
Principal balances

V. PAWLOWSKY-GLAHN1, J. J. EGOZCUE2 and R. TOLOSANA-DELGADO3
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Abstract

Principal balances are defined as a sequence of orthonormal balances which maximize successively the
explained variance in a data set. Apparently, computing principal balances requires an exhaustive
search along all possible sets of orthogonal balances. This is unaffordable for even a small number of
parts. Three suboptimal, but feasible, alternatives are explored. The approach is illustrated using a
data-set of geochemical composition of glacial sediments.

Introduction

Principal component analysis (PCA), based on statistical criteria, is well known in statistics (Hotelling,
1933). The procedure linearly transforms a number of centered variables into a new set of uncorre-
lated variables called principal components (PC). PCs are selected so that (a) they are uncorrelated;
(b) the first PC is the linear combination of the original variables which attains the largest sample
variance; subsequent PCs maximize explained variance conditional to be uncorrelated to preceding
PCs. Geometrically, each PC is associated with a direction represented by a unitary vector (also called
Principal Direction (PD)). PDs constitute an orthonormal basis of the space. The sample values of
PCs, called scores, are expressed as coordinates with respect to the PDs. When PCA is applied to
centred-log-ratio (clr) transformed compositional data, it provides isometric–log-ratio (ilr) coordinates
as scores of each PC, and an orthonormal basis of the simplex given by the PDs. Consequently, PCA
for compositional data (CoDa) is a powerful tool in exploratory analysis.

However, the obtained ilr-coordinates can be difficult to interpret as they are log-contrasts gener-
ally involving all the parts of the composition with irregular coefficients. Although the CoDa-biplot
(Aitchison and Greenacre, 2002; Greenacre, 2011) may help to simplify interpretation of PCs, the
interpretation problem is still a difficult one, specially when the number of parts of the composition is
large. To overcome this difficulty, balances were introduced by Egozcue and Pawlowsky-Glahn (2005).
Balances are log-contrasts which are log-ratios of geometric means of two non-overlapping groups of
parts. They are then normalised so that they are the coordinate of the composition with respect to a
unitary vector called balancing element (Egozcue et al., 2003). The general expression of a balance is

b =
√

rs

r + s
ln

gm(x+)
gm(x−)

, (1)

where x+, x− are two non-overlapping groups of parts of a complete composition x of D parts; r and
s, r + s ≤ D, are the number of parts in x+, x− respectively, and gm(·) denotes the geometric mean
of the arguments. The corresponding balancing element is

e = C exp(v1, v2, . . . , vD) ,

where C denotes closure, exp applies componentwise and (v1, v2, . . . , vD) = clr(e). The clr components
vi have the following values: vi = 0 if the i-th part is neither in x+ nor in x−; vi = (s/(r(r + s)))1/2

if the i-th part is in x+; and vi = −(r/(s(r + s)))1/2 if the i-th part is in x−.
A set of orthonormal balances is easily defined using a sequential binary partition (SBP), resulting

in ilr-coordinates. The corresponding orthonormal basis of the simplex is made of the correspond-
ing balancing elements (Egozcue and Pawlowsky-Glahn, 2005). It is frequently straightforward to
interpret, specially when based on expert knowledge.
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A set of orthonormal balances, with properties similar to those of CoDa-PCs, appears thus to be
an exploratory tool more intuitive than CoDa-PCA, and at the same time simpler than the subjective
selection of a SBP. Given a compositional centered sample, we define the first principal balance as
the balance which maximizes the explained sample variance. Subsequent principal balances, being
orthogonal to the preceding ones, also maximize the explained remaining variance.

It is important to note that principal balances not necessarily will coincide in order with a SBP,
but we assume that a basis made of principal balances will be associated with a SBP, possibly in a
different order. This question requires further study and remains open.

Up to our knowledge, computing principal balances requires an exhaustive search along all possible
sets of orthogonal balances. This computation appears as unaffordable when the number of parts is
large. This number increases dramatically with D, as shown in Table 1. Suboptimal approaches are

D 3 4 5 6 7 10 12
nr. 3 18 180 2700 56700 2.57× 109 9.34× 1012

Table 1: Number of different orthonormal basis made of balancing elements for different values of D. See appendix A
for a proof.

then appropriate to simplify search algorithms. There are several criteria to approach the properties
of the CoDa-PCs. For instance, CoDa-PCs can be taken as a starting point and balancing elements
for principal balances are then selected minimizing the geometric angle to one PD, or maximizing the
sample correlation with one PC (statistical angle). Other possibilities try to simplify the exhaustive
search constraining it to a hierarchy of balances. The ideas of cluster analysis of some set of log-ratios
also provide efficient but suboptimal algorithms to approach principal balances.

Here we explore and compare three strategies. (1) Minimize the geometric angle of a balancing
element corresponding to a first order partition of the composition to one PD. The same strategy is ap-
plied to the subcompositions obtained in previous steps until a full SBP is obtained. (2) Use clustering
algorithms based on the variation matrix. This choice for hierarchical clustering of components has
the advantage of being subcompositionally coherent, a property not shared by other classical choices
(e.g. cosine metric). The Ward clustering method uses as distance between two groups of parts the
variance of their balance, thus offering an appealing connection with principal balances. (3) Look for
the first order partition which balancing element maximises the explained sample variance, taking as
a starting point the first PD in a PCA and then using the signs of the loadings to define the initial
partition.

1 Theory

1.1 Basic concepts

Balances (Egozcue and Pawlowsky-Glahn, 2005) based on a SBP are a tool to build orthonormal basis,
enhancing interpretation when based on expert knowledge. Nevertheless, frequently the question for
a blind construction of such a basis optimizing some criterion has been risen, question motivated by
the easy way of constructing PCs. The following approach is based on it as a motivating rule.

Definition 1.1 (Principal balances) Given an n-sample of a D-part random composition, the set
of Principal Balances (PB) is a set of D − 1 balances satisfying the following conditions:

• Each sample PB is obtained as the projection of a sample composition on a unitary composition
or balancing element associated to the PB;

• The first PB is the balance with maximum sample variance;

• The i-th PB has maximum variance conditional to its balancing element being orthogonal to the
previous 1st, 2nd, . . . , (i− 1)th balancing elements.
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Therefore, PBs are orthonormal coordinates with respect to a basis of balancing elements selected so
that they maximize the explained variance of a data set in decreasing order. The total variance of a
compositional sample is decomposed into variances of orthonormal balances. Therefore, the sample
variance of a balance can be interpreted as the part of the total variance explained by the balance.

By analogy to PCA, Principal Balances Analysis (PBA) can be defined as an orthogonal linear
transformation restricted to transformations within the set of possible basis made up of balances that
transforms the data into a new coordinate system such that the greatest variance by any projection
of the data comes to lie on the first coordinate (called the first principal balance), the second greatest
variance on the second coordinate, and so on.

1.2 Construction of principal balances

By definition, PBs reproduce the properties of principal components as close as possible. The construc-
tion calls for an exhaustive search among all possible bases of balances, i.e. an exhaustive search of
all possible sequential binary partitions of a set of compositional parts into groups of parts, a problem
which is analogous to the problem of optimization in cluster analysis. As shown in the appendix A,
such an exhaustive search is unaffordable for even a relatively small number of parts in a composition.
Therefore, the approach presented looks for suboptimal strategies.

Criteria to approach PCA using balances can be based on different properties. From definition of
PB, orthogonality and maximization of variance explained by balances seems to be the main criterion.
Another criterion would be proximity between PCs and uncorrelated balances. Also geometrical angles
(in the simplex) of PD and balancing elements can be used as a criterion. As a first approach, three
suboptimal procedures for construction of PBs are analysed below.

1.2.1 Angular proximity to principal components (AP)

The definition of PBs is inspired in CoDa-PCs, and therefore it seems reasonable to use the information
obtained from PCA. A possible strategy consists thus in computing CoDa-PCs for a given realisation
of a D-part random composition X and iterating the following steps from 1 to D − 1:

1. Look for a binary partition of the whole composition X such that the associated balancing
element minimises the geometric angle with one (not necessarily the first) of the PDs associated
with the CoDa-PCs.

2. Eliminate the approximated PD from the set of directions.

3. Take each of the groups defined in the previous steps separately and look for a binary partition of
each such that the associated balancing element minimizes the angle with one of the remaining
PDs associated with the CoDa-PCs.

4. Repeat steps 2 and 3 until a complete SBP is obtained.

1.2.2 Hierarchical clustering of components (HC)

Another way of looking for a SBP is as the result of a hierarchical cluster analysis of components of
the random composition X. The agglomeration criterion to be used is the variance of the balance
between the two groups (Eq. 1). This criterion can be used even when the groups have a single
component each, and can be interpreted as a measure of proportionality between components. This
offers an appealing connection with principal balances. It can be shown that it is equivalent to standard
clustering techniques with the entry in the variation matrix, i.e. d2(i, j) = V ar[log(xi/xj)] = tij , as
distance criterion between individual components, and the Ward clustering method (Everitt, 1993)
as agglomeration criterion. The choice is justified because the variation matrix does actually behave
as one intuitively expects for a dissimilarity matrix between components. First, its elements tij > 0,
and tij = 0 if i = j or components i and j are perfectly proportional. Second, the larger tij the
more unreliable a relationship between the two variables appears and they likely belong to different
groups. It is worth mentioning that tij between components i and j depends exclusively on these two
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components. This is due to the subcompositional coherence of the variation matrix. Therefore, this
approach appears as a natural choice for hierarchical clustering of components, given that none of the
classical choices (e.g. cosine metric) is subcompositionally coherent.

1.2.3 Maximum explained variance hierarchical balances (MV)

The approach assumes that the first principal balance corresponds to a binary partition of the whole
composition into two groups of parts. This assumption can fail because a simpler log-contrast can
explain larger variances. Computation of the optimum partition is heuristically based on the result of
CoDa-PCA: parts with positive loadings are initially assigned to the + group and parts with negative
loading are initially assigned to the − group to define a balance between these two groups of parts.
Optimality of the explained variance of the corresponding balance is then checked moving one part
from the + group to the − group. This procedure is computationally quite efficient because the
number of checks for this first balance is only of the order of involved parts, D. Once the first balance
has been determined, data are projected into the subcomposition formed by the larger number of
components and a new PCA is performed. Again the method assumes that the maximum explained
variance is attained for a balance corresponding to a partition of the selected subcomposition and the
procedure is applied again in the subsequent steps.

This approach generates a hierarchy of balances following a SBP by construction. Despite the
hierarchical character of the SBP generated, explained variances for the sequence of balances can be
non decreasing although this seldom occurs.

2 Application

The three methods presented (AP, HC, and MV) have been applied to the characterization of a data set
of geochemical composition of glacial sediment from a granodioritic-gneissic source rock (Aar Massif,
Switzerland; von Eynatten and Tolosana-Delgado, 2008). This data set contains measurements of
10 major oxides and 16 trace elements of 87 samples of different grain sizes. From these elements,
only 21 elements were kept (those without zeros). A CoDa-PCA yields loadings and contributions
to variance displayed respectively in table 2 (labeled “comp”) and figure 1 (left: circled black solid
line). These results serve as a reference to compare the approximative methods proposed (AP, HC,
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Figure 1: Left: explained variance for each PC/PB ordered in decreasing order. Right: Aitchison norm of the vector of
ordered explained variances taken as a composition

and MV). In Table 2 it can be realized that loadings corresponding to a balance (sub-tables AP, HC,
MV) only admit two different values as loadings different from zero, in contrast with PCs, in which
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the only condition is that the loadings add to zero and the sum of their squares add to one. Therefore,
depending on the data set, the approach of PCs based on PBs can be poor. The angular proximity
method (AP) produces principal balances approaching the principal components by minimal angle.
Compare AP.8 with Comp.1 (large positive Zr and Nd vs large negative loadings in mafic elements), or
AP.9 with Comp.5 (a balance between Nd and Zr), or AP.1 with Comp.2 (essentially mafic vs. felsic
elements) in table 2. Note that the variances of these principal balances are not necessarily ordered
hierarchically, as can be seen in Fig. 2. Hierarchical order means that, starting from a simple balance
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Figure 2: CoDa-dendrogram for principal balances approached by AP method.

(few parts included in the two compared groups) and plotted in the lower part of a CoDa-dendrogram,
and moving upwards to more complex balances, an increasing variance is expected (longer vertical
bars). This is not the case in Fig. 2. The hierarchical order can be observed in the CoDa-dendrograms
of Figures 3 and 4. The hierarchical clustering of components (HC) yields, by construction, a series
of balances with increasing variance (upwards in the dendrogram, Fig. 3). Hence, the largest variance
balances tend to be the last ones. It is not surprising that HC.20 and Comp.1 have large correlations
(mafic vs. felsic major oxides, but a poor structure in trace elements), as do HC.19 and Comp.2 (traces
in heavy minerals vs. felsic components), or Comp.4 with HC.15 (ultramafic Cr vs. mafic elements).

Comparing the three CoDa-dendrograms, Figures 2, 3 and 4, the only clear difference is that
hierarchical order is broken using AP, whereas HC and MV produce well organized CoDa-dendrograms
from the hierachical point of view. While the aspect of hierarchically ordered CoDa-dendrograms seems
to be more comfortable to the user, they do not allow to detect a large variance in balances involving
only a few parts which may facilitate a straightforward interpretation. A detailed inspection of the
three CoDa-dendrograms reveals that the differences between the three proposed methods are not as
dramatic as they appear at the first glance. For instance, the first estimated principal balances using
AP, HC, MV, separate in different groups some common elements. For instance AP.8 (Table 2, Fig.
2), the first PB estimated using AP, assigns MgO, MnO, Fe2O3t, Zn to one group that is compared
to Zr and Nd. The first principal balances estimated using HC and MV (HC.20, MV.1) situate the
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Table 2: Loadings of the 6 PCs (“Comp”) and of the 6 PBs obtained using the AP, HC, and MV methods, with the
largest variance. Explained variance and % contribution to the total variance are also reported.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 AP.8 AP.1 AP.3 AP.9 AP.2 AP.14
SiO2 0.288 -0.189 0.043 -0.201 0.132 0.166 0 -0.252 0 0 0 -0.154
TiO2 -0.124 0.206 -0.094 0.021 -0.145 0.026 0 0.189 -0.183 0 0.289 0

Al2O3 0.103 -0.258 -0.03 0.074 -0.02 -0.006 0 -0.252 0 0 0 0
MnO -0.206 0.055 0.078 -0.266 -0.005 0.039 -0.289 0.189 0 0 -0.289 0
MgO -0.417 0.025 -0.116 -0.332 -0.05 0.194 -0.289 0.189 0 0 -0.289 0
CaO 0.069 0.031 -0.388 0.121 -0.118 -0.041 0 0.189 -0.183 0 0.289 0

Na2O 0.292 -0.303 -0.155 0.094 -0.033 0.106 0 -0.252 0 0 0 -0.154
K2O 0.085 -0.316 0.154 -0.022 0.035 -0.12 0 -0.252 0 0 0 -0.154

P2O5 -0.099 0.295 -0.453 0.25 -0.016 -0.343 0 0.189 -0.183 0 0.289 0
Fe2O3t -0.259 0.013 -0.025 -0.248 -0.033 0.049 -0.289 0.189 0 0 -0.289 0

Ba 0.004 -0.245 -0.256 -0.037 -0.018 0.075 0 -0.252 0 0 0 -0.154
Cr -0.263 0.042 0.193 0.654 0.308 0.546 0 0.189 0.913 0 0.289 0
Ga -0.017 -0.187 0.053 0.108 -0.044 -0.171 0 -0.252 0 0 0 -0.154
Nb 0.071 0.251 0.268 0.126 0.01 -0.213 0 0.189 -0.183 0 0.289 0
Pb -0.069 -0.106 0.272 -0.019 0.075 -0.146 0 -0.252 0 0 0 0.926
Rb -0.027 -0.243 0.308 -0.047 0.056 -0.262 0 -0.252 0 0 0 0
Sr 0.097 -0.112 -0.326 0.059 -0.054 0.05 0 -0.252 0 0 0 -0.154
Y 0.133 0.259 0.201 0.19 -0.029 -0.397 0 0.189 -0.183 0 0.289 0

Zn -0.371 0.074 0.095 -0.153 -0.011 -0.053 -0.289 0.189 0 0 -0.289 0
Zr 0.383 0.409 -0.065 -0.316 0.625 0.129 0.577 0.189 0 0.707 -0.289 0
Nd 0.33 0.299 0.243 -0.055 -0.664 0.371 0.577 0.189 0 -0.707 -0.289 0

var. 1.868 0.777 0.353 0.22 0.208 0.146 1.238 0.793 0.298 0.209 0.186 0.158
% var. 49.54 20.603 9.353 5.826 5.517 3.871 32.835 21.042 7.912 5.554 4.935 4.182

HC.20 HC.19 HC.18 HC.17 HC.16 HC.15 MV.1 MV.8 MV.9 MV.18 MV.2 MV.3
SiO2 0.138 0.156 0.228 -0.598 0 0 -0.154 0.169 -0.258 0 0 0
TiO2 -0.345 0 0 0 0 0.183 0.309 0 0 0 -0.598 0

Al2O3 0.138 0.156 0.228 0.239 0 0 -0.154 0.169 -0.258 0 0 0
MnO -0.345 0 0 0 0 0.183 0.309 0 0 0 0.239 0.224
MgO -0.345 0 0 0 0 0.183 0.309 0 0 0 0.239 0.224
CaO 0.138 0.156 -0.399 0 0 0 -0.154 0.169 -0.258 0 0 0

Na2O 0.138 0.156 0.228 -0.598 0 0 -0.154 0.169 -0.258 0 0 0
K2O 0.138 0.156 0.228 0.239 0 0 -0.154 0.169 0.387 0 0 0

P2O5 0.138 0.156 -0.399 0 0 0 0.309 0 0 0 -0.598 0
Fe2O3t -0.345 0 0 0 0 0.183 0.309 0 0 0 0.239 0.224

Ba 0.138 0.156 -0.399 0 0 0 -0.154 0.169 -0.258 0 0 0
Cr -0.345 0 0 0 0 -0.913 0.309 0 0 0 0.239 -0.894
Ga 0.138 0.156 0.228 0.239 0 0 -0.154 0.169 0.387 0 0 0
Nb 0.138 -0.428 0 0 0.289 0 -0.154 -0.423 0 0.289 0 0
Pb 0.138 0.156 0.228 0.239 0 0 -0.154 0.169 0.387 0 0 0
Rb 0.138 0.156 0.228 0.239 0 0 -0.154 0.169 0.387 0 0 0
Sr 0.138 0.156 -0.399 0 0 0 -0.154 0.169 -0.258 0 0 0
Y 0.138 -0.428 0 0 0.289 0 -0.154 -0.423 0 0.289 0 0

Zn -0.345 0 0 0 0 0.183 0.309 0 0 0 0.239 0.224
Zr 0.138 -0.428 0 0 -0.866 0 -0.154 -0.423 0 -0.866 0 0
Nd 0.138 -0.428 0 0 0.289 0 -0.154 -0.423 0 0.289 0 0

var. 1.237 0.675 0.318 0.265 0.245 0.199 1.314 0.706 0.257 0.245 0.24 0.204
% var. % 32.818 17.918 8.428 7.029 6.505 5.271 34.844 18.722 6.812 6.505 6.379 5.403
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Figure 3: CoDa-dendrogram for principal balances approached by HC method.

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Z
r

N
d Y N
b

S
iO

2

N
a2

O S
r

C
aO

A
l2

O
3

B
a

K
2O R

b

G
a

P
b

P
2O

5

T
iO

2 C
r

M
nO

F
e2

O
3t

Z
n

M
gO

maximal variance

Figure 4: CoDa-dendrogram for principal balances approached by MV method.
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Table 3: Sample correlation matrix for the 6 first AP-principal balances (PB). Numbering in labels AP means the order
in which they have been identified.

AP.8 AP.1 AP.3 AP.9 AP.2 AP.14
AP.8 1 -0.241 -0.595 0.120 0.301 -0.479
AP.1 -0.241 1 0.121 0.042 -0.059 0.473
AP.3 -0.595 0.121 1 -0.079 -0.067 0.411
AP.9 0.120 0.042 -0.079 1 0.032 -0.083
AP.2 0.301 -0.059 -0.067 0.032 1 -0.239
AP.14 -0.479 0.473 0.411 -0.083 -0.239 1

Table 4: Sample correlation matrix HC-principal balances (PB). Numbering in labels HC means the order in which they
have been identified.

HC.20 HC.19 HC.18 HC.17 HC.16 HC.15
HC.20 1 -0.302 0.334 -0.816 -0.413 -0.035
HC.19 -0.302 1 0.099 0.302 0.321 0.004
HC.18 0.334 0.099 1 -0.106 0.106 -0.153
HC.17 -0.816 0.302 -0.106 1 0.548 -0.012
HC.16 -0.413 0.321 0.106 0.548 1 -0.056
HC.15 -0.035 0.004 -0.153 -0.012 -0.056 1

same elements in different groups although mixed with other parts. Although one can follow these
similarities through most of the estimated principal balances for the three methods, the comparison
procedure is tedious and difficult. Therefore, comparison of methods require a measure of effectiveness
approaching principal balances. A first idea comes from the property of PCs which are uncorrelated
random variables by construction. As PBs approach PCs, correlations between PBs are expected to
be small. Tables 3, 4, and 5 show the obtained correlations between the 6 first estimated principal
balances for methods AP, HC, and MV respectively. They show that off-diagonal correlations are
not high, thus behaving as expected, but the difficulty of comparing these three tables is still present.
Another possibility of comparison is to compute the geometrical angles between the principal directions
PD and the balancing elements computed. But the resulting angle-tables, not shown here, are also
difficult to compare.

A measure of effectiveness approaching PCs follows. Consider the vector containing the variances
of estimated PCs or PBs ordered from maximum to minimum variance, i.e. the first component
corresponds to the first PC or PB, the second component to the second PC or PB, etc. These
vectors can be considered compositional because the total variance is not relevant to this analysis.
Therefore, the Aitchison norm (Pawlowsky-Glahn and Egozcue, 2001) of the variance vector measures
the concentration of variance in the first (ordered) components. On the other hand, the Aitchison norm
of sub-vectors (or subcompositions) including the first variance up to a given (increasing) number of
parts provides a sequence of increasing Aitchison norms. This measures the effectiveness approaching
the first PCs. Figure 1 (right), shows the Aitchison norm of the vector of variances for PCs (black),
AP (red), HC (blue), MV(green) for different sizes of the subcomposition. PC appear, as expected,
above the other curves. The curve of AP is the higher one for subcompositions containing up to 10
variances; for larger subcompositions it becomes the lowest one, thus reflecting the price to be payed
for an easy interpretation of the first estimated principal balance. The two hierarchical methods HC
and MV produce Aitchison norm curves that almost overlap. These are observations for the particular
data set used and the shape and order of the curves will not necessarily be the same for other data
and/or number of components. In this particular example the use of AP-principal balances would
be recommended to a user interested in a straightforward interpretation of the very first principal
balances. If interest is centered in how major and trace elements are associated in the groups of the
principal balances, HC and MV are more appropriate. If a blind selection of ilr-coordinates is required,
either for exploratory analysis or for modelling, then PCA maintains all its virtues.
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Table 5: Sample correlation matrix MV-principal balances (PB). Numbering in labels MV means the order in which they
have been identified.

MV.1 MV.8 MV.9 MV.18 MV.2 MV.3
MV.1 1 0.181 0.499 0.377 0.489 0.130
MV.8 0.181 1 0.180 0.309 0.535 0.080
MV.9 0.499 0.180 1 0.500 0.690 0.022
MV.18 0.377 0.309 0.500 1 0.344 -0.018
MV.2 0.489 0.535 0.690 0.344 1 0.034
MV.3 0.130 0.080 0.022 -0.018 0.034 1

3 Conclusion

Principal component analysis (or singular value decomposition) of a compositional data set (clr-
transformed and centered) has a number of appealing properties: maximum explained variance of
the sequence of principal components, uncorrelated components, orthogonal geometric axes. Due to
these properties CoDa-PCA is one of the main tools for exploratory analysis and modelling of com-
positional data. The main shortcoming of CoDa-PCs is the difficulty in interpreting the resulting
coordinates. Biplots provide a helpful tool for a reduced number of significative PCs but may fail for
an increasing number of them.

Balances are log-contrasts resulting from a log-ratio of two geometric means of two groups of parts
and its interpretation may be considerably simpler than the interpretation of a PC. In the present
contribution, the idea of approaching CoDa-PCs using a set of balances, called principal balances
(PB), has been formalized. Computation of PBs may require an exhaustive, unaffordable search over
the possible set of orthonormal balances for a moderate number of parts. To avoid it, suboptimal but
feasible procedures to search for principal balances are required. Three methods, based on different
principles, are presented. A measure of effectiveness based on the Aitchison norm is proposed.
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A Number of orthonormal basis made of balancing elements

In a D-part simplex an orthonormal basis made of balancing elements is obtained performing a se-
quential binary partition (SBP) of the compositional vector (Egozcue and Pawlowsky-Glahn, 2005).
The number of possible SBP for a fixed number of parts D can be computed as follows. Consider
the D groups of parts made of a single element. In a first step, join two of the available groups. The
number of ways of doing this, is combining two groups at a time from the total of D. In subsequent
steps, with k available groups of one or more parts, two groups are joined. The number of possible
unions is combining two elements from a total of k. We have D − 2 steps to get a single group of D
parts. Therefore, the number of possibilities is

N =
(

D
2

)(
D − 1

2

)(
D − 2

2

)
· · ·
(

2
2

)
=

D!(D − 1)!
2D−1

.

This number increases dramatically with D. For example, for D = 3, 7, 10, 12, N = 3, 56700, 2.6×109,
9.3× 1012, respectively.
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