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Abstract

Network-based approaches are becoming increasingly popular for drug discovery as they

provide a systems-level overview of the mechanisms underlying disease pathophysiology.

They have demonstrated significant early promise over other methods of biological data

representation, such as in target discovery, side effect prediction and drug repurposing. In

parallel, an explosion of -omics data for the deep characterization of biological systems rou-

tinely uncovers molecular signatures of disease for similar applications. Here, we present

RPath, a novel algorithm that prioritizes drugs for a given disease by reasoning over causal

paths in a knowledge graph (KG), guided by both drug-perturbed as well as disease-specific

transcriptomic signatures. First, our approach identifies the causal paths that connect a drug

to a particular disease. Next, it reasons over these paths to identify those that correlate with

the transcriptional signatures observed in a drug-perturbation experiment, and anti-correlate

to signatures observed in the disease of interest. The paths which match this signature pro-

file are then proposed to represent the mechanism of action of the drug. We demonstrate

how RPath consistently prioritizes clinically investigated drug-disease pairs on multiple

datasets and KGs, achieving better performance over other similar methodologies. Further-

more, we present two case studies showing how one can deconvolute the predictions made

by RPath as well as predict novel targets.

Author summary

Different types of interactions between various biological elements (e.g., proteins, drugs

and diseases) can be modeled using networks for various applications, including drug dis-

covery and finding novel use cases of known drugs. Nevertheless, we are far from having a

complete picture of all possible biological interactions that can occur in humans, and so,
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current networks modeling human biology remain incomplete. To try and compensate

for this shortcoming, researchers are beginning to use both knowledge of biological inter-

actions, alongside experimental data. In this work, we show how we can deduce which

drugs may be good candidates for treatments by using networks to estimate how a drug

can affect a disease, and overlaying elements in our network with those in experimental

datasets. These experimental datasets can help guide us through the network, showing us

which interactions are likely occurring and which are not. Finally, we show that the

approach we take can also help us to come up with new research questions and determine

which proteins a drug must actually target to produce a therapeutic effect in a patient.

This is a PLOS Computational Biology Methods paper.

Introduction

The representation of biomolecular interactions occurring within cells is often intuitively orga-

nized in the form of biological networks. These networks can be used to inherently model bio-

logical processes through the use of nodes denoting biological entities and edges representing

their relationships. While homogeneous networks, such as protein-protein interaction net-

works, can represent relationships between a single entity type, knowledge graphs (KGs) can

incorporate a broad range of biological scales, from the genetic and molecular level (e.g., pro-

teins, drugs, and biochemicals), to biological concepts (e.g., phenotypes and diseases). These

KGs can then be utilized for several applications in drug discovery, such as providing insights

into molecular mechanisms and therapeutic targets [1–2], side effect prediction in the early

stages of drug development [3], target prioritization [4], and drug repositioning [5].

Given the flexibility of KGs, multiple heterogeneous relation types can be modeled to repre-

sent biological processes that are governed by interactions occurring between component enti-

ties [6]. Even though a variety of relation types (e.g., literature co-occurrence, associations,

etc.) can be leveraged by network-topology algorithms for various applications, causal relations

are particularly useful as they can be used to infer the effect of any given node on another by

reasoning over the KG [7]. Nonetheless, not all interactions included in a given KG are neces-

sarily biologically relevant as they may be context-specific, such as to a particular cell type, tis-

sue or disease. Furthermore, as the complete human interactome remains unknown, KGs

modeling PPIs are also incomplete and the interactions which are modeled tend to be biased

towards well-studied proteins and their relationships [8]. One approach to address these chal-

lenges is to jointly leverage prior knowledge in KGs with data-driven -omics experiments [9–

13].

Experimental datasets have been widely employed by recent drug repurposing approaches

to identify drug candidates for a given disease using the anti-correlation in biological processes

or pathways at the transcriptomic- or proteomic- level between drugs and diseases as a proxy

[13–16]) (see [17] for a recent review and S8 Table for a survey of such methods). While these

approaches use prior knowledge in the form of pathways (gene sets), this concept has yet to be

applied on KGs for drug discovery. However, by mapping the signatures of an -omics experi-

ment to a KG, we can not only verify which causal interactions are observed within a specific

context, but also prioritize and identify the mechanism of action of a drug for a given disease

with high precision.
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Currently, there exist numerous algorithms that leverage causal relations for the interpreta-

tion of -omics data. In general, these algorithms operate by assessing the concordance between

transcriptomic or proteomic signatures and the predicted causal effects encoded in these rela-

tions [18–19]. For instance, the Reverse Causal Reasoning (RCR) [20] and Network Perturba-

tion Amplitude (NPA) algorithms [21–22] assess and score this concordance employing causal

graphs consisting of up-stream and down-stream proteins (nodes) representing regulations

occurring in biological pathways. Subsequently, the scores obtained from these algorithms can

be used for the interpretation of -omics data commonly derived from contrast experiments.

Although the interpretations obtained from these algorithms may be relevant for several

downstream applications, such as drug target prediction, disease characterization, and side

effect prediction, the algorithms themselves cannot be directly used for these applications.

Additionally, these algorithms have been specifically designed for bipartite graphs, thus, sim-

plifying biological pathways to a single relation between two proteins.

While traditionally, these algorithms were applied on small causal networks, they have

recently begun to be applied on large-scale KGs, given the increasing availability of causal

information, including proteins, drugs and phenotypes. For instance, a recent algorithm we

published, drug2ways, reasons over all paths between a drug and a disease in a KG to predict

the effect of the drug as the cumulative effect of all directed interactions between these two

nodes [23]. Reasoning over all paths overcomes the limitation of earlier algorithms that exclu-

sively account for shortest paths on protein-protein interaction networks, oversimplifying the

effect exerted by one node on another, as all other paths between the two nodes are ignored

[24–25]. Nonetheless, paths in large-scale KGs can grow exponentially, many of which may

not be relevant in a true biological context. Thus, incorporating signatures from context-spe-

cific experimental datasets along with prior knowledge in a KG can enable us to reason over

the entire network-structure and ensure only paths which can be observed in a biologically

meaningful context are retained. In doing so, we can address several of the limitations of the

above-mentioned methods for drug discovery.

Here, we present RPath, a novel algorithm that prioritizes drugs for a particular disease by

reasoning over causal paths in a KG, guided by both drug-perturbed and disease-specific tran-

scriptomic signatures (Fig 1). We demonstrate how RPath is able to recover a large proportion

of clinically investigated drug-disease pairs on multiple transcriptomic datasets and KGs, per-

forming better than other network-based methods. Furthermore, we show two additional

applications where we illustrate how our approach can also assist in hypothesis generation and

target prioritization.

Results

This section is divided into three subsections that outline the different applications of

RPath presented in this manuscript. First, we demonstrate how RPath can be used to

identify potential drug candidates for various diseases using a variety of KGs and datasets,

outperforming numerous link prediction methods. Next, we leverage the inherent interpret-

ability of KGs to generate hypotheses for the predictions made by RPath. Finally, we outline

how RPath can be reversed-engineered and alternatively used to predict targets for a given

disease.

Identification of drug candidates

To demonstrate the ability of our algorithm to accurately identify drug candidate for a given

disease, we evaluated its performance to recover clinically investigated drug-disease pairs

using two distinct KGs and four transcriptomic datasets (i.e., two each containing numerous
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drug-perturbed and disease transcriptomic experiments). In this task, RPath consistently pri-

oritized a significantly larger number of clinically investigated drug-disease pairs across all

datasets and in both KGs compared with the precision expected by chance (i.e., probability of

randomly picking a positive label among drug-disease combinations that are connected

through a path) (Table 1).

The highest precision values were found for the L1000-GEO datasets with 80% and 66.67%

for the OpenBioLink and custom KGs, respectively. In the remaining datasets, the precision

was approximately 50%, except for the CREEDS-Open Targets datasets in the custom KG that

exclusively yielded a single drug-disease pair which was not in clinical trials. While the preci-

sion expected by chance approximately varied between 10% and 42%, RPath consistently

achieved higher precision values across nearly all datasets and KGs, ranging between 50% and

80% (e.g., more than five times higher for the L1000-GEO dataset in OpenBioLink running

Fig 1. Schematic representation of the RPath algorithm. Step 1) All acyclic paths of a given length between a drug and a disease in the KG are calculated.

If there exist causal acyclic paths connecting the drug and the disease, a subgraph involving all these paths is inferred. This subgraph represents the

proposed mechanism of action by which the drug may be a therapeutic target of the given disease. Step 2) Transcriptomic signatures observed from a

drug-perturbed experiment are overlaid onto each corresponding node present in these paths. Then, RPath traverses through each path and evaluates

whether the inferred direction of regulation (i.e., activation or inhibition) at every step is concordant with the up- and down- regulations (i.e., red and

green nodes, respectively) observed in the transcriptomic signatures. Step 3) In a similar manner, transcriptomic signatures observed within a specific

disease context are overlaid onto each corresponding node in the concordant paths from the previous step (if any). Next, RPath evaluates whether the

disease transcriptomic signatures contradict the paths that were concordant with the drug signatures. If this is the case, the specific drug-disease pair is

prioritized.

https://doi.org/10.1371/journal.pcbi.1009909.g001

Table 1. Evaluation of RPath in multiple datasets across the two KGs using precision. Each row corresponds to the results of running RPath on a specific drug-disease

dataset combination. The second and fourth columns show the performance that is expected to be achieved by chance.

- OpenBioLink KG Custom KG

Dataset combination Precision (TP/TP+FP) Expected precision by chance Precision (TP/TP+FP) Expected precision by chance

L1000 [26]–GEO [27] 80% (4/5) 17.42%% 66.67% (2/3) 13.74%

L1000 –Open Targets [28] 54.55% (6/11) 15.01% 50% (2/4) 9.62%

CREEDS [29]–Open Targets 50% (1/2) 32.66% 0% (0/1) 24.40%

CREEDS–GEO 50% (1/2) 41.15% 50% (1/2) 34.08%

https://doi.org/10.1371/journal.pcbi.1009909.t001
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RPath (80%) vs. chance (17.42%)). Notably, the number of prioritized drug-disease pairs were

constrained for two reasons: i) RPath requires transcriptomic information for a given drug

and disease and, ii) the pair must also be present in the KG (see S1 Table for details). Further-

more, apart from the low number of drug-disease pairs that fulfilled these criteria, RPath filters

the majority of pairs with paths between them after overlaying the transcriptomic signatures in

Steps 1 and 2 (see Fig 1) of the algorithm (S2 Table). For example, in the case of the CREEDS-

GEO datasets and the OpenBioLink KG, the total number of diseases was 10, resulting in only

a couple of drug-disease pairs being prioritized. Nonetheless, we were still able to validate our

methodology across multiple datasets and KGs, observing that RPath performed significantly

better than chance at identifying clinically investigated drug-disease pairs.

Finally, we benchmarked RPath against 11 alternative methods [30–31] that have been used

to predict drug-disease links in a KG with the same characteristics as the ones used in this

work. The precision of these methods varied between 5% and 43% (S3 Table). Furthermore,

since the majority of these methods prioritize a drug and a disease based on their network

proximity (e.g., shortest paths and number of shared nodes), these methods recurrently priori-

tized the same set of drug-disease pairs. Thus, these methods could not be used to prioritize

drugs outside the vicinity of disease-associated proteins since only a minority of drug-disease

pairs are connected by a single protein, but the majority of them contain longer paths that are

not considered by these methods (S2 Table). Lastly, we also conducted permutation experi-

ments where we permuted both the binarized gene expression values (i.e., +1, -1, 0) observed

in the transcriptomic datasets and the edges of the KGs, while maintaining their underlying

structure. The results of our experiments showed how the number of prioritized drug-disease

pairs significantly decreases when permuted datasets and KGs are employed and that none of

these few prioritized pairs were clinically investigated (S9 Table).

Interpretation of the mechanisms of action of the proposed drug

candidates

In a case study, we sought to explore the results obtained by running RPath on the custom KG.

Of the prioritized drug-disease pairs (see S3 Text), we studied the paths between two of the

pairs to demonstrate how our approach can potentially be used to deconvolute the mechanism

of action of some drugs (Fig 2). We selected bicalutamide and ponatinib as these two anti-can-

cer drugs were the top-ranked prioritized drugs and already approved for prostate cancer and

acute myeloid leukemia, respectively. Furthermore, since the mechanisms of action of these

drugs have been widely studied, we can compare the mechanistic paths identified by RPath

against known interactions and pathways reported in scientific literature.

First, we investigated ponatinib, a multi-targeted tyrosine-kinase inhibitor, which is used to

treat acute myeloid leukaemia (AML) (Fig 2B). Among the targets of this drug present in the

concordant paths for this pair, we were able to identify fms-like tyrosine kinase 3 (FLT3),

which is mutated in approximately 20% of AML patients [32] and several members of the

FGFR family proteins. Furthermore, we observed other proteins including KDR, LYN, and

SRC, all of which are kinase-associated targets in AML. As a downstream target of these pro-

teins, we found JAK2, a well-studied player in myeloproliferative diseases, with known muta-

tions and hypermethylation events. We further identified the transcription factor, CEBPA,

that is critical for normal development of granulocytes and is also implicated in AML [33] and

the SPI1 gene, from which circSPI1, a circular RNA derived from the gene, has recently been

shown to be highly expressed in AML patients [34]. Other proteins that are inhibited as a result

of the signaling cascade triggered by ponatinib include KIT, which is implicated in cell death

in AML [35]. RAS family members NRAS and KRAS, both of which are associated with the
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prognosis of solid tumors and hematological malignancies, including AML [36] were also

implicated.

The second studied drug-disease pair is bicalutamide, used for the treatment of prostate

cancer. Bicalutamide is an anti-androgen medication that binds to the androgen receptor

(AR), as illustrated in Fig 2C. The paths between bicalutamide and prostate cancer point to

several downstream targets of this drug, including the epigenetic regulator KMT2D, which is

known to sustain prostate carcinogenesis by epigenetic mechanisms [37], and NECAB3,

known to enhance the activity of HIF1A, thus promoting glycolysis under normoxic condi-

tions and enhancing tumorigenicity in cancer cells [38]. Furthermore, we were able to identify

CTNNB1, which plays a role in the development of numerous prostate cancers [39]. Interest-

ingly, we also observed novel players that have not yet been reported in the literature, such as

GNAI1, SYMPK, UBR5, and MEF2C that may provide new insights on the mechanism of

action of this drug.

Target prioritization

Prior to the identification of a therapeutic drug candidate for any given disease, a crucial first

step is often to identify biologically relevant protein targets. Ideally, the perturbation of a par-

ticular protein target in a disease state should result in the reversal of the observed phenotype.

In a similar manner to the above-mentioned applications, by reasoning over the KG guided by

disease signatures, RPath can be used for target prioritization. Since, as per our knowledge,

Fig 2. Devoncoluting the mechanism of action of a drug through RPath. By investigating all the paths of a given length between a drug and a disease in a

KG, we can analyze the different mechanisms that are proposed by RPath. a) Visualization of the custom KG. Proteins are colored in blue, diseases in red and

drugs in green. Sankey diagram illustrating a sample of the paths between ponatinib and AML (b) and bicalutamide and prostate cancer (c) for the custom KG.

Activatory relations in the Sankey diagrams are colored in red and inhibitory relations in blue.

https://doi.org/10.1371/journal.pcbi.1009909.g002
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there are no large datasets that contain information about known targets for a wide variety of

indications, we could not conduct a validation strategy similar to the analyses presented in the

subsection Identification of drug candidates. Instead, we focused on evaluating the top priori-

tized protein targets across all diseases using literature evidence (Table 2).

Among the top protein target-disease pairs proposed by RPath, two have already been asso-

ciated with AML, including PRKCA, for which several drugs already exist [40–41] and

CXCL8/IL-8 [42–44]. Furthermore, CDC42, which has been proposed as a candidate target for

medulloblastoma, plays a role in several cancers. Specifically, CDC42 has been shown to act as

a regulator of medulloblastoma-associated genes [45] and compounds for its inhibition have

also been proposed [46].

Discussion

In this work, we present a novel methodology that leverages prior knowledge from causal rela-

tions across multiple biological modalities in KGs and assesses their concordance with tran-

scriptomic signatures for drug discovery. In the past, several algorithms have been primarily

introduced for the interpretation of transcriptomic signatures by reasoning over shortest paths

[24–25] or bipartite graphs [20–22]. Though these algorithms could also be indirectly applied

for drug discovery, they present some shortcomings: i) they operate on homogeneous causal

graphs with a single entity type (e.g., protein nodes), ii) they are solely conducted on single

contrast experiments (e.g., drug-treated vs. control), and iii) they do not fully exploit all possi-

ble paths in these causal graphs. RPath addresses these shortcomings by reasoning over all pos-

sible causal paths in a multimodal KG and leveraging both drug and disease transcriptomic

signatures. First, our algorithm reasons over the ensemble of paths between a given drug and a

disease in a KG. Second, it evaluates the concordance of these paths against the transcriptomic

changes experimentally observed for that drug. Third, it assesses whether the effect of these

paths is opposite to the transcriptomic signatures observed within the disease context. In a

final step, the algorithm identifies potential drug candidates as those whose paths correlate

with drug-perturbed transcriptomic signatures and are anti-correlated to the disease transcrip-

tomic signatures. We have validated our methodology in eight independent analyses, finding

that RPath consistently identifies a large proportion of clinically investigated drug-disease

pairs over multiple datasets and KGs. Additionally, we conducted several robustness experi-

ments and benchmarked the algorithm against 11 network-based methodologies. Finally, we

also showed how our approach can be used to deconvolute the mechanism of action of a drug

as well as to prioritize protein targets for a given disease.

We acknowledge a few shortcomings in our work that are worth discussion. Firstly, we

were limited by the availability of high-quality annotated transcriptomic datasets for drugs and

diseases, as only four of the approximately 30 datasets that we identified met our requirements.

Furthermore, the coverage of measured genes varied largely across experiments. For instance,

Table 2. Top 5 prioritized protein target-disease pairs. These results were obtained by running RPath over both KGs with the GEO and Open Targets datasets using the

same path length as the drug discovery task (see Methods). Pairs were prioritized based on the number of concordant paths. The vast majority of pairs were prioritized

using the disease transcriptomic signatures from the GEO dataset given its larger coverage of measured genes compared to Open Targets (S4 Table).

Protein target Disease Concordant paths Nodes in the concordant paths KG Transcriptomic dataset

NOG AML 18,456 1,008 Custom KG GEO

PRKCA AML 12,861 669 Custom KG GEO

CXCL8 / IL-8 AML 7,234 465 Custom KG GEO

NOG Plasma cell myeloma 5743 616 Custom KG GEO

CDC42 Medulloblastoma 5,651 91 OpenBioLink GEO

https://doi.org/10.1371/journal.pcbi.1009909.t002
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while the average number of genes measured in the Open Targets dataset was approximately

900, that number dropped to 500 in the CREEDS dataset (S4 Table). In contrast, the total

number of proteins in the KGs were in the range of several thousands. As RPath requires that

signatures from both these drug and disease datasets be mapped to the KG, most of the pro-

teins in the KGs could not be quantified. Thus, we allowed for up to one error when calculating

the concordance in the path between a drug and a disease. Furthermore, two other reasons jus-

tified an error within the path. Firstly, introducing an error limits the impact of an arbitrary

fold change cut-off, which ultimately determines the up-/down-regulation of each protein.

Secondly, some paths might contain causal relations that do not reflect a change at the tran-

scription level of the affected protein (e.g., phosphorylation of a protein kinase) [18–19]. We

expect that this challenge we faced of quantifying proteins in our KGs will be overcome by

high-quality, consistent datasets such as those generated in large pharmaceutical enterprises

and emerging data-driven biotech companies looking to leverage large-scale computational

technologies. Another characteristic of our approach is that the identification of a potential

drug for a given disease requires knowledge of the protein target and the effect of the drug on

it. However, this information is not always available or must be inferred using computational

approaches. Finally, the interpretation of the mechanism of action of a proposed drug with the

help of scientific literature comes with the caveat that the individual interactions were them-

selves derived from the literature. Nonetheless, it is still possible to interpret the mechanism of

action of a drug irrespective of the aforementioned limitation as the paths of the proposed

drug-disease pairs include only those which are concordant with observed data-driven tran-

scriptomic signatures.

While we have demonstrated our novel algorithm across multiple datasets and KGs, we

envision multiple other applications. Firstly, by incorporating time series data into the analysis,

we can determine how the paths between the drug and the disease are altered over time follow-

ing the concept outlined by [47]. Secondly, although we have demonstrated our methodology

using transcriptomic data, other modalities can be used if the KG contains causal relations for

these entities (e.g., metabolomics). Additionally, although we have employed transcriptomic

signatures in this work, we acknowledge that RNA levels may not directly reflect the functional

activity of proteins. However, given the growth in the availability of proteomic data, we envis-

age the application of our approach on proteomic experiments from databases such as PRIDE

[48], ProteomicsDB [49], and L1000 [26] in the future. Furthermore, although a multimodal

KG may lack the context within which each relation occurs, RPath inherently takes this into

account by removing the paths which do not match the observed transcriptomic signatures.

However, the algorithm could also be applied on a disease-specific KG in order to model the

pathophysiological mechanisms characteristic of a given phenotype [50–51].

Methods

Theoretical background

We denote a KG as a set of nodes and edges, where nodes correspond to three distinct biologi-

cal entities (i.e., chemicals, proteins, and diseases) connected through causal relations, repre-

senting activatory or inhibitory effects. Causal relations within the KG connect drug-protein,

protein–protein, and protein–disease nodes. A (directed) path in a KG is defined as a sequence

of two or more biological entities connected through causal relations. Paths in the KG can be

either cyclic or simple. A cyclic path refers to paths in which one or more nodes repeat,

whereas a simple path corresponds to a path in which no nodes appear more than once. The

length of a path is defined by the number of edges that connect the nodes within the path.
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RPath algorithm

The algorithm used in our framework, RPath, reasons over the paths in a KG to identify all

possible effects a given drug can have on a disease (Fig 1). Each of these paths can be divided

into three main sequential parts that attempt to represent the mechanism of action of a drug: i)

the drug activates/inhibits a protein target (drug-protein edge), ii) the protein target triggers a

signaling cascade (a set of protein-protein edges), and iii) the signaling cascade reverts the dis-

ease condition (protein-disease edge). Furthermore, since every causal edge contains informa-

tion on the effect each node exerts on another (i.e., activation or inhibition), we can infer the

direction of regulation (i.e., up-/down-regulated) for each node at each step of a path [24–25].

Once the causal acyclic paths between a particular drug and disease in the KG have been

calculated (Fig 1; step 1), the next step of RPath is to overlay transcriptomic signatures from a

drug-perturbed experiment (Fig 1; step 2). We hypothesize that because a number of paths

might represent the biologically relevant mechanism of action of this drug, the observed tran-

scriptomic signatures for proteins in the KG should be concordant with the inferred up- or

down-regulations at every step of the path. For example, if in a given path, a drug inhibits a

protein target and that target activates a signaling cascade, we expect the inhibition of the pro-

tein target as well as the inhibition of the proteins downstream of the target. We would like to

note that a gene is considered to be differentially expressed if its expression is significantly

altered with respect to a reference sample (i.e., control). Keeping this in mind, a cut-off is

applied to each measured gene in the experimental dataset based on the fold change; this mea-

surement is used to define whether the gene is up-/down-regulated or unchanged.

Similarly, the final step of RPath involves overlaying disease-specific transcriptomic signa-

tures to the nodes in the paths of the KG (Fig 1; step 3). We hypothesize that, in contrast to

the overlaying of drug-perturbed signatures, transcriptomic signatures in a disease context

should be anti-correlated to both the drug-perturbed signatures as well as the inferred up- or

down-regulations for every node in the path. This final step is inspired by previous work that

exploited the anti-correlation between drug and disease signatures at the pathway level for

drug repurposing [15–16]. In summary, RPath aims at prioritizing a specific drug for a given

disease if i) there exist causal paths between the drug and disease in the KG, ii) the causal

effects on these paths are aligned with the transcriptomic changes observed in the drug-per-

turbed experiment, and iii) both the drug signatures and the paths are anti-correlated with the

transcriptomic dysregulations observed in the disease. Fig 3 outlines the pseudocode of the

described logic of the algorithm.

As an additional application, the algorithm can be modified following the same logic for

target prioritization (see S1 Fig for the pseudocode). This variant of the algorithm begins

from a disease of interest and calculates all paths from the disease to all proteins for a given

path length (e.g., a path length of 6). Next, it calculates the concordance between the paths for

each potential protein target and the transcriptomic signatures of the given disease to assess

whether there are proteins that could be key up-stream regulators of the observed phenotype.

We would like to note that this application exponentially increases the running time of the

algorithm as it requires querying paths from a disease to several thousands of proteins in the

KG, as opposed to only a handful of chemicals.

Datasets and validation

In this subsection, we present drug-perturbed and disease-specific transcriptomic datasets as

well as the KGs used to demonstrate our methodology. We then introduce the strategy we fol-

low to validate our methodology.
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Fig 3. Pseudocode of the RPath algorithm. Given a KG, drug, disease and a defined path length (i.e., lmax), the core

function of the algorithm, is_drug_prioritized, returns whether a drug should be prioritized or not. For this, the

function calculates all acyclic paths between a drug-disease pair in the KG. For each path found, drug-perturbed (i.e.,

drug_tr) and disease-specific (disease_tr) transcriptomic signatures are overlaid onto their corresponding protein

nodes. The function then prioritizes the drug if at least one path is concordant with the observed drug-perturbed

transcriptomic signatures (evaluated via Function 1, is_concordant) and the same path is anti-correlated with the

observed disease-specific transcriptomic signatures (evaluated via Function 2, is_anti_correlated). Paths which match

both the drug-perturbed signatures and contradict disease-specific signatures are then returned by RPath as promising

drug candidates.

https://doi.org/10.1371/journal.pcbi.1009909.g003

PLOS COMPUTATIONAL BIOLOGY Leveraging transcriptomic signatures to reason over KGs for drug discovery

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009909 February 25, 2022 10 / 18

https://doi.org/10.1371/journal.pcbi.1009909.g003
https://doi.org/10.1371/journal.pcbi.1009909


Drug-perturbed and disease transcriptomic datasets. We identified four databases that

were suitable for our approach (S5 Table); drug-perturbed transcriptomic data were obtained

from CREEDS [29] and L1000 [26] while disease transcriptomic data were collected from

Open Targets [28] and GEO [27]. All experimental datasets from these resources (downloaded

on 15.02.2021) contained gene expression changes measured in humans. Drugs and diseases

from datasets obtained from these databases were then mapped to PubChem compound iden-

tifiers and the Mondo Disease Ontology (MONDO), respectively, for consistency with the

entities of the knowledge graphs presented in the next subsection. Similarly, gene identifiers in

all datasets were harmonized to ENTREZ. Of the four databases, datasets from L1000 con-

tained a binarized value for the direction of dysregulation for every gene (i.e., up-regulation

and down-regulation), while for the remaining databases, fold changes were binarized for sig-

nificantly dysregulated genes using |log2 fold change| = 1 as a cutoff (S1 Text). As fold change

thresholds tend to be arbitrary selected [52], we opted to select a threshold of 1 as opposed to a

more stringent one (e.g., |log2 fold change| > 2) to ensure a larger number of dysregulated

genes would be retained. Finally, we conducted a systematic search for databases that con-

tained either a large number of drug-perturbed or disease-specific transcriptomic datasets.

While this search initially resulted in 27 candidate databases (see S5 Table for details about

each dataset), the majority of them were not suitable for our study as they either contained

too few transcriptomic datasets or the drugs/diseases in these datasets were not in the KGs

used to demonstrate our methodology.

Knowledge graphs. We demonstrate our methodology using two established publicly

available KGs that contain causal relations across drugs, proteins, and diseases: OpenBioLink

KG [53] and a custom KG [23]. Both KGs are originally generated from a compedia of inde-

pendent databases; thus, containing unique causal interactions depending on the source data-

bases they include. As outlined in the algorithm, the KGs are required to encompass three

types of causal edges: drug-protein (i.e., drug activates/inhibits protein), protein–protein (i.e.,

protein activates/inhibits protein), and protein–disease (i.e., protein activates/inhibits disease).

Furthermore, the original node identifiers for drugs and diseases in both KGs were respectively

mapped to PubChem compound identifiers and MONDO to be consistent with the transcrip-

tomic datasets. Next, we removed drugs and diseases that were not present in any of the four

transcriptomic datasets presented in the previous subsection as the paths between these drug-

disease pairs cannot be validated. Fig 4 shows the final statistics of both KGs after the previ-

ously outlined filtering steps. S4 and S6 Tables summarize the overlap between the genes

Fig 4. Distribution of node and edge types in the custom and OpenBioLink KGs. The properties of each of the two networks are detailed in S7 Table.

https://doi.org/10.1371/journal.pcbi.1009909.g004
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measured in each of the four transcriptomic datasets and their corresponding protein nodes in

the KGs.

Validation. In line with other network-based approaches designed for drug discovery

[54–55], we used drug-disease pairs that have been clinically investigated as positive labels,

extracting this information from ClinicalTrials.gov (accessed on 28.09.2020). Clinical trials are

commonly used as a proxy for highly validated, medically relevant biological interactions,

independently of whether the clinical trial was successful or not, as multiple in vitro and in
vivo studies must first validate the interaction in order for the drug to proceed to a clinical

trial. Notably, this assumption may result in a worse performance being reported than the

actual performance of the algorithm as some of the drug-disease pairs that are considered as

negative labels may in fact be positive ones.

Since drugs and diseases in ClinicalTrials.gov are formalized using MeSH identifiers, we

harmonized these identifiers to the ontologies used in the KG (i.e., PubChem compounds for

drugs and MONDO for diseases) (mappings are available at the GitHub repository). After the

harmonization, any drug or disease in the KGs that was not present in any clinical trial or did

not have any path to any disease in the KG was subsequently removed, as its corresponding

node could not be used in the presented validation. Details on the harmonization procedure

are provided in S1 Table.

To test the robustness of RPath in identifying these clinically investigated drug-disease

pairs, we conducted eight independent analyses, one for each of the combinations of the two

drug datasets, the two disease datasets, and the two KGs (e.g., CREEDS-GEO-OpenBioLink,

L1000-GEO-OpenBioLink, etc.). For each of these eight analyses, we ran RPath over a given

KG to prioritize drug-disease pairs among all possible drug-disease combinations. We would

like to note that these pairs prioritized by the algorithm are those whose paths are both corre-

lated with drug-perturbed transcriptomic signatures and anti-correlated with disease tran-

scriptomic signatures. Furthermore, we make two assumptions in the design of the algorithm.

Firstly, paths with cycles or a length greater than 7 edges between a given drug and disease are

not considered, assuming that the effects exerted by paths beyond this length are less biologi-

cally relevant [23]. Secondly, we allow for at most one error between the transcriptomic data

and a given path (see pseudocode of the algorithm in Fig 3). We refer to an error in the path as

the disagreement between the type of causal interaction (i.e., activation or inhibition) and the

direction of dysregulation of genes in the transcriptomic datasets (i.e., up or down -regula-

tion), or the absence of the drug-perturbed and/or disease-specific transcriptomic signature.

We restricted the number of allowed errors to at most one as, without any errors, running the

algorithm over the two KGs with most dataset combinations will not yield any prioritized

pairs, and permitting more than one error will result in an exponential increase in the number

of prioritized pairs. For example, in the latter case, for a path of length 5 (i.e., a sequence of 3

proteins), an allowance of two errors (e.g., missing expression values for 2 of the 3 proteins)

would still result in the prioritization of the drug-disease pair if the remaining protein both

correlated with the drug and anti-correlated with the disease, obfuscating results.

From this set of prioritized drug-disease pairs, we expect to retrieve a larger proportion of

clinically investigated drug-disease pairs (i.e., positive labels) than expected by chance (i.e.,

proportion of positive labels in the dataset that also have a path between the drug and disease).

Here, it is important to note that, as in any drug discovery task, there is a class label imbalance

where the vast majority of the drug-disease pairs are negative labels while the proportion of

positive labels ranges from anywhere between 9% and 41% for each of the eight analyses (S4

Table). Furthermore, this type of validation falls into the so-called early retrieval problem. In

other words, from the thousands of drug-disease pairs that are tested, we are exclusively priori-

tizing the top-ranked pairs that have been equally prioritized by the algorithm. This small
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subset represents the interesting drug-disease pairs that would be further investigated in the

drug discovery process. In such cases, it is inadequate to apply metrics such as receiver operat-

ing characteristic (ROC) curves as they operate on a full ranked list. Therefore, it does not nec-

essarily evaluate the ability of a model to prioritize the most promising drug-disease pairs

candidates [56]. Additionally, considering that not all drug-disease pairs have been clinically

studied, a number of the negative labels might be falsely classified as positive. To address these

issues, we evaluated the performance of RPath based on the ratio of true positives that appear

in the prioritized drug-disease pairs (i.e., precision was used as the performance metric). As a

baseline, we assessed whether the prioritized drug-disease pairs found through the algorithm

contain a larger proportion of positive labels (i.e., drug-disease pairs investigated in clinical tri-

als) than expected on average by chance.

As a benchmark, we compared RPath against 11 equivalent approaches that can be used to

prioritize drug-disease pairs based solely on network structure, as outlined by [26] and [27]

(S2 Text). The choice of these approaches is motivated by the fact that, as per our knowledge,

there are no network-based methods that operate on multimodal KGs using transcriptomic

signatures for the prioritization of drug-disease pairs. Additionally, we conducted a validation

experiment where we simultaneously randomly permuted the directionality of the genes mea-

sured in the transcriptomic datasets and the KGs using the XSwap algorithm [57] while both

preserving network structure and the original gene expression distributions. Using these, we

then rerun the eight analyses to compare the significance of our results [57].

Implementation details

The RPath algorithm and the benchmarked methods are implemented in Python leveraging

NetworkX (v2.5) (https://networkx.github.io). Network visualizations were done using

WebGL, D3.js, Three.js, Matplotlib and igraph. Source code, documentation, and data are

available at https://github.com/enveda/RPath. The validation presented in the paper can be

reproduced by running the Jupyter notebooks available at https://github.com/enveda/RPath/

tree/master/notebooks.
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