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Point of View & Time

Figure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex

non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without

the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances

synthesised by the proposed model.

Abstract

Neural rendering techniques combining machine learn-

ing with geometric reasoning have arisen as one of the most

promising approaches for synthesizing novel views of a

scene from a sparse set of images. Among these, stands out

the Neural radiance fields (NeRF) [31], which trains a deep

network to map 5D input coordinates (representing spatial

location and viewing direction) into a volume density and

view-dependent emitted radiance. However, despite achiev-

ing an unprecedented level of photorealism on the gener-

ated images, NeRF is only applicable to static scenes, where

the same spatial location can be queried from different im-

ages. In this paper we introduce D-NeRF, a method that

extends neural radiance fields to a dynamic domain, allow-

ing to reconstruct and render novel images of objects under

rigid and non-rigid motions from a single camera moving

around the scene. For this purpose we consider time as an

additional input to the system, and split the learning process

in two main stages: one that encodes the scene into a canon-

ical space and another that maps this canonical represen-

tation into the deformed scene at a particular time. Both

mappings are simultaneously learned using fully-connected

networks. Once the networks are trained, D-NeRF can ren-

der novel images, controlling both the camera view and the

time variable, and thus, the object movement. We demon-

strate the effectiveness of our approach on scenes with ob-

jects under rigid, articulated and non-rigid motions. Code,

model weights and the dynamic scenes dataset will be avail-

able at [1].

1. Introduction

Rendering novel photo-realistic views of a scene from

a sparse set of input images is necessary for many appli-

cations in e.g. augmented reality, virtual reality, 3D con-

tent production, games and the movie industry. Recent

advances in the emerging field of neural rendering, which

learn scene representations encoding both geometry and

appearance [31, 28, 24, 58, 34, 41], have achieved re-

sults that largely surpass those of traditional Structure-

10318



from-Motion [18, 48, 44], light-field photography [22] and

image-based rendering approaches [6]. For instance, the

Neural Radiance Fields (NeRF) [31] have shown that sim-

ple multilayer perceptron networks can encode the mapping

from 5D inputs (representing spatial locations (x, y, z) and

camera views (θ, φ)) to emitted radiance values and volume

density. This learned mapping allows then free-viewpoint

rendering with extraordinary realism. Subsequent works

have extended Neural Radiance Fields to images in the wild

undergoing severe lighting changes [28] and have proposed

sparse voxel fields for rapid inference [24]. Similar schemes

have also been recently used for multi-view surface recon-

struction [58] and learning surface light fields [35].

Nevertheless, all these approaches assume a static scene

without moving objects. In this paper we relax this assump-

tion and propose, to the best of our knowledge, the first end-

to-end neural rendering system that is applicable to dynamic

scenes, made of both still and moving/deforming objects.

While there exist approaches for 4D view synthesis [3], our

approach is different in that: 1) we only require a single

camera; 2) we do not need to pre-compute a 3D reconstruc-

tion; and 3) our approach can be trained end-to-end.

Our idea is to represent the input of our system with

a continuous 6D function, which besides 3D location and

camera view, it also considers the time component t.

Naively extending NeRF to learn a mapping from (x, y, z, t)
to density and radiance does not produce satisfying results,

as the temporal redundancy in the scene is not effectively

exploited. Our observation is that objects can move and

deform, but typically do not appear or disappear. Inspired

by classical 3D scene flow [51], the core idea to build our

method, denoted Dynamic-NeRF (D-NeRF in short), is to

decompose learning in two modules. The first one learns a

spatial mapping (x, y, z, t) → (∆x,∆y,∆z) between each

point of the scene at time t and a canonical scene config-

uration. The second module regresses the scene radiance

emitted in each direction and volume density given the tu-

ple (x + ∆x, y + ∆y, z + ∆z, θ, φ). Both mappings are

learned with deep fully connected networks without convo-

lutional layers. The learned model then allows to synthesize

novel images, providing control in the continuum (θ, φ, t)
of the camera views and time component, or equivalently,

the dynamic state of the scene (see Fig. 1).

We thoroughly evaluate D-NeRF on scenes undergoing

very different types of deformation, from articulated mo-

tion to humans performing complex body poses. We show

that by decomposing learning into a canonical scene and

scene flow D-NeRF is able to render high-quality images

while controlling both camera view and time components.

As a side-product, our method is also able to produce com-

plete 3D meshes that capture the time-varying geometry and

which remarkably are obtained by observing the scene un-

der a specific deformation only from one single viewpoint.

2. Related work

Neural implicit representation for 3D geometry. The

success of deep learning on the 2D domain has spurred a

growing interest in the 3D domain. Nevertheless, which

is the most appropriate 3D data representation for deep

learning remains an open question, especially for non-

rigid geometry. Standard representations for rigid geome-

try include point-clouds [49, 39], voxels [17, 56] and oc-

trees [52, 45]. Recently, there has been a strong burst in

representing 3D data in an implicit manner via a neural net-

work [29, 36, 7, 55, 9, 11, 16]. The main idea behind this

approach is to describe the information (e.g. occupancy, dis-

tance to surface, color, illumination) of a 3D point x as the

output of a neural network f(x). Compared to the previ-

ously mentioned representations, neural implicit represen-

tations allow for continuous surface reconstruction at a low

memory footprint.

The first works exploiting implicit representations [29,

36, 7, 55] for 3D representation were limited by their re-

quirement of having access to 3D ground-truth geometry,

often expensive or even impossible to obtain for in the

wild scenes. Subsequent works relaxed this requirement

by introducing a differentiable render allowing 2D super-

vision. For instance, [25] proposed an efficient ray-based

field probing algorithm for efficient image-to-field supervi-

sion. [34, 57] introduced an implicit-based method to cal-

culate the exact derivative of a 3D occupancy field surface

intersection with a camera ray. In [43], a recurrent neu-

ral network was used to ray-cast the scene and estimate the

surface geometry. Although these techniques have a great

potential to represent 3D shapes in an unsupervised manner,

they are typically limited to relatively simple geometries.

NeRF [31] showed that by implicitly representing a rigid

scene using 5D radiance fields makes it possible to capture

high-resolution geometry and photo-realistically rendering

novel views. [28] extended this method to handle variable

illumination and transient occlusions to deal with in the wild

images. In [24], even more complex 3D surfaces were rep-

resented by using voxel-bounded implicit fields. And [58]

relaxed the requirement of multiview camera calibration,

and Stereo Radiance Fields [10] generalize NeRF to mul-

tiple scenes by integrating classical stereo within NeRF.

None of the aforementioned methods can deal with dynamic

and deformable scenes.

Neural implicit functions have been generalized to ar-

ticulated objects and non-rigid objects [33, 13] but require

full 3D ground-truth supervision. Neural volumes [26] pro-

duced high quality reconstruction results via voxel-based

representation enhanced with an implicit voxel warp field,

but they require a muti-view image capture setting.

To the best of our knowledge, D-NeRF is the first ap-

proach able to generate a neural implicit representation

for non-rigid and time-varying scenes, trained solely on
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Figure 2: Problem Definition. Given a sparse set of images of a dynamic scene moving non-rigidly and being captured by a monocular

camera, we aim to design a deep learning model to implicitly encode the scene and synthesize novel views at an arbitrary time. Here,

we visualize a subset of the input training frames paired with accompanying camera parameters, and we show three novel views at three

different time instances rendered by the proposed method.

monocular data without the need of 3D ground-truth super-

vision nor a multi-view camera setting. Concurrent to our

work, other groups have also introduced dynamic general-

izations of NeRF [54, 37, 23, 47].

Novel view synthesis. Novel view synthesis is a long

standing vision and graphics problem that aims to synthe-

size new images from arbitrary view points of a scene cap-

tured by multiple images. Most traditional approaches for

rigid scenes consist on reconstructing the scene from multi-

ple views with Structure-from-Motion [18] and bundle ad-

justment [48], while other approaches propose light-field

based photography [22]. More recently, deep learning based

techniques [42, 20, 14, 12, 30] are able to learn a neural vol-

umetric representation from a set of sparse images.

However, none of these methods can synthesize novel

views of dynamic scenes. To tackle non-rigid scenes most

methods approach the problem by reconstructing a dynamic

3D textured mesh. 3D reconstruction of non-rigid sur-

faces from monocular images is known to be severely ill-

posed. Structure-from-Template (SfT) approaches [4, 8, 32]

recover the surface geometry given a reference known

template configuration. Temporal information is another

prior typically exploited. Non-rigid-Structure-from-Motion

(NRSfM) techniques [46, 2] exploit temporal information.

Yet, SfT and NRSfM require either 2D-to-3D matches or

2D point tracks, limiting their general applicability to rela-

tively well-textured surfaces and mild deformations.

Some of these limitations are overcome by learning

based techniques, which have been effectively used for syn-

thesizing novel photo-realistic views of dynamic scenes.

For instance, [3, 62, 19] capture the dynamic scene at the

same time instant from multiple views, to then generate 4D

space-time visualizations. [15, 38, 61] also leverage on si-

multaneously capturing the scene from multiple cameras to

estimate depth, completing areas with missing information

and then performing view synthesis. In [59], the need of

multiple views is circumvented by using a pre-trained net-

work that estimates a per frame depth. This depth, jointly

with the optical flow and consistent depth estimation across

frames, are then used to interpolate between images and

render novel views. Nevertheless, by decoupling depth es-

timation from novel view synthesis, the outcome of this

approach becomes highly dependent on the quality of the

depth maps as well as on the reliability of the optical flow.

Very recently, X-Fields [5] introduced a neural network

to interpolate between images taken across different view,

time or illumination conditions. However, while this ap-

proach is able to process dynamic scenes, it requires more

than one view. Since no 3D representation is learned, vari-

ation in viewpoint is small.

D-NeRF is different from all prior work in that it does

not require 3D reconstruction, can be learned end-to-end,

and requires a single view per time instance. Another ap-

pealing characteristic of D-NeRF is that it inherently learns

a time-varying 3D volume density and emitted radiance,

which turns the novel view synthesis into a ray-casting pro-

cess instead of a view interpolation, which is remarkably

more robust to rendering images from arbitrary viewpoints.

3. Problem Formulation

Given a sparse set of images of a dynamic scene captured

with a monocular camera, we aim to design a deep learning

model able to implicitly encode the scene and synthesize

novel views at an arbitrary time (see Fig. 2).

Formally, our goal is to learn a mapping M that, given

a 3D point x = (x, y, z), outputs its emitted color c =
(r, g, b) and volume density σ conditioned on a time instant

t and view direction d = (θ, φ). That is, we seek to estimate

the mapping M : (x,d, t) → (c, σ).

An intuitive solution would be to directly learn the trans-

formation M from the 6D space (x,d, t) to the 4D space

(c, σ). However, as we will show in the results section, we

obtain consistently better results by splitting the mapping M

into Ψx and Ψt, where Ψx represents the scene in canoni-

cal configuration and Ψt a mapping between the scene at

time instant t and the canonical one. More precisely, given

a point x and viewing direction d at time instant t we first

transform the point position to its canonical configuration
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Figure 3: D-NeRF Model. The proposed architecture consists of two main blocks: a deformation network Ψt mapping all scene

deformations to a common canonical configuration; and a canonical network Ψx regressing volume density and view-dependent RGB

color from every camera ray.

as Ψt : (x, t) → ∆x. Without loss of generality, we chose

t = 0 as the canonical scene Ψt : (x, 0) → 0. By doing so

the scene is no longer independent between time instances,

and becomes interconnected through a common canonical

space anchor. Then, the assigned emitted color and vol-

ume density under viewing direction d equal to those in the

canonical configuration Ψx : (x+∆x,d) → (c, σ).

We propose to learn Ψx and Ψt using a sparse set of T

RGB images {It,Tt}
T
t=1 captured with a monocular cam-

era, being It ∈ R
H×W×3 the image acquired under camera

pose Tt ∈ R
4×4 SE(3), at time t. Although we could as-

sume multiple views per time instance, we want to test the

limits of our method, and assume a single image per time in-

stance. That is, we do not observe the scene under a specific

configuration/deformation state from different viewpoints.

4. Method

We now introduce D-NeRF, our novel neural renderer for

view synthesis trained solely from a sparse set of images of

a dynamic scene. We build on NeRF [31] and generalize it

to handle non-rigid scenes. Recall that NeRF requires mul-

tiple views of a rigid scene In contrast, D-NeRF can learn a

volumetric density representation for continuous non-rigid

scenes trained with a single view per time instant.

As shown in Fig. 3, D-NeRF consists of two main neu-

ral network modules, which parameterize the mappings ex-

plained in the previous section Ψt,Ψx. On the one hand we

have the Canonical Network, an MLP (multilayer percep-

tron) Ψx(x,d) 7→ (c, σ) is trained to encode the scene in

the canonical configuration such that given a 3D point x and

a view direction d returns its emitted color c and volume

density σ. The second module is called Deformation Net-

work and consists of another MLP Ψt(x, t) 7→ ∆x which

predicts a deformation field defining the transformation be-

tween the scene at time t and the scene in its canonical

configuration. We next describe in detail each one of these

blocks (Sec. 4.1), their interconnection for volume render-

ing (Sec. 4.2) and how are they learned (Sec. 4.3).

4.1. Model Architecture

Canonical Network. With the use of a canonical config-

uration we seek to find a representation of the scene that

brings together the information of all corresponding points

in all images. By doing this, the missing information from a

specific viewpoint can then be retrieved from that canonical

configuration, which shall act as an anchor interconnecting

all images.

The canonical network Ψx is trained so as to encode vol-

umetric density and color of the scene in canonical config-

uration. Concretely, given the 3D coordinates x of a point,

we first encode it into a 256-dimensional feature vector.

This feature vector is then concatenated with the camera

viewing direction d, and propagated through a fully con-

nected layer to yield the emitted color c and volume density

σ for that given point in the canonical space.

Deformation Network. The deformation network Ψt is op-

timized to estimate the deformation field between the scene

at a specific time instant and the scene in canonical space.

Formally, given a 3D point x at time t, Ψt is trained to out-

put the displacement ∆x that transforms the given point to

its position in the canonical space as x + ∆x. For all ex-

periments, without loss of generality, we set the canonical

scene to be the scene at time t = 0:

Ψt(x, t) =

{

∆x, if t 6= 0

0, if t = 0
(1)

As shown in previous works [40, 50, 31], directly feed-

ing raw coordinates and angles to a neural network results in

low performance. Thus, for both the canonical and the de-

formation networks, we first encode x, d and t into a higher

dimension space. We use the same positional encoder as

in [31] where γ(p) =< (sin(2lπp), cos(2lπp)) >L
0 . We in-

dependently apply the encoder γ(·) to each coordinate and

camera view component, using L = 10 for x, and L = 4
for d and t.
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4.2. Volume Rendering

We now adapt NeRF volume rendering equations to ac-

count for non-rigid deformations in the proposed 6D neural

radiance field. Let x(h) = o+hd be a point along the cam-

era ray emitted from the center of projection o to a pixel p.

Considering near and far bounds hn and hf in that ray, the

expected color C of the pixel p at time t is given by:

C(p, t) =

∫ hf

hn

T(h, t)σ(p(h, t))c(p(h, t),d)dh, (2)

where p(h, t) = x(h) + Ψt(x(h), t), (3)

[c(p(h, t),d), σ(p(h, t))] = Ψx(p(h, t),d), (4)

and T(h, t) = exp

(

−

∫ h

hn

σ(p(s, t))ds

)

. (5)

The 3D point p(h, t) denotes the point on the camera ray

x(h) transformed to canonical space using our Deformation

Network Ψt, and T(h, t) is the accumulated probability that

the ray emitted from hn to hf does not hit any other particle.

Notice that the density σ and color c are predicted by our

Canonical Network Ψx.

As in [31] the volume rendering integrals in Eq. (2)

and Eq. (5) can be approximated via numerical quadrature.

To select a random set of quadrature points {hn}
N
n=1 ∈

[hn, hf ] a stratified sampling strategy is applied by uni-

formly drawing samples from evenly-spaced ray bins. A

pixel color is approximated as:

C ′(p, t) =
N
∑

n=1

T
′(hn, t)α(hn, t, δn)c(p(hn, t),d), (6)

where α(h, t, δ) = 1− exp(−σ(p(h, t))δ), (7)

and T
′(hn, t) = exp

(

−

n−1
∑

m=1

σ(p(hm, t))δm

)

, (8)

and δn = hn+1−hn is the distance between two quadrature

points.

4.3. Learning the Model

The parameters of the canonical Ψx and deformation

Ψt networks are simultaneously learned by minimizing the

mean squared error with respect to the T RGB images

{It}
T
t=1 of the scene and their corresponding camera pose

matrices {Tt}
T
t=1. Recall that every time instant is only

acquired by a single camera.

At each training batch, we first sample a random set of

pixels {pt,i}
Ns

i=1
corresponding to the rays cast from some

camera position Tt to some pixels i of the corresponding

RGB image t. We then estimate the colors of the chosen

pixels using Eq. (6). The training loss we use is the mean

squared error between the rendered and real pixels:

L =
1

Ns

Ns
∑

i=1

∥

∥

∥
Ĉ(p, t)− C ′(p, t)

∥

∥

∥

2

2

(9)

where Ĉ are the pixels’ ground-truth color.

5. Implementation Details

Both the canonical network Ψx and the deformation net-

work Ψt consists on simple 8-layers MLPs with ReLU ac-

tivations. For the canonical network a final sigmoid non-

linearity is applied to c and σ. No non-linearlity is applied

to ∆x in the deformation network.

For all experiments we set the canonical configuration

as the scene state at t = 0 by enforcing it in Eq. (1). To

improve the networks convergence, we sort the input im-

ages according to their time stamps (from lower to higher)

and then we apply a curriculum learning strategy where we

incrementally add images with higher time stamps.

The model is trained with 400×400 images during 800k
iterations with a batch size of Ns = 4096 rays, each sam-

pled 64 times along the ray. As for the optimizer, we

use Adam [21] with learning rate of 5e − 4, β1 = 0.9,

β2 = 0.999 and exponential decay to 5e − 5. The model

is trained with a single Nvidia® GTX 1080 for 2 days.

6. Experiments

This section provides a thorough evaluation of our sys-

tem. We first test the main components of the model,

namely the canonical and deformation networks (Sec. 6.1).

We then compare D-NeRF against NeRF and T-NeRF,

a variant in which does not use the canonical mapping

(Sec. 6.2). Finally, we demonstrate D-NeRF ability to syn-

thesize novel views at an arbitrary time in several complex

dynamic scenes (Sec. 6.3).

In order to perform an exhaustive evaluation we have ex-

tended NeRF [31] rigid benchmark with eight scenes con-

taining dynamic objects under large deformations and real-

istic non-Lambertian materials. As in the rigid benchmark

of [31], six are rendered from viewpoints sampled from the

upper hemisphere, and two are rendered from viewpoints

sampled on the full sphere. Each scene contains between

100 and 200 rendered views depending on the action time

span, all at 800 × 800 pixels. We will release the path-

traced images with defined train/validation/test splits for

these eight scenes.

6.1. Dissecting the Model

This subsection provides insights about D-NeRF be-

haviour when modeling a dynamic scene and analyze the

two main modules, namely the canonical and deformation

networks.
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Figure 4: Visualization of the Learned Scene Representation. From left to right: the learned radiance from a specific viewpoint,

the volume density represented as a 3D mesh and a depth map, and the color-coded points of the canonical configuration mapped to the

deformed meshes based on ∆x. The same colors on corresponding points indicate the correctness of such mapping.

Canonical Spacet=0.5 t=1

Figure 5: Analyzing Shading Effects. Pairs of corresponding

points between the canonical space and the scene at times t = 0.5

and t = 1.

We initially evaluate the ability of the canonical network

to represent the scene in a canonical configuration. The re-

sults of this analysis for two scenes are shown the first row

of Fig. 4 (columns 1-3 in each case). The plots show, for

the canonical configuration (t = 0), the RGB image, the 3D

occupancy network and the depth map, respectively. The

rendered RGB image is the result of evaluating the canoni-

cal network on rays cast from an arbitrary camera position

applying Eq. (6). To better visualize the learned volumet-

ric density we transform it into a mesh applying marching

cubes [27], with a 3D cube resolution of 2563 voxels. Note

how D-NeRF is able to model fine geometric and appear-

ance details for complex topologies and texture patterns,

even when it was only trained with a set of sparse images,

each under a different deformation.

In a second experiment we assess the capacity of the net-

work to estimate consistent deformation fields that map the

canonical scene to the particular shape at each input image.

The second and third rows of Fig. 4 show the result of ap-

plying the corresponding translation vectors to the canon-

ical space for t = 0.5 and t = 1. The fourth column in

each of the two examples visualizes the displacement field,

where the color-coded points in the canonical shape (t = 0)

at mapped to the different shape configurations at t = 0.5
and t = 1. Note that the colors consistency along time,

indicating that the displacement field is correctly estimated.

Another question that we try to answer is how D-NeRF

manages to model phenomena like shadows/shading ef-

fects, that is, how the model can encode changes of ap-

pearance of the same point along time. We have carried

an additional experiment to answer this. In Fig. 5 we show

a scene with three balls, made of very different materials

(plastic –green–, translucent glass –blue– and metal –red–).

The figure plots pairs of corresponding points between the

canonical configuration and the scene at a specific time in-

stant. D-NeRF is able to synthesize the shading effects by

warping the canonical configuration. For instance, observe

how the floor shadows are warped along time. Note that the

points in the shadow of, e.g. the red ball, at t = 0.5 and

t = 1 map at different regions of the canonical space.

6.2. Quantitative Comparison

We next evaluate the quality of D-NeRF on the novel

view synthesis problem and compare it against the origi-

nal NeRF [31], which represents the scene using a 5D in-

put (x, y, z, θ, φ), and T-NeRF, a straight-forward exten-

sion of NeRF in which the scene is represented by a 6D

input (x, y, z, θ, φ, t), without considering the intermediate

canonical configuration of D-NeRF.

Table 1 summarizes the quantitative results on the 8 dy-

namic scenes of our dataset. We use several metrics for

the evaluation: Mean Squared Error (MSE), Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity (SSIM) [53] and

Learned Perceptual Image Patch Similarity (LPIPS) [60].
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Figure 6: Qualitative Comparison. Novel view synthesis results of dynamic scenes. For every scene we show an image synthesised

from a novel view at an arbitrary time by our method, and three close-ups for: ground-truth, NeRF, T-NeRF, and D-NeRF (ours).

Hell Warrior Mutant Hook Bouncing Balls

Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 44e-3 13.52 0.81 0.25 9e-4 20.31 0.91 0.09 21e-3 16.65 0.84 0.19 94e-4 20.26 0.91 0.2

T-NeRF 47e-4 23.19 0.93 0.08 8e-4 30.56 0.96 0.04 18e-4 27.21 0.94 0.06 16e-5 37.81 0.98 0.12

D-NeRF 31e-4 25.02 0.95 0.06 7e-4 31.29 0.97 0.02 11e-4 29.25 0.96 0.11 12e-5 38.93 0.98 0.1

Lego T-Rex Stand Up Jumping Jacks

Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 9e-3 20.30 0.79 0.23 3e-3 24.49 0.93 0.13 1e-2 18.19 0.89 0.14 1e-2 18.28 0.88 0.23

T-NeRF 3e-4 23.82 0.90 0.15 9e-3 30.19 0.96 0.13 7e-4 31.24 0.97 0.02 6e-4 32.01 0.97 0.03

D-NeRF 6e-4 21.64 0.83 0.16 6e-3 31.75 0.97 0.03 5e-4 32.79 0.98 0.02 5e-4 32.80 0.98 0.03

Table 1: Quantitative Comparison. We report MSE/LPIPS (lower is better) and PSNR/SSIM (higher is better).

In Fig. 6 we show samples of the estimated images under

a novel view for visual inspection. As expected, NeRF is

not able to model the dynamics scenes as it was designed

for rigid cases, always converging to a blurry mean repre-

sentation of all deformations. On the other hand, T-NeRF

baseline is able to capture reasonably well the dynamics, al-

though is not able to retrieve high frequency details. For ex-

ample, in Fig. 6 top-left image it fails to encode the shoulder

pad spikes, and in the top-right scene it is not able to model

the stones and cracks. D-NeRF, instead, retains high details

of the original image in the novel views. This is quite re-

markable, considering that each deformation state has only

been seen from a single viewpoint.

6.3. Additional Results

We finally show additional results to showcase the wide

range of scenarios that can be handled with D-NeRF

(Fig. 7). The first column displays the canonical config-

uration. Note that we are able to handle several types of

dynamics: articulated motion in the Tractor scene; human

motion in the Jumping Jacks and Warrior scenes; and asyn-

chronous motion of several Bouncing Balls. Also note that

the canonical configuration is a sharp and neat scene, in all

cases, expect for the Jumping Jacks, where the two arms

appear to be blurry. This, however, does not harm the qual-

ity of the rendered images, indicating that the network is

able warp the canonical configuration so as to maximize the

rendering quality. This is indeed consistent with Sec. 6.1

insights on how the network is able to encode shading.

D-NeRF has two main failure cases: (i) Poor camera

poses (as in NeRF). (ii) Large deformations between tem-

porally consecutive input images prevents the model from

converging to a consistent deformation field. This can be

solved by increasing the capture frame rate.

10324



t=0.1 t=0.3 t=1.0t=0.5 t=0.8Canonical Space

Figure 7: Time & View Conditioning. Results of synthesising diverse scenes from two novel points of view across time and the learned

canonical space. For every scene we also display the learned scene canonical space in the first column.

7. Conclusion

We have presented D-NeRF, a novel neural radiance field

approach for modeling dynamic scenes. Our method can

be trained end-to-end from only a sparse set of images ac-

quired with a moving camera, and does not require pre-

computed 3D priors nor observing the same scene config-

uration from different viewpoints. The main idea behind D-

NeRF is to represent time-varying deformations with two

modules: one that learns a canonical configuration, and an-

other that learns the displacement field of the scene at each

time instant w.r.t. the canonical space. A thorough evalu-

ation demonstrates that D-NeRF is able to synthesise high

quality novel views of scenes undergoing different types of

deformation, from articulated objects to human bodies per-

forming complex body postures.
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