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Abstract

This thesis concerns the proof complexity of algebraic and semi-

algebraic proof systems Polynomial Calculus, Sums-of-Squares and

Sherali-Adams.

The most studied complexity measure for these systems is the

degree of the proofs. This thesis concentrates on other possible com-

plexity measures of interest to proof complexity, monomial-size and

bit-complexity. We aim to showcase that there is a reasonably well-

behaved theory for these measures also.

Firstly we tie the complexity measures of degree and monomial

size together by proving a size-degree trade-off for Sums-of-Squares

and Sherali-Adams. We show that if there is a refutation with

at most s many monomials, then there is a refutation of degree

O(
√
n log s + k), where k is the maximum degree of the constraints

and n is the number of variables. For Polynomial Calculus similar

trade-off was obtained in [46].

Secondly we prove a feasible interpolation property for all three

systems. We show that for each system there is a polynomial time

algorithm that given two sets Q1(x, z) and Q2(y, z) of polynomial

constraints in disjoint sequences x, y and z of variables, a refutation

of Q1(x, z) ∪ Q2(y, z) and an assignment a to the variables z, finds

either a refutation of Q1(x, a) or a refutation of Q2(y, a).

Finally we consider the relation between monomial-size and bit-

complexity in Polynomial Calculus and Sums-of-Squares. We show

that there is an unsatisfiable set of polynomial constraints that has

both Polynomial Calculus and Sums-of-Squares refutations of poly-

nomial monomial-size, but for which any Polynomial Calculus or

Sums-of-Squares refutation requires exponential bit-complexity.

Besides the emphasis on complexity measures other than degree,

another unifying theme in all the three results is the use of seman-

tic characterizations of resource-bounded proofs and refutations. All

results make heavy use of the completeness properties of such charac-

terizations. All in all, the work on these semantic characterizations

presents itself as the fourth central contribution of this thesis.
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Michal Garĺık, Massimo Lauria, Moritz Müller and Joanna Ochremiak.

Thank you to my fellow PhD students I had the pleasure to get to know

during these years: Lucas Machado, Alberto Moreno, Josep Sànchez and
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Chapter 1

Introduction

Proof theory is a branch of mathematical logic whose objects of study are

formal theories and proofs in formal proof calculi. Though the notion of

logical calculus can be seen already in Leibniz’s Calculus ratiocinator, proof

theory grew to fruition out of Hilbert’s formalist agenda to give finitary

foundations for the whole of mathematics. Even if Hilbert’s program failed

in its most general form, it definitely left a mark on mathematical logic in

general, and proof theory in particular.

With the clear understanding of proofs as finite combinatorial objects –

strings of symbols from some vocabulary – comes naturally a question about

the sizes of such objects. This leads us to propositional proof complexity,

which studies the sizes of proofs in different proof calculi for propositional

logic(s). The question is certainly interesting by itself, but a stronger mo-

tivation for propositional proof complexity comes from the seminal work

of Cook and Reckhow [23] that connects propositional proof complexity to

major open questions in computational complexity theory.

1.1 Propositional proof complexity

In [23] Cook and Reckhow presented a general definition of a propositional

proof system as a poly-time computable function onto the set of tautologies.

With this definition they made the simple but foundational observation that
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there is no propositional proof system for classical propositional logic that

has short, i.e. polynomial-sized, proofs for all tautologies unless NP is closed

under complementation. The converse implication holds also.

Cook and Reckhow introduced also machinery to compare the rela-

tive strengths of different proof systems via so-called p-simulations. A

p-simulation is a polynomial-time function that transforms proofs in one

system to proofs in another. The existence of such function shows that

the proofs in the former system cannot be considerably shorter than in the

latter. The main line of research in propositional proof complexity has ever

since concerned itself in proving lower bounds for stronger and stronger

proof systems in the above definite sense.

Some proof systems for propositional logic familiar for many include

Resolution, Hilbert- and Gentzen-style calculi and Natural Deduction. For

Resolution we know of many strong lower bounds going back all the way

to Tseitin’s lower bound for a subsystem of Resolution called Regular Res-

olution in 1968 [90] and Haken’s lower bound for general Resolution in

1985 [43]. The other mentioned systems turn out to be equivalent in their

strength [23]. They are jointly called Frege systems as a homage to Frege’s

Begriffsschrift. Proving superpolynomial lower bounds for Frege systems is

a major open question in propositional proof complexity.

1.2 (Semi-)algebraic proof systems

Besides logic, different proof calculi can be found also in other parts of

mathematics. In this thesis we study calculi arising from algebra and com-

binatorial optimization that are used to prove the unsatisfiability of a set

of polynomial equality and/or inequality constraints. We still retain the

point of view of propositional proof complexity, and study these systems

as refutation systems for polynomial constraints over Boolean values 0 and

1. We study the algebraic proof system Polynomial Calculus (PC) and the

semi-algebraic proof systems Sums-of-Squares (SOS) and Sherali-Adams

(SA).



Polynomial Calculus is a proof system based on local inference rules

whose correctness is ultimately based on Hilbert’s Nullstellensatz. It was

introduced by Clegg, Edmonds and Impagliazzo in [22] under the name

Gröbner basis proofs. In defining the proof system they drew inspiration

from Gröbner basis calculations in computational algebraic geometry, and

gave a proof search method for Polynomial Calculus proofs reminiscent of

the Buchberger’s algorithm for finding a Gröbner basis for a given polyno-

mial ideal. In the Boolean realm Polynomial Calculus was further strength-

ened to a system called Polynomial Calculus Resolution (PCR) in [1].

Sums-of-Squares on the other hand has its roots in semialgebraic geom-

etry. Central results in semialgebraic geometry are the different forms of

Positiv- and Nichtnegativstellensätze, which give necessary and sufficient

conditions for the positivity or non-negativity of polynomials on semial-

gebraic sets, i.e. subsets of the Euclidean space defined by polynomial

inequalities and equalities. See [83] for a survey on the different forms of

Positiv- and Nichnegativstellensätze.

Based on the most general form of Positivstellensatz by Krivine [57] and

Stengle [88], Grigoriev and Vorobjov [40] defined the Positivstellensatz proof

system and initiated the study of its proof complexity. Sums-of-Squares

proof system on the other hand is based on Putinar’s Positivstellensatz

[77], which gives a very clean representation of a polynomial positive on a

semialgebraic set under an additional technical assumption that holds for

semialgebraic sets defined by polynomials over Boolean variables.

Beginning with [9], Sums-of-Squares has amassed considerable amount

of attention due to its connections with approximation algorithms and com-

putational complexity through hierarchies of SDP relaxations of combina-

torial problems [59, 68, 67, 21, 31, 63, 62]. We refer the reader to [67] and

[60] for discussion on these connections.

If Sums-of-Squares has close connection with hierarchies of SDP relax-

ations, Sherali-Adams proofs arise from the hierarchy of LP relaxations of

Sherali and Adams [85], and so Sherali-Adams forms a subsystem of Sums-

of-Squares. As a proof system for propositional logic Sherali-Adams was

first studied in [26].



1.3 Contributions and related work

This thesis has two unifying themes running along the length of the thesis.

Firstly, the thesis concentrates on size bounds for the three systems dis-

cussed above instead of the most studied complexity measure for the three

systems – the degree of the refutations. The second unifying theme is in

the techniques we employ to prove our results. We use different seman-

tic characterizations of resource-bounded proofs and refutations to prove

the majority of the results below. We rely especially on the completeness

properties of such characterizations, when most work in proof complexity

employs only the soundness properties of such characterizations. We also

introduce novel semantic characterizations tailored directly for size bounds,

instead of degree, for the three systems considered.

1.3.1 Complexity measures

The most studied complexity measure for all three systems is the degree of

a proof. This is of course a very natural complexity measure for proof sys-

tems based on polynomials. But for Sums-of-Squares and Sherali-Adams,

more importantly, the systems bounded by degree are in one-to-one corre-

spondence with the levels of the Lasserre and Sherali-Adams hierarchies,

respectively. Hence the degree upper and lower bounds give immediate

algorithmic information about feasibility and infeasibility of combinatorial

problems.

In part, the emphasis on degree bounds is also due to the existence of

simple proof search algorithms for bounded degree proofs. For Polynomial

Calculus proof search can be carried out by an algorithm reminiscent of

the Buchberger’s algorithm used in Gröbner basis computations, and for

Sherali-Adams and Sums-of-Squares proof search for a degree d proof is a

linear or semidefinite programming problem of size nO(d). The proof search

methods produce always proofs with nO(d) monomials, and unless the coef-

ficients grow too large the algorithms actually find the proofs (up to small

additive error in case of SOS) in time nO(d). For Polynomial Calculus over



finite fields and for Sherali-Adams large coefficients do not cause any prob-

lems – the systems are degree-automatable – but for Polynomial Calculus

over infinite fields and for Sums-of-Squares large coefficients can cause seri-

ous problems for the proof search procedures, as is exemplified also in the

Chapter 6 of this thesis.

First linear degree lower bounds for Polynomial Calculus were proved

by Razborov in [81] for (a version of) the Pigeonhole Principle. The paper

also introduced the use of reduction operators to prove degree lower bounds

in Polynomial Calculus. This approach has been applied and further devel-

oped in many subsequent papers (see e.g. [2, 34, 30, 65]). Another approach

based on binomial ideals for degree lower bounds for Polynomial Calculus

was used in [20] to prove lower bounds for Tseitin formulas and mod p

counting formulas. The work builds on earlier bounds for Nullstellensatz

using similar machinary [35]. This approach was used also in [13] to prove

degree lower bounds for random CNF’s.

Grigoriev proved the first degree lower bounds for Sums-of-Squares in

[37] and [36]. The former extended the machinary introduced in [35, 20]

to Sums-of-Squares to give lower bounds on Tseitin and parity formulas,

while the latter introduced the use of the so-called pseudoexpectations to

argue against low degree proofs in Sums-of-Squares. Pseudoexpectations

were used, though implicitly, by Schoenebeck in [84] to give linear degree

lower bounds for random k-CNFs in Sums-of-Squares. The term ‘pseu-

doexpectation’ appears only later in [9], where many useful properties of

pseudoexpectations were also obtained. We refer the reader to the survey

[10] for further discussion on the role and use of pseudoexpectations.

As Sherali-Adams is a subsystem of Sums-of-Squares all the lower bounds

mentioned above hold for it also. An important example separating Sherali-

Adams from Sums-of-Squares in terms of degree is the Pigeonhole Princi-

ple: while there is a constant degree Sums-of-Squares refutation of the

Pigeonhole Principle [38], Sherali-Adams requires degree Ω(n) to refute the

Pigeonhole Principle with n+ 1 pigeons and n holes [25].

As stated above, this thesis concentrates on other possible complexity

measures that are of interest especially to proof complexity. We consider



the monomial-size of the systems, i.e. the number of monomials in a proof

or refutation, and the bit-complexity of the proofs, i.e. the number of bits

it actually takes to write down the proofs.

Lower bounds on these size measures are already known for all three

systems: one can transform degree lower bounds into lower bounds on the

number of monomials by using random restrictions (see [38] for an example

of such argument for Sums-of-Squares). Note, however, that such arguments

work only when the Boolean values are represented as 0 and 1 as the method

of random restrictions relies on a step, where one discards a large number of

monomials by mapping them to 0 by some partial assignment. Such attack

does not work, when the Boolean values are represented in the Fourier

basis with values ±1. This is in contrast to degree bounds, where one

can translate between the two representations with no loss in the degree.

Recently Sokolov proved the first strong size lower bounds for Polynomial

Calculus and Sums-of-Squares in the ±1 basis [87]. Note that, by definition,

Sherali-Adams system does not make sense in the Fourier basis.

On the other side of things, [8, 61] studied the question whether the

nO(d) upper bound on the number of monomials for degree d refutations is

the best one can hope for. It was shown that this upper bound is essentially

optimal. They constructed for each system examples of CNFs that have

degree d refutations, but require nΩ(d) many monomials to refute.

1.3.2 Semantics for resource-bounded proofs and

refutations

A second unifying theme in this thesis is the use of semantic arguments

to prove the existence or non-existence of resource-bounded proofs or refu-

tations. We aim to showcase that there is a nicely behaved mathematical

theory to reason about size bounds directly using tools reappropriated and

redefined from the tools traditionally used to prove degree bounds.

A typical way to prove lower bounds in proof complexity is to exhibit

a mathematical object whose existence rules out the existence of resource-

bounded proofs or refutations. From the point of view of mathematical



logic such objects can be seen as sound semantics for the associated classes

of proofs or refutations. More often than not such objects do in fact char-

acterize the associated classes of proofs or refutations, and thus provide us

with semantics that is both sound and complete. These include the pre-

viously mentioned reduction operators for Polynomial Calculus and pseu-

doexpectations for Sums-of-Squares, but also d-designs for Nullstellensatz

[11, 22, 19], the local and partial Boolean valuations for Extended Frege

systems [74, 53, 52], and the game theoretic characterization for Resolution

width from [5].

In this thesis we further develop the theory around reduction operators

for Polynomial Calculus and pseudoexpectations for Sums-of-Squares and

Sherali-Adams. We define variations on the degree bounded versions of

these operators that can be used to reason about size bounds directly, and

prove the associated soundness and completeness lemmas. Most of our later

contributions in this thesis rely especially on the completeness lemmas: we

argue for the existence of resource-bounded proofs and refutations from

the non-existence of suitable semantic objects, and for the existence of

the semantic objects from the non-existence of resource-bounded proofs or

refutations.

1.3.3 Size-degree trade-offs

We have already noted that one can obtain size lower bounds for the systems

using random restrictions. For Polynomial Calculus there is also a more

uniform way to translate degree lower bounds into monomial-size lower

bounds via the size-degree trade-off of [46].

Our first contribution is proving analoguous results for both Sums-of-

Squares and Sherali-Adams. These results show how to transform any refu-

tation with small number of (distinct) monomials into a proof with relatively

small degree. Similar results have been also proved between size and width

in Resolution [14] and between size and rank in tree-like LS and LS+ [70].

In more detail we prove that if there is an SOS/SA refutation of a set

Q of polynomial constraints of monomial-size s, then there is an SOS/SA



refutation of Q of degree of order
√
n log s + k, where n is the number of

variables, and k is the degree of the given constraints Q. This gives us a

criterion for monomial-size lower bounds from degree lower bounds.

The size-degree trade-offs rely on a zero-gap duality theorem between

pseudoexpectation values and provable lower bounds. This was already

established in [48], but we present here another proof. Our proof allows us

to also prove a small variation on the duality theorem that we actually use

in the proofs of the trade-off results.

These results are based on the following paper.

[A] Albert Atserias and Tuomas Hakoniemi. Size-Degree Trade-Offs for

Sums-of-Squares and Positivstellensatz Proofs. In Amir Shpilka, ed-

itor, 34th Computational Complexity Conference (CCC 2019), vol-

ume 137 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 24:1–24:20, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

1.3.4 Feasible interpolation

Our second contribution is proving a form of feasible interpolation for the

three systems considered here. Feasible interpolation is a framework in-

troduced by Kraj́ıček in [55] and [56] for reducing lower bounds in proof

complexity to lower bounds in other computational models. The general

idea behind feasible interpolation is to somehow feasibly extract from a

refutation an algorithm computing some associated problem, and to use

known lower bounds on the computation model to derive lower bounds for

the proof system.

The basic form of feasible interpolation takes a refutation of a formula of

the form ϕ(x, z)∧ψ(y, z) with disjoint sequences x, y and z of variables, and

feasibly extracts from it an algorithm computing an interpolant of the for-

mula, i.e. a function that given an assignment a to the z-variables outputs

0 only if ϕ(x, a) is unsatisfiable and 1 only if ψ(y, a) is unsatisfiable. Dif-

ferent variations of this basic form depend on the exact notion of feasibility



at hand. The general framework allows also reductions to computational

problems different than computing the interpolant – as is done in [33, 45].

The framework was originally used in [56] to prove lower bounds for

Resolution from lower bounds on monotone Boolean circuits from [80, 3].

The paper did this by showing that when the given CNF satisfies certain

monotonicity conditions, there is a monotone interpolant that can be com-

puted by a monotone Boolean circuit whose size is polynomial in the size

of a given refutation.

Another proof system for which the framework has been very succesfully

applied is Cutting Planes. Pudlák proved in [76] lower bounds on Cutting

Planes refutations showing that given a suitable CNF satifying some mono-

tonicity conditions there is a monotone interpolant that can be computed

by a monotone real circuit of size polynomial in the length of the given

Cutting Planes refutation. Later [33] and [45] showed independently and

concurrently that one can use the general framework to prove lower bounds

for random O(log n)-CNFs.

A form of monotone feasible interpolation can also be used to derive

degree lower bounds for Nullstellensatz refutation via a reduction to mono-

tone span programs [75]. It has also been shown that Lovász-Schrijver

proof system enjoys the feasible interpolation property [72, 27] with respect

to polynomial-time computability, and the monotone feasible interpolation

property with respect to monotone linear programming circuits [28] – a

strong model of monotone computation introduced in [28] strictly stronger

than monotone Boolean circuits or monotone span programs.

On the negative side Kraj́ıček and Pudlák showed in [54] that Extended

Frege cannot admit feasible interpolation with respect to polynomial-sized

Boolean circuits unless RSA is not secure against P/poly. This results was

later extended to Frege [18] and to bounded depth Frege [16] under other

cryptographic assumptions.

We prove feasible interpolation for all three systems in the following

form. We show that for each system there is a polynomial-time algorithm

that given two sets Q1(x, z) and Q2(y, z) of polynomial constraints in dis-

joint sequences x, y and z of variables, a refutation of Q1(x, z)∪Q2(y, z) and



an assignment a to the z-variables, outputs either a refutation of Q1(x, a)

or a refutation of Q2(y, a). For Polynomial Calculus we prove this claim

only for fixed finite fields – there is a different algorithm for distinct fields.

We prove the claim by first proving that either Q1(x, a) or Q2(y, a)

has a refutation of size roughly equal to the size of the given refutation of

Q1(x, z) ∪ Q2(y, z). This is called the feasible disjunction property of the

proof systems following [73]. The proof is highly non-constructive and uses

the semantic characterizations of resource-bounded refutations in an essen-

tial way. Only after this existence proof we argue that the small refutation

can be actually found in time polynomial in the size of the given refutation

of Q1(x, z) ∪ Q2(y, z). The existence proof narrows down the search space

for the refutation in a way that allows us to give a polynomial-time search

algorithm within that smaller search space.

A weaker form of feasible interpolation for degree-bounded proofs in

the three proof systems can be obtained using the proof search algorithms

mentioned above by simply searching for a refutation of P (x, a) for an ap-

propriate amount of time, and then outputting 0 if a refutation is found

and 1 otherwise. This argument was noted for Polynomial Calculus in [81]

and [75], but a similar argument can be made for Sherali-Adams and Sums-

of-Squares. Similarly a weak form of feasible interpolation with respect to

size bounds can also be proven using the proof search algorithms presented

in Chapter 5. Previously also a form of monotone feasible interpolation for

degree-bounded Polynomial Calculus with respect to monotone polynomial

programs was given in [75]. This model of computation is unfortunately

very strong – over finite fields it is as strong as general Boolean circuits

[75]. Very recently [32] showed a form of monotone feasible interpolation

for Sherali-Adams with respect to a weaker form of monotone linear pro-

gramming circuits than what was needed for Lovász-Shrijver in [28].

The work on feasible interpolation for Polynomial Calculus and Sums-

of-Squares appeared originally in the following work.

[B] Tuomas Hakoniemi. Feasible Interpolation for Polynomial Calculus

and Sums-Of-Squares. In Artur Czumaj, Anuj Dawar, and Emanuela



Merelli, editors, 47th International Colloquium on Automata, Lan-

guages, and Programming (ICALP 2020), volume 168 of Leibniz In-

ternational Proceedings in Informatics (LIPIcs), pages 63:1–63:14,

Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-

formatik.

1.3.5 Bit-complexity vs. Monomial-size

We consider also the relationship between the two measures, monomial-size

and bit-complexity, and prove separations between the measures in Polyno-

mial Calculus over reals or rationals and Sums-of-Squares. In short, we show

that there is a system of polynomial equations that has refutations both in

Polynomial Calculus and Sums-of-Squares with only small number of mono-

mials, but for which any proof must have exponential bit-complexity. For

Sums-of-Squares we show this by proving a trade-off between the number

of monomials and the magnitude of coefficients in Sums-of-Squares refuta-

tions. For Polynomial Calculus we prove a three-way trade-off between the

number of monomials, the size of coefficients and the height of Polynomial

Calculus refutations. It is rather easy to see that for Sherali-Adams these

two measures do in fact coincide as a search for Sherali-Adams proofs is a

linear programming problem (see Section 5.3.1.1).

The question on bit-complexity of Sums-of-Squares was raised origi-

nally by O’Donnell [66] in relation to the degree automatability of Sums-

of-Squares. O’Donnell noted that the received wisdom, that a degree d

Sums-of-Squares proof can be found using the ellipsoid algorithm in time

nO(d) if one exists, is not entirely true. Difficulties may arise if the only

proofs of degree d contain exceedingly large coefficients as then the initial

ellipsoid cannot be chosen small enough to guarantee polynomial runtime.

Building on [66], Raghavendra and Weitz exhibited in [78] (see also

Weitz’s PhD thesis [91]) an example of a set Q of polynomial constraints

over O(n2) Boolean variables and a polynomial p that has SOS proofs of

non-negativity from Q of degree 2, and thus with polynomially many mono-

mials, but for which any SOS proof of non-negativity from Q of degree O(n)



must contain a coefficient of doubly exponential magnitude in n.

The example of Raghavendra and Weitz leaves open, however, the pos-

sibility that there are SOS proofs of non-negativity of p from Q that can

be written with only polynomially many monomials, and with coefficients

of polynomial bit-complexity. In other words the example leaves open the

possibility that there are SOS proofs of non-negativity of p from Q that

can be written down with only polynomially many bits. It follows from our

result that this is not the case.

Similarly, Polynomial Calculus is often claimed to be degree automat-

able. This is certainly true when the underlying field is a fixed finite field

as then the problem with large coefficients does not occur. When the un-

derlying field is infinite there is however possibility for significant coefficient

blow-up. This phenomenon is recognised also in the Gröbner basis litera-

ture, but there the emphasis seems to be more on circumventing the problem

rather than in proving lower bounds on the magnitude of the coefficients.

See [29, 92, 82, 4] for discussion on ways to circumvent the problem in

Gröbner basis computations.

Raghavendra and Weitz proved the lower bound on the magnitude of

coefficients in Sums-of-Squares proofs of degree O(n) using the linear de-

gree lower bounds for refutations of Knapsack proved in [36], and the linear

degree pseudoexpectations for Knapsack it provides. We on the other hand

will use lower bounds on the number of monomials in refutations of Knap-

sack, and a suitable form of pseudoexpectations tailored for bounds on

monomial-size.

To prove our claim for Polynomial Calculus we use the fact – proved orig-

inally by Berkholz in [15] – that Sums-of-Squares p-simulates Polynomial

Calculus over real numbers. We provide a new semantic proof of this re-

sult that gives bounds on the coefficients in the Sums-of-Squares simulation

in terms of the size of coefficients and the height of the given Polynomial

Calculus refutation.

This work is based on the following paper.

[C] Tuomas Hakoniemi. Monomial size vs. Bit-complexity in Sums-



of-Squares and Polynomial Calculus. In 36th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,

June 29 - July 2, 2021, pages 1–7. IEEE, 2021.

Note on Sherali-Adams The papers listed above mention the Sherali-

Adams proof system only in passing. In this thesis – even with a danger of

repeating ourselves – we include also the details for Sherali-Adams.

1.4 Structure of the thesis

Beginning with Chapter 2 we introduce formally the proof systems we con-

sider in this thesis. We also cover some basic facts on convex cones that

admit order units.

In Chapter 3 we formulate semantic objects for resource-bounded proofs

and refutations in the three proof systems, and prove the corresponding

soundness and completeness results for such objects. This chapter contains

some known results, some parts from all three papers mentioned above,

and some new observations. The soundness and completeness of reduction

operators against degree is implicit in [81], but we give the full details.

Reduction operators against sets of monomials appeared originally in [B].

The proof of the Duality theorem for SOS comes from [A], and the work on

SOS pseudoexpectations against a set of monomials appears in both [B] and

[C]. The arguments for SA are modifications of the ones for SOS. Finally,

the semantic proof that SOS p-simulates PCR over reals appears in [C].

In Chapter 4, which is based on [A], we prove a size-degree trade-offs

for Sums-of-Squares and Sherali-Adams proof systems.

In Chapter 5 we prove a form of feasible interpolation for all three sys-

tems we consider here. This chapter is based on [B].

Chapter 6 considers the the relationship between two complexity mea-

sures, bit-complexity and the number of monomials, in Sums-of-Squares

and Polynomial Calculus refutations. This chapter is based on [C].

Finally in Chapter 7 we consider future directions for research and pose

some open problems related to the work presented in this thesis.





Chapter 2

Preliminaries

In this chapter we go through some preliminaries for the thesis. First we fix

some notation. Then in Section 2.2 we define the so called Boolean ideal – an

ideal of the polynomial ring, whose affine variety corresponds to bit-strings.

After that, in Section 2.3 we introduce the proof systems we consider in

this thesis and provide for each system a proof search algorithm. Finally in

Section 2.4 we recall some basic facts about convex cones admitting order

units that are used in this thesis.

2.1 On notation

We consider polynomials in a finite sequence x = 〈x1, . . . , xn〉 of commuting

variables. We denote by F[x] the space of all polynomials over the field F in

variables x, in particular R[x] stands for the set of all real polynomials.

For a sequence α = 〈α1, . . . , αn〉 of natural numbers, we denote by xα the

monomial
∏

i∈[n] x
αi
i . Depending on situation we write polynomials either

in the form
∑

α aαx
α or

∑
m amm, where first sum ranges over sequences of

natural numbers and the second sum ranges over monomials.

For p ∈ R[x], we denote by ‖p‖∞ the maximum coefficient in absolute

value appearing in p.

For any d ∈ N, we denote by F[x]d the set of all polynomials in F[x] of

degree at most d. Note that F[x]d is a linear subspace of F[x]. However, it
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is not closed under polynomial multiplication.

Given any set S of monomials, we write F[S] for the set of all linear com-

binations of elements of S, i.e. the set of polynomials where only elements

of S appear with non-zero coefficient.

Throughout the thesis we employ the notational convention that upper

case P stands for a set of inequality constraints p ≥ 0, and upper case Q

stands for a set of equality constraints q = 0. We abuse notation and write

p ∈ P and q ∈ Q for the polynomials p and q such that the constraints

p ≥ 0 and q = 0 are in P and Q, respectively.

For polynomial p with rational coefficients, we denote by 〈p〉 the number

of bits needed to represent p, when all its coefficients are represented with

their reduced fractions written in binary. We also extend the notation for

sets of polynomials and write 〈P 〉 for the number of bits needed to represent

all polynomials in P .

2.2 The Boolean ideal and multilinear

polynomials

Our primary goal is to study the proof systems from the point of view

of proof complexity and combinatorial optimization. Naturally, in these

contexts the variables take Boolean values, i.e. they assume values 0 or

1. Accordingly, we will mostly work modulo the Boolean ideal – an ideal

whose algebraic variety corresponds to bit-strings – which we define next.

We consider polynomials over n pairs of twin variables xi, x̄i, i ∈ [n]. The

intended meaning is that the variables in a pair take the opposite values,

i.e. one assumes value 0 and the other value 1. Define the Boolean ideal

In in n pairs of twin variables to be the ideal generated by the following set

of polynomials:

Bn := {x2
i − xi, x̄2

i − x̄i, xi + x̄i − 1 : i ∈ [n]}. (2.1)

It is not hard to see that over any field, the affine variety of In consists

exactly of the {0, 1}-strings of length 2n where any of the pairs have opposite



values. As is usual, we write p ≡ q mod In, if p− q ∈ In
The Boolean axioms form a Gröbner basis for the ideal In with respect

to any monomial ordering. This can be easily verified using Buchberger’s

criterion (see e.g. [24]). This implies that the multivariate division of a

polynomial p by Bn leaves an unique remainder, and in particular leaves

remainder 0, when p ∈ In. For our purposes this has an important conse-

quence that we discuss next. For details on Gröbner bases and multivariate

division we refer the reader to [24].

For a polynomial p of degree d in In, there is always a certificate of

degree d of the inclusion. That is, if p ∈ In is of degree d, there are ui, vi

and wi for i ∈ [n] such that deg(ui), deg(vi) ≤ d− 2, deg(wi) ≤ d− 1 and

p =
∑
i∈[n]

(
ui(x

2
i − xi) + vi(x̄

2
i − x̄i) + wi(xi + x̄i − 1)

)
.

This is so because the multivariate division of p by Bn never introduces

monomials of higher degrees. It is because of this fact, that when we con-

sider degree bounded proofs, we work exclusively modulo the Boolean ideal

and disregard the actual lifts of the Boolean axioms.

Besides considering polynomials modulo the Boolean ideal, at times

we consider polynomials modulo multilinearization, i.e. modulo the ideal

generated by the axioms x2
i − xi and x̄2

i − x̄i. We write

p ≡ q mod Jn,

when p and q are equivalent modulo multilinearization, i.e. there are ui and

vi such that

p− q =
∑
i∈[n]

(
ui(x

2
i − xi) + vi(x̄

2
i − x̄i)

)
.

2.3 Proof systems

In this section we define the proof systems we consider in this thesis. We

do also provide for each system a proof search algorithm. The first section

2.3.1 deals with Polynomial Calculus, the second section 2.3.2 with Sums-

of-Squares proofs and the final section 2.3.3 with Sherali-Adams proofs.



2.3.1 Polynomial Calculus

Let F be a field and let Q be a set of equality constraints (over F). A

Polynomial Calculus (PC) proof over a field F (or a PC/F proof) of

p = 0 from Q is a sequence

p1, . . . , p` (2.2)

of polynomials such that p` = p and for each i ∈ [`] one of the following

holds:

• pi ∈ Q; (2.3)

• there is j < i and a variable x such that pi = xpj; (2.4)

• there are j, k < i and scalar a, b ∈ F such that pi = apj + bpk. (2.5)

A PC/F refutation of Q is a PC/F proof of 1 = 0 from Q.

In (2.4) the polynomial pj is the direct antecedent of pi and in (2.5)

both pj and pk are the direct antecedents of pi. The proof (2.2) is of degree

at most d if the degree of pi is at most d for all i ∈ [`]. The height of the

proof is the length of the longest subsequence pi1 , . . . , pik such that pij is

a direct antecedent of pij+1
for each j < k. The monomial size of the

proof (2.2) is the number of monomials appearing in the proof counted

with multiplicity.

When F = Q define the bit-complexity of the proof (2.2) to be the

minimum length of a bit-string representing all the polynomials in the proof

and all the scalars used in the linear combination rule, when all the coef-

ficients and scalars are represented with their reduced fractions written in

binary.

Let S be a set of monomials, and let Ŝ = S ∪ xS, where xS = {xm :

m ∈ S and x is a variable}. A PC/F proof of p from Q over S is a PC/F
proof of p from Q, where only monomials from the set Ŝ appear, and the

inference step (2.4) is only applied when pi is in F[S].

We write Q `Fd p = 0, if there is a PC/F proof of p = 0 from Q of degree

at most d, and Q `FS p = 0 if there is a PC/F proof of p = 0 from Q over

S. If the field F is clear from the context, we drop the superscript.



The notion of a PC/F proof over a set of monomials generalizes the

notion of a degree bounded PC/F proof. A PC/F proof of degree at most d

is just a PC/F proof over the set of all monomials of degree at most d− 1.

The above definitions did not require the presence of the Boolean ax-

ioms. When the Boolean axioms are included in Q, i.e. when Bn ⊆ Q,

the associated proof system is called Polynomial Calculus Resolution

(PCR), and we talk about PCR/F proofs and refutations.

2.3.2 Sums-of-Squares Proofs

Let P and Q be two sets of inequality and equality constraints, respectively,

over R in n pairs of twin variables. Let r be a polynomial. A (Boolean)

Sums-of-Squares (SOS) proof of non-negativity of r from P and Q is a

polynomial equality of the form

r =
∑
i∈[k]

r2
i +

∑
p∈P

∑
i∈[kp]

r2
i,pp+

∑
q∈Q

tqq

+
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi

(
x̄2
i − x̄i

)
+ wi(xi + x̄i − 1)

)
(2.6)

where ri ri,p, tq, ui, vi and wi are arbitrary polynomials. An SOS refutation

of P and Q is a proof of non-negativity of −1 from P and Q.

We call the polynomials r2
i,p and tq the lifts of the non-logical axioms

and the polynomials ui, vi and wi the lifts of the Boolean axioms.

When the situation permits we write the proof (2.6) either as an equality

modulo the Boolean ideal In, or modulo multilinearization, i.e.

r =
∑
i∈[k]

r2
i +

∑
p∈P

∑
i∈[kp]

r2
i,pp+

∑
q∈Q

tqq mod In

or

r =
∑
i∈[k]

r2
i +

∑
p∈P

∑
i∈[kp]

r2
i,pp+

∑
q∈Q

tqq +
∑
i∈[n]

wi(xi + x̄i − 1) mod Jn.

The degree of the proof (2.6) is at most d, when deg(r2
i ) ≤ d for any

i ∈ [k]; deg(r2
i,pp) ≤ d for any p ∈ P and i ∈ [kp]; deg(tqq) ≤ d for any

q ∈ Q; and deg(uix
2
i ) ≤ d, deg(vix̄

2
i ) and deg(wixi) ≤ d for any i ∈ [n].



The explicit monomials of the proof (2.6) are all the monomials ap-

pearing in the polynomials r, ri for any i ∈ [k], ri,p and p for any p ∈ P and

i ∈ [kp], tq and q for any q ∈ Q and ui, vi, x
2
i − xi and xi + x̄i − 1 for any

i ∈ [n]. In other words, the explicit monomials of a proof are all the mono-

mials visible in an explicit representation of the proof. The monomial-size

of the proof is the number of explicit monomials in the proof counted with

multiplicity.

Finally we identify an important subset of the explicit monomials. In

Chapter 4 we prove a lower bound on the size of this set. We call the mono-

mials appearing in the polynomials ri for all i ∈ [k], in the polynomials ri,p

for all p ∈ P and i ∈ [kp] and tq for all q ∈ Q the significant monomials

of the proof (2.6).

In the case that the polynomials in the proof (2.6) have only rational

coefficients, we define the bit-complexity of (2.6) as the minimum length

of a bit-string representing the proof when the rational coefficients are rep-

resented with their reduced fractions written in binary.

Finally we define a notion of an SOS proof that tries to capture proofs

that use only monomials from a fixed set of monomials. Given a set S of

monomials, we say that the proof (2.6) is over S if all the monomials in

the polynomials ri, ri,p, tq and wi are among S. Note that we do not restrict

the lifts of the Boolean axioms x2
i −xi and x̄2

i − x̄i. This choice allows us to

still work modulo multilinearization, which makes many things easier later

in the thesis.

We write P,Q `SOS

d r ≥ 0 if there is an SOS proof of non-negativity of

r from P and Q of degree d, and P,Q `SOS

S r ≥ 0 if there is a proof of

non-negativity of r from P and Q over S.

2.3.3 Sherali-Adams Proofs

Let again P and Q be sets of polynomial inequality and equality constraints,

respectively, and let r be any polynomial. A Sherali-Adams (SA) proof



of non-negativity of r from P and Q is a polynomial equality of the form

r = s+
∑
p∈P

spp+
∑
q∈Q

tqq

+
∑
i∈[n]

(
ui(x

2
i − xi) + vi(x̄

2
i + x̄i) + wi(xi + x̄i − 1)

)
(2.7)

where s and sp for any p ∈ P are polynomials with non-negative coefficients

and tq, ui, vi and wi are arbitrary polynomials for any q ∈ Q and i ∈ [n].

An SA refutation of P and Q is a proof of non-negativity of −1 from P and

Q.

We call the polynomials sp and tq the lifts of the non-logical axioms

and the polynomials ui and vi the lifts of the Boolean axioms.

Similarly as with Sums-of-Squares, when the situation permits we write

the proof as an equality modulo the Boolean ideal or an equality modulo

multilinearization.

The degree of the proof (2.7) is at most d, when when deg(s) ≤ d;

deg(spp) ≤ d for any p ∈ P ; deg(tqq) ≤ d for any q ∈ Q; and deg(uix
2
i ) ≤ d,

deg(vix̄
2
i ) ≤ d and deg(wixi) ≤ d for any i ∈ [n].

The explicit monomials in the proof (2.7) are all the monomials ap-

pearing in the polynomials r, s, sp and p for any p ∈ P ; tq and q for any

q ∈ Q; and ui, vi, wi, x
2
i −xi, x̄2

i − x̄i and xi+ x̄i−1 for any i ∈ [n]. In other

words, the explicit monomials are all the monomials visible in an explicit

representation of the proof (2.7). The monomial size of a proof is the

number of explicit monomials in the proof counted with multiplicity.

The significant monomials of the proof (2.7) are the monomials ap-

pearing in the polynomials and s, sp for any p ∈ P and tq for any q ∈ Q.

In the case that the polynomials in the proof (2.7) have only rational

coefficients, we define the bit-complexity of (2.7) as the minimum length

of a bit-string representing the proof when the rational coefficients are rep-

resented with their reduced fractions written in binary.

Given a set S of monomials, we say that the proof (2.7) is over S if

all the monomials in polynomials s, sp, tq and wi are among S.



We write P,Q `SA

d p ≥ 0 if there is a proof of non-negativity of p from

P and Q of degree at most d, and P,Q `SA

S p ≥ 0 if there is a proof of

non-negativity of p from P and Q over S.

2.4 Convex cones and order units

Finally in this section we recall some basic facts about convex cones and

order units. We prove a general duality theorem for convex cones admitting

an order unit. Lastly we use the general duality theorem to prove a sepa-

rating hyperplane theorem for convex cones admitting an order unit that

is also valid in infinite-dimensional vector spaces. For more on order units

and ordered vector spaces we refer the reader to [69].

A subset C of a real vector space V is convex if for any v, w ∈ C and

any λ ∈ [0, 1], λv+(1−λ)w ∈ C. A convex cone is a convex set satisfying

the additional property that av ∈ C for any v ∈ C and any a > 0. The

convex cone C is pointed if 0 ∈ C.

Any convex cone C gives rise to a transitive relation <C by v <C w if w−
v ∈ C. The relation moreover respects vector addition and multiplication

by a positive scalar, i.e. the following hold:

• if v1 <C w1 and v2 <C w2, then v1 + v2 <C w1 + w2; (2.8)

• if v <C w, then av <C aw for any a > 0. (2.9)

It follows also that v <C w implies aw <C av for any a < 0. Note that, by

definition, v ∈ C if and only if v >C 0.

An order unit for a convex cone C is an element e ∈ V such that for

any v ∈ V there is some a ∈ R+ such that ae − v ∈ C, i.e. there is some

a ∈ R+ such that ae >C v. The following lemma collects some of the basic

properties of order units.

Lemma 2.4.1. Let V be a vector space and C ⊆ V a convex cone admitting

an order unit e. Then the following hold:

• e ∈ C; (2.10)



• For every v ∈ V and a1, a2 ∈ R with a1 < a2, if a1e >C v, then

a2e >C v. (2.11)

• For every v ∈ V there is a ∈ R such that ae >C v >C −ae; (2.12)

• If −e ∈ C, then C = V . (2.13)

Proof. (2.10): There is some a ∈ R+ such that ae+e ∈ C, i.e. (r+1)e ∈ C,

and so e ∈ C.

(2.11): Now a2 − a1 > 0 and so, by (i), (a2 − a1)e ∈ C. Thus (a2 −
a1)e+ a1e− v ∈ C, i.e. a2e− v ∈ C.

(2.12): Let a1 be such that a1e >C v and let a2 be such that a2e >C −v,

and let a = max{a1, a2}. Now, by (ii), ae >C v and ae >C −v, i.e.

v >C −ae.
(2.13): Suppose −e ∈ C, let v ∈ V and let a > 0 be such that ae >C v.

Now also −ae ∈ C and so a ∈ C, i.e. C = V .

Fix a vector space V and a convex cone C admitting an order unit e.

Let U be a subspace of V . A linear functional L : U → R is positive if

L(u) ≥ 0 for all u ∈ U ∩ C. Equivalently L is positive if it respects the

relation <C in a sense that v <C w implies L(v) ≤ L(w). A positive linear

functional L on V is a state for C if L(e) = 1. We denote the set of all

states for C by S (C).

Suppose U contains the order unit and let v ∈ V . By (2.12) the following

two sets are non-empty:

↓U {v} = {u ∈ U : v >C u},

↑U {v} = {u′ ∈ U : v <C u
′}.

Now if u ∈↓U {v} and u′ ∈↑U {v}, then u <C u
′ and thus L(u) ≤ L(u′) for

any positive linear functional L : U → R. Hence for any positive L : U → R
both dLv = sup{L(u) : u ∈↓U {v}} and uLv = inf{L(u) : u ∈↑U {v}} are

real numbers and dLv ≤ uLv .

Lemma 2.4.2. Let U be a subspace of V containing the order unit e, and

let L be a positive linear functional on U . Then for any v ∈ V \ U and for



any γ ∈ R satisfying dLv ≤ γ ≤ uLv there is a positive linear functional L′

that is defined on span({v} ∪ U) extending L such that L′(v) = γ.

Proof. Every element of span({v} ∪ U) can be written uniquely in form

av + u, where a ∈ R and u ∈ U . Define L′ by

L′(av + u) = aγ + L(u).

It is easy to check that L′ is linear map. We show that L′ is positive by

considering a few cases.

Case a = 0. If av+u ∈ C and a = 0, then u ∈ C and, by the positiveness

of L, L′(av + u) = L(u) ≥ 0.

Case a > 0. Suppose that av + u ∈ C and a > 0. Then v + u/a ∈ C,

i.e. v >C −u/a, and so L(−u/a)) ≤ γ, i.e. 0 ≤ aγ + L(u).

Case a < 0. Suppose that av + u ∈ C and a < 0. Then −a > 0,

and so −v − u/a ∈ C, i.e. −u/a >C v. Hence γ ≤ L(−u/a), and so

0 ≤ aγ + L(u).

2.4.1 Duality theorem

Now we can prove a general duality theorem for convex cones admitting an

order unit. For a more general version of this result, see [69].

Theorem 2.4.3. Let V be a real vector space and let C be a convex cone

admitting an order unit e. For any v ∈ V it holds that

sup{a ∈ R : v >C ae} = inf{E(v) : E ∈ S (C)}.

Moreover, if the set S (C) is non-empty, then there is a state achieving the

infimum.

Proof. The inequality from left to right is clear. For the inequality from

right to left we distinguish two cases: whether −e ∈ C or not. If −e ∈ C,

then S (C) = ∅, since −1 � 0, so inf{E(a) : E ∈ S (C)} = +∞. On the

other hand sup{a ∈ R : v > ae ∈ C} = +∞ by (2.13), and so the claim

follows.



If −e /∈ C, then the map defined by L0(ae) = a for all a ∈ R is a positive

linear functional on U0 = span({e}). Note that dL0
v = sup{a ∈ R : v >C

ae}, and so, to prove the theorem, it suffices to show that there is some

state E extending L0 such that E(v) = dL0
v .

If v ∈ U0, then L0(v) = dL0
v . On the other hand if v /∈ U0, then

by Lemma 2.4.2, there is a positive linear functional L′ extending L0 on

span({e, v}) such that L′(v) = dL0
v . Now consider the set A of all positive

linear functionals L that are defined on a subspace U ⊆ V containing both

e and v, and satisfy L(e) = 1 and L(v) = dL0
v . By the argument above

A 6= ∅. On the other hand A is closed under unions of chains and so, by

Zorn’s lemma, there is some maximal E ∈ A .

Now the domain of E is the whole of V , since otherwise we could extend

E by using Lemma 2.4.2, contradicting the maximality of E. Hence E is

the state we are looking for.

As an application of the above general theorem we prove a hyperplane

separation theorem between convex cones admitting an order unit and con-

vex sets. Note that the theorem below holds also for infinite dimensional

vector spaces. For infinite dimensional vector spaces the assumption on the

existence of an order unit is necessary as otherwise there are examples of

disjoint convex cones and sets with no non-trivial separating hyperplanes.

Lemma 2.4.4. Let V be a real vector space, let C1 be a convex cone that

admits an order unit e and let C2 be a convex set disjoint from C1. Then

there is a linear functional L : V → R such that L(e) = 1, L(v) ≥ 0 for all

v ∈ C1 and L(u) ≤ 0 for all u ∈ C2.

Proof. Let D be the convex cone of all elements of the form v − au, where

v ∈ C1, u ∈ C2 and a ∈ R+. Now 0 /∈ D, since C1 and C2 are disjoint.

Note also that e is also an order unit for D, and so −e /∈ D. It follows

that S (D) 6= ∅. Hence there is some E : V → R such that E(e) = 1 and

E(v) ≥ E(au) for any v ∈ C1, u ∈ C2 and a ∈ R+. In particular E(v) ≥ 0

for any v ∈ C1. On the other hand, since εe ∈ C1 for any ε > 0, we have

that E(u) ≤ 0 for any u ∈ C2.





Chapter 3

Semantics for

resource-bounded

proofs and refutations

This chapter is dedicated to semantics for resource-bounded proofs and

refutations. Here semantics is understood in the lax sense familiar from

mathematical logic as any mathematical object, not inherently syntactic

in nature, characterizing a class of purely syntactic objects. The intended

application of these objects is of course to simplify proofs of syntactic state-

ments by removing us from combinatorial considerations.

A typical way to prove lower bounds in proof complexity is to exhibit

a mathematical object that in a sense fools proofs or refutations with only

limited resources to think that the given unsatisfiable set of formulas is

actually satisfiable. From the point of view of mathematical logic, such

objects give sound semantics for resource-bounded proofs or refutations.

More often than not, such objects can actually be used to characterize the

resource-bounded classes of proofs and refutations, and thus they give sound

and complete semantics for the associated classes.

We feel a need to point out immediately that the semantic objects con-

sidered below, and in the rest of this thesis, have appeared previously in the

literature, and are not usually conceptualized as we do here, as semantics
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for resource-bounded proofs and refutations. However for the applications

we have in mind, that are of somewhat metalogical in nature themselves, it

is natural to conceptualize these objects from a logical point of view.

We present in this chapter semantic counterparts of resource-bounded

PC, SOS and SA proofs, and prove that they do in fact characterize suit-

able classes of proofs or refutations, by proving the associated soundness

and completeness properties of these semantic characterizations. First in

Section 3.1 we consider reduction operators for Polynomial Calculus. In

Sections 3.2 and 3.3 we consider pseudoexpectations for Sums-of-Squares

and Sherali-Adams, respectively. Lastly in Section 3.4 we exemplify the use

of semantic arguments for resource-bounded refutations by giving a seman-

tic proof of the fact that SOS p-simulates Polynomial Calculus Resolution

over reals, a result originally proved by Berkholz in [15].

3.1 Reduction operators for Polynomial

Calculus

For Polynomial Calculus the appropriate semantic counterpart is provided

by the so called reduction operators. These objects were originally intro-

duced by Razborov in [81] to prove degree lower bounds for PC refutations

of the pigeonhole principle. Methods involving reduction operators to prove

degree lower bounds were refined by Alekhnovic and Razborov in [2], and

further developed in [34, 65, 30].

It turns out that reduction operators can actually be used to charac-

terize the existence of degree bounded refutations. This is implicit in [81],

but we give the full details below. Secondly we will repurpose the degree

bounded reduction operators to define the reduction operators over a set

of monomials, so that we can use those to argue for size upper bounds in

Polynomial Calculus later in Chapter 5.



3.1.1 Reduction operators against degree

For this section fix a field F and a set Q of equality constraints of degree at

most k over the field F. For d ≥ k, a degree d reduction operator for Q

is a linear map R : F[x]d → F[x]d satisfying the following

• R(1) = 1; (3.1)

• R(q) = 0 for any q ∈ Q; (3.2)

• R(p) = R(R(p)) for any p ∈ F[x]d; (3.3)

• R(xm) = R(xR(m)) for any variable x and monomial m of degree at

most d. (3.4)

It is not hard to see that if there is a degree d reduction operator for Q,

then there cannot be a degree d PC refutation of Q. This is the soundness

property of reduction operators. The rest of this section is dedicated to

proving that the converse, the completeness property, holds. Note that

(3.3) is not strictly necessary to prove soundness. However the argument

below gives a mapping satisfying also (3.3), and this property actually turns

out to be rather useful. For example the lower bound proof in [81] uses the

fact that the constructed operator is idempotent in the sense of (3.3).

Let < be a total order on the set of all monomials of degree at most d

that respects the degree, i.e. m < m′ whenever deg(m) < deg(m′). The

order lifts naturally to the set of all terms by considering the underlying

monomials of terms. Given a polynomial p ∈ F[x]d, we call the largest term

appearing in p with respect to <, the leading term of p, and denote it

by LT(p). The leading monomial p, denoted LM(p), is the underlying

monomial of the leading term of p.

Given a set of polynomials Q, and the order <, a term t ∈ F[x]d is

reducible modulo Q, if there is a polynomial p such that Q `d p = 0 and

LT(p) = t. Otherwise t is irreducible modulo Q. The following lemma

shows the important fact that any polynomial can be uniquely decomposed

into a PC provable and irreducible component.



Lemma 3.1.1. For any p ∈ F[x]d there are unique q ∈ F[x]d and r ∈ F[x]d

such that

• p = q + r;

• Q `d q = 0;

• r is a sum of irreducible terms modulo Q.

Moreover LT(p) ≥ t for each term t in r.

Proof. To prove the existence of such q and r, we construct sequences of

elements pi, qi, ri such that

• p = pi + qi + ri;

• Q `d qi = 0;

• ri is a sum of irreducible terms modulo Q;

• pm = 0 for some m.

Let p1 = p and q1 = r1 = 0. For step i, let LT(pi) = ti. If ti is reducible as

witnessed by q, let pi+1 = pi − q, qi+1 = qi + q and ri+1 = ri. On the other

hand, if ti is irreducible, let pi+1 = pi − ti, qi+1 = qi and ri+1 = ri + ti.

Now pm = 0 for some m, since the rank, i.e. the position in the order <,

of the leading term of pi decreases at each step. By construction, qm and

rm satisfy the conditions of the lemma.

To prove the uniqueness of q and r, suppose p = q + r and p = q′ + r′,

i.e. q − q′ = r′ − r. Now Q `d q − q′ = 0 and so Q `d r′ − r = 0. Hence

LT(r′ − r) is not irreducible. However, since both r and r′ are sums of

irreducible terms, it follows that LT(r′ − r) = 0 and so r = r′. Hence also

q = q′.

Consider now the mapping RQ
d : F[x]d → F[x]d that maps each p to the

unique sum r of irreducible terms modulo Q such that Q `d p− r = 0. The

following lemma gathers five basic properties of the mapping.



Lemma 3.1.2. The following hold.

• If there is no PC refutation of Q of degree at most d, then RQ
d (1) = 1;

(3.5)

• RQ
d (q) = 0 for any q ∈ Q; (3.6)

• RQ
d is a linear function; (3.7)

• RQ
d (RQ

d (p)) = RQ
d (p) for any polynomial p ∈ F[x]d; (3.8)

• RQ
d (xm) = RQ

d (xRQ
d (m)) for any monomial m of degree at most d− 1

and any variable x. (3.9)

Proof. To see that (3.5) holds, note first that if there is no refutation of

Q of degree d then, the constant polynomial 1 is irreducible modulo Q, as

1 is the least monomial with respect to the order <. On the other hand

Q `d 0 = 0 and so, by the uniqueness of the decomposition, RQ
d (1) = 1.

For (3.6), of course Q `d q = 0 for any q ∈ Q, and 0 is a (empty) sum

of irreducible terms modulo Q. Hence, by the uniqueness of the decompo-

sition, RQ
d (q) = 0 for any q ∈ Q.

For (3.7), first note that Q `d p− RQ
d (p) = 0 and Q `d q − RQ

d (q) = 0,

and so Q `d p+ q − (RQ
d (p) +RQ

d (q)) = 0. Now RQ
d (p) +RQ

d (q) is a sum of

irreducible terms modulo Q and so, by the uniqueness of the decomposition,

RQ
d (p + q) = RQ

d (p) + RQ
d (q). Similarly Q `d ap − aRQ

d (p) = 0 and so

RQ
d (ap) = aRQ

d (p).

For (3.8) we have that Q `d p − RQ
d (p) = 0 and Q `d RQ

d (p) −
RQ
d (RQ

d (p)) = 0 and so also Q `d p− RQ
d (RQ

d (p)) = 0, where RQ
d (RQ

d (p)) is

a sum of irreducible terms modulo Q. Hence, again by the uniqueness of

the decomposition, RQ
d (p) = RQ

d (RQ
d (p)).

Finally for (3.9) we have again that Q `d m − RQ
d (m) = 0. Now, by

Lemma 3.1.4, each term t in RQ
d (m) satisfies t ≤ m. Hence, by the degree-

monotonicity condition of <, each t in RQ
S (m) is of degree at most d − 1.

Hence also Q `d xm − xRQ
d (m) = 0. It follows by the uniqueness of the

decomposition that RQ
d (xm) = RQ

d (xRQ
d (m)).



In other words, the previous lemma shows that the linear map RQ
d con-

structed is a degree d reduction operator if there is no degree d PC refuta-

tion of Q. In conclusion, we have the following soundness and completeness

theorem for degree d reduction operators.

Theorem 3.1.3 (Soundness and Completeness). There is a PC refutation

of Q of degree at most d if and only if there is no degree d reduction operator

for Q.

3.1.2 Reduction operators against sets of monomials

In this section we restate the definitions and results of the previous section

for proofs over a set of monomials. These constructions will be used later to

prove the feasible interpolation property for Polynomial Calculus in Section

5.1.

For this section fix again a field F and a set Q of equality constraints. Fix

also a set S of monomials containing all the monomials in Q and the empty

monomial 1. Recall the definition of a PC proof over a set of monomials S

from section 2.3.1, and the definition of the set Ŝ,

Ŝ := S ∪ {xm : x is a variable and m ∈ S}.

We call a linear function R : F[Ŝ] → F[Ŝ] a reduction operator for

Q over S if it satisfies the following conditions:

• R(1) = 1; (3.10)

• R(q) = 0 for any q ∈ Q; (3.11)

• R(p) = R(R(p)) for any p ∈ F[Ŝ]; (3.12)

• R(xm) = R(xR(m)) for any variable x and m ∈ S. (3.13)

Again it is easy to see that if there is a refutation of Q over S, then there

cannot be a reduction operator for Q over S. This is the soundness property

reduction operators over a set of monomials. We prove below that the

converse, the completeness, also holds. Note again that (3.12) is not strictly

necessary for soundness. The proof below however produces a mapping



having this property, and moreover this property is actually needed later in

the proof of Theorem 5.1.1.

We proceed with the proof. Let < be a total order on Ŝ satisfying the

following two conditions:

• 1 ≤ m for any m ∈ Ŝ; (3.14)

• if m ∈ S and m′ ∈ Ŝ \ S, then m < m′. (3.15)

Again the order lifts to the set of all terms built from the monomials in

Ŝ. The leading term of a polynomial p ∈ F[Ŝ], denoted LT(p), is the largest

term in p with respect to <, and the leading monomials, denoted LM(p), is

its underlying monomial.

We say that a term t ∈ F[Ŝ] is S-reducible modulo Q if there is p ∈ F[Ŝ]

such that Q `S p = 0 and t = LT(p). Otherwise the term is S-irreducible

modulo Q. The following lemma shows that any polynomial in F[Ŝ] can be

uniquely decomposed into a provable and an S-irreducible component. We

omit the proof, since it is exactly the same as the proof of Lemma 3.1.1

Lemma 3.1.4. For any polynomial p ∈ F[Ŝ] there are unique q ∈ F[Ŝ] and

r ∈ F[Ŝ] such that

• p = q + r; (3.16)

• Q `S q = 0; (3.17)

• r is a sum of S-irreducible terms modulo Q. (3.18)

Moreover LT(p) ≥ t for each term t in r.

Consider now the mapping RQ
S : F[Ŝ] → F[Ŝ] that maps each p to the

unique sum r of S-irreducible terms modulo Q such that Q `S p − r = 0.

The following lemma gathers the basic properties of such mapping.

Lemma 3.1.5. The following hold.

• If there is no refutation of Q over S, then RQ
S (1) = 1; (3.19)



• RQ
S (q) = 0 for any q ∈ Q; (3.20)

• RQ
S is a linear function; (3.21)

• RQ
S (RQ

S (p)) = RQ
S (p) for any polynomial p ∈ F[Ŝ]; (3.22)

• RQ
S (xm) = RQ

S (xRQ
S (m)) for any m ∈ S and any variable x. (3.23)

Proof. For (3.19) note first that there is no refutation of Q over S, then,

by (3.14), the constant polynomial 1 is S-irreducible modulo Q. On the

other hand Q `S 0 = 0 and so, by the uniqueness of the decomposition,

RQ
S (1) = 1.

For (3.20), of course Q `S q = 0 for any q ∈ Q. On the other hand the

constant polynomial 0 is vacuously a sum of S-irreducible terms, and so,

by the uniqueness of the decomposition, RQ
S (q) = 0 for any q ∈ Q.

For (3.21) first note that Q `S p−RQ
S (p) = 0 and Q `S q −RQ

S (q) = 0,

and so Q `S p+q−(RQ
S (p)+RQ

S (q)) = 0. Now RQ
S (p)+RQ

S (q) is a sum of S-

irreducible terms modulo Q and so, by the uniqueness of the decomposition,

RQ
S (p + q) = RQ

S (p) + RQ
S (q). Similarly Q `S ap − aRQ

S (p) = 0 and so

RQ
S (ap) = aRQ

S (p).

For (3.22) we have that Q `S p − RQ
S (p) = 0 and Q `S RQ

S (p) −
RQ
S (RQ

S (p)) = 0 and so also Q `S p− RQ
S (RQ

S (p)) = 0, where RQ
S (RQ

S (p)) is

a sum of S-irreducible terms modulo Q. Hence, again by the uniqueness of

the decomposition, RQ
S (p) = RQ

S (RQ
S (p)).

Finally for (3.23) we have that Q `S m−RQ
S (m) = 0. Now, by Lemma

3.1.4, each term t in RQ
S (m) satisfies t ≤ m. Hence, by (3.15), each t in

RQ
S (m) is in S, and so RQ

S (m) ∈ F[S]. Hence also Q `S xm− xRQ
S (m) = 0.

It follows that RQ
S (xm) = RQ

S (xRQ
S (m)).

In other words, the lemma above shows that if there is no refutation

of Q over S, then the operator RQ
S constructed is a reduction operator for

Q over S. In conclusion, we have the following soundness and completeness

theorem for reduction operators over a set of monomials.

Theorem 3.1.6 (Soundness and Completeness). There is a PC refutation

of Q over S if and only if there is no reduction operator for Q over S.



3.2 Pseudoexpectations for

Sums-of-Squares

Secondly we consider pseudoexpectations for Sums-of-Squares. Pseudoex-

pectations are linear functionals that fool resource-bounded SOS to think

that the set of constraints is satisfiable by mapping anything provably non-

negative with limited resources to a non-negative value. Probably the first

instance of this idea to prove degree lower bounds for SOS appears in

[36, 37], however the term ‘pseudoexpectation’ appears for the first time

in [9].

As with reduction operators we will think of pseudoexpectations mainly

as semantics for resource-bounded SOS refutations and proofs. Another

point of view, much more common in combinatorial optimization, is to view

the pseudoexpectations as the dual objects to levels of the Sums-of-Squares

hierarchy of SDP relaxations. Indeed, these are the primary objects in the

Lasserre hierarchy of SDP relaxations [59].

We conceptualize pseudoexpectations differently since our emphasis and

goals differ slightly from those of optimization. First of all we are much

more interested in refutations than proofs of non-negativity. But more

importantly the applications we have in mind are of rather metalogical

character, i.e. we aim to prove structural statements about the SOS proof

system itself.

We will first define pseudoexpectations against bounded degree SOS

proofs. We prove a strong duality theorem between pseudoexpectation val-

ues and provable lower bounds using the general duality theorem 2.4.3.

This was originally proved in [48] using duality of semidefinite program-

ming. Soundness and completeness theorem for pseudoexpectations will

be an immediate consequence of the duality theorem. We will also give a

characterization for pseudoexpectations for sets of equality constraints and

as consequence give a normal form for SOS proofs from sets of equality

constraints.

Secondly we will again introduce a suitable generalization of pseudoex-



pectations that can be used to argue against monomial size of SOS proofs

rather than only degree. Finally we consider a form of pseudoexpectations

that also takes into account the size of the coefficients that appear in pur-

ported SOS refutations.

3.2.1 Pseudoexpectations against degree

For this section fix a sets P and Q of inequality and equality constrains,

respectively. A degree d SOS pseudoexpectation for P and Q is a linear

functional E : R[x]d → R such that

• E(1) = 1; (3.24)

• E(p) ≥ 0 if P,Q `SOS

d p ≥ 0. (3.25)

We denote the set of all degree d SOS pseudoexpectations for P and Q by

E
SOS

d (P,Q).

The following lemma is key in obtaining the duality theorem for SOS

pseudoexpectations. It shows that the constant polynomial 1 is an order

unit for the cone of polynomials provable in SOS in degree 2d.

Lemma 3.2.1. For any p ∈ R[x]2d,

∅ `SOS

2d ‖p‖1 ≥ p,

where ‖p‖1 =
∑

α |aα|, when p =
∑
aαx

α.

Proof. We prove that `SOS

2d |a| ≥ am for any monomial m of degree at most

2d, and any a ∈ R. The claim follows then immediately.

We show first that `SOS

2d |a| ≥ am for any monomial m of degree at most

d, and any a ∈ R. If a ≥ 0, then a − am ≡ (
√
a −
√
am)2 mod In, and

so `SOS

2d |a| ≥ am. If on the other hand a < 0, then −am ≡ (
√
−am)2

mod In, and so `SOS

2d 0 ≥ am.

Finally we show using the above paragraph that `SOS

2d |a| ≥ am for any

monomial m of degree at most 2d and a ∈ R. Let m1 and m2 be two

monomials of degree at most d such that m = m1m2. Now if a ≥ 0, then



am1 − 2am1m2 + am2 ≡ (
√
am1 −

√
am2)2 mod In. Now, by previous

paragraph, `SOS

2d |a| ≥ am1 and `SOS

2d |a| ≥ am2. Now `SOS

2d 2|a| ≥ 2am1m2

and so `SOS

2d |a| ≥ am1m2. If a < 0, then −am1 − 2am1m2 − am2 ≡
(
√
−am1 +

√
−am2)2 mod In. Again, `SOS

2d |a| ≥ −am1 and `SOS

2d |a| ≥
−am2, and so `SOS

2d |a| ≥ am1m2.

By the above lemma, degree 2d SOS pseudoexpectations for P and Q are

exactly the states for the convex cone of all polynomials in R[x]2d provably

non-negative in degree 2d from P and Q. Hence, by Theorem 2.4.3, we

obtain the following Duality Theorem for SOS.

Theorem 3.2.2 (Duality theorem). For any p ∈ R[x]2d,

sup{r ∈ R : P,Q `SOS

2d p ≥ r} = inf{E(p) : E ∈ E
SOS

2d (P,Q)}.

Moreover, if E
SOS

2d (P,Q) 6= ∅, the infimum is attained by some E ∈ E
SOS

2d (P,Q).

An immediate corollary to the above theorem is the following soundness

and completeness theorem.

Theorem 3.2.3 (Soundness and Completeness). There is a degree 2d SOS

refutation of P and Q if and only if there is no degree 2d SOS pseudoexpec-

tation for P and Q.

3.2.2 Characterization of pseudoexpectations

and a normal form for SOS refutations

In this section we prove a characterization of the pseudoexpectations for

sets of equality constraints, and obtain a normal form for SOS refutation

as a corollary.

Lemma 3.2.4. Let Q be a set of equality constraints of degree at most k,

and let d ≥ k. Then a linear functional E : R[x]2d → R is a degree 2d

pseudoexpectation for Q if and only if it satisfies the following conditions:

• E(1) = 1; (3.26)



• E(p) = E(q) if p ≡ q mod In; (3.27)

• E(p2) ≥ 0 for any p ∈ R[x]d; (3.28)

• E(q2) = 0 for any q ∈ Q. (3.29)

Proof. For the non-trivial direction let E be a linear functional satisfying

the conditions (3.26)-(3.29). We need to prove that E(mq) = 0 for any

q ∈ Q and any monomial m such that the degree of mq is at most 2d.

Let q ∈ Q be of degree k0, and let m be a monomial of degree at most

2d − k0. Let m1 and m2 be monomials of degree at most d − k0 and d,

respectively, such that m = m1m2.

We prove first that E((m1q)
2) = 0. We have that

q2 − (m1q)
2 ≡ (q −m1q)

2 mod In,

and so E((m1q)
2) ≤ E(q2) by (3.27) and (3.28). On the other hand

E((m1q)
2) ≥ 0 by (3.26) and E(q2) = 0 by (3.29), and thus E((m1q)

2) = 0.

Secondly

(m1q)
2 ± 2am1m2q + a2m2 ≡ (m1q ± am2)2 mod In

for any a > 0, and so, by (3.27), (3.28) and the above paragraph,

|E(2m1m2q)| ≤ E(m1q
2)/a+ E(am2) ≤ E(am2) = aE(m2)

for any a > 0. Hence E(m1m2q) = 0.

As a corollary for the characterization above we get the following normal

form for Sums-of-Squares refutations of a set of equality constraints.

Lemma 3.2.5. Let Q be a set of equality constraints of degree at most k,

and let d ≥ k. If there is a degree 2d SOS refutation of Q, then there is a

sum of squares s of degree at most 2d and aq ∈ R for every q ∈ Q such that

−1 ≡ s+
∑
q∈Q

aqq
2 mod In.



Proof. Let C be the convex cone of all the polynomials p of degree at most

2d such that

p ≡ s+
∑
q∈Q

aqq
2 mod In,

for some sum of squares s of degree at most 2d and aq ∈ R for q ∈ Q,

and suppose towards a contradiction that −1 /∈ C. By Lemma 3.2.1, C is a

convex cone that admits an order unit, namely the constant polynomial 1,

and so, by Lemma 2.4.4, there is some linear functional L : R[x]2d → R such

that L(1) = 1 and L(p) ≥ 0 for every p ∈ C. In particular L(q2) = 0 for

every q ∈ Q, and so, by Lemma 3.2.4, L is a degree 2d pseudoexpectation

for Q.

3.2.3 Pseudoexpectations against a set of monomials

In this section we define the appropriate counterpart of SOS proofs over

some set S of monomials, and obtain analogues of the results above for

bounded degree SOS proofs and pseudoexpectations.

Fix again for this section sets P and Q of equality and inequality con-

straints, respectively, and a set S of monomials containing the empty mono-

mial 1. An SOS pseudoexpectation for P and Q over S is a linear functional

E : R[S2]→ R such that

• E(1) = 1; (3.30)

• E(p) ≥ 0, when P,Q `SOS

S p ≥ 0. (3.31)

We denote by E
SOS

S (P,Q) the set of all SOS pseudoexpectations for P and

Q over S.

Again, using Theorem 2.4.3, we obtain a strong duality theorem for SOS

pseudoexpectations over a set of monomials via the following lemma, and

the soundness and completeness theorem as a consequence of the duality

theorem.

Lemma 3.2.6. For any p ∈ R[S2],

`SOS

S ‖p‖1 ≥ p,



where ‖p‖1 =
∑
|aα|, when p =

∑
aαx

α.

Proof. We prove that for any m ∈ S2 and a ∈ R,

`SOS

S |a| ≥ am.

First suppose that m ∈ S, and let a ∈ R. If a ≥ 0, then a−am ≡ (
√
a−

√
am)2 mod Jn, and so `SOS

S a ≥ am. If on the other hand a < 0, then

−am ≡ (
√
−am)2 mod Jn, and so `SOS

S 0 ≥ am. Hence also `SOS

S |a| ≥ am.

Let then m1,m2 ∈ S, and let a ∈ R. If a ≥ 0, then am1 − 2am1m2 +

am2 ≡ (
√
am1−

√
am2)2 mod Jn. Now, by previous paragraph, `SOS

S |a| ≥
am1 and `SOS

S |a| ≥ am2. Now `SOS

S 2|a| ≥ 2am1m2 and so `SOS

S |a| ≥
am1m2. If a < 0, then −am1 − 2am1m2 − am2 ≡ (

√
−am1 +

√
−am2)2

mod Jn. Again, `SOS

S |a| ≥ −am1 and `SOS

S |a| ≥ −am2, and so `SOS

S |a| ≥
am1m2.

Theorem 3.2.7 (Duality theorem). For any p ∈ R[S2],

sup{r ∈ R : P,Q `SOS

S p ≥ r} = inf{E(p) : E ∈ E
SOS

S (P,Q)}.

Moreover, if E
SOS

S (P,Q) 6= ∅, then there is E ∈ E
SOS

S (P,Q) that achieves

the infimum.

Theorem 3.2.8 (Soundness and Completeness). There is an SOS refuta-

tion of P and Q over S if and only if there is no SOS pseudoexpectation

for P and Q over S.

Finally, for a set Q of equality constraints we obtain a characterization of

SOS pseudoexpectations forQ over S and a normal form for SOS refutations

over S as corollary.

Lemma 3.2.9. Let Q be a set of equality constraints and let S be a set of

monomials containing all the monomials in Q, all variables and the empty

monomial 1. A linear functional E : R[S2] → R is an SOS pseudoexpecta-

tion for Q over S if and only if the following conditions hold:

• E(1) = 1; (3.32)



• E(p) = E(q) if p ≡ q mod Jn; (3.33)

• E(p2) ≥ 0 for any p ∈ R[S]; (3.34)

• E(q2) = 0 for any q ∈ Q; (3.35)

• E((xi + x̄i − 1)2) = 0 for any i ∈ [n]. (3.36)

Proof. For the non-trivial direction assume that E : R[S2] → R is a linear

functional satisfying the conditions (3.32)-(3.36). We show that E(mq) = 0

for every m ∈ S and q ∈ Q. By (3.34), E((am ± q/a)2) ≥ 0 for every

a > 0, and so,|E(2mq)| ≤ E(a2m2) + E(q2/a2). By (3.35), E(q2/a2) = 0,

and so |E(2mq)| ≤ E(a2m2) for any a > 0. It follows that E(mq) = 0.

With a similar argument one obtains that E(m(xi + x̄i − 1)) = 0 for any

m ∈ S and i ∈ [n].

Lemma 3.2.10. Let Q be a set of equality constraints and let S be a set

of monomials that contains all the monomials in Q, all variables and the

empty monomial 1. If there is an SOS refutation of Q over S, then there is

a sum of squares s of polynomials in R[S] and aq ∈ R for q ∈ Q and bi ∈ R
for i ∈ [n] such that

−1 ≡ s+
∑
q∈Q

aqq
2 +

∑
i∈[n]

bi(xi + x̄i − 1)2 mod Jn.

Proof. Let C be the convex cone of all the polynomials p ∈ R[S2] such that

p ≡ s+
∑
q∈Q

aqq
2 +

∑
i∈[n]

bi(xi + x̄i − 1)2 mod Jn,

for some sum of squares s of polynomials in R[S, some aq ∈ R for q ∈ Q
and some bi ∈ R for i ∈ [n], and suppose towards a contradiction that

−1 /∈ C. By Lemma 3.2.6, C is a convex cone that admits an order unit,

namely the constant polynomial 1, and so, by Lemma 2.4.4, there is some

linear functional L : R[S2]→ R such that L(1) = 1 and L(p) ≥ 0 for every

p ∈ C. In particular L(q2) = 0 and L((xi + x̄i − 1)2) = 0 for every q ∈ Q
and i ∈ [n], and so, by Lemma 3.2.9, L is a pseudoexpectation for Q over

S.



3.2.4 Pseudoexpectations against bounded

refutations

Finally we formulate pseudoexpectations in a form that takes also into ac-

count the size of the coefficients appearing in purported refutations. Later

in Section 5.2.2 when we consider the proof search problem for SOS, we

need to consider SOS refutations with a given bound on the size of the co-

efficients in order to give a polynomial time proof search algorithm. Hence

we also need a semantic characterization for SOS refutations that carries in-

formation about the size of the coefficients. We formulate such objects only

for sets of equality constraints. It is not immediately clear how to extend

the definitions meaningfully to the situation with inequality constraints.

Fix for this section a set Q of equality constraints and a set S of mono-

mials containing all the monomials in Q, all the variables and the empty

monomial 1. We say that an SOS proof

p ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

ui(xi + x̄i − 1) mod Jn (3.37)

is R-bounded if ‖tq‖∞ ≤ R for any q ∈ Q and ‖ui‖∞ ≤ R for any i ∈ [n].

Note that we do not bound the size of the coefficients in the polynomials ri

or in the lifts of the axioms of the form x2−x in an R-bounded SOS proof.

This is for the simplicity of the semantic characterization below. Moreover

we will see later in Section 5.2.2 that a bound on the polynomials tq and

ui suffice for an efficient proof search.

For ε > 0, an ε-pseudoexpectation for Q over S is a linear functional

E : R[S2]→ R satisfying the following:

• E(1) = 1; (3.38)

• E(p) = E(q) if p ≡ q mod Jn; (3.39)

• E(p2) ≥ 0 for any p ∈ R[S]; (3.40)

• |E(mq)| ≤ ε for any m ∈ S and q ∈ Q. (3.41)

• |E(m(xi + x̄i − 1))| ≤ ε for any m ∈ S and i ∈ [n]. (3.42)



The following two lemmas give the correspondence between R-bounded

refutations of Q over S and ε-pseudoexpectations for Q over S.

Lemma 3.2.11 (Soundness). If there is an ε-pseudoexpectation for Q over

S, then there is no R-bounded refutation of Q over S for R less than

1/ε|S|(|Q|+ n).

Proof. Let E be an ε-pseudoexpectation for Q over S, and suppose that

−1 ≡ s+
∑
q∈Q

tqq +
∑
i∈[n]

ui(xi + x̄i − 1) mod Jn

is a refutation over S with ‖tq‖∞, ‖ui‖∞ < 1/ε|S|(|Q| + n) for any q ∈ Q
and i ∈ [n]. Now |E(amq)| ≤ |a|ε for each m ∈ S, q ∈ Q and a ∈ R. Hence

|E(tqq)| < 1/(|Q| + n) for each q ∈ Q. Similarly |E(ui(xi + x̄i − 1))| <
1/(|Q|+ n) for each i ∈ [n]. Hence∣∣∣∣∣∣E

∑
q∈Q

tqq +
∑
i∈[n]

ui(xi + x̄i − 1)

∣∣∣∣∣∣ < 1.

Now applying E to both sides of the refutation we obtain that

−1 ≥
∑
q∈Q

E(tqq) +
∑
i∈[n]

E(ui(xi + x̄i − 1)) > −1;

a contradiction.

Lemma 3.2.12 (Completeness). If there is no R-bounded refutation of Q

over S, then there is a (1/R)-pseudoexpectation for Q over S.

Proof. Suppose there is no R-bounded refutation of Q over S, and consider

the following two sets

A := {p ∈ R[S2] : ∅ `SOS

S p ≥ 0}

and

B := {−1 +
∑
q∈Q

tqq +
∑
i∈[n]

ui(xi + x̄i − 1) :

tq, ui ∈ R[S] and ‖tq‖∞, ‖ui‖∞ ≤ R for every q ∈ Q and i ∈ [n]}.



Now, by assumption, A and B are disjoint, A is a convex cone and B is

a convex set. Moreover, by Lemma 3.2.6, A admits an order unit, the

constant polynomial 1. Now, by Lemma 2.4.4, there is a linear functional

E : R[S2]→ R such that E(1) = 1, E(p) ≥ 0 for every p ∈ A, and E(p′) ≤ 0

for every p′ ∈ B.

We claim that E has the desired properties. We prove (3.41), and leave

others to the reader. By definition, −1±Rmq ∈ B, and so E(−1±Rmq) ≤ 0

for any m ∈ S and q ∈ Q. Hence |E(mq)| ≤ 1/R.

In the proof of the completeness lemma we needed the fact that the size

of the coefficients in the squares or in the lifts of the Boolean axioms of the

form x2−x were not restricted in the definition of an R-bounded refutation

in order to guarantee that the set A is actually a convex cone of the space

R[S2] that admits an order unit.

Finally we prove a version of the normal form lemma 3.2.10 that takes

into account the size of coefficients appearing in the refutations. This ver-

sion of the lemma together with the proof search algorithm in Section 5.2.2

show that one can p-simulate arbitrary SOS refutations from sets of equality

constraints almost completely inside the squares.

Lemma 3.2.13. Let Q be a set of equality constraints and let S be a set of

monomials that contains all the monomials in Q, all the variables and the

empty monomial 1. If there is an R-bounded SOS refutation of Q over S,

then there is a sum of squares s of polynomials in R[S] and aq, bi ∈ R for

q ∈ Q and i ∈ [n] such that

−1 ≡ s+
∑
q∈Q

aqq
2 +

∑
i∈[n]

bi(xi + x̄i − 1) mod Jn,

and |aq|, |bi| ≤ R2
0 for every q ∈ Q and i ∈ [n] where R0 = R|S|(|Q|+n)+1.

Proof. Suppose towards a contradiction that the conclusion of the lemma

does not hold, and consider the following two sets

A := {p ∈ R[S2] : ∅SOS

S p ≥ 0}



and

B := {−1 +
∑
q∈Q

aqq
2 +

∑
i∈[n]

bi(xi + x̄i − 1) : |aq|, |bi| ≤ R2
0}.

Now, by assumption, A and B are disjoint, and, by construction, A is

a convex cone that admits an order unit 1 and B is a convex set. By

Lemma 2.4.4 there is a linear functional L : R[S2]→ R such that L(1) = 1,

L(p) ≥ 0 for every p ∈ P and L(q) ≤ 0 for every q ∈ B.

Now for every q ∈ Q, we have that −1 ± R2
0q

2 ∈ B holds, and thus

|L(q2)| ≤ 1/R2
0. Now let m ∈ S. We show that |L(mq)| ≤ 1/R0.

First assume that L(m) = 0. Then

L(m2 ± 2amq + a2q2) ≥ 0

for any a > 0. Thus |L(mq)| ≤ L(m/(2a)) + L((aq2)/2) = L((aq2)/2) for

any a > 0. Hence L(mq) = 0. Similarly if L(q2) = 0, then L(mq) = 0.

Assume then that L(m) > 0 and L(q2) > 0. Now

m

2L(m)
± mq√

L(m)L(q2)
+

q2

2L(q2)
≡

(
m√

2L(m)
± q√

2L(q2)

)2

mod Jn

Hence

1± L(mq)√
L(m)L(q2)

≥ 0,

and so |L(mq)| ≤
√
L(m)L(q2) ≤ 1/R0, since L(m) ≤ 1 for every m ∈ S.

By a similar argument we obtain that |L(m(xi + x̄i − 1))| ≤ 1/R0 for

every m ∈ S and i ∈ [n]. Now it is easy to see that L satisfies the other

conditions of an 1/R0-pseudoexpectation for Q over S. Now, by the sound-

ness lemma above, there is no R′-bounded refutation of Q over S for R′ less

than R0/(|S|(|Q| + n)). But this contradicts the assumption that there is

an R-bounded SOS refutation of Q over S.

3.3 Pseudoexpectations for Sherali-Adams

Lastly we consider pseudoexpectations for Sherali-Adams. The basic ideas

and principles behind these are the same as with Sums-of-Squares. We con-

sider first pseudoexpectations against degree and prove the duality theorem



for SA. Secondly we introduce the notion of pseudoexpectations over a set

of monomials for SA.

3.3.1 Pseudoexpectations against degree

For this section fix again sets P and Q of inequality and equality constraints.

A degree d SA pseudoexpectation for P and Q is a linear functional

E : R[x]d → R such that

• E(1) = 1; (3.43)

• E(p) ≥ 0 when P,Q `SA

d p ≥ 0. (3.44)

We denote the set of all degree d SA pseudoexpectations for P and Q by

E
SA

d (P,Q). The duality theorem for SA pseudoexpectations will be again a

consequence of the following lemma.

Lemma 3.3.1. For any p ∈ R[x]d,

∅ `SA

d ‖p‖1 ≥ p,

where ‖p‖1 =
∑

α |aα|, when p =
∑
aαx

α.

Proof. We prove that `SA

d |a| ≥ am for any monomial m of degree at most

d and any a ∈ R, by induction on the degree of m.

If deg(m) = 0, then the claim is clear. If deg(m) = 1, then m = x for

some basic or twin variable x. If a < 0, then `SA

d −a − am ≥ 0, and

so `SA

d |a| ≥ am. If on the other hand a ≥ 0, then `SA

d ax̄ ≥ 0, i.e.

`SA

d a− ax ≥ 0, and so `SA

d a ≥ am.

Suppose then that deg(m) > 1, let a ∈ R and write m = xm′ for some

variable x and monomial m′. Now, by induction assumption, `SA

d |a| ≥ am′,

and so `SA

d |a|x ≥ am. Now, by previous paragraph, `SA

d |a| ≥ |a|x, and so

we obtain `SA

d |a| ≥ am.

By the above lemma, degree d SA-pseudoexpectations for P and Q are

exactly the states in R[x]d for the convex cone of all polynomials provably in

Sherali-Adams non-negative in degree d from P and Q. Hence, by Theorem



2.4.3, we obtain the following Duality Theorem for degree bounded Sherali-

Adams.

Theorem 3.3.2 (Duality theorem). For any p ∈ R[x]d,

sup{r ∈ R : P,Q `SA

d p ≥ r} = inf{E(p) : E ∈ E
SA

d (P,Q)}.

Moreover, if E
SA

d (P,Q) 6= ∅, the infimum is attained by some E ∈ E
SA

d (P,Q).

An immediate corollary to the above theorem is again the following

soundness and completeness theorem.

Theorem 3.3.3 (Soundness and Completeness). There is a degree d SA

refutation of P and Q if and only if there is no degree d SA-pseudoexpectation

for P and Q.

To end this subsection we prove an analogue of Lemma 3.2.5 for Sherali-

Adams. For Sherali-Adams we can only prove the lemma for sets of equality

constraints of a special form. Importantly, however, this includes the mul-

tiplicative encoding of CNFs, where we encode a clause `1 ∨ . . . ∨ `k as the

equality constraint
∏

i∈[k]
¯̀
i = 0.

Lemma 3.3.4. Let Q be a set of equality constraints of the form q =

0, where q is a positive linear combination of monomials. If there is a

degree d SA refutation of Q, then there is a positive linear combination s of

monomials of degree at most d, and aq ∈ R for each q ∈ Q such that

−1 ≡ s+
∑
q∈Q

aqq mod In.

Proof. Suppose towards a contradiction that the conclusion does not hold,

and let C be the convex cone of all polynomials p of degree at most d such

that

p ≡ s+
∑
q∈Q

aqq mod In,

where s is a positive linear combination of monomials of degree at most

d and aq ∈ R for every q ∈ Q. By assumption −1 /∈ C. Then, by Lemma



2.4.4, there is some linear functional L : R[x]d → R such that L(1) = 1 and

L(p) ≥ 0 for every p ∈ C.
Our aim is to prove that L(mq) = 0 for every monomial m such that

the degree of mq is at most d. This shows that L is a degree d SA-

pseudoexpectation for Q, and thus we reach contradiction by the soundness

theorem.

So fix an arbitrary q ∈ Q, and write q =
∑
aαx

α, and let m be a mono-

mial so that the degree of mq is at most d. First note that L(xα) = 0 for any

α. This follows, since q is a positive linear combination of monomials, and

L(q) = 0. On the other we have that xα−mxα ∈ C by a simple telescoping

sum: write m =
∏

i∈[k] `i and note that

xα − xα
∏
i∈[k]

`i ≡ xα ¯̀
1 + xα`1

¯̀
2 + · · ·+ xα

∏
i∈[k−1]

`i ¯̀k mod In.

Hence L(xα) ≥ L(mxα). Moreover, since mxα ∈ C, we have that L(mxα) ≥
0. Hence L(mxα) = 0 for any α, and so also L(mq) = 0.

3.3.2 Pseudoexpectations against sets of monomials

Secondly we define SA pseudoexpectations over a set of monomials. Fix

again for this section sets P and Q of inequality and equality constraints.

An SA pseudoexpectation for P and Q over S is a linear functional

E : R[S]→ R such that

• E(1) = 1; (3.45)

• E(p) ≥ 0, when P,Q `S p ≥ 0. (3.46)

We denote by E
SA

S (P,Q) the set of all SA-pseudoexpectations for P and Q

over S.

We need to impose some restrictions to the set S in order to prove the

duality theorem for SA pseudoexpectations over S. We say that the set S is

closed if it satisfies the following two conditions:

• if S contains a variable x, it contains also its twin x̄; (3.47)



• for any m ∈ S, there is some variable x and m′ ∈ S such that xm′ = m

and x̄m′ ∈ S. (3.48)

Note that it follows from the definition, that if a closed set S of monomials

is non-empty, then 1 ∈ S. With this definition at hand, we can prove the

analogue of Lemma 3.3.1.

Lemma 3.3.5. If S is a closed set of monomials, then for any p ∈ R[S],

`SA

S ‖p‖1 ≥ p.

Proof. We prove that `SA

S |a| ≥ am for any m ∈ S and a ∈ R. If a < 0,

then by definition, `SA

S −a− am ≥ 0, and so `SA

S |a| ≥ am.

Suppose then that a ≥ 0. We argue by induction on the degree of m.

If deg(m) = 0, the claim is clear. If deg(m) = 1, then m = x for some

variable x. Now, by condition (3.47), x̄ ∈ S, and so `SA

S ax̄ ≥ 0, and so also

`SA

S a− ax ≥ 0. Hence `SA

S a ≥ ax.

Suppose then that deg(m) > 1. By condition (3.48) there is a variable

x and m′ ∈ S such that m = xm′. By induction assumption `SA

S a ≥ am′.

On the other hand, again by condition (3.48), x̄m′ ∈ S, and so

am′ − axm′ = ax̄m′ − am′(x+ x̄− 1)

is a proof over S of non-negativity of am′ − axm′. Hence `SA

S am′ ≥ axm′,

and so also `SA

S a ≥ am.

Theorem 3.3.6 (Duality theorem). If S is a closed set of monomials, then

for any p ∈ R[S],

sup{r ∈ R : P,Q `SA

S p ≥ r} = inf{E(p) : E ∈ E
SA

S (P,Q)}.

Moreover, if E
SA

S (P,Q) 6= ∅, then there is E ∈ E
SA

S (P,Q) that achieves the

infimum.

Theorem 3.3.7 (Soundness and Completeness). Let S be a closed set of

monomials. There is an SA refutation of P and Q over S if and only if

there is no SA-pseudoexpectation for P and Q over S.



Finally we prove an analogue of Lemma 3.2.10 for Sherali-Adams. The

lemma does not take as nice form as the same lemma for SOS.

Lemma 3.3.8. Let Q be a set of equality constraints of the form q = 0,

where q is a positive linear combination of monomials, and let S be a set of

monomials containing all the monomials appearing in Q, all the variables

and the empty monomial 1. If there is an SA refutation of Q over S, then

there is a positive linear combination s of poly(|S|) many monomials, and

aq ∈ R for any q ∈ Q such that

−1 ≡ s+
∑
q∈Q

aqq mod In.

Moreover the monomial size of the proof above is poly(|S|).

Proof. Consider the convex cone C of all polynomials p ∈ R[S2] such that

p ≡ s+
∑
q∈Q

aqq mod In,

where s is a positive linear combination of monomials from S2 and bino-

mials of the form m − m′, where both m and m′ are from S2 and m is a

submonomial of m′. Note that each binomial in this term has an SA proof

of size poly(n) from ∅.
Assume towards a contradiction that −1 /∈ C. Then, by Lemma 2.4.4,

there is some linear functional L : R[S2] → R such that L(1) = 1 and

L(p) ≥ 0 for every p ∈ C.
Our aim is to prove that L(mq) = 0 for any m ∈ S. This suffices to

prove our: applying L on both sides of the given SA refutation over S yields

an immediate contradiction of the form −1 ≥ 0.

So let q ∈ Q be arbitrary, write q =
∑
aαx

α, and let m ∈ S. Firstly

L(xα) = 0 for any α, since q is a positive linear combination of monomials

and L(q) = 0. Secondly, as xα −mxα ∈ C and mxα ∈ C for any α, we have

that 0 = L(xα) ≥ L(mxα) ≥ 0 for any α. Hence L(mq) = 0.



3.4 Sums-of-Squares p-simulates

Polynomial Calculus Resolution over

reals – a semantic proof

Finally, we end this chapter by giving a semantic proof of the fact that Sums-

of-Squares polynomially simulates PCR/R, Polynomial Calculus Resolution

over the reals. This simulation was first proved by Berkholz in [15] via a

syntactic proof. Our proof is conceptually rather different and thus might

be of independent interest.

We will prove that if there is a PCR/R refutation of Q using only mono-

mials from a set S, then there is an SOS refutation of Q over S. We will first

prove a version that does not take into account the size of the coefficients in

the SOS refutation. This proof highlights the main ideas of the proof, but

does not yield the polynomial time simulation. Afterwards we will prove a

version that takes also into account the size of the coefficients. The second

version will yield the p-simulation of PCR/R by SOS.

We note that, in a similar manner, one could also prove that SOS, and

actually even SA, simulates Resolution. However these proofs have very

much the taste of being the known syntactic proofs (see [25, 8]) in new

clothes to be of novel interest.

Lemma 3.4.1. Let Q be a set of equality constraints over reals, and suppose

there is a PCR/R refutation of Q using only monomials from a set S. Then

there is an SOS refutation of Q over S.

Proof. Suppose towards a contradiction that there is no SOS refutation of

Q over S. Then, by Theorem 3.2.8, there is an SOS pseudoexpectation

E for Q over S. Let p1, . . . , p` be a PCR/R refutation of Q using only

monomials from the set S. We prove by induction on the structure of the

PCR/R refutation that E(p2
i ) = 0 for every i ∈ [`].

The claim is clear for any q ∈ Q, and for any Boolean axiom. Suppose

then that pi = xpj for some j < i and some variable x. Now p2
j − (xpj)

2 ≡



(pj − xpj)
2 mod Jn and so E((xpj)

2) ≤ E(p2
j). However, by induction

assumption E(p2
j) = 0, and so also E((xpj)

2) = 0.

Suppose finally that pi = apj + bpk for some j, k < i, and a, b ∈ R.

Now, by induction assumption, E(p2
j) = E(p2

k) = 0. Moreover, since p2
j ±

2pjpk + p2
k = (pj ± pk)2, we have that |E(2pjpk)| ≤ E(p2

j) + E(p2
k), and so

E(pjpk) = 0. Now E(p2
i ) = E(a2p2

j) + E(2abpjpk) + E(b2p2
k) = 0.

Now E(1) = 0, against the definition of an SOS pseudoexpectation over

S. Hence there is an SOS refutation of Q over S.

Now we incorporate bounds on the coefficients into the proof. However

we lose some of the elegance of the above proof in doing so. We say that

a PCR/R refutation is R-bounded if all the coefficients appearing in the

proof are bounded by R in absolute value and the scalars a and b in the

inference step from pj and pk to apj+bpk are also bounded by R in absolute

value.

We give a bound on the magnitude of the coefficients in the SOS refu-

tation in terms of a bound on the size of coefficients in the given PCR/R
refutation and the height of the refutation. Recall that the height of a

PCR/R proof p1, . . . , p` from Q is the length of the longest subsequence

pi1 , . . . , pik such that pij is a direct antecedent of pij+1
for any j < k. Given

a PCR/R proof p1, . . . , p` from Q, we define the height of a polynomial

pi in the proof as follows: if pi ∈ Q, then pi is at height 0. If pi is obtained

from some pj for j < i by a lift with a variable x, i.e. pi = xpj for some

variable x, and pj is at height h, then pi is at height h + 1. Finally if pi is

obtained from pj and pk for j, k < i by linear combination, i.e. there are

some a, b ∈ R such that pi = apj + bpk, and pj and pk are at heights h and

h′, respectively, then pi is at height max{h, h′}+ 1.

Lemma 3.4.2. Let Q be a set of equality constraints, let R ≥ 2 and sup-

pose there is an R-bounded PCR/R refutation of Q of height h using only

monomials from a set S. Then there is an R4h+5-bounded SOS refutation

of Q over S.

Proof. We prove that there is a sum of squares s of polynomials in R[S] and



aq, bi ∈ R for every q ∈ Q and i ∈ [n] such that |aq|, |bi| ≤ R4(h+1) and

−1 ≡ s+
∑
q∈Q

aqq
2 +

∑
i∈[n]

bi(xi + x̄i − 1)2 mod Jn. (3.49)

Now (3.49) is an R4h+5-bounded SOS refutation of Q, since, by assumption,

‖q‖∞ ≤ R for any q ∈ Q.

Suppose towards a contradiction that the above claim does not hold.

Then the following sets are disjoint:

A := {p ∈ R[S2] : ∅ `SOS

S p ≥ 0}

and

B := {−1 +
∑
q∈Q

aqq
2 +

∑
i∈[n]

bi(xi + x̄i − 1)2 : |aq|, |bi| ≤ R4(h+1)}.

Now A is a convex cone admitting an order unit 1 and B is a convex set. By

Theorem 2.4.4 there is a non-trivial linear functional E : R[S2] → R such

that E(1) = 1 and E(p) ≥ 0 for every p ∈ A and E(q) ≤ 0 for every q ∈ B.

Let p1, . . . , p` be an R-bounded PCR/R refutation of Q of height h using

only monomials from a set S. We prove by induction on the structure of

the refutation that for any pi at height h′ we have E(p2
i ) ≤ 1/R4(h−h′+1).

The claim holds for any q ∈ Q, since any q ∈ Q is at height 0 and

we have that −1 + R4(h+1)q2 ∈ B, and thus E(−1 + R4(h+1)q2) ≤ 0, i.e.

E(q2) ≤ 1/R4(h+1). Similarly, the claim holds for any Boolean axiom.

Suppose that pi at height h′ + 1 is obtained from pj via a lift with

a variable x, i.e. pi = xpj for some x. Now E((xpj)
2) ≤ E(p2

j), since

p2
j−(xpj)

2 ≡ (pj−xpj)2 mod Jn. Now pj is at height h′, and so by induction

assumption, E(p2
j) ≤ 1/R4(h−h′+1). Hence E((xpj)

2) ≤ 1/R4(h−h′).

Suppose then that pi at height h′+1 is obtained from pj and pk via linear

combination, i.e. that there are some a, b ∈ R such that pi = apj+bpk. Now

both pj and pk are at most at height h′, and so, by induction assumption,

E(p2
j), E(p2

k) ≤ 1/R4(h−h′+1). Secondly, by assumption, |a|, |b| ≤ R, and so

a2, b2 ≤ R2. Hence E(a2p2
j), E(b2p2

k) ≤ R2/R4(h−h′+1). Thirdly

a2p2
j − 2abpjpk + b2p2

k = (apj − bpk)2,



and so E(2abpjpk) ≤ E(a2p2
j) + E(b2p2

k). Now

E(p2
i ) = E(a2p2

j) + E(2abpjpk) + E(b2p2
k)

≤ 2
(
E(a2p2

j) + E(b2p2
k)
)

≤ 4R2/R4(h−h′+1)

≤ R4/R4(h−h′+1)

= 1/R4(h−h′),

where the fourth line follows, since R2 ≥ 4.

Now E(1) ≤ 1/R against the assumption that E(1) = 1.

The above lemma together with the proof search algorithm in Section

5.2.2 show that we can find the SOS refutation whose existence is guar-

anteed by the above lemma in time polynomial in 〈Q〉, |S|, logR and h.

Hence we obtain the following corollary.

Corollary 3.4.3. Sums-of-Squares p-simulates Polynomial Calculus Reso-

lution over reals.

The argument above is clearly not as computationally efficient as the

simulation given by the syntactic proof of [15]. However it is a nice illus-

tration of the use of semantic arguments to prove properties of resource-

bounded refutations.



Chapter 4

Size-degree trade-offs for

Sherali-Adams and

Sums-of-Squares proofs

In this chapter we prove a size-degree trade-off for SOS and SA refuta-

tions. Our results match their analogues for other proof systems that

were considered before. Building on the work of [12] and [22] a size-width

trade-off theorem was established for Resolution: a Resolution refutation

with s many clauses can be converted into one in which all clauses have

width O(
√
n log s+ k), where k is the size of the largest initial clause [14].

The same type of trade-off was also concurrently established for monomial

size and degree for the Polynomial Calculus in [46], and later for proof

length and rank for LS and LS+ [70], i.e., the proof systems that come out

of the Lovász-Schrijver LP and SDP hierarchies [64]1.

Our proof of the trade-off theorem for SA and SOS follows the standard

pattern of the previous proofs with one new key ingredient. Suppose P and

Q are a sets of inequality and equality constraints that admit a SA/SOS

1Besides the proofs of the trade-off results for LS and LS+, the conference version of
[70] claims the result for the stronger Sherali-Adams and Lasserre/SOS proof systems,
but the claim is made without proof. The very last section of the journal version [70]
includes a sketch of a proof that, unfortunately, is an oversimplification of the LS/LS+

argument that cannot be turned into a correct proof. The forthcoming discussion clarifies
how our proof is based on, and generalizes, the one for LS/LS+ in [70].
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refutation of monomial size s. Going back to the main idea from [22],

the argument for getting a degree d refutation goes in four steps: (1) find

a variable x that appears in many large monomials, (2) set it to a value

b ∈ {0, 1} to kill all monomials where it appears, (3) induct on the number

of variables to get a refutation of P [x/b] and Q[x/b], and a refutation of

P [x/1−b] and Q[x/1−b] which, if s is small enough, are of degrees d−1 and

d, respectively, and (4) compose these refutations together to get a degree

d refutation of P and Q. The main difficulty in making this work for SA

and SOS is step (4).

The main difficulty is that, unlike Resolution and the other proof sys-

tems which are deductive proof systems based on inference rules, the SA

and SOS proofs are formal polynomial identities. Such proof systems

also known as static systems. This means that, for SA and SOS, the rea-

soning it takes to refute P and Q from the degree d−1 refutation of P [x/b]

and Q[x/b] and the degree d refutation of P [x/1− b] and Q[x/1− b] needs

to be witnessed through a single polynomial identity, without exceeding the

bound d on the degree. This is challenging because the general simulation

of a deductive proof by a static one incurs a degree loss.

In order to overcome this difficulty we turn to pseudoexpectations. One

of the key insights of this chapter is that the duality theorem for SA and

SOS is instrumental in completing the step (4) in the proof of the trade-off

theorem. We reached this conclusion from trying to generalize the proofs

for LS and LS+ from [70] to SA and SOS. In those proofs, the corresponding

zero-gap duality theorems are required only for the very special case where

d = 2 and for deriving linear inequalities from linear constraints. The fact

that these hold goes back to the work of Lovász and Schrijver [64].

In Section 4.6 we list some of the applications of the size-degree trade-

off for SOS that follow from known degree lower bounds. Among these we

include exponential size SOS lower bounds for Tseitin formulas, Knapsack

formulas, and optimal integrality gaps for sparse random instances of MAX-

3-XOR and MAX-3-SAT. Except for Knapsack formulas, for which size

lower bounds follow from an easy random restriction argument applied to

the degree lower bounds in [36, 38], these size lower bounds for SOS appear



to be new.

For the proofs below we need to consider the sets of constraints given

as indexed sets of constraints P = {p1 ≥ 0, . . . , p` ≥ 0} and Q = {q1 =

0, . . . , qm = 0}. Hence SA and SOS proofs of non-negativity of r from P

and Q take the form

r ≡ s0 +
∑
i∈[`]

sipi +
∑
j∈[m]

tjqj mod In, (4.1)

where si is either a polynomial with non-negative coefficients for SA or

a sum-of-squares for SOS for each i ∈ [`] ∪ {0} and tj is an arbitrary

polynomial for each j ∈ [m]

Our main results of this chapter are as follows.

Theorem 4.0.1. For every two natural numbers n and k, every indexed

sets P and Q of polynomial inequality and equality constraints of degree

at most k in n pairs of twin variables, and every positive integers s, if

there is an SOS refutation from P and Q with at most s many explicit

monomials, then there is an SOS refutation of P and Q of degree at most

4
√

2(n+ 1) log(s) + k + 4.

Theorem 4.0.2. For every two natural numbers n and k, every indexed sets

P and Q of polynomial inequality and equality constrains of degree at most

k in n pairs of twin variables, and every positive integers s, if there is an SA

refutation from P and Q with at most s many explicit monomials, then there

is an SA refutation of P and Q of degree at most 2
√

2(n+ 1) log(s)+k+2.

Immediate consequences of the above theorems are degree criteria for

size lower bounds in Sherali-Adams and Sums-of-Squares:

Corollary 4.0.3. Let P and Q be indexed sets of polynomials of degree at

most k in n pairs of twin variables. If d is the minimum degree of an SOS

refutation of P and Q and s is the minimum number of explicit monomials

in a refutation of P and Q, and d ≥ k + 4, then

s ≥ exp((d− k − 4)2/(32(n+ 1))).



Corollary 4.0.4. Let P and Q be indexed sets of polynomials of degree at

most k in n pairs of twin variables. If d is the minimum degree of an SA

refutation of P and Q and s is the minimum number of explicit monomials

in an SA refutation of P and Q, and d ≥ k + 2, then

s ≥ exp((d− k − 2)2/(8(n+ 1))).

The proofs of Theorems 4.0.1 and 4.0.2 will follow the standard structure

of proofs for degree-reduction lemmas for other proof systems, except for

some complications in the unrestricting lemmas. These difficulties come

from the fact that both SA and SOS proofs are static. The main tool around

these difficulties is a tight Duality Theorem for degree-bounded proofs with

respect to so-called cut-off functions as defined next.

4.1 Duality modulo cut-off functions

Let P = {p1 ≥ 0, . . . p` ≥ 0} and Q = {q1 = 0, . . . , qm = 0} be indexed sets

of polynomial constraints. A cut-off function for P and Q is a function

c : [` + m] → N with c(i) ≥ deg(pi) for each i ≤ `, and c(j) ≥ deg(qj−`)

for each j > `. An SA or SOS proof as in (4.1) has degree mod c at

most d if deg(p) ≤ d, deg(s0) ≤ d, deg(si) ≤ d − c(i) for each i ∈ [`], and

deg(tj) ≤ d− c(j) for each j ∈ [m].

We write P,Q `SA

c,d q ≥ p and P,Q `SOS

c,d q ≥ p if there is an SA or

an SOS proof of non-negativity of q − p, respectively, from P and Q of

degree mod c at most d. An SA-pseudoexpectation for P and Q of degree

mod c at most d is a linear functional E from the set of all polynomials

of degree at most d such that E(1) = 1 and E(q) ≥ 0 if P,Q `SA

c,d q ≥ 0.

The SOS-pseudoexpectations for P and Q of degree mod c at most d are

defined analogously. We denote by E
SA

c,d (P,Q) and E
SOS

c,d (P,Q) the sets of all

SA and SOS pseudoexpectations of degree mod c at most d, respectively.

Again, by Lemmas 3.2.1 and 3.3.1 and Theorem 2.4.3, we obtain the

following Duality Theorems for proofs and pseudoexpectations modulo any

cut-off function.



Theorem 4.1.1. Let d be a positive integer, let P and Q be indexed sets

of polynomial inequality and equality constrains, let c be a cut-off function

for P and Q, and let p be a polynomial of degree at most 2d. Then

sup{r ∈ R : P,Q `SOS

c,2d p ≥ r} = inf{E(p) : E ∈ E
SOS

c,2d (P,Q)}.

Moreover, if the set E
SOS

c,2d (P,Q) is non-empty, then there is a pseudoexpec-

tation achieving the infimum.

Theorem 4.1.2. Let d be a positive integer, let P and Q be indexed sets

of polynomial inequality and equality constraints, let c be a cut-off function

for P and Q, and let p be a polynomial of degree at most d. Then

sup{r ∈ R : P,Q `SA

c,d p ≥ r} = inf{E(p) : E ∈ E
SA

c,d (P,Q)}.

Moreover, if the set E
SA

c,d (P,Q) is non-empty, then there is a pseudoexpecta-

tion achieving the infimum.

The role of the cut-off function c in our application below will be ex-

plained in due time; i.e., after its use in the unrestricting Lemmas 4.3.2 and

4.2.2 below. It is important for the lemmas that follow that the duality

theorem is tight in two ways: that they have zero duality gap and that

they respect the degree; i.e., the degree bound is the same for proofs and

pseudoexpectations.

4.2 Unrestricting lemmas for

Sums-of-Squares

For this section, fix two positive integers n and d for the numbers of pairs

of twin variables and degree, respectively. We also fix two indexed sets

P = {p1 ≥ 0, . . . , p` ≥ 0} and Q = {q1 = 0, . . . , qm = 0} of polynomial

constraints in the n pairs of twin variables, and a cut-off function c for P

and Q.



Lemma 4.2.1. Let x be one of the 2n variables and let m be a monomial

of degree at most 2d − 1. Then E(x) = 0 implies E(xm) = 0 for any

E ∈ E
SOS

c,2d (P,Q).

Proof. Let m1 and m2 be two monomials of degree at most d − 1 and d,

respectively, such that m = m1m2. Note first that E((xm1)2) = 0, since

x − (xm1)2 ≡ (x − xm1)2 mod In and all degrees are at most 2d. Hence,

0 = E(x) ≥ E((xm1)2) ≥ 0. Let then a = E(m2
2) and note that a ≥ 0. For

every positive integer k we have

E(xm) ≤ 1

2k
(E(2kxm1m2) + E((kxm1 −m2)2)) =

a

2k
,

E(xm) ≥ 1

2k
(E(2kxm1m2)− E((kxm1 +m2)2)) = − a

2k
,

where in both cases the equalities follow from E((xm1)2) = 0 and E(m2
2) =

a. Since a ≥ 0 and the inequalities hold for every k > 0 it must be that

E(xm) = 0 and the lemma is proved.

For q a polynomial in the n pairs of twin variables, i ∈ [n] an index,

and b ∈ {0, 1} a Boolean value, we denote by q[i/b] the polynomial that

results from assigning xi to b and x̄i to 1−b in q. We extend the notation to

indexed sets of such polynomials through P [i/b] to mean {pj[i/b] : j ∈ [`]}.
Note that pj[i/b] is a polynomial in n − 1 pairs of twin variables, and its

degree is at most the degree of pj.

Lemma 4.2.2. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with

the polynomials qm+1 = xi and qm+1 = x̄i, respectively, and let c′ be the

extension of c that maps `+m+ 1 to 1. The following hold:

1. The function c′ is a cut-off function for both P and Q0, and P and

Q1; (4.2)

2. If P [i/0], Q[i/0] `SOS

c,2d −1 ≥ 0, then P,Q0 `
SOS

c′,2d −1 ≥ 0; (4.3)

3. If P [i/1], Q[i/1] `SOS

c,2d −1 ≥ 0, then P,Q1 `
SOS

c′,2d −1 ≥ 0. (4.4)



Proof. (4.2) is obvious. By symmetry we prove only (4.3). Suppose that

P [i/0], Q[i/0] `SOS

c,2d −1 ≥ 0, say:

−1 = s0 +
∑
j∈[`]

sjpj[i/0] +
∑
k∈[m]

tkqk[i/0] mod In (4.5)

For j ∈ [`], write pj =
∑

α∈Ij aj,αx
α, let Jj = {α ∈ Ij : αi ≥ 1} and

Kj = {α ∈ Ij : αi = 0 and αn+i ≥ 1} and note that

pj[i/0] = pj +
∑
α∈Jj

aj,α(xα/xαi
i )(−xαi

i ) +
∑
α∈Kj

aj,α(xα/x̄
αn+i

i )(1− x̄αn+i

i ).

Therefore pj[i/0] ≡ pj + rjxi mod In where

rj =
∑
α∈Kj

aj,α(xα/x̄
αn+i

i )−
∑
α∈Jj

aj,α(xα/xαi
i ).

Note that deg(rj) ≤ deg(pj) − 1 since αi ≥ 1 for α ∈ Jj and αn+i ≥ 1 for

α ∈ Kj. Now

sjpj[i/0] ≡ sjpj + sjrjxi mod In.

Because c is a cut-off function for P and Q and c′(j) = c(j), we have

deg(sj) ≤ 2d− c(j) = 2d− c′(j). Likewise we have:

deg(sjrj) ≤ deg(sj) + deg(rj) ≤ 2d− c(j) + deg(pj)− 1 ≤ 2d− 1.

The second inequality follows from the fact that deg(rj) ≤ deg(pj) − 1 for

all j ∈ [m], the third inequality follows from the fact that c is a cut-off

function for P and Q. Hence, P,Q0 `
SOS

c′,2d sjpj[i/0]. A similar argument

with tj and qj in place of sj and pj shows that P,Q0 `
SOS

c′,2d tjqj[i/0]. This

gives proofs for all terms in the right-hand side of (4.5), and the proof of

the lemma is complete.

Some comments are in order about the role of the cut-off function in the

above proof. First note that, at the semantic level, the constraint pj[i/0] ≥ 0

is equivalent to the pair of constraints pj ≥ 0 and xi = 0. At the level of

syntactic proofs, though, these two representations of the same constraint

behave differently: although a lift sjpj[i/0] of the restriction pj[i/0] ≡ pj +



rjxi of pj may have its degree bounded by 2d, the degree of its direct

simulation through sjpj + sjrjxi could exceed 2d. The role of the cut-off

function is to restrict the lifts sjpj[i/0] in such a way that their simulation

through sjpj + sjrjxi remains a valid lift of degree at most 2d; this is

the case if, indeed, the allowed lifts sjpj[i/0] of pj[i/0] are those satisfying

deg(sj) ≤ 2d − c(j), where c(j) ≥ deg(pj). This is why c is designed to

depend only on the index j and not on the polynomial indexed by j.

Lemma 4.2.3. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with

the polynomials qm+1 = xi and qm+1 = x̄i, respectively, and let c′ be the

extension of c that maps `+m+ 1 to 1. The following hold:

• The function c′ is a cut-off function for both P and Q0, and P and

Q1; (4.6)

• If P,Q0 `
SOS

c′,2d −1 ≥ 0, then E(xi) > 0 for any E ∈ E
SOS

c,2d (P,Q); (4.7)

• If P,Q1 `
SOS

c′,2d −1 ≥ 0, then E(x̄i) > 0 for any E ∈ E
SOS

c,2d (P,Q). (4.8)

Proof. (4.6) is obvious. We prove (4.7); the proof of (4.8) is symmetric.

Suppose towards a contradiction that there is E ∈ E
SOS

c,2d (P,Q) such that

E(xi) = 0. We want to show that E is also in E
SOS

c′,2d(P,Q0). This contradicts

the assumption that P,Q0 `
SOS

c′,2d −1 ≥ 0. Let

r ≡ s0 +
∑
j∈[`]

sjpj +
∑
k∈[m]

tkqk + tm+1xi mod In (4.9)

be an SOS proof from P and Q0 of degree mod c′ at most 2d. First note

that deg(tm+1) ≤ 2d− c′(m+ 1) ≤ 2d− 1. Therefore, Lemma 4.2.1 applies

to all the monomials of tm+1, so that E(tm+1xi) = 0. The rest of (4.9) will

get a non-negative value through E, since by assumption E is in E
SOS

c,2d (P,Q)

and c is c′ restricted to [`+m]. Thus, E is in E
SOS

c′,2d(P,Q0).

Lemma 4.2.4. Let i ∈ [n] and assume that d ≥ 2. The following hold:

• If P [i/0], Q[i/0] `SOS

c,2d−2 −1 ≥ 0 and P [i/1], Q[i/1] `SOS

c,2d −1 ≥ 0, then

P,Q `SOS

c,2d −1 ≥ 0; (4.10)



• If P [i/0], Q[i/0] `SOS

c,2d −1 ≥ 0 and P [i/1], Q[i/1] `SOS

c,2d−2 −1 ≥ 0, then

P,Q `SOS

c,2d −1 ≥ 0. (4.11)

Proof. First note that −x̄ixi = (x2
i − xi) − xi(xi + x̄i − 1), and d ≥ 1, so

that

`SOS

c,2d −x̄ixi ≥ 0. (4.12)

We prove (4.10); the proof of (4.11) is entirely analogous.

Assume P [i/0], Q[i/0] `SOS

c,2d−2 −1 ≥ 0. By Lemmas 4.2.2 and 4.2.3 and

d ≥ 2 we have E(xi) > 0 for any E ∈ E
SOS

c,2d−2(P,Q). Then, by the Duality

Theorem 4.1.1, there exist ε > 0 such that P,Q `SOS

c,2d−2 xi ≥ ε. To see this,

let γ = sup{r ∈ R : P,Q `SOS

c,2d−2 xi ≥ r} = inf{E(xi) : E ∈ E
SOS

c,2d−2(P,Q)}.
If E

SOS

c,2d−2(P,Q) is empty, then γ = +∞ and any ε > 0 serves the purpose. If

E
SOS

c,2d−2(P,Q) is non-empty, then the Duality Theorem says that the infimum

is achieved, hence γ = E(xi) > 0 for some E in E
SOS

c,2d−2(P,Q), and ε = γ/2 >

0 serves the purpose. Using d ≥ 2 again, P,Q `SOS

c,2d x̄
2
ixi ≥ x̄2

i ε, so

P,Q `SOS

c,2d x̄ixi ≥ x̄iε. (4.13)

Assume also P [i/1], Q[i/1] `SOS

c,2d −1 ≥ 0. By Lemmas 4.2.2 and 4.2.3 we

have E(x̄i) > 0 for any E ∈ E
SOS

c,2d (P,Q), and this time d ≥ 1 suffices. By

the same argument as before, by the Duality Theorem there exist δ > 0

such that P,Q `SOS

c,2d x̄i ≥ δ. Now d ≥ 1 suffices to get

P,Q `SOS

c,2d x̄iε ≥ δε. (4.14)

Adding (4.12), (4.13) and (4.14) gives P,Q `SOS

c,2d 0 ≥ δε, i.e., P,Q `SOS

c,2d

−1 ≥ 0.

4.3 Unrestricting lemmas for

Sherali-Adams

For this section, fix again two positive integers n and d, two indexed sets

P = {p1 ≥ 0, . . . , p` ≥ 0} and Q = {q1 = 0, . . . , qm = 0} of polynomial



constraints in the n pairs of twin variables, and a cut-off functionc for P

and Q.

The proofs for the unrestricting lemmas for SA are mostly the same as

in the case of SOS. We do highlight the important differences in the proofs

between the two systems when they appear. First important difference

comes in the following lemma, which is an analogue of Lemma 4.2.1. For

Sherali-Adams the proof of the lemma is much less involved than for Sums-

of-Squares.

Lemma 4.3.1. Let x be one of the 2n variables and let m be a monomial

of degree at most d − 1. Then E(x) = 0 implies E(xm) = 0 for any

E ∈ E
SA

c,d (P,Q).

Proof. Let m =
∏

i∈[d−1] yi. The proof follows, since Sherali-Adams has a

direct proof of x− xm by the following telescoping sum:

x− x
∏

i∈[d−1]

yi ≡ xȳi + xy1ȳ2 + · · ·x
∏

i∈[d−2]

yiȳd−1 mod In.

Hence 0 = E(x) ≥ E(xm). On the other hand E(xm) ≥ 0, and so E(xm) =

0.

The following two lemmas are analogues of Lemmas 4.2.2 and 4.2.3 for

Sherali-Adams, and the proofs are practically the same.

Lemma 4.3.2. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with

the polynomials qm+1 = xi and qm+1 = x̄i, respectively, and let c′ be the

extension of c that maps `+m+ 1 to 1. The following hold:

• The function c′ is a cut-off function for both P and Q0, and P and

Q1; (4.15)

• If P [i/0], Q[i/0] `SA

c,d −1 ≥ 0, then P,Q0 `
SA

c′d −1 ≥ 0; (4.16)

• If P [i/1], Q[i/1] `SA

c,d −1 ≥ 0, then P,Q1 `
SA

c′,d −1 ≥ 0. (4.17)

Proof. (4.15) is obvious. By symmetry we prove only (4.16). Suppose that

P [i/0], Q[i/0] `SA

c,d −1 ≥ 0, say:

−1 = s0 +
∑
j∈[`]

sjpj[i/0] +
∑
k∈[m]

tkqk[i/0] mod In (4.18)



For j ∈ [`], write pj =
∑

α∈Ij aj,αx
α, let Jj = {α ∈ Ij : αi ≥ 1} and

Kj = {α ∈ Ij : αi = 0 and αn+i ≥ 1} and note that

pj[i/0] = pj +
∑
α∈Jj

aj,α(xα/xαi
i )(−xαi

i ) +
∑
α∈Kj

aj,α(xα/x̄
αn+i

i )(1− x̄αn+i

i ).

Therefore pj[i/0] ≡ pj + rjxi mod In where

rj =
∑
α∈Kj

aj,α(xα/x̄
αn+i

i )−
∑
α∈Jj

aj,α(xα/xαi
i ).

Note that deg(rj) ≤ deg(pj) − 1 since αi ≥ 1 for α ∈ Jj and αn+i ≥ 1 for

α ∈ Kj. Now

sjpj[i/0] ≡ sjpj + sjrjxi mod In.

Because c is a cut-off function for P and Q and c′(j) = c(j), we have

deg(sj) ≤ d− c(j) = d− c′(j). Likewise we have:

deg(sjrj) ≤ deg(sj) + deg(rj) ≤ d− c′(j) + deg(pj)− 1 ≤ d− 1.

The second inequality follows from the fact that deg(rj) ≤ deg(pj) − 1 for

all j ∈ [m], the third inequality follows from the fact that c is a cut-off

function for P and Q. Hence, P,Q0 `
SA

c′,d sjpj[i/0]. A similar argument with

tj and qj in place of sj and pj shows that P,Q0 `
SA

c′,d tjqj[i/0]. This gives

proofs for all terms in the right-hand side of (4.18), and the proof of the

lemma is complete.

Lemma 4.3.3. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with

the polynomials qm+1 = xi and qm+1 = x̄i, respectively, and let c′ be the

extension of c that maps `+m+ 1 to 1. The following hold:

• The function c′ is a cut-off function for both P and Q0, and P and

Q1; (4.19)

• If P,Q0 `
SA

c′,d −1 ≥ 0, then E(xi) > 0 for any E ∈ E
SA

c,d (P,Q); (4.20)

• If P,Q1 `
SA

c′,d −1 ≥ 0, then E(x̄i) > 0 for any E ∈ E
SA

c,d (P,Q). (4.21)

Proof. (4.19) is obvious. We prove (4.20); the proof of (4.21) is symmetric.

Suppose towards a contradiction that there is E ∈ E
SA

c,d (P,Q) such that



E(xi) = 0. We want to show that E is also in E
SA

c′,d(P,Q0). This contradicts

the assumption that P,Q0 `
SA

c′,d −1 ≥ 0. Let

r ≡ s0 +
∑
j∈[`]

sjpj +
∑
k∈[m]

tkqk + tm+1xi mod In (4.22)

be an SA proof from P and Q0 of degree mod c′ at most d. First note that

deg(tm+1) ≤ d− c′(m+ 1) ≤ 2d− 1. Therefore, Lemma 4.3.1 applies to all

the monomials of tm+1, so that E(tm+1xi) = 0. The rest of (4.22) will get a

non-negative value through E, since by assumption E is in E
SA

c,d (P,Q) and

c is c′ restricted to [`+m]. Thus, E is in E
SA

c′d (P,Q0).

Finally we obtain the following analogue of Lemma 4.2.4.

Lemma 4.3.4. Let i ∈ [n] and assume that d ≥ 2. The following hold:

• If P [i/0], Q[i/0] `SA

c,d−1 −1 ≥ 0 and P [i/1], Q[i/1] `SA

c,d −1 ≥ 0, then

P,Q `SA

c,d −1 ≥ 0; (4.23)

• If P [i/0], Q[i/0] `SA

c,d −1 ≥ 0 and P [i/1], Q[i/1] `SA

c,d−1 −1 ≥ 0, then

P,Q `SA

c,d −1 ≥ 0. (4.24)

Proof. First note that −x̄ixi = (x2
i − xi) − xi(xi + x̄i − 1), and d ≥ 2, so

that

`SA

c,d −x̄ixi ≥ 0. (4.25)

We prove (4.23); the proof of (4.24) is entirely analogous.

Assume P [i/0], Q[i/0] `SA

c,d−1 −1 ≥ 0. By Lemmas 4.3.2 and 4.3.3 and

d ≥ 2 we have E(xi) > 0 for any E ∈ E
SA

c,d−1(P,Q). Then, by the Duality

Theorem 4.1.2, there exist ε > 0 such that P,Q `SA

c,d−1 xi ≥ ε. To see this,

let γ = sup{r ∈ R : P,Q `SA

c,d−1 xi ≥ r} = inf{E(xi) : E ∈ E
SA

c,d−1(P,Q)}. If

E
SA

c,d−1(P,Q) is empty, then γ = +∞ and any ε > 0 serves the purpose. If

E
SA

c,d−1(P,Q) is non-empty, then the Duality Theorem says that the infimum

is achieved, hence γ = E(xi) > 0 for some E in E
SA

c,d−1(P,Q), and ε = γ/2 >

0 serves the purpose. Using d ≥ 2 again, we obtain that

P,Q `SA

c,d x̄ixi ≥ x̄iε. (4.26)



Assume also P [i/1], Q[i/1] `SA

c,d −1 ≥ 0. By Lemmas 4.3.2 and 4.3.3 we

have E(x̄i) > 0 for any E ∈ E
SA

c,d (P,Q), and this time d ≥ 1 suffices. By the

same argument as before, by the Duality Theorem there exist δ > 0 such

that P,Q `SA

c,d x̄i ≥ δ. Now d ≥ 1 suffices to get

P,Q `SA

c,d x̄iε ≥ δε. (4.27)

Adding (4.25), (4.26) and (4.27) gives P,Q `SA

c,d 0 ≥ δε, i.e., P,Q `SA

c,d −1 ≥
0.

4.4 Size-degree trade-off for

Sums-of-Squares

We need one more technical concept: an SOS proof as in (4.1) is multi-

linear if s0 and sj are sums of squares of multilinear polynomials for each

j ∈ [`], and tk is a multilinear polynomial for each k ∈ [m].

Lemma 4.4.1. For every positive integer s and any indexed sets P and Q of

polynomial inequality and equality constraints, if there is an SOS refutation

from P and Q with at most s many distinct significant monomials, then

there is a multilinear SOS refutation from P and Q with at most s many

distinct significant monomials.

Proof. Let P = {p1 ≥ 0, . . . , p` ≥ 0} and Q = {q1 = 0, . . . , qm = 0}
and suppose that there is a refutation from P and Q as in (4.1), with

s0 =
∑k0

i=1 r
2
i,0 and sj =

∑kj
i=1 r

2
i,j for j ∈ [`], where the number of distinct

monomials among the ri,0, ri,j and tk is at most s. For each polynomial

r let r̄ be its direct multilinearization; i.e., each power xl with l ≥ 2 that

appears in r is replaced by x. It is obvious that r ≡ r̄ mod In and also

r2 ≡ r̄2 mod In, where n is the number of pairs of twin variables in P and

Q. Moreover, the number of distinct monomials among r̄i,0, r̄i,j and t̄k does

not exceed s. Thus, setting s′0 =
∑k0

i=1 r̄
2
i,0, s′j =

∑kJ
i=1 r̄

2
i,J and t′k = t̄k we

get

−1 ≡ s′0 +
∑
j∈[`]

s′jpj +
∑
k∈[m]

t′kqk mod In. (4.28)



It follows that P Q has a multilinear refutation with at most s distinct

significant monomials.

Theorem 4.0.1 will be a consequence of the following lemma for a suitable

choice of d and c:

Lemma 4.4.2. For every natural number n, any indexed sets P and Q of

polynomial inequality and equality constraints in n pairs of twin variables,

every cut-off function c for P and Q, every real s ≥ 1 and every positive

integer d, if there is a multilinear SOS refutation from P and Q with at

most s many distinct significant monomials of degree at least d, then there

is an SOS refutation from P and Q of degree mod c at most 2d′+2d′′, where

d′ = d+ b2(n+ 1) log(s)/dc and d′′ = max{1, d(max c)/2e}.

Proof. The proof is an induction on n. Let P and Q be indexed sets of

polynomials in n pairs of twin variables, let c be a cut-off function for P

and Q, let s ≥ 1 be a real, let d be a positive integer, and let Π be a

multilinear refutation of P and Q with at most s many distinct significant

monomials of degree at least d.

For n = 0 the statement is true because 2d′′ ≥ 2d(max c)/2e ≥ max c.

Assume now that n ≥ 1. Let t ≤ s be the exact number of distinct sig-

nificant monomials of degree at least d in Π. The total number of variable

occurrences in such monomials is at least dt. Therefore, there exists one

among the 2n variables that appears in at least dt/2n of the significant

monomials of degree at least d. Let i ∈ [n] be the index of such a variable,

basic or twin. If it is basic, let a = 0. If it is twin, let a = 1. Our goal is to

show that

P [i/a], Q[i/a] `c2d′+2d′′−2 −1 ≥ 0 and P [i/1− a], Q[i/1− a] `c2d′+2d′′ −1 ≥ 0,

(4.29)

for d′ and d′′ as stated in the lemma. If we achieve so, then d′ + d′′ ≥ 2

because d′ ≥ d ≥ 1 and d′′ ≥ 1, so Lemma 4.2.4 applies on (4.29) to give

P,Q `c2d′+2d′′ −1 ≥ 0, which is what we are after.

Consider P [i/a] and Q[i/a] first. These are sets of polynomials on n− 1

pairs of twin variables, and Π[i/a] is a multilinear refutation of P [i/a] and



Q[i/a] that has at most s′ := t(1 − d/2n) distinct significant monomials

of degree at least d. Moreover c is a cut-off function for the sets. We

distinguish the cases s′ < 1 and s′ ≥ 1. If s′ < 1, then all significant

monomials in Π[i/a] have degree at most d − 1. Since 2d′′ ≥ max c, this

refutation has degree mod c at most 2(d−1)+2d′′ ≤ 2d′+2d′′−2. This gives

the first part of (4.29). If s′ ≥ 1, then first note that d < 2n. Moreover, the

induction hypothesis applied to P [i/a],Q[i/a] and s′, and the same c and

d, gives that there is a refutation of P [i/a] and Q[i/a] of degree mod c at

most 2da + 2d′′, where

da = d+ b2n log(t(1− d/2n))/dc ≤ d+ b2(n+ 1) log(s)/dc − 1. (4.30)

Here we used the inequality log(1 + x) ≤ x which holds true for every real

x > −1, and the fact that d < 2n. This gives the first part of (4.29) since

da ≤ d′ − 1.

Consider P [i/1 − a] and Q[i/1 − a] next. In this case, the best we can

say is that c is still a cut-off function for the sets, and that Π[i/1 − a] is

a multilinear refutation of the sets that still has at most s many distinct

significant monomials of degree at least d. But P [i/1 − a] and Q[i/1 − a]

have at most n − 1 pairs of twin variables, so the induction hypothesis

applies. Applied to the same c, s and d, it gives that there is a refutation

of P [i/1− a] and Q[i/1− a] of degree mod c at most 2d1−a + 2d′′, where

d1−a = d+ b2n log(s)/dc ≤ d+ b2(n+ 1) log(s)/dc. (4.31)

This gives the second part of (4.29) since d1−a ≤ d′. The proof is complete.

We are ready now to prove Theorem 4.0.1. We will actually prove the

following slightly stronger statement.

Theorem 4.4.3. For every two natural numbers n and k, every indexed sets

P and Q of polynomials of degree at most k with n pairs of twin variables,

and every positive integers s, if there is an SOS refutation from P and Q

with at most s many distinct significant monomials, then there is an

SOS refutation of P and Q of degree at most 4
√

2(n+ 1) log(s) + k + 4.



Proof. Assume that there is a refutation of P and Q with at most s many

distinct significant monomials. Applying Lemma 4.4.1 we get a multilinear

refutation with at most s many distinct significant monomials, and hence

with at most s many distinct significant monomials of degree at least d0,

for any d0 of our choice. We choose

d0 := b
√

2(n+ 1) log(s)c+ 1. (4.32)

By assumption s ≥ 1 and we chose d0 in such a way that d0 ≥ 1. Thus,

Lemma 4.4.2 applies to any cut-off function c for Q, in particular for the

cut-off function that is k everywhere. This gives a refutation of degree mod

c at most 2d′ + k + 2 with

d′ ≤ d0 + 2(n+ 1) log(s)/d0 ≤ 2
√

2(n+ 1) log(s) + 1. (4.33)

Since a proof of degree mod c at most 2d′+k+ 2 is also a proof of standard

degree at most 2d′ + k + 2, the proof is complete.

4.4.1 Size-degree trade-offs for Positivstellensatz

proofs

Positivstellensatz proof system is an extension of Sums-of-Squares, defined

originally in [40]. A Positivstellensatz proof of non-negativity of r from

P and Q is a polynomial equality of the form

r =
∑
i∈[k]

r2
i +

∑
R⊆P

∑
i∈[kR]

r2
i,R

∏
p∈R

p+
∑
q∈Q

tqq

+
∑
i∈[n]

(
ui(x

2
i − xi) + vi(xi + x̄i − 1)

)
. (4.34)

Note that when |P | ≤ 1, the Positivstellensatz proof 4.34 is an SOS proof.

However, with the power of multiplying inequality constraints together, one

can possibly obtain proofs smaller than in SOS.

We say that the PS proof 4.34 has product-width at most w if for

any R with |R| > w, ri,R = 0 for any i ∈ [kR]. Now any PS proof from

P and Q of product-width at most w can be considered as an SOS proof



from the sets Pw and Q, where Pw = {
∏

p∈R p : R ⊆ P, |R| ≤ w}. Now

the set of constraints Pw has degree at most kw, and hence an immediate

consequence of the size-degree trade-off for SOS is the following size-degree

trade-off for Positivstellensatz proofs with bounded product-width.

Theorem 4.4.4. For every two natural numbers n and k, every indexed

sets P and Q of polynomial inequality and equality constrains of degree at

most k in n pairs of twin variables, and every two positive integers s and w,

if there is a PS refutation from Q of product-width at most w and monomial

size at most s, then there is a PS refutation from Q of product-width at most

w and degree at most 4
√

2(n+ 1) log(s) + kw + 4.

In the paper [6] we painstakingly proved this form of the result from

first premises. The proof above simplifies the proof slightly. It is still open

whether a similar size-degree trade-off holds for Positivstellensatz proofs

with unbounded product-width.

4.5 Size-degree trade-off for Sherali-Adams

We say that an SA proof as in (4.1) is multilinear if s0 and sj are positive

linear combinations of multilinear monomials for each j ∈ [`], and tk is a

multilinear polynomial for each k ∈ [m].

Lemma 4.5.1. For every positive integer s and any indexed sets P and Q of

polynomial inequality and equality constraints, if there is an SA refutation

from P and Q with at most s many distinct significant monomials, then

there is a multilinear SA refutation from P and Q with at most s many

distinct significant monomials.

Proof. Let P = {p1 ≥ 0, . . . , p` ≥ 0} and Q = {q1 = 0, . . . , qm = 0} and

suppose that there is a refutation from P and Q as in (4.1), where the

number of distinct significant monomials is at most s. For each polynomial

r let r̄ be its direct multilinearization; i.e., each power xl with l ≥ 2 that

appears in r is replaced by x. It is obvious that r ≡ r̄ mod In, where n is



the number of pairs of twin variables in P and Q. Moreover, the number of

distinct significant monomials among s̄0, s̄j and t̄k does not exceed s. Now

−1 ≡ s̄0 +
∑
j∈[`]

s̄jpj +
∑
k∈[m]

t̄kqk mod In, (4.35)

and so P and Q has a multilinear refutation with at most s distinct signif-

icant monomials.

Theorem 4.0.2 will again be a consequence of the following lemma for a

suitable choice of d and c:

Lemma 4.5.2. For every natural number n, any indexed sets P and Q of

polynomial inequality and equality constrains in n pairs of twin variables,

every cut-off function c for P and Q, every real s ≥ 1 and every positive

integers d, if there is a multilinear SA refutation of P and Q with at most

s many distinct signicant monomials of degree at least d, then there is an

SA refutation from P and Q of degree mod c at most d′ + d′′, where d′ =

d+ b2(n+ 1) log(s)/dc and d′′ = max{1,max c}.

Proof. The proof is an induction on n. Let P and Q be indexed sets of

polynomials in n pairs of twin variables, let c be a cut-off function for P

and Q, let s ≥ 1 be a real, let d be a positive integer, and let Π be a

multilinear refutation of P and Q with at most s many distinct significant

monomials of degree at least d.

For n = 0 the statement is true because d′′ ≥ max c. Assume now that

n ≥ 1. Let t ≤ s be the exact number of distinct significant monomials of

degree at least d in Π. The total number of variable occurrences in such

monomials is at least dt. Therefore, there exists one among the 2n variables

that appears in at least dt/2n of the distinct significant monomials of degree

at least d. Let i ∈ [n] be the index of such a variable, basic or twin. If it is

basic, let a = 0. If it is twin, let a = 1. Our goal is to show that

P [i/a], Q[i/a] `SA

c,d′+d′′−1 −1 ≥ 0 and P [i/1− a], Q[i/1− a] `SA

c,d′+d′′ −1 ≥ 0,

(4.36)



for d′ and d′′ as stated in the lemma. If we achieve so, then d′ + d′′ ≥ 2

because d′ ≥ d ≥ 1 and d′′ ≥ 1, so Lemma 4.3.4 applies on (4.36) to give

P,Q `SA

c,d′+d′′ −1 ≥ 0, which is what we are after.

Consider P [i/a] and Q[i/a] first. These are sets of polynomials on n− 1

pairs of twin variables, and Π[i/a] is a multilinear refutation of P [i/a] and

Q[i/a] that has at most s′ := t(1 − d/2n) distinct significant monomials

of degree at least d. Moreover c is a cut-off function for the sets. We

distinguish the cases s′ < 1 and s′ ≥ 1. If s′ < 1, then all significant

monomials in Π[i/a] have degree at most d − 1. Since d′′ ≥ max c, this

refutation has degree mod c at most (d− 1) + d′′ ≤ d′ + d′′ − 1. This gives

the first part of (4.36). If s′ ≥ 1, then first note that d < 2n. Moreover, the

induction hypothesis applied to P [i/a],Q[i/a] and s′, and the same c and

d, gives that there is an SA refutation of P [i/a] and Q[i/a] of degree mod

c at most da + d′′, where

da = d+ b2n log(t(1− d/2n))/dc ≤ d+ b2(n+ 1) log(s)/dc − 1. (4.37)

Here we used the inequality log(1 + x) ≤ x which holds true for every real

x > −1, and the fact that d < 2n. This gives the first part of (4.36) since

da ≤ d′ − 1.

Consider P [i/1 − a] and Q[i/1 − a] next. In this case, the best we can

say is that c is still a cut-off function for the sets, and that Π[i/1 − a] is

a multilinear refutation of the sets that still has at most s many distinct

significant monomials of degree at least d. But P [i/1−a] and Q[i/1−a] have

at most n − 1 pairs of twin variables, so the induction hypothesis applies.

Applied to the same c, s and d, it gives that there is an SA refutation of

P [i/1− a] and Q[i/1− a] of degree mod c at most d1−a + d′′, where

d1−a = d+ b2n log(s)/dc ≤ d+ b2(n+ 1) log(s)/dc. (4.38)

This gives the second part of (4.36) since d1−a ≤ d′. The proof is complete.

Again instead of proving Theorem 4.0.2, we prove the following slightly

stronger statement from which Theorem 4.0.2 follows directly.



Theorem 4.5.3. For any two natural numbers n and k, any indexed sets

P and Q of polynomial in n of degree at most k in n pairs of twin variables,

and every positive integer s, if there is an SA refutation of P and Q with

at most s many distinct significant monomials, then there is an SA

refutation of P and Q of degree at most 2
√

2(n+ 1) log(s) + k + 2

Proof. Assume that there is a refutation of P and Q with at most s many

distinct significant monomials. Applying Lemma 4.4.1 we get a multilinear

refutation with at most s many distinct significant monomials, and hence

with at most s many distinct significant monomials of degree at least d0,

for any d0 of our choice. We choose

d0 := b
√

2(n+ 1) log(s)c+ 1. (4.39)

By assumption s ≥ 1 and we chose d0 in such a way that d0 ≥ 1. Thus,

Lemma 4.5.2 applies to any cut-off function c for P and Q, in particular for

the cut-off function that is k everywhere. This gives a refutation of degree

mod c at most d′ + k + 1 with

d′ ≤ d0 + 2(n+ 1) log(s)/d0 ≤ 2
√

2(n+ 1) log(s) + 1. (4.40)

Since a proof of degree mod c at most d′+ k+ 1 is also a proof of standard

degree at most d′ + k + 1, the proof is complete.

4.6 Applications

The obvious targets for applications of Theorems 4.0.2 and 4.0.1 are the

examples from the literature that are known to require linear degree to

refute. For some of them, such as the Knapsack, the SOS size lower bound

that follows was already known [38]. For some others, the applications of

the Theorems yields a new result. This section concentrates on SOS as the

stronger of the two systems.



4.6.1 Tseitin, Knapsack, and Random CSPs

The first set of examples that come to mind are the Tseitin formulas: If

Gn = (V,E) is an n-vertex graph from a family {Gn : n ∈ N} of constant

degree regular expander graphs, then the formula TSn has one Boolean

variable xe for each e ∈ E and one parity constraint
∑

e:u∈e xe = 1 mod 2

for each u ∈ V . Whenever the degree d of the graphs is even, this is

unsatisfiable when n is odd. In the encoding of the constraints given by the

system of polynomial equations Q = {
∏

e:u∈e(1 − 2xe) = −1 : u ∈ V }, the

Tseitin formulas TSn were shown to require degree Ω(n) to refute in SOS

in Corollary 1 from [37]. Since the number of variables of TSn is dn/2, the

constraints in Q are equations of degree d, and d is a constant, Theorem ??

gives:

Corollary 4.6.1. There exists ε ∈ R>0 such that for every sufficiently large

n ∈ N, every SOS refutation of TSn has monomial size at least 2εn.

Among the semialgebraic proof systems in the literature, exponential

size lower bounds for Tseitin formulas were known before for a proof system

called static LS+ in [38, 47]. Up to at most doubling the degree, this can

be seen as the subsystem of SOS in which every square sj is of the very

special form

sj =
((∑

i∈[n]

aixi + b
)∏
i∈I

xi
∏
j∈J

(1− xj)
)2

.

A second set of examples are the Knapsack equations 2x1+· · ·+2xn = k,

which are unsatisfiable for odd integers k. We denote them KSn,k. These

are known to require degree Ω(min{k, 2n− k}) to refute in SOS [36]. Since

the number of variables is n and the degree is one, Theorem 4.0.1 gives

an exponential size 2Ω(n) lower bound when k = n. For this example,

an exponential size lower bound for SOS was also proved in Theorem 9.1

from [38] when k = Θ(n), so this result is not new. We state the precise

relationship that the degree-reduction theorem gives in terms of n and k,

which yields superpolynomial lower bounds for k = ω(
√
n log n).



Corollary 4.6.2. There exist ε ∈ R>0 such that for every sufficiently large

n ∈ N and k ∈ [n], every SOS refutation of KSn,k has monomial size at

least 2εk
2/n.

The third set of examples come from sparse random instances of con-

straint satisfaction problems. As far as we know, monomial size lower

bounds for these examples do not follow from earlier published work without

using our result, so we give the details.

When C is a clause with k literals, say xi1 ∨ · · · ∨ xi` ∨ x̄i`+1
∨ · · · ∨

x̄ik , we write pC for the unique multilinear polynomial on the variables

xi1 , . . . , xik of C that evaluates to the same truth-value as C over Boolean

assignments; concretely pC = 1−
∏`

j=1(1− xij)
∏k

j=`+1 xij . More generally,

if C denotes a constraint on k Boolean variables, we write pC for the unique

multilinear polynomial on the variables of C that represents C over Boolean

assignments; i.e., such that pC(x) = 1 if x satisfies C, and pC(x) = 0 if x

falsifies C, for any x ∈ {0, 1}n.

Theorem 4.6.3 (see Theorem 12 in [84]). For every δ ∈ R>0 there exist

c, ε ∈ R>0 such that, asymptotically almost surely as n goes to infinity, if

m = dcne and C1, . . . , Cm are random 3-XOR (resp. 3-SAT) constraints

on x1, . . . , xn that are chosen uniformly and independently at random, then

there is a degree εn SOS pseudoexpectation for the system of polynomial

equations pC1 = 1, . . . pCm = 1, and at the same time every truth assignment

for x1, . . . , xn satisfies at most a 1/2 + δ fraction (resp. 7/8 + δ) of the

constraints C1, . . . , Cm.

It should be noted that it is not immediately obvious, from just reading

the definitions, that the statement of Theorem 12 in [84] gives the pseudo-

expectation as stated in Theorem 4.6.3. However, the proof of Theorem 12

in [84] is by now sufficiently well understood to know that Theorem 4.6.3

holds true as stated. One way of seeing this is by noting that the proof of

Theorem 12 in [84] and the proof of the lower bound for the Tseitin formulas

in Corollary 1 of [37] are essentially the same. In particular Theorem 12 in



[84] holds true also for proving the existence of SOS pseudo-expectations as

stated in Theorem 4.6.3.

As an immediate consequence we get:

Corollary 4.6.4. There exist c, ε ∈ R>0 such that, asymptotically almost

surely as n goes to infinity, if m = dcne and C1, . . . , Cm are random 3-

XOR (resp. 3-SAT) constraints on x1, . . . , xn that are chosen uniformly and

independently at random, then every SOS refutation of pC1 = 1, . . . , pCm = 1

has monomial size at least 2εn.

It is often stated that Theorem 4.6.3 gives optimal integrality gaps for

the approximability of MAX-3-XOR and MAX-3-SAT by linear degree SOS.

Corollary 4.6.4 is its analogue for subexponential size SOS. There is however

a subtlety in that the validity of the integrality gap statement could depend

on the encoding of the objective function. The next section is devoted to

clarify this.

4.6.2 MAX-CSPs

An instance I of the Boolean MAX-CSP problem is a sequence C1, . . . , Cm

of constraints on n Boolean variables. We are asked to maximize the fraction

of satisfied constraints. If pj denotes the unique multilinear polynomial on

the variables of Cj that represents Cj, then the optimal value for an instance

I can be formulated as follows::

opt(I ) := maxx∈{0,1}n
1
m

∑m
j=1 pj(x). (4.41)

We could ask for the least upper bound on (4.41) that can be certified by an

SOS proof of some given complexity c, i.e., monomial size at most s, degree

at most 2d, etc. There are at least three formulations of this question.

Using the notation `c to denote SOS provability with complexity c, the



three formulations are:

sos′′c(I ) :=

inf{γ ∈ R : `c 1
m

∑m
j=1 pj(x) ≤ γ}, (4.42)

sos′c(I ) :=

inf{γ ∈ R : {pj(x) = yj : j ∈ [m]} `c 1
m

∑m
j=1 yj ≤ γ}, (4.43)

sosc(I ) :=

inf{γ ∈ R : {pj(x) = yj : j ∈ [m]} ∪ { 1
m

∑m
j=1 yj ≥ γ} `c −1 ≥ 0}.

(4.44)

The first formulation asks directly for the least upper bound on the

objective function of (4.41) that can be certified in complexity c. The second

formulation is similar but stronger since it allows m additional Boolean

variables y1, . . . , ym, and their twins. The third is the strongest of the three

as it asks for the least value that can be proved impossible. In addition,

unlike the other two, the set of hypotheses in (4.44) mixes equations and

inequality constraints. It should be obvious that (for natural complexity

measures) we have sosc(I ) ≤ sos′c(I ) ≤ sos′′c(I ) so lower bounds on sosc

imply lower bounds for the other two.

Theorem 4.6.3 gives, by itself, optimal integrality gaps for MAX-3-XOR

and MAX-3-SAT for linear degree SOS in the sos′′c formulation, when c

denotes SOS-degree. However, the degree lower bound that follows from

this formulation does not let us apply our main theorem; the statement is

not about refutations, it is about proving an inequality, so Theorem 4.0.1

does not apply. In the following we argue that Theorem 4.6.3 also gives

optimal integrality gaps in the sos′c and sosc formulations of the problems.

Since the sosc formulation is about refutations, our main theorem will apply.

We write αc(I ) for the supremum of the α ∈ [0, 1] for which

α · sosc(I ) ≤ opt(I ) ≤ sosc(I ) (4.45)

holds. If C is a class of instances, then we write α∗c(C ) := inf{αc(I ) :

I ∈ C }; the sosc-approximation factor for C . It is our goal to show that



Theorem 4.6.3 implies that, for SOS proofs of sublinear degree, the sosc-

approximation factor of MAX-3-XOR is at most 1/2, and that of MAX-

3-SAT is at most 7/8. These are optimal. This will follow from Theo-

rem 4.6.3 and the following general fact about pseudo-expectations that

(pseudo-)satisfy all the constraints:

Lemma 4.6.5. Let I be a MAX-CSP instance with n Boolean variables

and m constraints of arity at most k, represented by multilinear polynomials

p1, . . . , pm, and let Q = {pj(x) = 1 : j ∈ [m]}, Q′ = {pj(x) = yj : j ∈ [m]}
and P ′ = { 1

m

∑m
j=1 yj ≥ 1}. If there is a degree-2dk SOS pseudo-expectation

E for Q, then there is a degree-2d SOS pseudo-expectation E ′ for P ′ and

Q′.

Proof. Let σ be the substitution that sends yj to pj(x) and ȳj to 1− pj(x)

for j = 1, . . . ,m. For each polynomial p on the x and y variables, define

E ′(p) := E(p[σ]), where p[σ] denotes the result applying the substitution

to p. The proof that this works relies on the fact that if p and q are poly-

nomial in the x and y variables, then (pq)[σ] = p[σ]q[σ], and deg((pq)[σ]) ≤
deg(p[σ]q[σ]) ≤ 2k(deg(p)+deg(q)). In particular, squares maps to squares

by the substitution. It is obvious that each equation pj(x) = yj lifts:

E ′(t(pj(x) − yj)) = E(t[σ](pj(x) − pj(x))) = E(0) = 0. It is equaly ob-

vious that the inequality 1
m

∑m
j=1 yj − 1 ≥ 0 lifts: E ′(s( 1

m

∑m
j=1 yj − 1)) =

1
m

∑m
j=1E(s[σ](pj(x)−1)) ≥ 0. This completes the proof of the lemma.

Combining this with Theorem 4.6.3 and Theorem 4.0.1 we get:

Corollary 4.6.6. For every δ ∈ R>0, there exist r, ε ∈ R>0 such that if c

denotes SOS monomial size at most 2εn, where n is the number of variables,

then α∗c(MAX-3-XOR) ≤ 1/2 + δ (resp. α∗c(MAX-3-SAT) ≤ 7/8 + δ), and

the gap is witnessed by an instance I with m = drne many uniformly

and independently chosen random constraints, for which sosc(I ) = 1 and

opt(I ) ≤ 1/2 + δ (resp. opt(I ) ≤ 7/8 + δ), asymptotically almost surely

as n goes to infinity.





Chapter 5

Feasible interpolation for

Polynomial Calculus,

Sums-of-Squares and

Sherali-Adams

In this chapter we prove a form of feasible interpolation for Polynomial

Calculus, Sums-of-Squares and Sherali-Adams. We prove that for any of

the three systems there is a polynomial-time algorithm that given

• two set Q1(x, z) and Q2(y, z) in disjoint sequences x, y and z of vari-

ables;

• a refutation of Q1(x, z) ∪Q2(y, z);

• and an assignment a to the z-variables

outputs a refutation of Q1(x, a) or a refutation of Q2(y, a). Hence not only

is an interpolant of Q1(x, z) ∪ Q2(y, z) computable in time polynomial in

the size of the given refutation of Q1(x, z) ∪Q2(y, z), but moreover we can

actually find a refutation to match.

This is actually a typical situation in proofs of feasible interpolation.

Many known proofs of feasible interpolation explicitly construct a refutation
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of either Q1(x, a) or Q2(y, a) from a given refutation of Q1(x, z) ∪Q2(y, z)

(see e.g. [76, 72]). Our proof is however novel in the methods used. We do

not construct either of the refutations explicitly from the given refutation

of Q1(x, z)∪Q2(y, z). Rather we first show that a small refutation of either

Q1(x, a) or Q2(y, a) exists. This existential property is called the feasible

disjunction property of the proof systems after [73]. Only after proving

the feasible disjunction property we show that we can actually efficiently

find the small refutation, whose existence is guaranteed by the feasible

disjunction property.

We prove the feasible disjunction property using the semantic tools for

proofs over sets of monomials developed in Chapter 3. For these proofs

it is more natural and cleaner to consider refutations of the union of two

sets Q1(x) and Q2(y) of polynomial constraints in disjoint sequences of

variables. The setting with a given refutation of Q1(x, z)∪Q2(y, z) reduces

to the former after assigning the values of z-variables. In short, we show

that if there is a refutation of Q1(x) ∪ Q2(y) that uses only monomials

from some set S, then either Q1(x) has a refutation over Sx or Q2(y) has a

refutation over Sy, where Sx is the projection of S to the x-variables. For

Sums-of-Squares and Sherali-Adams the actual result takes slightly more

cumbersome form.

The basic idea behind the proofs of feasible disjunction property is very

simple. Assuming towards a contradiction that there is no refutation of

Q1(x) over Sx nor a refutation of Q2(y) over Sy, we obtain semantic ob-

jects, either reduction operators or pseudoexpectations, witnessing these

assumptions. As these semantic objects are defined on disjoint sequences of

variables, we can combine them to form a semantic object that contradicts

the existence of a refutation of Q1(x, z) ∪Q2(y, z) that uses only monomi-

als from the set S. The proofs are thus resource-bounded versions of the

obvious semantic proof of Halldén Completeness of classical propositional

logic [44], which states that if ϕ ∨ ψ is a theorem and ϕ and ψ don’t share

any propositional variables, then ϕ is a theorem or ψ is a theorem.

In this chapter we also show that there are efficient proof search algo-

rithms for proofs over sets of monomials. The algorithm for Polynomial



Calculus is a modification of the one for degree-bounded PC proofs from

[22]. The algorithm has a polynomial-time run-time for any fixed finite

fields, but for infinite fields intermediate coefficient bloat can become a

hinderance for the run-time.

For Sherali-Adams and Sums-of-Squares the proof search for proofs over

a set of monomials is a linear or semidefinite program of size polynomial in

the size of the set of monomials and the encoding of the constraints. This

immediately gives a polynomial-time proof search algorithm for Sherali-

Adams with ellipsoid algorithm, but for Sums-of-Squares we need to bound

the initial ellipsoid by considering proof search problem with a bound on

the size of the coefficients appearing in the SOS proof.

Together with the feasible disjunction property these proof search algo-

rithms yield the proofs of the feasible interpolation theorems. As we give

an efficient algorithm for Polynomial Calculus only over fixed finite fields,

we can prove the feasible interpolation property only for fixed finite fields.

Similarly we prove the feasible interpolation theorem for Sums-of-Squares

only for sets of equality constraints, since we need to consider explicitly

bounded SOS refutations and we only have the corresponding semantic ob-

jects in this case for sets of equality constraints.

Finally in Section 5.4 we prove that Sums-of-Squares cannot admit

monotone feasible interpolation with respect to polynomial-sized monotone

Boolean circuits by showing that the Clique-Coloring formulas have small

refutations in Sums-of-Squares. The monotone feasible interpolation theo-

rem for Sums-of-Squares would thus be in contradiction with known lower

bounds for monotone circuits [80, 3].

5.1 Feasible interpolation for Polynomial

Calculus

First we prove the feasible interpolation property for Polynomial Calculus

over any finite field. The feasible disjunction property does not rely on the

finiteness of the field, but stays true over any field. However we obtain the



feasible interpolation property only over finite fields, since we can guarantee

the polynomial run-time in the proof search algorithm of Section 5.1.2 only

over finite fields. We do not assume the presence of Boolean axioms in this

section.

5.1.1 Feasible disjunction for Polynomial Calculus

For a set of monomials S, and a sequence x of variables, we denote by Sx

the projection of S onto the variables x, i.e. m ∈ Sx, if only variables from

x appear in m, there is some m′, where no variables from x appear and

mm′ ∈ S.

Theorem 5.1.1. Let F be a field, let Q1(x) and Q2(y) be two sets of equality

constraints in disjoint sequences x and y of variables, let Π be a PC/F
refutation of Q1(x)∪Q2(y), and let S be the set of all monomials appearing

in the refutation Π. Then there is a PC/F refutation of P (x) over Sx or a

PC/F refutation of Q(y) over Sy.

Proof. Suppose towards a contradiction that the conclusion does not hold.

Then, by Theorem 3.1.6, there are reduction operators Rx and Ry for Q1(x)

and Q2(y) over Sx and Sy, respectively.

Let S ′ := {mxmy : mx ∈ Sx and my ∈ Sy}, and define a linear function

R : F[S ′]→ F[S ′] with

R(mxmy) = Rx(mx)Ry(my)

for any mxmy ∈ S ′ and extend linearly.

We claim now that R has the following properties:

• R(1) = 1; (5.1)

• R(q1) = 0 for any q1 ∈ Q1(x); (5.2)

• R(q2) = 0 for any q2 ∈ Q2(y); (5.3)

• R(xim) = R(xiR(m)) if m ∈ S; (5.4)

• R(yim) = R(yiR(m)) if m ∈ S. (5.5)



(5.1) holds, since Rx(1) = Ry(1) = 1. It is clear that both (5.2) and

(5.3) hold.

Finally (5.4) holds by (3.12) and (3.13), since

R(xim) = Rx(ximx)Ry(my)

= Rx(xiRx(mx))Ry(Ry(my))

= R(xiRx(mx)Ry(my))

= R(xiR(m))

The case (5.5) is proved similarly.

Now the existence of such R is in contradiction with the assumption

that in Π there appears only monomials from S. Firstly R is defined for

all the polynomial appearing in Π. Secondly, by (5.2) and (5.3), R maps

each axiom in P (x) ∪ Q(y) to zero, and, by linearity and (5.4) and (5.5),

respects the inference rules in the sense that R maps the consequent of a

rule to zero whenever it maps the premises to zero. Hence, by induction on

the structure of the refutation, R(1) = 0, against (5.1).

5.1.2 Proof search for Polynomial Calculus

In this section we give a proof search algorithm for Polynomial Calculus

proofs over a set S of monomials. We show that for any fixed finite field

F the algorithm can find a PC/F proof of p = 0 from Q over a set S of

monomials in time polynomial in |S|, |Q| and n if one exists. In particular

one can find a degree d PC/F proof of p = 0 from Q in time polynomial in

nd and |Q| if one exists.

For any field F, we construct a basis B for the vector space PCFS(Q) of all

polynomials p ∈ F[Ŝ] that admit a proof from Q over S. This construction

is carried out by the algorithm 1 which is a modification of an algorithm

from [22]. For the algorithm fix any total ordering < on Ŝ that satisfies the

following property:

• m < m′ for any m ∈ S and m′ ∈ Ŝ \ S. (5.6)



Define the leading monomial LM(p) and leading term LT(p) of a polyno-

mial p with respect to the ordering <. The leading monomial of p is the

highest monomial with respect to < with a non-zero coefficient in p, and

the leading term is the non-zero term in p, whose underlying monomial is

the leading monomial of p.

Algorithm 1: Proof search over S

Initially A = Q and B = ∅;
while A 6= ∅ do

Pick p ∈ A and remove it from A;

while LM(p) ∈ LM(B) do

Let q ∈ B be such that LM(q) = LM(p);

Let p← p− aq, where a is such that LT(p) = aLT(q);

end

If p 6= 0, add p to B;

If p ∈ F[S], add xp to A for every variable x;

end

Output B;

The output B of the algorithm 1 is a linearly independent set of poly-

nomials, since all elements of B have distinct leading monomials. As all

elements of B have distinct leading monomials there is never more than

n|S| elements added to A and thus the algorithm halts after polynomially

many rounds in |S|, |Q| and n. Hence for any fixed finite field the algorithm

will halt in time polynomial in |S|, |Q| and n. In the following we prove

that B is actually a basis for PCFS(Q).

Lemma 5.1.2. At the end of the algorithm 1, span(B) = PCFS(Q).

Proof. Clearly each q ∈ B has a proof from Q over S, and so span(B) ⊆
PCFS(Q).

Now suppose p ∈ PCFS(Q) and let p1, . . . , p` be a PC proof of p = 0

from Q over S. We show by induction on the structure of the proof that



pi ∈ span(B) for any i ∈ [`]. To see that any element of Q is in B, note

that span(A ∪ B) can only increase at each stage of the algorithm. Hence,

as the algorithm halts with A = ∅, at the end each element of Q is in

span(B). If pi = apj + bpk for some j, k < i, and pj, pk ∈ span(B), then

clearly pi ∈ span(B).

Finally, suppose that pi = xpj for some j < i and some variable x. Now

we have pj ∈ F[S], and by induction assumption, pj ∈ span(B). Write

pj =
∑
akqk for some ak ∈ F and qk ∈ B. We claim that qk is in F[S]

for each k with non-zero ak. To see this, let m be the maximal monomial

that appears in any qk with a non-zero coefficient. Now m appears in only

one of the qk’s, since they all have distinct leading monomials, and so the

monomial m has a non-zero coefficient in pj. Hence m is in S, and so, by

(5.6), qk is in F[S] for every k. Now for any k, the polynomial qk was added

to B and xqk was added to A at some stage of the algorithm. At that stage

xqk is in span(A ∪ B). However, since the span only increases during the

execution of the algorithm, xqk is in span(B) at the end of the algorithm.

Hence xpj is in span(B) at the end of the algorithm.

Now to check whether there is a PC/F proof of p = 0 from Q over S one

simply needs to reduce the polynomial p with respect to the basis B. This

is easy to do, since all the elements of B have distinct leading monomials.

In order to construct the proof, one needs proofs for the basis elements.

The construction of these proofs is easily incorporable into the algorithm

above, but was omitted for readability.

Remark 5.1.3. We claim the polynomial-time proof search only for fixed

finite fields, since although the algorithm 1 always halts in polynomially

many steps in |S|, |Q| and n, there is no way to combat potential coefficient

bloat in infinite fields, and in the worst case the magnitude of the largest

coefficient in A ∪B might be squared after each round of the algorithm.

In Chapter 6 we give an example over rationals where such blow-up

is necessary showing that over rationals the worst case time-complexity of

algorithm 1 is necessarily exponential.



5.1.3 Feasible interpolation for Polynomial Calculus

As a consequence of Theorem 5.1.1 and Section 5.1.2 we obtain the feasible

interpolation property for PC over any finite field.

Theorem 5.1.4. For any finite field F, there is a polynomial time algorithm

that given

• two sets Q1(x, z) and Q2(y, z) of equality constraints in disjoint se-

quences x, y and z of variables;

• a PC/F refutation of Q1(x, z) ∪Q2(y, z);

• an assignment a to the variables z

outputs a PC/F-refutation of Q1(x, a) or a PC/F-refutation of Q2(y, a).

5.2 Feasible interpolation for

Sums-of-Squares

Secondly we prove feasible interpolation property for Sums-of-Squares. We

prove the feasible interpolation property for SOS only for sets of equality

constraints. This is due to our need to consider explicitly bounded proofs

in order to give a polynomial time search algorithm for SOS proofs. Hence

we need to prove the feasible disjunction property in a form that also takes

into account the magnitude of the coefficients appearing in the refutations.

This we can do using ε-pseudoexpectations, but with the cost of losing the

inequality constraints along the way.

5.2.1 Feasible disjunction for Sums-of-Squares

Theorem 5.2.1. Let Q1(x) and Q2(y) be two sets of equality constraints

in disjoint sequences x and y of variables, let Π be an R-bounded SOS refu-

tation of Q1(x)∪Q2(y), let S be the set of all explicit monomials appearing

in the refutation Π, and let R′ = 2R(|Q1(x) ∪ Q2(y)| + n)|S|. Then there



is a R′-bounded refutation of Q1(x) over Sx or a R′-bounded refutation of

Q2(y) over Sy.

Proof. Suppose towards a contradiction that the conclusion does not hold.

Then, by Lemma 3.2.12, there are 1/R′-pseudoexpectations for Q1(x) and

Q2(y) over Sx and Sy, respectively. Now define a linear functional E : R[S2]→
R with

E(m) = Ex(mx)Ey(my),

for m ∈ S2 and extend linearly. Here mx and my are the projections of the

monomial m to variables x and y, respectively. We claim that E has the

following properties.

• E(1) = 1; (5.7)

• E(p2) ≥ 0 for any p ∈ R[S]; (5.8)

• E(m(x2
i − xi)) = 0 for any m ∈ S and any variable xi; (5.9)

• E(m(y2
i − yi)) = 0 for any m ∈ S and any variable yi; (5.10)

• |E(m(xi + x̄i− 1))| ≤ 1/R′ for any m ∈ S and any variable xi; (5.11)

• |E(m(yi + ȳi − 1))| ≤ 1/R′ for any m ∈ S and any variable yi; (5.12)

• |E(mq)| ≤ 1/R′ for any m ∈ S and any q ∈ Qi for i = 1, 2; (5.13)

Firstly (5.7) holds, since Ex(1) = Ey(1) = 1.

For (5.8), write p =
∑

m∈S amm. Now the matrix (Ey(mym
′
y))m,m′∈S is

positive semidefinite and so there are vectors u such that for all m,m′ ∈ S
we have Ey(mym

′
y) =

∑
u umum′ . Now we have

E
(
p2
)

=
∑
m,m′

amam′Ex(mxm
′
x)Ey

(
mym

′
y

)
=
∑
m,m′

∑
u

amumam′um′Ex(mxm
′
x)

= Ex

(∑
m

∑
u

amummx

)2
 ≥ 0



To see that (5.9) holds, let m ∈ S. Now

E(m(x2
i − xi)) = Ex(mx(x

2
i − xi))Ey(my) = 0,

since Ex(mx(x
2
i − xi)) = 0. The case (5.10) follows similarly.

For (5.11), let m ∈ S. Now

|E(m(xi + x̄i − 1))| = |Ex(mx(xi + x̄i − 1))||Ey(my)| ≤ 1/R′,

where the last inequality holds since Ex is an 1/R′-pseudoexpectation for

Q1(x) over Sx and since |Ey(my)| ≤ 1 for all m ∈ S. Cases (5.12) and (5.8)

follow by a similar argument.

Now the existence of such E is in contradiction with the assumption that

there is a refutation of Q1(x)∪Q2(y) with all the explicit monomials among

S: applying the E on both sides of the refutation we reach a contradiction

of the form −1 > −1 as in Lemma 3.2.11.

5.2.2 Proof search for SOS proofs

In this section we show how to efficiently find SOS proofs over a set of

monomials by formulating the search for an SOS proof as a semidefinite

program, and using the ellipsoid algorithm to check the feasibility of the

said program.

Let us first recall the ellipsoid method and its implications to the fea-

sibility problem of semidefinite programming. The ellipsoid method is a

general purpose optimization method for convex optimization problems in-

troduced in [86]. Its rise to fame came when Khachiyan used the method

to give the first polynomial time algorithm for linear programming [50, 51].

We refer the reader to the monograph [42] for a very thorough treatment

of the Ellipsoid algorithm.

For our purposes, the ellipsoid method can be used to solve the fol-

lowing computational problem. Given a set Q of linear and semidefinite

constraints, and positive rationals r and R, with the promise that if the

feasible region of Q is non-empty, then it contains a ball of radius r, i.e. the

feasible region is full-dimensional, which itself is contained in a larger ball



of radius R centered at the origin, the initial ellipsoid, then the ellipsoid

method either finds a feasible point of Q, or tells that the feasible region is

empty, in time polynomial in 〈Q〉, log(1/r) and log(R), where 〈Q〉 denotes

the number of bits needed to encode all the constraints. This follows from

the central-cut ellipsoid method of [42] and the fact that there is a strong

separation oracle for PSD matrices as observed already in [41]: given a

symmetric rational matrix A, one can in time polynomial in 〈A〉, either

verify that A is a PSD matrix, or find a vector v such that vTAv < 0.

As noted earlier, to achieve a polynomial time proof search algorithm

for SOS proofs over a set of monomials, we need to impose a restriction on

the magnitude of the coefficients in an SOS proof. This is to bound the

radius of initial ellipsoid so that our starting point for the proof search is

not too far from the origin. For semidefinite programs in general, there

are examples whose feasible region is too far from the origin [79], and thus

the initial ellipsoid cannot be chosen small enough to guarantee polynomial

run-time. For SOS this was first noted by O’Donnell in [66] in non-Boolean

context and then expanded on by [78] for Boolean SOS. Chapter 6 of this

thesis further explores this issue.

The following lemma and its corollary show that a bound on the coeffi-

cients of the polynomials tq and ui translates into a bound on the coefficients

appearing in the polynomials ri and in the lifts of the x2 − x axioms. The

proof of the lemma is a minor modification of a special case of the main

theorem of [78].

Lemma 5.2.2. Let p ∈ R[S] and suppose that there are ri ∈ R[S] such that

p ≡
∑

r2
i mod Jn.

Then there is a PSD matric C such that

p ≡ 〈C,vSvTS 〉 mod Jn,

and all the entries in C are bounded from above in absolute value by poly-

nomial in 2poly(|S|) and ‖p‖∞.



Proof. Let vS be a vector of all the monomials in S, and let D be a PSD

matrix such that

p ≡ 〈D,vSvTS 〉 mod Jn

Denote the matrix vSvTS averaged over all the 0, 1-assignments on the 2n

variables (not necessarily respecting the twin variables, i.e. twins can have

the same value) by MS, i.e. MS = Eα∈{0,1}2n [vS(α)vTS (α)]. Now, by Lemma

6 of [78], the smallest non-zero eigenvalue δ of MS is at least 1/2poly(|S|).

Let now Π =
∑
uuT be the projector onto the zero eigenspace of MS.

Since Eα∈{0,1}2n [uTvS(α)vTS (α)u] = uTMSu = 0 for each u in the zero

eigenspace of MS, the inner product uTvS(α) is zero for every assignment

α. Thus uTvS ≡ 0 mod Jn, and so

〈D,vSvTS 〉 ≡ 〈D, (Π + Π⊥)vSvTS (Π + Π⊥)〉 mod Jn

≡ 〈D,Π⊥vSvTSΠ⊥〉 mod Jn

≡ 〈Π⊥DΠ⊥,vSvTS 〉 mod Jn

Let C = Π⊥DΠ⊥, so that

p ≡ 〈C,vSvTS 〉 mod Jn.

Now, by taking averages on both sides, we obtain that

Eα∈{0,1}2n [r(α)] ≥ 〈C,MS〉

The left hand side is at most polynomial in R and |S|. On the other hand

the right hand side is at least δTr(C), since every non-zero eigenvalue of MS

is at least δ and the zero eigenspace of C is included in the zero-eigenspace

of MS. Since the Frobenius norm of C is bounded by Tr(C) we have that

each entry of C is at most polynomial in 2poly(|S|) and R.

Corollary 5.2.3. Let Q be a set of equality constraints, let S be a set of

monomials containing all the monomials in Q, all the variables and the

empty monomial 1, and let p ∈ R[S2]. If there is an R-bounded proof of

non-negativity of p from Q over S, then there is a PSD matrix C and

polynomials tq for every q ∈ Q and ui for every i ∈ [n] such that

p ≡ 〈C,vSvTS 〉+
∑
q∈Q

tqq +
∑
i∈[n]

ui(xi + x̄i − 1), (5.14)



and all the entries in C are bounded from above in absolute value by poly-

nomial in 2poly(|S|), R and ‖p‖∞; and ‖tq‖∞, ‖ui‖∞ ≤ R for any q ∈ Q and

i ∈ [n].

Proof. If

p ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

ui(xi + x̄i − 1) mod Jn

, then

p−
∑
q∈Q

tqq −
∑
i∈[n]

ui(xi + x̄i − 1) ≡
∑
i∈[k]

r2
i mod Jn,

and the previous lemma provides us with a suitable matrix C.

The existence of the proof 5.14 can now be expressed as feasibility of

a set of linear and semidefinite constraints. Moreover the bounds on the

entries of C allow us to narrow down the search space for an R-bounded

proof so that we can efficiently check the feasibility, and thus find an SOS

proof, using ellipsoid algorithm. We discuss the details next.

For a set Q of equality constraints; a polynomial p; a set S of (multi-

linear) monomials containing all the monomials in Q, p, all the variables

and the empty monomial 1; and a positive real R we define the semidefinite

program SDP(Q, p, S;R) as follows.

Variables: Introduce a variable xm,m′ for any m,m′ ∈ S. These corre-

spond to the entries in the matrix C in (5.14). For any q ∈ Q and any

m ∈ S introduce a variable xm,q. These correspond to the coefficients in

the polynomial tq of (5.14). Finally, for any i ∈ [n] and any m ∈ S intro-

duce the variables xm,i. These correspond to the coefficients in the lifts of

the Boolean axiom xi + x̄i − 1. Let X be the |S| × |S|-matrix of variables,

such that Xm,m′ = xm,m′ . The number of variables is polynomial in |S|
and |Q|.

Constraints: For any q ∈ Q, let q̄ denote the coefficient vectors of q, i.e.

q̄TvS = q for any q ∈ Q. Let Ṡ denote the set of all multilinearizations of



elements of S2, and write p =
∑

m∈Ṡ amm. For any m ∈ Ṡ we introduce

the linear equality constraint Cm = am, where

Cm :=
∑

m1,m2∈S
m1m2≡m mod Jn

xm1,m2 +
∑

m1,m2∈S
m1m2≡m mod Jn

∑
q∈Q

xm1,q q̄m2

+
∑
i∈[n]

 ∑
m1∈S

xim1≡m mod Jn

xm1,i +
∑
m2∈S

x̄im2≡m mod Jn

xm2,i −
∑
m3∈S

m3≡m mod Jn

xm3,i

.
In short the constraint states that the entries of the matrix C and the

coefficients for the lifts should be chosen so that each monomial m ends

up with the correct coefficient for p. Secondly we impose the constraints

−R ≤ xm,q ≤ R for any q ∈ Q and m ∈ S and −R ≤ xm,i ≤ R for any

i ∈ [n] and m ∈ S. We furthermore impose the PSD-constraint X � 0.

The size of the encoding of all the constraints is polynomial in |S|, 〈Q〉 and

〈p〉 and logR.

Now it is straightforward to verify that any feasible solution for the

above constraints gives an R-bounded SOS proof of non-negativity of p from

Q over S, and vice versa.

Corollary 5.2.3 gives us an upper bound for radius of the initial ellipsoid.

However, with all the linear equality constraints, the feasible region of the

program SDP(Q, p, S;R) is never full-dimensional. However by fuzzying

the constraints slightly we gain full-dimensionality without affecting our

end goal too much. The trick is well-known, we sketch the argument below.

A similar argument can be found in e.g. [66].

For ε > 0, an ε-relaxation of the above constraints is the same set of

constraints with the constraints Cm = am replaced by |Cm − am| ≤ ε,

and the constraints −R ≤ xm,q ≤ R and −R ≤ xm,i ≤ R replaced by

−R − ε ≤ xm,q ≤ R + ε and −R − ε ≤ xm,i ≤ R + ε. Now if there is

a feasible solution for the original set of constraints, the set of solutions

of the ε-relaxation has volume at least 1/2poly(log(1/ε),|S|). We choose ε of

order 1/2poly(|S|). This gives the smaller radius r in the ellipsoid algorithm

of order 1/2poly(|S|).



Now one can find a feasible solution to the ε-relaxation of the program

SDP(Q, p, S;R) in time polynomial in |S|, 〈Q〉, 〈p〉 and logR using the

ellipsoid algorithm.

Any solution for the ε-relaxation translates into an R+ ε-bounded SOS

proof of non-negativity of a polynomial p+q fromQ over S, where ‖q‖∞ ≤ ε′

for some small ε′ of size polynomial in 1/2poly(|S|) and |Q|. Now for each term

amm that appears in q, define qm as follows: if am > 0 let qm = am(1−m)2,

and if am < 0 let qm = −am(m)2. Now adding all qm to p + q gives Sums-

of-Squares proof of p− ε′′ for some ε′′ of size polynomial in 1/2poly(|S|) and

|Q|.
In conclusion, given a set of equality constraints Q; a polynomial p; a set

S of monomials containing all the monomials in Q and p, all the variables

and the empty monomial 1; and a non-negative real R, one can find an

R + ε-bounded SOS proof of non-negativity of p + ε from Q over S, for

some ε of size polynomial in 1/2poly(|S|) and |Q|, in time polynomial in |S|,
〈Q〉, 〈p〉 and logR.

5.2.3 Feasible interpolation for Sums-of-Squares

Again we obtain the feasible interpolation property for SOS as a corollary

to Theorem 5.2.1 and Section 5.2.2.

Theorem 5.2.4. There is a polynomial time algorithm that given

• two sets Q1(x, z) and Q2(y, z) of equality constraints in disjoint se-

quences x, y and z of variables;

• an SOS refutation of Q1(x, z) ∪Q2(y, z);

• an assignment a to the variables z

outputs an SOS-refutation of Q1(x, a) or an SOS-refutation of Q2(y, a).



5.3 Feasible interpolation for

Sherali-Adams

Finally we prove the feasible interpolation property for Sherali-Adams. Un-

like with SOS, for SA we can prove the feasible interpolation property for

both equality and inequality constraints as there is no need to consider the

analogues of ε-pseudoexpectations. However, as the SA proofs and pseu-

doexpectations over sets of monomials are not as nicely behaved as their

counterparts for SOS, the statement of the feasible disjunction property for

SA takes slightly more cumbersome form.

5.3.1 Feasible disjunction for Sherali-Adams

Recall the definition of a closed set of monomials from (3.47) and (3.48).

We define the closure of a set S of monomials, denoted S̄, in n pairs of twin

variables xi, x̄i, i ∈ [n] as the least set of monomials satisfying the following

conditions:

• S ⊆ S̄;

• 1 ∈ S̄;

• xi, x̄i ∈ S̄ for any i ∈ [n];

• if xim ∈ S̄ and all indices appearing in m are at least i, then

x̄im ∈ S̄ and m ∈ S̄;

• if x̄im ∈ S̄ and all indices appearing in m are at least i, then

xim ∈ S̄ and m ∈ S̄.

Now it is clear that S̄ satisfies the conditions (3.47) and (3.48). It is equally

clear that one can compute S̄ from S in time polynomial in n and |S|.
With the definition of closure of a set of monomials at hand we can state

and prove the feasible disjunction property for Sherali-Adams.

Theorem 5.3.1. Let P1(x) and P2(y) be two sets of inequality constraints

and Q1(x) and Q2(y) be two set of equality constraints in disjoint sequences



x and y of variables. Let Π be an SA refutation of P1(x) ∪ P2(y) and

Q1(x) ∪ Q2(y), and let S be the set of explicit monomials appearing in

Π. Then there is an SA refutation of P1(x) and Q1(x) over S2
x or an SA

refutation of P2(y) and Q2(y) over S2
y .

Proof. Suppose towards a contradiction that neither conclusion holds. Then,

by Theorem 3.3.7, there are SA pseudoexpectations Ex for P1(x) and Q1(x)

over S2
x and Ey for P2(y) and Q2(y) over S2

y .

Now define a linear functional E : R[S2]→ R by

E(m) = Ex(mx)Ey(my)

for m ∈ S2 and extend linearly, where mx and my are the projections of

m to the variables x and y, respectively.

We claim that E has the following properties:

• E(1) = 1; (5.15)

• E(m) ≥ 0 for any m ∈ S; (5.16)

• E(m(x2
i − xi)) = 0 for any m ∈ S; (5.17)

• E(m(y2
i − yi)) = for any m ∈ S; (5.18)

• E(m(xi + x̄i − 1)) = 0 for any m ∈ S; (5.19)

• E(m(yi + ȳi − 1)) = 0 for any m ∈ S; (5.20)

• E(mp) ≥ 0 for any p ∈ Pj for j = 1, 2 and m ∈ S (5.21)

• E(mq) = 0 for any q ∈ Qj for j = 1, 2 and m ∈ S. (5.22)

(5.15) holds since, by definition, Ex(1) = Ey(1) = 1. (5.16) holds since

E(m) = Ex(mx)Ey(my) and both Ex(mx) and Ey(my) are non-negative.

To see that (5.17) holds, first note that, for any m ∈ S, Ex(mx(x
2
i − xi)) is

defined and equals 0. Now E(m(x2
i − xi)) = Ex(mx(x

2
i − xi))Ey(my) = 0.

The cases (5.18) - (5.20) are proved similarly. For (5.21) suppose without

a loss of generality that p ∈ P1. First note that for any m ∈ S both

Ex(mxp) and Ey(my) are defined and are non-negative. Hence E(mp) =

Ex(mxp)Ey(my) ≥ 0. The case (5.22) is argued similarly.



Now the existence of such E is in contradiction with the assumption

that there is a refutation of P1(x) ∪ P2(y) and Q1(x) ∪ Q2(y) with all the

explicit monomials among S: applying the E on both sides of the refutation

yields a contradiction of the form −1 ≥ 0.

5.3.1.1 Proof search for Sherali-Adams proofs

In this section we show how to efficiently find SA proofs of non-negativity

over a set of monomials by formulating the search for SA proofs as a lin-

ear program whose feasible solutions are in one-to-one correspondence with

SA proofs of non-negativity. Then again we can use ellipsoid algorithm to

search for a feasible solution, and thus for an SA proof. Unlike with semidef-

inite programming, ellipsoid algorithm can always solve the feasibility of a

set of linear constraints, in polynomial time in the size of the encoding of

the constraints. This is because a linear program has a feasible solution of

relatively small bit-complexity if it has any at all. Similarly there are ways

to circumvent the requirement for full-dimensionality with linear program-

ming. We refer the reader to [49] for a readable and thorough account on

the ellipsoid algorithm for linear programming. Thus the problem with too

large coefficients we encountered with SOS does not come up with SA.

For sets P and Q of inequality and equality constraints, respectively, a

polynomial r and set S of multilinear monomials containing all the mono-

mials in P , Q and r, all the variables and the empty monomial 1 we define

a linear program LP(P,Q, r, S) as follows.

Variables: Introduce a variable xm for any m ∈ S. These correspond to

the coefficients of the polynomial s in the proof (2.7). Similarly for any

p ∈ P and for any q ∈ Q, introduce variables xm,p and xm,q for any m ∈ S.

These correspond to the coefficients in the lifts of the non-logical axioms.

Finally, for any i ∈ [n] introduce the variables xi for any m ∈ S. These

correspond to the coefficients in the lifts of the Boolean axioms.



Constraints: For any p ∈ P and any q ∈ Q, let p̄ and q̄ denote the

coefficient vectors of p and q. Let Ṡ denote the set of all multilinearizations

of monomials from S2, and write r =
∑

m∈Ṡ amm. For any m ∈ S we

introduce the linear constraint

am = xm +
∑

m1,m2∈S
m1m2≡m mod Jn

(∑
p∈P

xm′,pp̄m′′ +
∑
q∈Q

xm′,q q̄m′′

)

+
∑
i∈[n]

 ∑
m1∈S

xim1≡m mod Jn

xm1,i +
∑
m2∈S

x̄im2≡m mod Jn

xm2,i − xm,i

 (5.23)

In short the constraint tells that coefficients for the lifts should be chosen

so that each monomial m ends up with the correct coefficient.

We impose the constraint xm ≥ 0 for any m ∈ S, and the constraint

xm,p ≥ 0 for any m ∈ S and p ∈ P .

Now it is straightforward to verify that any feasible solution for the

above constraints gives an SA proof of non-negativity of r from P and

Q over S, and vice versa. The size of the linear program is polynomial in

|S|, 〈P 〉, 〈Q〉 and 〈r〉. Thus the ellipsoid algorithm or any other polynomial-

time algorithm for linear programming can be used to find a feasible solution

for the constraints in time polynomial in |S|, 〈P 〉, 〈Q〉 and 〈r〉.

5.3.2 Feasible interpolation for Sherali-Adams

Finally as a consequence of Theorem 5.3.1 and Section 5.3.1.1, we obtain

feasible interpolation for Sherali-Adams.

Theorem 5.3.2. There is a polynomial time algorithm that given

• two sets P1(x, z) and P2(y, z) of inequality constraints and two set

Q1(x, z) and Q2(y, z) of equality constraints in disjoint sequences x, y

and z of variables;

• an SA refutation Π of P1(x, z) ∪ P2(y, z) and Q1(x, z) ∪Q2(y, z);



• an assignment a to the z variables

outputs an SA refutation of P1(x, a) and Q1(x, a) or an SA refutation of

P2(y, a) and Q2(y, a).

5.4 No monotone feasible interpolation for

Sums-of-Squares

Finally in this section we show that SOS does not admit monotone feasible

interpolation, i.e. feasible interpolation with respect to poly-sized monotone

Boolean circuits in the case that the interpolating function is monotone. We

prove that SOS has poly-sized proofs of the clique-coloring formulas, and

so monotone feasible interpolation property would be in contradiction with

the monotone circuit lower bounds for the clique function [80, 3].

Let us first recall the clique-coloring formulas. Let k > `. We define

two CNFs Cliquen,k(x, z) and Colorn,`(y, z) stating that there is a clique of

size k and a coloring with ` colors, respectively, on a graph on [n] encoded

by the variables z.

Introduce variables xui for any u ∈ [k] and i ∈ [n] stating that node

i is the uth element of the clique encoded by the x variables, variables

yia stating that node i gets the color a, and variables zij for any {i, j} ⊆ [n]

for distinct i and j stating that there is an edge between nodes i and j.

The formula Cliquen,k(x, z) consists of the following clauses:

•
∨
i∈[n] xui for any u ∈ [k]; (5.24)

• x̄ui ∨ x̄uj for any u ∈ [k] and any distinct i, j ∈ [n]; (5.25)

• x̄ui ∨ x̄vi for any distinct u, v ∈ [k] and any i ∈ [n]; (5.26)

• x̄ui ∨ x̄vj ∨ zij for any distinct u, v ∈ [k] and any distinct i, j ∈ [n].

(5.27)

Clauses (5.24) and (5.25) together say that exactly one of the nodes in [n] is

the uth element of the clique encoded by the variables x. Clause (5.26) says



that no node is both the uth and vth element of the clique for distinct u and

v. Finally (5.27) states that all nodes in the clique are pairwise connected

by an edge.

The formula Colorn,`(y, z) consists of the following clauses:

•
∨
a∈[`] yia for any i ∈ [n]; (5.28)

• ȳia ∨ ȳib for any i ∈ [n] and distinct a, b ∈ [`]; (5.29)

• ȳia ∨ ȳja ∨ z̄ij for any distinct i, j ∈ [n] and any a ∈ [`]. (5.30)

Clauses (5.28) and (5.29) together say that every node gets exactly one of

the ` colors, and clause (5.30) states that no two nodes with the same color

are connected by an edge.

In the following we construct SOS refutations for Cliquen,k ∧ Colorn,`.

Our construction follows closely that of [39], where small refutations of

Cliquen,k ∧ Colorn,` were constructed for degree 4 Lovasz-Schrijver proofs.

We translate all the clauses into polynomial inequality constraints in a

straightforward manner: for a clause `1 ∨ . . . ∨ `k we define the polynomial

constrain
∑

i∈[k] `i ≥ 1. We call this the additive encoding of CNFs into

polynomial constraints.

We begin by proving a simple but very useful lemma.

Lemma 5.4.1. Let m1, . . . ,mn be monomials of degree at most k. Then

there is a degree 3k SOS proof of non-negativity of 1 −
∑

i∈[n] mi from the

constraints mi +mj ≤ 1 for any distinct i, j ∈ [n].

Proof. We have that

1−
∑
i∈[n]

mi ≡

1−
∑
i∈[n]

mi

2

+
∑
i,j∈[n]
i<j

(
m2
i +m2

j

)
(1−mi +mj) mod In

Lemma 5.4.2. There is a constant degree SOS refutation of the additive

encoding of Cliquen,k ∧Colorn,` for k > `. Moreover the refutation is of bit-

complexity poly(n), i.e. the refutation does not contain exceedingly large

coefficients.



Proof. We introduce a shorthand to make the proof a little more readable.

Let pua stand for the polynomial∑
i∈[n]

xuiyia.

The idea is that the polynomial pua aims to capture the statement that the

uth vertex of the clique is of color a.

Now our aim is to prove that both∑
a∈[`]

pua ≥ 1 for all u ∈ [k] (5.31)

and ∑
u∈[`]

pua ≤ 1 for all a ∈ [`] (5.32)

have constant degree SOS proofs of non-negativity from Cliquen,k∧Colorn,`.

With these we reach a contradiction as

`− k =
∑
u∈[`]

∑
a∈[`]

pua − 1

+
∑
a∈[k]

1−
∑
u∈[`]

pua


It is straightforward to derive (5.31). Namely, we have that

∑
a∈[`]

pua − 1 ≡
∑
i∈[n]

x2
ui

∑
a∈[`]

yia − 1

+

∑
i∈[n]

xui − 1

 mod In

Secondly to derive (5.32), we show that for any two distinct monomials

m1 and m2 from the sum
∑

u∈[`] pua, there is a constant degree SOS proof

of non-negativity of 1−m1−m2 from Cliquen,k ∧Colorn,`. Then the claim

follows by Lemma 5.4.1.

If m1 = xuiyia and m2 = xujyja for distinct i and j, then

1− xuiyia − xujyja ≡ (xui − xuiyia)2 + (xuj − xujyja)2

+ (1− xui − xuj) mod In

If on the other hand m1 = xuiyia and m2 = xviyia for distinct u and v,

then

1− xuiyia − xviyia ≡ ȳ2
ia + y2

ia(1− xui − xvi) mod In



Finally for the most interesting case, when m1 = xuiyia and m2 = xvjyja

for distinct i and j, and distinct u and v, we have that

1− xuiyia − xvjyja ≡ (1− xuiyia − xvjyja + xuiyiaxvjyja)
2

+ (xuiyiaxvjyja)
2(x̄ui + x̄vj + zij − 1)

+ (xuiyiaxvjyja)
2(ȳia + ȳja + z̄ij − 1) mod In

Unfortunately it seems that the above proof does not translate to give

poly-sized Sherali-Adams refutations of Cliquen,k ∧ Colorn,`. The problem

comes down to Lemma 5.4.1: Sherali-Adams can easily prove Lemma 5.4.1

in case all monomials mi are actually just variables. However with mono-

mials of degree more than 1, the Sherali-Adams proof of 1−
∑

i∈[n] mi from

the constraints mi +mj ≤ 1 seems to blow up exponentially in size.





Chapter 6

Bit-complexity vs.

Monomial-size in Polynomial

Calculus and Sums-of-Squares

In this chapter we consider the relationship between monomial-size and

bit-complexity in Polynomial Calculus Resolution over rationals and Sums-

of-Squares. We show that there is an unsatisfiable set Q of polynomial

equality constraints in O(n2) Boolean variables that has both PCR/Q and

SOS refutations of degree 2 and with polynomially many monomials in n,

but which requires exponential bit-complexity to refute in both systems.

O’Donnell considered the bit-complexity of Sums-of-Squares proofs in

[66] in connection with degree automatability of Sums-of-Squares proofs.

O’Donnell showed that there is a set of polynomial constraints Q1 (in non-

Boolean variables) and a polynomial p such that p has a degree 2 proofs

of non-negativity from Q1, but any degree 2 proof requires coefficients of

doubly exponential magnitude. This shows that a degree d Sums-of-Squares

proof cannot always be found, if one exists, in time nO(d). O’Donnell’s

example however has small proofs of degree 4.

A more severe example was given by Raghavendra and Weitz in [78].

They gave an example of a setQ2 of polynomial constraints inO(n2) Boolean

variables and a polynomial q that has degree 2 proofs of non-negativity from
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Q2, but any proof of degree O(n) requires coefficients of magnitude doubly

exponential in n. Their example is built on O’Donnell’s by replacing every

non-Boolean variable by an instance of Knapsack. The proof uses Grig-

oriev’s degree lower bound for Knapsack in Sums-of-Squares [36] and the

degree O(n) pseudoexpectations for Knapsack provided by the degree lower

bound, and completeness of degree bounded pseudoexpectations operators.

For Polynomial Calculus it has also often been stated that a degree

d Polynomial Calculus proofs can be found in time nO(d) if they exist. This is

certainly true over finite fields as already observed in Section 5.1.2. However

for Polynomial Calculus over reals or rationals there is no way to control

the potential coefficient bloat in the proof search algorithm of Section 5.1.2.

The example of Raghavendra and Weitz leaves however open the pos-

sibility that there are proofs of non-negativity of q from Q2 of polynomial

bit-complexity. Our result implies that this is not the case. Our set of

constraints is built, in turn, from that of [78] by adjoining an additional

constraints to their set of constraints. We consider here an unsatisfiable set

of constraints especially, since this allows us to translate the result also to

Polynomial Calculus.

For Sums-of-Squares we prove a trade-off result between the number of

monomials and the size of coefficients appearing in the refutations of our set

of constraints Q. We prove that any Sums-of-Squares refutation of Q that

uses less than exponentially many monomials in n must contain a coefficient

of doubly exponential magnitude in n. Our proof is similar to the proof of

Raghavendra and Weitz, but we use a lower bound on the number of distinct

significant monomials in any refutation of Knapsack given by Grigoriev’s

degree lower bound [36] and Theorem 4.4.3, and pseudoexpectations over

sets of monomials given by the lower bound and Theorem 3.2.8.

For Polynomial Calculus Resolution over rationals we prove a three-

way trade-off showing that any PCR/Q refutation of Q with coefficients

smaller than doubly exponential in n, and with less than exponentially

many monomials in n, must be of height exponential in n. This proof

uses the p-simulation of PCR/Q by SOS as proved in Section 3.4, which

gives bounds on the SOS simulation in terms of the size of coefficients and



the height of the given PCR/Q refutation. Originally the fact that SOS

p-simulates PCR/Q was proved in [15].

6.1 The constraints

In this section we introduce the set of constraints that we use to prove our

claims about lower bounds on bit-complexity.

Recall first the knapsack constraint KNAPSACK(n, k):

x1 + . . .+ xn = k.

If k is not an integer, the constraint is unsatisfiable over the Boolean values.

However, for any ε strictly between 0 and 1, KNAPSACK(2n, n+ε) requires

degree at least 2n to refute in SOS [36].

Now, by Theorem 4.4.3, to refute KNAPSACK(2n, n + ε) in SOS one

needs at least sn distinct significant monomials, where

sn = exp

(
(2n− 5)2

32(2n+ 1)

)
.

A lower bound of the same order for the monomial-size was also obtained

earlier in [39] using more ad hoc methods.

For our purposes it is important that our lower bound is for the number

of distinct significant monomials. It follows that for any ε strictly between

0 and 1 and for any set S of monomials containing all the variables and

the empty monomial 1 of size less than sn, there is no SOS refutation

of KNAPSACK(2n, n + ε) over S, and thus, by Theorem 3.2.8 there is a

pseudoexpectation for KNAPSACK(2n, n + ε) over S. This property will

be key in the proof of Theorem 6.3.1.

Now we turn to the set of constraints we consider here. The set is

slightly modified from [78], we add the constraint (6.1) in order to obtain

an unsatisfiable set of constraints.

For each i ∈ [n], introduce 2n variables xij, j ∈ [2n]. Denote by ksi the

polynomial
∑

j∈[2n] xij − n. Note that the constraint ksi = ε is just the

constraint KNAPSACK(2n, n+ ε) in the variables xij, j ∈ [2n]. Denote by

Qn the following set of constraints



• ks1 = 1/2; (6.1)

• ks2
i = ksi+1 for each i ∈ [n− 1]; (6.2)

• ks2
n = 0. (6.3)

Now, as noted above already, the constraint (6.1) is by itself unsatisfiable

over the Boolean cube. However, both PCR/Q and SOS require linear

degree to refute (6.1) by itself. The role of (6.2) and (6.3) is two-fold: on

one hand they decrease the degree needed to refute the constraints, but the

repeated squaring inherent in the constraints also forces the coefficients to

blow-up.

6.2 The upper bounds

In this section we show that both PCR/Q and SOS have refutations of Qn of

degree 2 and of monomial-size polynomial in n. Each of these refutations

however uses coefficients of exponential bit-complexity in n and thus the

refutations themselves have bit-complexities that are exponential in n. In

the next section we show that exponential bit-complexities are necessary

for both PCR/Q and SOS.

Lemma 6.2.1. There is a PCR/Q refutation of Qn of degree 2 and of

monomial-size poly(n).

Proof. We prove by induction that for any i ∈ [n] there is a PCR/Q proof

of ks2
i = 1/22i from Qn of degree 2 and monomial-size poly(n). For i = 1,

we obtain this as follows. First derive ks2
1 = ks1/2 from ks1 = 1/2. This can

be done in n+1 steps, in degree 2 and with polynomially many monomials.

Secondly derive ks1/2 = 1/4 from ks1 = 1/2. This can be done in one step.

Finally combine the two derivations to obtain a derivation of ks2
1 = 1/4.

Suppose then that we have a proof of ks2
i = 1/22i from Qn. We derive

ks2
i+1 = 1/22i+1

as follows. First derive ksi+1 = 1/22i from ks2
i = 1/22i and

ks2
i = ksi+1. Secondly derive both ks2

i+1 = ksi+1/2
2i and ksi+1/2

2i = 1/22i+1

from ksi+1 = 1/22i , and combine these to obtain a proof of ks2
i+1 = 1/22i+1

.



In the end we have a proof of ks2
n = 1/22n from Qn of degree 2 and

of monomial-size poly(n). By combining this with the axiom ks2
n = 0 we

reach a contradiction. Note that this last step involves a multiplication by

a coefficient of doubly exponential magnitude.

Lemma 6.2.2. There is an SOS refutation of Qn of degree 2 and of monomial-

size poly(n).

Proof. The following is an SOS refutation of Qn:

− 1 =
∑
i∈[n]

(
1− 2n2i−1

ksi√
n

)2

+ 4

(
ks1 −

1

2

)
−
∑

i∈[n−1]

4n2i−1
(
ks2
i − ksi+1

)
− 4n2n−1ks2

n

6.3 Lower bound for Sums-of-Squares

In this section we prove our main claim about bit-complexity of SOS refu-

tations. The proof of the claim is very similar to the one in [78] with the

use of S-pseudoexpectations instead of degree bounded pseudoexpectations

being the central novel idea in the proof.

For a monomial m in variables xij, i ∈ [n], j ∈ [2n], for each i ∈ [n] de-

note by mi the monomial in variables xij, j ∈ [2n] such that m = m1 · · ·mn.

For any I ⊆ [n] let mI =
∏

i∈I mi. We call mi and mI the projections of

m to index i and set I, respectively. For a set S of monomials in vari-

ables xij, i ∈ [n], j ∈ [2n], denote by Si and SI the sets of projections of all

elements of S to index i and set I, respectively.

Theorem 6.3.1. There is a constant c > 0 such that for large enough n,

any SOS refutation of Qn has at least 2cn distinct explicit monomials or

contains a coefficient of magnitude at least 22n/2cn.

Proof. Let c be such that sn ≥ 22cn for large enough n. Let n be large

enough, let Π be an SOS refutation of Qn with less than 2cn distinct explicit



monomials and let S be the set of explicit monomials appearing in the

refutation Π. Now S2
i has size less than sn for any i ∈ [n]. Now by Section

6.1 and by Theorem 3.2.8, for any i ∈ [n] there is a pseudoexpectation Ei

for {ksi = 1/22i−1} over S2
i .

Now define a linear functional E : R[S2]→ R as follows: for each m ∈ S2

let

E(m) := E1(m1) · · ·En(mn),

and extend linearly to the whole of R[S2].

We prove that E has the following properties:

• E(1) = 1; (6.4)

• E(p2) ≥ 0 for any p ∈ R[S]; (6.5)

• E(m(x2
ij − xij)) = 0 for any i ∈ [n], j ∈ [2n] and m ∈ S; (6.6)

• E(m(x̄2
ij − x̄ij)) = 0 for any i ∈ [n], j ∈ [2n] and m ∈ S; (6.7)

• E(m(xij + x̄ij − 1)) = 0 for any i ∈ [n], j ∈ [2n] and m ∈ S; (6.8)

• E(m(ks1 − 1/2)) = 0 for any m ∈ S; (6.9)

• E(m(ks2
i − ksi+1)) = 0 for any i ∈ [n− 1] and m ∈ S; (6.10)

• |E(pks2
n)| ≤ |S|‖p‖∞/22n for any polynomial p ∈ R[S]. (6.11)

Now applying E to the given refutation Π, we have that −1 ≥ E(pks2
n),

where p is the lift of ks2
n = 0 in Π, and thus

1 ≤ |E(pks2
n)| ≤ |S|‖p‖∞/22n .

By rearranging the inequality we obtain that

‖p‖∞ ≥ 22n/|S| ≥ 22n/2cn.

Finally we prove that E has the desired properties. (6.4) follows since

Ei(1) = 1 for any i ∈ [n].

To see that (6.5) holds, define for each i ∈ [n], a linear function Ti with

Ti(m) = Ei(mi)
∏

i′ 6=imi′ . Now clearly E(m) = T1(T2(. . . Tn(m) . . .)). We

show that for any i ∈ [n] and any p ∈ R[S[i]], Ti(p
2) is a sum of squares



of polynomials in R[S[i−1]], where S[i] is the projection of S to the initial

segment [i]. To simplify notation, we prove the case when i = 2. The

general case is not conceptually any harder. So write p as∑
α

∑
β

aαβx
α
1x

β
2 ,

where x1 and x2 are sequences of the variables in S1 and S2, respectively.

Now

T2(p2) =
∑
α,α′

∑
β,β′

aαβaα′β′x
α
1x

α′

1 E2(xβ2x
β′

2 ).

Now the matrix (E2(xβ2x
β′

2 ))β,β′ is positive semidefinite, and so there are

some vectors u such that E2(xβ2x
β′

2 ) =
∑

u uβuβ′ . Now

T2(p2) =
∑
α,α′

∑
β,β′

aαβaα′β′x
α
1x

α′

1

∑
u

uβuβ′∑
α,α′

(
∑
β

∑
u

aαβuβ)(
∑
β′

∑
u

aα′β′uβ′)x
α
1x

α′

1

= (
∑
α

∑
β

∑
u

aαβuβx
α)2

For (6.6), we have thatE(m(x2
ij−xij)) = Ei(mi(x

2
ij−xij))

∏
i′ 6=iEi′(mi′) =

0, since Ei(mi(x
2
ij−xij)) = 0. The items (6.7) and (6.8) are proved similarly.

For (6.9), we have that

E(m(ks1 − 1/2)) = E1(m1(ks1 − 1/2))
∏
i′ 6=1

Ei′(mi′) = 0,

since E1(m1(ks1 − 1/2)) = 0 as E1 is a pseudoexpectation for {ks1 = 1/2}
over S2

1 .

For (6.10) we evaluate the terms E(mks2
i ) and E(mksi+1) separately and

show that they are equal. Firstly we have that

E(mks2
i ) = Ei(miks2

i )
∏
i′ 6=i

Ei′(mi′)

= Ei(miksi/2
2i−1

)
∏
i′ 6=i

Ei′(mi′)

= Ei(mi/
(

22i−1
)2

)
∏
i′ 6=i

Ei′(mi′)

= E(m)/22i .



Here the second equality follows from the facts that Ei is a pseudoexpecta-

tion for {ksi = 1/22i−1} over S2
i and all the monomials from the polynomial

miksi are among S2
i . The third equality follows similarly, since the mono-

mials mi is among S2
i .

Secondly we have that

E(mksi+1) = Ei+1(mi+1ksi+1)
∏
i′ 6=i+1

Ei′(mi′)

= Ei+1(mi+1)/22i
∏
i′ 6=i+1

Ei′(mi′)

= E(m)/22i ,

where the second equality follows since Ei+1 is a pseudoexpectation for

{ksi+1 = 1/22i} over S2
i+1, and mi+1 is in S2

i+1.

Finally for (6.11) first note that for any m ∈ S we have that

E(mks2
n) = En(mnks2

n)
∏
i<n

Ei(mi)

= En(mnksn)/22n−1
∏
i<n

Ei(mi)

= En(mn)/
(

22n−1
)2∏

i<n

Ei(mi)

= E(m)/22n .

Here the second equality follows again from the facts that En is a pseudo-

expectation for {ksn = 1/22n−1} over S2
n and all the monomials from the

polynomial mnksn are among S2
n. The third equality follows similarly, since

the monomials mn is among S2
n.

Now write p =
∑

m∈S amm. We have that

|E(pks2
n)| = |E(p)/22n|

≤
∑
m∈S

|amE(m)|/22n

≤ |S|‖p‖∞/22n ,

where the last inequality follows from the fact that 0 ≤ E(m) ≤ 1. This in

turn follows from previous items as for any m ∈ S we have that m ≡ m2

mod In and 1−m ≡ (1−m)2 mod In.



As a corollary to the above theorem, we obtain the following lower bound

for the bit-complexity of SOS refutations.

Corollary 6.3.2. Any SOS refutation of Qn has bit-complexity 2Ω(n).

6.4 Lower bound for Polynomial Calculus

Finally in this section we prove an analogue of Theorem 6.3.1 for Polynomial

Calculus Resolution over rationals. Already from the Corollary 6.3.2 alone

we obtain lower bounds on the bit-complexity of PCR/Q refutations of Qn

using the simulation of [15]. It is however instructive to prove an analogue

of Theorem 6.3.1 also for PCR/Q.

For SOS we were able to pinpoint exactly where the large coefficient

resides in an SOS refutation that uses too few monomials: it must reside in

the lift of the constraint ks2
n = 0. However for PCR/Q we will not be able

to be this precise. Moreover we need to bring height of the refutation also

into the picture. We show that any PCR/Q refutation that uses only few

monomials and coefficients of small magnitude must be very tall.

To prove the theorem for Polynomial Calculus we use the simulation of

Lemma 3.4.2. The important thing here is that the lemma gives explicit

bounds on coefficients in the SOS simulation in terms of the height of a

given PCR/Q refutation. This is how we bring the height of a PCR/Q
refutation also into the picture.

For any set S of monomials, let S̃ denote some minimal set of monomials

so that there for any m ∈ S2 there are ui, vi ∈ S̃ such that

m̄−m =
∑
i∈[n]

(
ui(x

2
i − xi) + vi(x̄

2
i − x̄i)

)
,

where m̄ denotes the multilinearization of m. In other words S̃ contains

just enough monomials in order to certify the equivalence of each m ∈ S2 to

its multilinearization. It is clear that for any S there is S̃ of size polynomial

in the size of S and the maximum degree of a monomial in S.



Theorem 6.4.1. There are constants c > 0 and d > 0 such that for large

enough n, every 22n/2
-bounded PCR/Q refutation of Qn that uses at most

2dn different monomials has height at least

2n/2−2 − cn

2n/2+2
− 5

4
.

Proof. Let c be as in Theorem 6.3.1, and let d be such that for any set S

of monomials of size at most 2dn with maximum degree at most 10n, the

size of S ∪ S̃ is less than 2cn for large enough n. Let n be large enough and

let Π be a 22n/2
-bounded PCR/Q refutation of Qn of height h that uses at

most 2dn different monomials. Without a loss of generality we may assume

that the degree of Π is at most 10n. Let S be the set of all monomials in

the refutation. Now by Lemma 3.4.2, there is an 22n/2(4h+5)-bounded SOS

refutation of Qn over S.

We may assume that the explicit monomials of the SOS refutation are

among S ∪ S̃. Now the size of S ∪ S̃ is less that 2cn. Thus, by the proof

of Theorem 6.3.1, the lift of the constraint ks2
n = 0 contains a coefficient of

magnitude at least 22n/2cn.

Putting everything together we obtain that

22n/2(4h+5) ≥ 22n/2cn.

After solving for h we obtain the wanted lower bound for the height.

We obtain a lower bound on bit-complexity for Polynomial Calculus as

a corollary to the above theorem.

Corollary 6.4.2. Any PCR/Q refutation of Qn has bit-complexity 2Ω(n).



Chapter 7

Conclusion and future work

We conclude by considering some open questions related to the work pre-

sented in this thesis.

Size-degree trade-offs for Sums-of-Squares and Sherali-Adams

Most important question here is whether the O(
√
n log(s)+k) upper bound

in the degree-reduction lemma is tight? For Resolution and Polynomial Cal-

culus, whose size-width/degree trade-offs adopt the same form, the bound

is known to be tight. In both cases different version of the ordering principle

witnesses the necessity of the square root of the number of variables in the

upper bound [17, 34]. Similarly for Sherali-Adams the ordering principle

gives a tight example of the trade-off [25]. Interestingly, also the pigeonhole

principle PHP
n+1

n is a tight example for the trade-off for Sherali-Adams

[25, 7].

It was recently shown by Potechin that the total ordering principle,

which has N = n(n− 1) variables, can be refuted in SOS in degree O(
√
n),

whence in degree O( 4
√
N) [71]. Since the relationship between N and

√
n

is a 4th root, this means that the total ordering principle cannot be used

for witnessing the necessity of the square root of the number of variables

in our theorem. The degree upper of 4
√
N for the total ordering principle is

also known to be essentially tight [71].

A note is in order about the encoding Potechin uses. Rather than en-
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coding the wide clauses in the total ordering principle as linear inequality

constraints, Potechin uses auxiliary non-Boolean variables zi for any i ∈ [n]

and encodes the wide clause with

•
∑

j 6=i xji = 1 + z2
i . (7.1)

Hence the upper bound does not immediately apply to the situation con-

sidered here with only Boolean variables. In the appendix of [71], Potechin

sketches out a solution by replacing the single auxiliary variables zi by a

bunch of Boolean auxiliary variables.

We want to point out here that both the upper bound and the lower

bound of [71] apply also for the encoding with Boolean inequality con-

straints instead of (7.1). For the lower bound this follows, since one can

easily simulate an SOS refutation that uses the encoding with inequality

constraints using the encoding (7.1). For the upper bound, a close look at

Potechin’s proof reveals that only a minor rewording of the proof gives the

upper bound also for encoding with the wide clauses encoded as inequality

constraints.

The remaining question is thus whether one can find an example that

shows that the upper bound given by the degree-reduction lemma is tight

for SOS, or whether one can improve the bound given by the lemma. The

proof of the upper bound in [71] uses the totality of the order in an essential

way, and thus leaves open the possibility that by relaxing the principle to

a partial ordering principle we could still obtain a tight example from the

ordering principle for the size-degree trade-off of SOS.

A second important open question concerns both SOS and SA, and the

interplay of the two complexity measures considered, degree and monomial

size. In the proof of the size-degree trade-off we show how to transform

a refutation with a small number of monomials into a refutation of small

degree. This transformation however blows up the number of monomials

exponentially. The question is thus whether this blow-up is necessary, or

whether one can minimize both measures simultaneously. For Resolution

and Polynomial Calculus, the necessity of (a superpolynomial) blow-up has

been demonstrated in [89] and [58], respectively. In short, both papers



show that there is a CNF that has both polynomially sized refutations of

relatively high degree, and refutations of small degree, but for which any

refutation of minimal degree must have superpolynomially many monomi-

als.

Feasible interpolation for Polynomial Calculus, Sums-of-Squares

and Sherali-Adams

We have seen that Sums-of-Squares cannot admit monotone feasible in-

terpolation with respect to polynomial-sized monotone Boolean circuits.

Pudlák and Sgall prove in [75] that degree bounded Polynomial Calculus ad-

mits monotone feasible interpolation with respect to monotone polynomial

programs. Also recently Fleming et al proved in [32] that Sherali-Adams

admits a monotone feasible interpolation with respect to monotone linear

programming circuits. It is however open whether one can prove mono-

tone feasible interpolation for Polynomial Calculus or Sherali-Adams with

respect to monotone Boolean circuits.

We obtain feasible interpolation for Polynomial Calculus only over finite

fields, since we have the poly-time search algorithm for PC proofs over a

set of monomials only over finite fields (See Remark 5.1.3). However, as

Polynomial Calculus is deductive proof system, it is most likely that one

can give a syntactic proof, similar to the one for Resolution [56], of the

feasible interpolation property for PC. Such syntactic proof might give new

insights into the issue of bit-complexity, and better handle on the size of

the coefficients.

Finally we want to emphasize that although we proved the feasible inter-

polation for Sums-of-Squares and Sherali-Adams only over the {0, 1}-values,

the argument works equally well for Boolean values over the ±1 basis.

Bit-complexity of PCR/Q and SOS refutations

From the point of view of proof complexity the most important open ques-

tion related to Chapter 6 is whether the phenomenon presented in the chap-

ter can occur when the set of constraints comes from a translation of a CNF,



or whether the monomial size and bit-complexity are polynomially equiv-

alent when PCR/R or SOS is considered as a refutation system for CNFs.

The constraints in Chapter 6 do not arise from any CNF.
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