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Introduction 

When interpreting the results of a statistical analysis like a comparison of treatments or factorial 

design, emphasis is generally placed on not making a mistake when declaring certainty or near (95% 

certainty) that a particular factor is active.  In other words, the interpretation and analysis itself focus 

on minimizing the risk of type I error. This is the standard and appropriate approach to many 

situations. However, industry technicians often assert that they would rather commit the error of 

ignoring a factor that in reality affects a response rather than ignoring a factor that is in reality affecting 

the response. In statistical terms, they prefer to minimize type II errors.  

This article draws attention to the importance of considering type II error in Design of Experiments 

contexts and shows, through two examples, an easy way to do that. 

Why type II error is highly relevant to business and industry 

Unsurprisingly, type I error causes more concern than type II does in scientific environments, while 

often the opposite occurs in the industrial and business worlds. Nor is it astonishing that such concern 

for type I error is the standard, since it was only until recently that experimental design remained 

concentrated mostly in scientific fields.  

In the scientific world, when it is stated that factor (A) affects the response (Y) in a particular way, we 

want to be as certain as possible that this is true. The fact that another factor (B) also affects it and 

has gone unnoticed is relevant; but it is not an error that nullifies either the veracity or the utility of 

the investigation. On the contrary, affirming that A affects Y when this is not true is rightly considered 

an unacceptable error. 

This is different in the industrial and business worlds, where erroneously concluding that A affects Y 

can lead to problems like unnecessarily controlling for A, although practice and experience will likely 

reveal the error sooner or later. A much bigger problem is not detecting that B affects Y, as it can cause 

multiple difficulties such as the variation of Y increasing as a result of failing to control B or cost 

overruns from trying to optimize Y without accounting for B’s effect.  What makes this error even 

worse is that it will be very difficult to detect such an effect without conducting a new study on 

whether or not B has a relevant effect on Y – something that will rarely happen immediately after the 

first study.  

However, when analyzing which effects should be considered active, attention is usually paid only to 

the probability of committing the first type of error, which is generally referred to as type I error and 
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is usually set at 5%. Meanwhile, the probability of the second – the so-called type II error – is ignored 

and often turns out to be much greater than what one could consider reasonable. De León et al. (2006) 

showed that, in DEO contexts, this error probability is usually greater than the experimenter suspects. 

Proposed methodology 

When we analyze the significance of the estimated effects after conducting a factorial experiment, 

what we are trying to do is accurately divide them into two groups: inert and active. However, in 

practice, this is impossible for two reasons. First, just by chance, we can obtain effect estimates that 

are greater than, say, two times their standard errors when the true effect is actually zero. Second, 

we can quite frequently obtain effect estimates that are smaller than two times their standard error 

when their real effect is slightly greater.   

Bearing this in mind, particularly in the abovementioned business and industrial context, it makes 

sense to define the minimum real value of the effects that we want to detect, that is, those we want 

to be considered significant. In other words, the idea is to set a value such that any effect that exceeds 

it has a low probability of being ignored. Following De León et al. (2006), we shall refer to this as the 

minimum effect size of interest (𝑀𝐸𝑆𝐼). In industrial contexts, setting this value is not only relatively 

simple, but we believe that it is always advisable, as it forces the experimenter to think about the 

variability (standard error) of the effects and relate it to the variation of the system, the choice of 

factor levels, and the number of runs.   

The following proposal is based on a more formal one presented by Grima et al. (2020), briefly 

commented on in the section titled “A more formal alternative to step 3”, and in a suggestion from 

Professor Alberto Luceño (Universidad de Cantabria, Spain) in a personal communication to one of the 

authors. It consists of three simple steps: 

1. Set the 𝑀𝐸𝑆𝐼 value. 
 
As stated, MESI should be set at a value that, if exceeded, is considered by the experimenter to 

indicate relevant effects, meaning they are affecting the response in an important way.  Therefore, 

we want a low probability of considering the estimated effect of such variables to be non-

significant. 

 

2. Estimate the effect’s standard error. 
 
A common way to estimate this standard error is through Lenth’s pseudo standard error (PSE; 

Lenth, 1989). The 𝑃𝑆𝐸 is based on the fact that if 𝑋~N(0, σ2), the median of |𝑋| equals 0.6745σ 

and therefore 1.5 · median|𝑋| = 1.01σ ≅  σ. Assuming that 𝑒𝑖 (𝑖 = 1, … , 𝑛) are the values of the 

effects of interest and that their estimators 𝑒̂𝑖 are distributed according to N(𝑒𝑖, σ𝑒
2), Lenth defines  

𝑠0 = 1.5 · median|𝑒̂i| and calculates a new median by excluding the estimated effects with |𝑒̂𝑖| >

2.5𝑠0. In doing so, he expects to exclude the effects with 𝑒 > 0 and use the others to calculate:  

𝑃𝑆𝐸 = 1.5 ∙ median
|𝑒̂𝑖|<2.5𝑠0

|𝑒̂𝑖| 
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3. Calculate 95% confidence intervals for the effects and assess the differences between interval 

limits and the 𝑀𝐸𝑆𝐼, and between the interval limits and 0. 

It is well known (Loughin, 1998; Ye and Hamada, 2000; Fontdecaba et al., 2015) that Lenth's 

recommended degrees of freedom for estimating the PSE (still used by very popular statistical 

software packages) lead to lower type I error probabilities than the intended value (α = 0.05), with the 

undesirable consequence of a higher type II error probability. Therefore, to calculate 95% confidence 

intervals for the estimated effects, we propose using the proposal of Fontecaba et al. (2015): using a 

𝑡 value of 2 to calculate 95% confidence intervals for both 8- and 16-run designs. Not only does this 

provide better results than those in Ye and Hamada’s approach, but it is simpler.  

So, we calculate the intervals as  effect ± 2·𝑃𝑆𝐸 and we plot these interval for all the effects together 

with 0 and the MESI. It is then easy to classify the effects into three groups: 

• Intervals that do not contain 0. Clearly significant effects. 
 
• Intervals that contain 0 but not the MESI. Clearly non-significant effects. 
 
• Intervals that contain 0 and the MESI. Then, the effect should be considered significant if 0 is closer 

than the MESI to the center of the interval and non-significant otherwise. Alternatively, the effect 

should be studied in more detail 

Let us turn now to some simple examples of applying this methodology, taking the data from DOE 

examples of very well-known texts. 

Example 1: A 23  design 

Based on data published by Prat and Tort-Martorell (1990), Box et al. (2005, p. 194) present a 23 

design carried out in a pet food factory. Several responses are analyzed, but we consider only the 

amount of product obtained (yield). The factors considered are: 

 

Factors 
Levels 

– + 
𝐴: Conditioning temperature 80% of max. Max 

𝐵: Flow 80% of max. Max 

𝐶: Compression zone 2 2.5 

  

Table 1 shows the design matrix together with the results obtained (left) and the values of the effects 

(right).  
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Table 1: Design matrix and effects obtained in the example by Box et al. (2005).  

 

Looking at Figure 1, it is clear that factor C should be considered significant, although doubts may arise 

regarding the possible influence of factor 𝐵.  The line on the Pareto chart (calculated using t = 2) 

indicates the boundary between the effects that should be considered significant and those that 

should not.  

Figure 1: NPP (left) and Pareto chart (right) representations of the effects in the example by Box et al. (2005) 

 

Following our proposal, we have: 

1. Set the MESI value  

In this case, let us suppose that a 20-unit change in yield is a relevant change (𝑀𝐸𝑆𝐼 = 20) 

 

2. Estimate the effect’s standard error.  

In this case, 𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖| = 5.5. Thus,  𝑠0 = 1.5 · 5.5 = 8.25. Now, we should exclude the effects 

with  |𝑒̂𝑖| > 2.5𝑠0 = 20.625; but, since there are none, we have that 𝑃𝑆𝐸 = 8.25.  

  Effects 

𝐴: 3.5 

𝐵: 13.0 

𝐶: -20.5  

𝐴𝐵: -5.5 

𝐴𝐶: 1.0 

𝐵𝐶: -3.5 

𝐴𝐵𝐶: -6.0 

 

Factors 
𝑦 

 𝐴  𝐵  𝐶 

-1 -1 -1 83 

 1 -1 -1 85 

-1  1 -1 99 

 1  1 -1 102 

-1 -1  1 59 

 1 -1  1 75 

-1  1  1 80 

 1  1  1 73 

 

𝛼 
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3. Calculate 95% confidence intervals for the effects and assess the differences between interval 

limits and the 𝑀𝐸𝑆𝐼, and between the interval limits and 0. 

As stated, once the PSE has been obtained, these intervals are very easy to compute by simply 

calculating:  effect ± 2·𝑃𝑆𝐸. 

 
After plotting the MESI and the zero references, and the obtained intervals, we obtain the result in 

Figure 2, which clearly shows that C is a significant effect. It also shows, that for B, the MESI value (20) 

is far more probable than 0. Therefore, and this is the point, that it should be considered as significant. 

 

Figure 2: 95% CI for the effects, including 0 and MESI references for the 23 example. 

 

Example 2: A 24 design 

Based on an article by G.H. Bell et al. (2006), Montgomery (2013, p. 279) presents a 24 design to 

analyze whether certain changes in the conditions of a credit card increase the number of affirmative 

responses. The factors considered are: 

Factor 
Level 

– + 

A:  Annual fee Current Lower 

B:  Account-opening fee No Yes 

C:  Initial interest rate Current Lower 

D:  Long-term interest rate Low High 

  

For each combination of factor values, 7500 letters were sent with the corresponding offer. On the 

left side of Table 2 is the design matrix along with the responses obtained. On the right, we have the 

estimated effects. 
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Table 2:  Design matrix and effects obtained in the Montgomery example (2013) 

 

 

 

 

 

 

 

 

 

 

  

Figure 3 presents the NPP and the Pareto diagram of the effects. The main effects 𝐴, 𝐵, and 𝐷 are 

clearly significant; 𝐴𝐵 generates doubts; and so does 𝐶, to a lesser extent. 

 
 

  

Figure 3: NPP (left) and Pareto chart (right) representations of the effects in the example by Montgomery 

(2013) 

 Now, let us clarify the situation using the three-step procedure: 

  Effects 

𝐴: 30.37 

𝐵: -38.87 

𝐶: 18.875 

𝐷: -37.37 

𝐴𝐵: -22.63 

𝐴𝐶: 0.125 

𝐴𝐷: -8.125 

𝐵𝐶: -3.625 

𝐵𝐷: 7.625 

𝐶𝐷: 11.875 

𝐴𝐵𝐶: -3.875 

𝐴𝐵𝐷: 6.375 

𝐴𝐶𝐷: 0.625 

𝐵𝐶𝐷: -8.125 

𝐴𝐵𝐶𝐷: -3.875 

 

Factors 
𝑦  𝐴  𝐵  𝐶  𝐷 

-1 -1 -1 -1 184 

 1 -1 -1 -1 252 

-1  1 -1 -1 162 

 1  1 -1 -1 172 

-1 -1  1 -1 187 

 1 -1  1 -1 254 

-1  1  1 -1 174 

 1  1  1 -1 183 

-1 -1 -1  1 138 

 1 -1 -1  1 168 

-1  1 -1  1 127 

 1  1 -1  1 140 

-1 -1  1  1 172 

 1 -1  1  1 219 

-1  1  1  1 153 

 1  1  1  1 152 

 

α 
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1. Set the MESI value 

Let us suppose we do not want an effect to go unnoticed when its real value is greater than 30, a 

rather large value in light of the results obtained. 

2. Estimate the effect’s standard error 

As in the previous example, we use the PSE, which here is PSE = 11.4375. In this case, we could 

alternately use the estimation of the five higher order interactions. 

3. Calculate 95% confidence intervals for the effects and assess the differences between interval 

limits and the 𝑀𝐸𝑆𝐼, and between the interval limits and 0. 

Again, we are using Fontdecaba’s approximation to obtain that the 95% CI is: effect ± 2(11.4375) 

Thus, we obtain Figure 4, which indicates that both the 𝐴𝐵 interaction and factor 𝐶 also have a high 

probability of relevantly affecting the response. 

 

 

Figure 4: 95% CI for the effects, including 0 and the MESI references for the 24 example. 

A more formal alternative to step 3 

A more formal way to solve the problem is to set the probability that an effect is considered non-

significant when its real value is equal to the MESI. This is what we call the type II error probability, or 

𝛽 risk.  By fixing it at a desired level, we can establish a critical value that complements the usual 

criterion of α = 0.05, thus allowing us to represent two boundary lines in the Pareto diagram of the 

effects: the usual one, based on α = 0.05; and a new one based on the 𝛽 probality. Then, the effects 

can be classified into three groups:  

• The effects that exceed the α line, which are almost surely active. 
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• The effects below the β line, which should be considered non-active. 

• The effects between the two lines should be considered as active or in any case as worth further 

study.  

Figure 5 shows the Pareto diagrams of the two analyzed examples with the two boundary lines. In 

both cases, 𝜎𝑒 was estimated using the standard deviation of the effects that are considered not 

significant, for which we applied the Lenth method. This gives us 𝑠𝑒 = 6.59 with 6 degrees of freedom 

for the 23 design and 𝑠𝑒 = 10.34 with 12 degrees of freedom for the 24. The new critical values are 

those shown in the diagram. Details on their calculation can be found in Grima et al. (2020). 

 

 
 

Figure 5: Pareto diagrams of the effects for the two examples with two critical lines: the usual one  

(based on a type I error probability of α = 0.05); and another based on MESI and a type II error 

probability of (β = 0.10) 

Conclusion 

In industrial experiments, it is usually interesting to minimize the risk of overlooking active effects. 

One way to accomplish this is to establish a MESI, a minimal effect size of interest, and based on it use 

either 95% confidence intervals for the effects or the critical value for a certain type II error probability 

to classify them into active, inert or worth to be further studied. Apart from the utility of identifying 

active factors that would have otherwise been overlooked, focusing on the 𝑀𝐸𝑆𝐼 indeed provokes a 

worthwhile and interesting reflection on the part of the experimenter. 
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