04%
kitti 2011 09 26 drive 0061 3.40% 10.88% -219.52%∗

kitti 2011 09 26 drive 0064 2.23% 2.38% -6.50%
kitti 2011 09 26 drive 0070 0.77% 4.81% -519.78%∗

kitti 2011 09 26 drive 0084 2.42% 2.27% 6.07%
kitti 2011 09 26 drive 0086 9.79% 9.96% -1.69%
kitti 2011 09 26 drive 0087 14.9% 18.79% -25.76%
kitti 2011 09 26 drive 0091 4.31% 8.50% -97.06%
kitti 2011 09 26 drive 0095 2.95% 2.86% 2.96%
kitti 2011 09 26 drive 0101 0.71% 0.77% -8.77%
kitti 2011 09 26 drive 0104 2.32% 7.72% -232.49%∗

kitti 2011 09 26 drive 0106 3.51% 3.28% 6.38%
kitti 2011 09 26 drive 0117 11.4% 15.46% -35.45%

Table 6.1: LIMO-Velo (LV) vs. Fast-LIO (FL) error comparison on the
KITTI dataset. LV does better in 21/30 runs. Starred runs (∗) are runs with
a jump in improvement.

6.3. PERFORMANCE 41

(a) ALOAM - Viewpoint A

(b) Fast-LIO - Viewpoint A

(c) LIO-SAM - Viewpoint A (with ×0.5 player speed)

(d) LIMO-Velo - Viewpoint A

42 CHAPTER 6. RESULTS

(a) ALOAM - Viewpoint B

(b) Fast-LIO - Viewpoint B

(c) LIO-SAM - Viewpoint B (with ×0.5 player speed)

(d) LIMO-Velo - Viewpoint B

6.3. PERFORMANCE 43

(a) ALOAM - Viewpoint C

(b) Fast-LIO - Viewpoint C

(c) LIO-SAM - Viewpoint C (with ×0.5 player speed)

(d) LIMO-Velo - Viewpoint C

44 CHAPTER 6. RESULTS

(a) ALOAM - Viewpoint D

(b) Fast-LIO - Viewpoint D

(c) LIO-SAM - Viewpoint D (with ×0.5 player speed)

(d) LIMO-Velo - Viewpoint D

6.3. PERFORMANCE 45

6.3.2 Xaloc’s map comparison

Note 6.3.1. LIO-SAM [21] had to be fed data at×0.5 speed, because it failed
otherwise. Fast-LIO2 [27], A-LOAM [29] and LIMO-Velo were performing at
real-time.

6.3.3 Xaloc’s odometry comparison

The recorded run are two laps in the same circuit for 60 seconds so loop
closures can be compared. It is a fast but smooth drive, we give its velocity
profile below.

-320 -310 -300 -290 -280 -270

-4.52e6

-5

0

5

10

15
Speed (m/s)

Yaw rate (rad/s)

Figure 6.5: Peak speed: 13m/s. Peak turn speed: 80deg/s.

� A-LOAM cannot close the loop.

� LIO-SAM shows erratic movements.

� Fast-LIO shows smooth and accurate loop closures.

� LIMO-Velo shows smooth and accurate loop closures.

46 CHAPTER 6. RESULTS

−40 −30 −20 −10 0 10 20 30 40 50

−60

−50

−40

−30

−20

−10

0

10

20
A-LOAM

LIMO-Velo
Fast-LIO
LIO-SAM

GPS

Figure 6.6: All algorithms aggregated.

−30 −25 −20 −15 −10 −5 0 5 10
−60

−55

−50

−45

−40

−35

−30

−25

−20
LIMO-Velo
Fast-LIO

GPS

Figure 6.7: Two best performers compared - Down part.

6.3. PERFORMANCE 47

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
LIMO-Velo
Fast-LIO

GPS

Figure 6.8: Two best performers compared - Up part.

−30 −25 −20 −15 −10 −5 0 5 10 15 20

−60

−50

−40

−30

−20

−10

0

10

20
LIMO-Velo

GPS

Figure 6.9: LIMO-Velo odometry

48 CHAPTER 6. RESULTS

−30 −25 −20 −15 −10 −5 0 5 10 15 20

−60

−50

−40

−30

−20

−10

0

10

20
Fast-LIO

GPS

Figure 6.10: Fast-LIO odometry

−30 −25 −20 −15 −10 −5 0 5 10 15 20

−60

−50

−40

−30

−20

−10

0

10

20
LIO-SAM

GPS

Figure 6.11: LIO-SAM odometry

6.3. PERFORMANCE 49

−30 −20 −10 0 10 20

−60

−50

−40

−30

−20

−10

0

10

20
A-LOAM

GPS

Figure 6.12: A-LOAM odometry

50 CHAPTER 6. RESULTS

Chapter 7

Conclusions

7.1 Main key contributions

7.1.1 Localize Intensively

We propose that in order to keep centimeter-level accuracy under high ve-
locities, the algorithm needs more frequent localization results.

7.1.2 Map Offline

We propose, when working with spinning LiDARs, to accumulate all the
points from a full rotation and then map them after it ends. Contrary to
mapping them at the localization’s rate.

7.2 Derived improvements

7.2.1 Improvement over the SOTA

Odometry improvement

We show a 20.04% improvement over Fast-LIO on the KITTI dataset [6] and
show that LIMO-Velo works better than Fast-LIO2 [27], LIO-SAM [21] and
A-LOAM [29] on our data.

Map quality improvement

We show a qualitative improvement of map quality over other SOTA algo-
rithms. We show a ∼ 2cm error over the known specifications of the cone.

51

52 CHAPTER 7. CONCLUSIONS

7.2.2 Improvement in infrastructure

Pointclouds as a stream of points

Instead of treating pointclouds as rigid data structures, we treat them as
streams of stamped points. This conceptual decision helps achieve higher
flexibility in the code and allows for easier motion compenstaion, easier lo-
calization updates and easier mapping updates.

Code designed to be improved

The code has been designed in a modular way meant to be improved. Its
internal data structures are independent and can be changed and new sensors
can be added smoothly.

7.3 Achieved objectives

LIMO-Velo achieves the objectives outlined in the first chapter of what we
wanted from a SLAM algorithm.

A - Hard requirements

1. It successfully detects if we are crossing or not with the track limit with
centimeter-level accuracy.

2. It outputs information at the frequency we desire, with options to go
up to 1000Hz.

3. Successfully handles fast and aggressive motions of 20m/s and 500deg/s.

B - Soft requirements

1. It creates a long-range, high-density, centimeter-level map with enough
detail to identify cones in it.

2. The Kalman Filter updates the sensor calibration parameters in real-
time.

3. It is stable to occasional sensor failure and degeneracy.

7.3. ACHIEVED OBJECTIVES 53

C - Design requirements

1. Does not depend on GPS signal nor lightning conditions.

2. It has an easy and modular design made to be easily maintained.

3. CPU cost is low enough to not intercept with other parts of the pipeline.

54 CHAPTER 7. CONCLUSIONS

Chapter 8

Future work

Note 8.0.1. This part is unusually long and detailed as its purpose is to
clearly outline what can be improved of the algorithm in the next 2 to 3
seasons by the new generations of BCN eMotorsport.

8.1 Natural step: Dynamic objects’ removal

In Chapter 5 it is already discussed that ”Mapping Offline” allows the pro-
cessing of the pointcloud that we will register on the map. An extra package
for dynamic object detection has to be added to the code but a part from
that, the infrastructure is already there. Here’s the steps that need to be
taken in order to have the dynamic object removal functionality:

1. Add as dependency a package for identifying moving objects from a
pointcloud such as LMNet (LiDAR-MOS) by Chen et. al, 2021 [3].

2. Create a new object: the Masker. With the four following public meth-
ods:

Identify. Given a collection of points, return the same collection of
points marked with an extra variable determining if they belong to a
moving object or not.

Set. Given a collection of marked points, return a voxelgrid with
0s and 1s depending if each grid is corrupted or not.

Apply. Given a point, return if that point is on a corrupted area
or not.

3. While waiting to map, identify dynamic objects and set the mask.

4. Before mapping or localizing, apply the mask to the points and only
map/localize with the non-corrupted points.

55

56 CHAPTER 8. FUTURE WORK

8.2 Other possible lines of work

8.2.1 Estimation of future actions of moving objects

Additional work can be done on tracking the removed moving objects as ac-
tual objects inside the framework. Possibly using Kalman Filters to estimate
their state and predict where will they move to and create better masks.
Work to be done is:

1. Have the ”dynamic objects’ removal” module up and running.

2. Define a new Agent object that consists of a list of attributes conveying
information of the moving object and a Kalman filter estimating pose,
orientation and velocity vector.

3. Given the pointcloud of corrupted points, cluster them into different
entities.

4. For each entity, check if it already exists an Agent object which its pre-
dicted position’s likelihood is high enough given this new observation
and create an association. If there’s not a close Agent, create a new
one.

5. When setting the mask, consider masking the 95% percentile of each
Agent’s predicted position covariance matrix.

8.2.2 Loop closure detection

If we aim to build consistent maps of long routes, loop closures are a require-
ment. They help reduce accumulated drift in repeatable scenarios, such as
a race with multiple laps. To perform loop closures efficiently, however, we
would need yet another new tree structure: a temporal incremental KD-tree.

Modifying the ikd-Tree by timestamp

The algorithm now maps once and the points get lost on the sea of points
in the tree, we do not have an efficient way to recover points from a same
scan and modify them all at once. With loop closures, what happens is that
we find a match between two states’ positions at times tk and tl. When this
happens, we add the constraint ptk = ptl and therefore we need to smoothly
correct all previous map addings until tl to fit it.

We would need to efficiently access all points added in the time span [tl, tk]
and correct their location with the new estimates x∗l:k. That would mean a

8.2. OTHER POSSIBLE LINES OF WORK 57

major change: being able to modify previous map addings by timestamp.
To do that efficiently, a new data structure - a temporal incremental KD-
Tree - should be created having the collection of all past corrected states and
the mapped points associated to them, just like in GraphSLAM. Said states
and the points mapped through them should be accessed and modifiable
efficiently by timestamp.

8.2.3 Multiple LiDARs and IMUs

Another natural step is to ask how could we incorporate more LiDAR and
IMU sensors. If we wanted to do that we would need to change a couple of
things:

1. The Accumulator should consider more than one source for sensor.

2. The state used by the Kalman Filter should consider more than one
group of calibration parameters.

The easy way to accept multiple LiDAR sensors would be to do corrections
one LiDAR at the time. With multiple IMU sensors, the predicted state
would have to take into account all the IMU predictions (considering their
extrinsic and intrinsic calibrations) and weight them into a single prediction.

8.2.4 Removing long term drift with GNSS

With long term travels, a part from loop closure, GNSS is a feature-agnostic
sensor that even though it has a high accuracy error it is the most stable
through long travels. To add GNSS to our framework, we would have to
make the following changes:

1. The Accumulator should consider a new data source.

2. We should add the GNSS bias on the Kalman Filter’s state since it
changes a lot.

3. We should define a covariance matrix for the GNSS sensor on the con-
figuration files.

4. The Localizator should take as correction the GNSS measures before
correcting accurately with the LiDAR.

5. The GPS heading should be aligned with the IMU’s heading.

58 CHAPTER 8. FUTURE WORK

8.3 The next step: LiDAR-Visual-Inertial Odom-

etry and Mapping

A next step that naturally comes up is to add cameras into the mix for their
good complementary benefits with LiDAR sensors. Cameras offer greater de-
tail and can still see features on geometrically degenerate scenarios. LiDAR,
on the other hand, brings precise depth estimation that can be complemented
with the intensity information of the cameras.

8.3.1 Adding cameras without correcting pose

We will assume the LiDAR-camera online calibration will be done parallelly
with a separate program. In order to add cameras to LIMO-Velo, we would
have to do the following steps:

1. The Accumulator should consider a new data source.

2. The Point object should be extended to have RGB attributes.

3. Before mapping, we should project the camera(s) color values to the
points we are about to register to the map.

8.3.2 Adding cameras for correcting pose: R2LIVE
and R3LIVE

The Fast-LIO [26] [27] authors also have thought about adding cameras to
improve Fast-LIO’s accuracy and they published two solutions: R2LIVE (Jin
et. al, 2021) [15] and R3LIVE (Jin et. al, 2021) [14] that do exactly that. The
first one, R2LIVE (2021), mixes Fast-LIO (2020) with VINS-Mono (2018)
[19] a widely used Visual-Inertial solution by Qin et. al from the HKUST.
R3LIVE (2021) mixes Fast-LIO2 (2021) with their own (unpublished) direct
visual-inertial solution. The idea is to use a shared state and shared global
map and estimate them using both camera intensities and LiDAR points.
Therefore, have two tightly-coupled LIO and VIO SLAMs parallelly where:

1. LIO: contributes to the geometry structure of the map and serves as
the VIO’s depth estimation.

2. VIO: contributes to the map’s texture.

R2LIVE’s main structure is a factor graph and optimizes LiDAR and cam-
era observations. R3LIVE, on the other hand, relies on the fact that LiDAR

8.4. THE GOAL: VISUAL-INERTIAL SLAM 59

gives geometric structure and camera gives texture information. Therefore,
it can use LiDAR to build a geometric foundation that serves as depth to the
camera and the camera acts as a refined odometry by using all the details
vision offers.

8.4 The goal: Visual-Inertial SLAM

R3LIVE [14] already proves that cameras offer greater feature-rich environ-
ments and can achieve more refined results than LiDAR solutions. Therefore,
it’s only natural to think of ways to bypass the LiDAR [17] altogether and
overcome its liabilities.

8.4.1 LiDAR liabilities

As discussed in Chapter 1, LiDARs are prohibitively expensive, hard to main-
tain and offer little details in geometrically degraded environments. In the
contrary, cameras are cheap we can put lots of them everywhere and are easy
to replace and maintain for their wide usage.

8.4.2 Difficulties and requirements

As R3LIVE [14] shows, having a great depth estimation goes a long way and
major efforts are taking place on depth estimation, specially from the deep
learning community, to solve this problem.

Deep learning approaches still have a long journey to match the robust-
ness and accuracy of current state-of-the-art SLAM methods. The commu-
nity effort to push forward the field to achieve a truly ”complete” SLAM is
very present on the number of SLAM papers released yearly, and my bet is
that it will come from non-end-to-end methods first.

There’s still room for lots of improvement and it’s exciting to see that
Formula Student can be a key contributor to the autonomous revolution.

60 CHAPTER 8. FUTURE WORK

Bibliography

[1] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for
Associative Searching”. In: Commun. ACM 18.9 (1975), 509–517. issn:
0001-0782. doi: 10.1145/361002.361007. url: https://doi.org/
10.1145/361002.361007.

[2] Yixi Cai, Wei Xu, and Fu Zhang. “ikd-Tree: An Incremental K-D Tree
for Robotic Applications”. In: CoRR abs/2102.10808 (2021). arXiv:
2102.10808. url: https://arxiv.org/abs/2102.10808.

[3] X. Chen et al. “Moving Object Segmentation in 3D LiDAR Data:
A Learning-based Approach Exploiting Sequential Data”. In: IEEE
Robotics and Automation Letters (RA-L) (2021). issn: 2377-3766. doi:
10.1109/LRA.2021.3093567.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localization and map-
ping: part I. 2006. doi: 10.1109/mra.2006.1638022. url: http:

//dx.doi.org/10.1109/MRA.2006.1638022.

[5] Formula Student Germany Website. url: https://www.formulastudent.
de/fsg/.

[6] A Geiger et al. Vision meets robotics: The KITTI dataset. 2013. doi:
10.1177/0278364913491297. url: http://dx.doi.org/10.1177/
0278364913491297.

[7] Formula Student Germany. FSG Rules 2022. https://www.formulastudent.
de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.

0.pdf.

[8] Dongjiao He, Wei Xu, and Fu Zhang. Kalman Filters on Differentiable
Manifolds. 2021. arXiv: 2102.03804 [cs.RO].

[9] Jocelyn Quaintance Jean Gallier. Linear Algebra and Optimization with
Applications to Machine Learning: Volume I: Linear Algebra for Com-
puter Vision, Robotics, and Machine Learning.

[10] Rudolf E. Kálmán. “A new approach to linear filtering and prediction
problems” transaction of the asme journal of basic”. In: 1960.

61

62 BIBLIOGRAPHY

[11] Kistler. Correvit SFII (GSS sensor) Data Sheet. https://www.kistler.
com/files/document/000-812e.pdf.

[12] Kailai Li, Meng Li, and Uwe D. Hanebeck. “Towards High-Performance
Solid-State-LiDAR-Inertial Odometry and Mapping”. In: IEEE Robotics
and Automation Letters 6.3 (2021), pp. 5167–5174. doi: 10.1109/LRA.
2021.3070251.

[13] Jiarong Lin and Fu Zhang. Loam livox: A fast, robust, high-precision
LiDAR odometry and mapping package for LiDARs of small FoV. 2020.
doi: 10.1109/icra40945.2020.9197440. url: http://dx.doi.org/
10.1109/ICRA40945.2020.9197440.

[14] Jiarong Lin and Fu Zhang. R3LIVE: A Robust, Real-time, RGB-colored,
LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping
package. 2021. arXiv: 2109.07982 [cs.RO].

[15] Jiarong Lin et al. R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual
tightly-coupled state Estimator and mapping. 2021. arXiv: 2102.12400
[cs.RO].

[16] Michael Montemerlo et al. “FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping Problem”. In: Nov. 2002.

[17] Raul Mur-Artal and Juan D. Tardos. “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras”. In: IEEE
Transactions on Robotics 33.5 (2017), 1255–1262. issn: 1941-0468. doi:
10.1109/tro.2017.2705103. url: http://dx.doi.org/10.1109/
TRO.2017.2705103.

[18] Chao Qin et al. LINS: A Lidar-Inertial State Estimator for Robust and
Efficient Navigation. 2020. arXiv: 1907.02233 [cs.RO].

[19] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and
Versatile Monocular Visual-Inertial State Estimator”. In: IEEE Trans-
actions on Robotics 34.4 (2018), 1004–1020. issn: 1941-0468. doi: 10.
1109/tro.2018.2853729. url: http://dx.doi.org/10.1109/TRO.
2018.2853729.

[20] Tixiao Shan and Brendan Englot. LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain. 2018.
doi: 10.1109/iros.2018.8594299. url: http://dx.doi.org/10.
1109/IROS.2018.8594299.

[21] Tixiao Shan et al. LIO-SAM: Tightly-coupled Lidar Inertial Odometry
via Smoothing and Mapping. 2020. doi: 10.1109/iros45743.2020.
9341176. url: http://dx.doi.org/10.1109/IROS45743.2020.

9341176.

BIBLIOGRAPHY 63

[22] Joan Solà. “Quaternion kinematics for the error-state Kalman filter”.
In: CoRR abs/1711.02508 (2017). arXiv: 1711 . 02508. url: http :

//arxiv.org/abs/1711.02508.

[23] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.
isbn: 0262201623.

[24] Sebastian Thrun and Michael Montemerlo. The Graph SLAM Algo-
rithm with Applications to Large-Scale Mapping of Urban Structures.
2006. doi: 10.1177/0278364906065387. url: http://dx.doi.org/
10.1177/0278364906065387.

[25] Sebastian Thrun et al. Stanley: The Robot That Won the DARPA
Grand Challenge. 2007. doi: 10.1007/978-3-540-73429-1_1. url:
http://dx.doi.org/10.1007/978-3-540-73429-1_1.

[26] Wei Xu and Fu Zhang. FAST-LIO: A Fast, Robust LiDAR-Inertial
Odometry Package by Tightly-Coupled Iterated Kalman Filter. 2021.
doi: 10.1109/lra.2021.3064227. url: http://dx.doi.org/10.
1109/LRA.2021.3064227.

[27] Wei Xu et al. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. 2022.
doi: 10.1109/tro.2022.3141876. url: http://dx.doi.org/10.
1109/TRO.2022.3141876.

[28] Ji Zhang, Michael Kaess, and Sanjiv Singh. On degeneracy of optimization-
based state estimation problems. 2016. doi: 10 . 1109 / icra . 2016 .

7487211. url: http://dx.doi.org/10.1109/ICRA.2016.7487211.

[29] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry and Mapping in
Real-time. 2014. doi: 10.15607/rss.2014.x.007. url: http://dx.
doi.org/10.15607/RSS.2014.X.007.

