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Abstract
According to their strength, the tracing properties of a code can be categorized as frameproof,
separating, IPP and TA. It is known that, if the minimum distance of the code is larger than
a certain threshold then the TA property implies the rest. Silverberg et al. ask if there is
some kind of tracing capability left when the minimum distance falls below the threshold.
Under different assumptions, several papers have given a negative answer to the question. In
this paper, further progress is made. We establish values of the minimum distance for which
Reed-Solomon codes do not posses the separating property.
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Mathematics Subject Classification 94

1 Introduction

As a motivation for our work, consider the distribution of digital goods. In the trade of
digital content, safe guarding ownership rights is certainly a critical issue. A way to protect
copyright consists of making each copy of the content unique. This is done by embedding a
different mark in each delivered item. These hidden marks are typically strings of symbols.
However, since now all objects are different, traitor users can get together and by comparing
their copies, they create a new copy that tries to disguise their identities. This is known as a
collusion attack and the newly created copy is usually called a pirate copy.
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A way to deal with collusion attacks is by taking the embedded symbol strings to be the
codewords of a codewith tracing properties. There is a large literature about codes possessing
different degrees of robustness against collusion attacks. Let us give a brief overview. Formal
definitions will be done in subsequent sections. In a c-frameproof code [3], a coalition of at
most c users can not create a pirate copy that contains the code word of another user not in
the coalition. In c-secure frameproof codes two disjoint coalitions of at most c users can not
create the same pirate copy. It has been shown [15], that the secure frameproof property is the
same as the separating property [16]. Loosely speaking, a code is called c-separating (c-SEP),
if for any two disjoint sets of at most c code words each, there exists at least one position
where the set of symbols of the first set is disjoint from the set of symbols of the second
set (see Definition 2). Codes with the Identifiable Parent Property (IPP) were introduced
in [11]. Informally, a code has the c-IPP property if all coalitions of at most c traitors that can
generate the same pirate copy have a non-empty intersection, i.e. have a common user. The
IPP has received considerable attention in the recent years, having been studied by several
authors [1,2,4,10,19]. An even stronger property is the Traceability property (c-TA). In this
case, it is guaranteed that the “closest” authorized copy to a given pirate copy belongs to one
of the traitors. Sufficient conditions for a code to be a c-TA code are stated in [18].

The work in [17] discusses efficient algorithms for the identification of traitors in schemes
that use c-TA codes. Let M denote the size of the code. For TA codes, tracing is an O(M)

process, whereas for IPP codes tracing is more expensive, since it is an O(
(M
c

)
) process.

Being the TA property stronger than the IPP, but being tracing more costly for the IPP, it
seems reasonable to expect that by relaxing the TA requirements one is left with a code that,
even though is no longer c-TA, still possesses c-IPP. In this regard, Silverberg et al. asked
the following question:

Question 1 [17] Is it the case that all c-IPP Reed-Solomon codes are also c-TA?
Although intuition might lead us to give a negative answer, in that same paper the authors

used truncated Reed-Solomon codes to credit the exact opposite, that is, if a Reed-Solomon
code does not have the TA property then it neither has the IPP. Later, the work in [14] not only
reinforced this conjecture, but proved a stronger implication, namely that a Reed-Solomon
code that is not c-TA it is neither c-SEP. Therefore, they generalized the above question to
the following one:

Question 2 [14] Is it the case that all c-SEP Reed-Solomon codes are also c-TA?
In this paper, we supplement more evidence to this last question. The results we present,

will hopefully contribute to a complete understanding of the tracing properties in Reed-
Solomon codes.

2 Definitions and previous results

Let q be a prime power and let Fq denote the finite field with q elements. F
n
q will denote

the set of all n-tuples with elements from Fq . We define a linear code of length n to be a
vector subspace of F

n
q . Then, Fq is called the code alphabet, and the n-vectors in the code

are called code words. The dimension of the code is defined as the dimension of the vector
subspace. Let u, v ∈ IFnq be two words, then the Hamming distance d(u, v) between u and
v is the number of positions where u and v differ. The minimum distance d , is defined as
the smallest distance between two different code words. A linear code over Fq , of length n,
dimension k and minimum distance d is denoted as an [n, k, d]q -code.
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A study of the separating property in Reed-Solomon codes 429

Reed-Solomon codes can be defined as follows. Let Fq [x] be the ring of polynomials
over Fq . Take all polynomials of degree less than k, Fq [x]k−1 ⊂ Fq [x]. Let α be a primitive
element of Fq , so we have {1, α, α2, . . . , αq−2} = Fq \ {0}.
Definition 1 An extended Reed-Solomon, RS[n, k]q , code is defined as the vector subspace
of F

n
q determined by all vectors of the form

v = ( f (0), f (1), f (α), . . . , f (αq−2))

where f ∈ Fq [x]k−1. Note that n = q .
If vectors are of the form:

v = ( f (1), f (α), . . . , f (αq−2)),

that is, the polynomials f are not evaluated in the field element 0, then we say the code is a
non-extended Reed-Solomon code. In this case n = q − 1.

As in the previous definition, throughout the paper, and probably with a slight abuse of
notation, we will denote polynomials with an italic lowercase letter.

Reed-Solomon codes are maximum distance separable (MDS) [13]. That means they
attain the Singleton bound with equality d = n − k + 1.

2.1 Definitions about codes with tracing properties

Let C be an [n, k, d] code over Fq , let T = {t1, . . . , tc} ⊆ C with ti = (t i1, . . . , t
i
n) be a

subset of size c. Also, let T |i = {t ji |t j ∈ T }. The descendant set of T , is defined as

desc(T ) =
{
z = (z1, . . . , zn) ∈ F

n
q |zi ∈ T |i }, 1 ≤ i ≤ n

}
.

Definition 2 A code C , defined over Fq , has the (c1, c2)-separating property (denoted
(c1, c2)-SEP), c1 > 0, c2 > 0, if for any two disjoint subsets of C , U = (u1, . . . ,uc1)
and V = (v1, . . . , vc2), we have

U |i ∩ V |i = ∅ for some 1 ≤ i ≤ n.

If c1 = c2 = c, then we say that the code is c-separating and denote it as c-SEP.

In the introduction we used the name secure frameproof for the separating property.

Definition 3 A code C , defined over Fq , has the c-Identifiable Parent Property (denoted c-
IPP), c > 0, if for all z ∈ F

n
q and for all coalitions T ⊆ C of at most c code words, we

have
z /∈

⋃

T ,|T |≤c

desc(T ) or
⋂

z∈desc(T )

T �= ∅.

Definition 4 A code C is a c-traceability code (denoted c-TA), for c > 0, if for all subsets
(coalitions) T ⊆ C of at most c code words, if z ∈ desc(T ), then there exists a t ∈ T such
that d(z, t) < d(z,w) for all w ∈ C − T .

We will also have occasion to link our discussion to a weaker tracing property called
c-frameproof (FP).
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430 M. Fernandez, J. J. Urroz

Definition 5 A code C , defined over Fq , has the c-Frameproof Property (denoted c-FP),
c > 0, if for any code word u and a subset of C of size at most c, V = (v1, . . . , vc), with
u /∈ V , we have

u|i /∈ V |i for some 1 ≤ i ≤ n.

Note that from Definition 2, (c, 1)-SEP is equivalent to c-FP.

2.2 Bezout identity

Some results in this paper, make extensive use of the Bezout identity. Intuitively, the Bezout
identity is the ability to do the euclidean algorithm backwards.

Definition 6 Let u and v be two polynomials in Fq [x], and let d = (u, v) a greatest common
divisor of u and v. Given any k multiple of d , the Bezout identity ensures the existence of
some elements a and b in Fq [x] such that

au − bv = k.

Recall that the solutions of the Bezout identity are not unique, and if (a, b) is a solution
to Bezout identity, then all the solutions are of the form

â = a + t
v

d
b̂ = b + t

u

d
(1)

for some t ∈ Fq [x].

2.3 The separating property for Reed-Solomon codes

Let us recall previous results that lead to the motivation of our work. In [8], a sufficient
condition for the c-SEP property is given:

Proposition 1 ([8], Proposition 1) A code of length n, with minimum distance d, is c-SEP if

d ≥ n − n

c2
+ 1

c2
.

On the other hand, in [5,6,18] the same sufficient condition is given for the c-TA property:

Theorem 1 ([18], Theorem 4.4) Suppose that C is a code of length n, having minimum
hamming distance

d > n − n

c2
.

Then C is c-TA code.

The family of Reed-Solomon codes are MDS codes. In [12], it is shown that for MDS
codes, the previous sufficient condition for the c-TA property is also necessary.

Theorem 2 ([12], Theorem 2.3) Let C be a linear [n, k, d] MDS code over a finite field Fq

such that n ≤ q + 1. Then, for c ≥ 2, C is an c-TA code if and only if d > n − n
c2

.

In [18, Lemma 1.6] the authors show that if |C | > c ≥ q then C is not a c-IPP code. In
[18, Lemma 1.3] it is shown that the c-TA property implies the c-IPP property. Interestingly
enough in [17, Theorem 8] the authors construct a family of truncated (n < q−1) RS[n, k]q
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codes that fail to be c-IPP if c2 ≥ n/(n − d). Then in [17, Question 11], the authors ask if it
is always true that for Reed-Solomon codes the c-IPP fails if c2 ≥ n/(n − d). This is a very
interesting question because a positive answer would mean that for Reed Solomon the c-IPP
and c-TA properties are essentially the same. In view of Proposition 1, in [14] this question
was changed to Question 2 stated as in Sect. 1. Question 2 has been addressed in [9,14],
obtaining the following results.

Theorem 3 ([9], Theorem 6) Let RS[n, k]q be a Reed-Solomon code over Fq such that k−1
divides q − 1. Then, if d ≤ n − n

c2
the code is not c-SEP.

Corollary 1 ([14], Corollary 2) Let C be an [n, k, d] Reed-Solomon code over Fq . If c ≥√
q − 1 and d ≤ (1 − 1/c2)n, then the code is not c-SEP.

Theorem 4 ([14],Theorem 2) Let RS[n, k, d]q be a Reed-Solomon code over Fq and c a
divisor of q. Then, if d ≤ n − n

c2
the code is not c-SEP.

Remark 1 It is worth noting, that the proofs of Theorem 3, Corollary 1 and Theorem 4, are
constructive in the sense that, given a Reed-Solomon code C , explicit disjoint sets of code
words F,G, with |F | = r ≤ c, |G| = s ≤ c, such that

F ∩ G = ∅ and desc(F) ∩ desc(G) �= ∅ (2)

are found. In this paper our proofs are also constructive. Most of the results we obtain are
based on the following observation, which in a sense, is a way to express the c-SEP property
for Reed-Solomon in an algebraic manner. Suppose that f1, . . . , fr , and g1, . . . , gs are the
polynomials that generate the code words of F,G in (2) respectively. Then, it is clear that
for extended Reed-Solomon codes, (2) is equivalent to

(xq − x)

∣∣∣∣∣∣∣∣

∏

1≤i≤r
1≤ j≤s

( fi − g j ). (3)

The code words in F,G belong to a Reed-Solomon code of minimum distance d = q −m if
the polynomials fi , g j are of degree at most m. See also Lemma 1 below. Further, note that
if a Reed-Solomon code of minimum distance d over Fq is not c-SEP, then trivially codes of
smaller minimum distance are not c-SEP, so we prove our results for the maximum possible
minimum distance.

2.4 Our contribution

In this paper, progress in the understanding of the tracing properties in Reed-Solomon codes
is made. Since the case c ≥ q is trivially true, by taking one coalition that includes all the
constant polynomials, in the rest of the paper we assume c < q . In the style of Theorem 3
and Theorem 4, we use the structure of the finite field Fq , over which the code is defined. In
our particular case, we take advantage of the divisors of q − 1. With that, we are able to give
a complete answer to Question 2 by proving, in a constructive way, that in Reed-Solomon
codes c-SEP and c-TA properties are essentially the same when q ≡ 1 (mod c2). More
precisely, we set the minimum distance to d = �n − n

c2

, which is the maximum allowed

so the code is not c-TA, and then find two disjoint sets of code words that are not separated.
In the rest of the paper, although the proofs are also constructive, the approach is somehow
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different. We relax the distance condition and study whether an [n, k, d]Reed-Solomon code
over Fq with minimum distance d < (n − r) is c-SEP for some r > n/c2. We prove that
Reed-Solomon codes are not c-SEP for r = n/c . Then, we proceed to strengthen this result.
For the case c = 2, we answer the question for r = [ q

3

]
and for c = 3 we do so for r = 2

[ q
8

]
.

For any c ≥ 2, the question is answered for r =
[

q
2c−1

]
. We round up the paper using an

elegant result of Cilleruelo [7], to give an alternate and more concise proof of known results.

3 A connection with the frameproof property

We start our discussion by studying Reed-Solomon codes over Fq with minimum distance
d ≤ q − q

c .

Theorem 5 For any q a power of prime, c ≥ 2 and d ≤ q − q

c
, extended Reed-Solomon

[n, k, d] codes over Fq are not c-SEP.

Proof Let Fq = {α1, α2 . . . , αq}, with αq = 0, and c ≥ 2 an integer. Also, write q = cl + r
where 0 ≤ r < c and l ∈ N. Since the case c|q is taken care of in Theorem 4, we consider

c � q and then r > 0. Since we are assuming d ≤ q − q

c
, we take the maximum allowed

minimum distance d = �q − q
c �, and so k = q − d + 1.

Consider any set of c distinct polynomials { f1, . . . , fc} ⊂ Fq [x]l−1. Observe that c < q ,
so we could take c distinct constant polynomials. Also note that we have the inequalities
1 ≤ l = q

c − r
c < q − d and since l is an integer it implies l + 1 ≤ q − d = k − 1. In this

case c(k − 1) ≥ q . Now, for 1 ≤ i ≤ r we take

gi = fi + αi

l+1∏

m=1

(x − α(l+1)(i−1)+m),

while for r + 1 ≤ i ≤ c take

gi = fi + αi

l∏

m=1

(x − α(i−1)l+m+r ).

Observe that gi ∈ Fq [x]k−1 for all 1 ≤ i ≤ c. Then, by construction, for every 1 ≤ j ≤ q

the polynomials ft and gt , with t = � j
l+1
 when j ≤ r(l + 1) and t = � j−r

l 
 when
r(l + 1) < j ≤ q , are such that ft (α j ) = gt (α j ). Note that indeed t ≤ c. Hence we have
that { f1(α), . . . , fc(α)} ∩ {g1(α), . . . , gc(α)} �= ∅ for any α ∈ Fq and so the two sets of
code words given by ( fi (α1), . . . , fi (αn)) and (gi (α1), . . . , gi (αn)) for 1 ≤ i ≤ c are not
separated.

We now show that the constructed polynomials are all different. First note that fi �= gi ,
for all 1 ≤ i ≤ c. Now, suppose gi = f j for some 1 ≤ i �= j ≤ c. Then, by definition of gi ,
we have

f j − fi = gi − fi = αi

∏

α∈A

(x − α),

for some set A ⊂ Fq of size |A| ≥ l, which is not possible since fi , f j are two distinct
polynomials of degree at most l − 1.
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In the same way if gi = g j for some i �= j , then

f j − fi = αi

∏

α∈A

(x − α) − α j

∏

β∈B
(x − β),

for some sets A, B ⊂ Fq of size |A|, |B| ≥ l which, again, is not possible since deg( f j− fi ) ≤
l − 1 and on the right we have a polynomial of degree at least l, for αi �= α j . ��

In the previous proof, we have shown that all polynomials involved in the construction
are different. In fact, this is more than we need, and proving that fi �= g j is enough by the
following lemma. Given any multiset C , we will use the notation C ′ to denote the set of
distinct elements of C .

Lemma 1 Let c be a positive integer and F and G two multisets of not necessarily distinct
polynomials with F ∩ G = ∅ and |F | = c, |G| = c such that

(xq − x)

∣
∣
∣
∣
∣
∣

∏

fi∈F,g j∈G
( fi − g j ) .

Then, there exist two sets of distinct polynomials, say F̂, Ĝ, so that F̂ ⊇ F ′ and Ĝ ⊇ G ′
with F̂ ∩ Ĝ = ∅ and |F̂ | = |Ĝ| = c such that

(xq − x)

∣∣∣∣∣∣∣

∏

f̂i∈F̂i,ĝ j∈Ĝ
( f̂i − ĝ j ) .

Proof We start by noting that all the roots of xq − x are simple so, for any p(x)|xq − x ,
we have that if p(x)|R(x)k for some R(x) and any integer k ≥ 2, then p(x)|R(x). Then, by
hypothesis

(xq − x)

∣∣∣∣∣∣

∏

fi∈F,g j∈G
( fi − g j ) =

∏

fi∈F ′

⎛

⎝
∏

g j∈G
( fi − g j )

⎞

⎠

ei

,

for some ei ≥ 1. So, by the previous observation

(xq − x)

∣∣∣∣∣∣

∏

fi∈F ′

⎛

⎝
∏

g j∈G
( fi − g j )

⎞

⎠ =
∏

g j∈G

∏

fi∈F ′
( fi − g j ) =

∏

g j∈G ′

∏

fi∈F ′
( fi − g j )

b j

for some b j ≥ 1, and again we deduce

(xq − x)

∣∣∣∣∣∣

∏

fi∈F ′,g j∈G ′
( fi − g j )

∣∣∣∣∣∣∣

∏

f̂i∈F̂,ĝ j∈Ĝ
( f̂i − ĝ j ) .

��
In Sect. 2.1 we defined c-frameproof codes, and stated that according to Definition 2, c-FP
is in fact (c, 1)-SEP. It is a known result, see the proof of Lemma III.2 in [3], that if the
minimum distance of a code of length n satisfies, d > n − n

c , then the code is c-FP. The
proof of Theorem 5 can be easily adapted to show that a Reed-Solomon code with minimum
distance d ≤ n − n

c , is not (c, 1)-SEP, and therefore not c-FP.
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4 Increasing theminimum distance

In the previous sectionwe saw that Reed Solomon codeswith small distance are not separated.
This is consistent with intuition. Since the code has a larger dimension as a vector space,
then chances there exist more sets of code words that are not “separated”. In this section, we
discuss strategies to increase the minimum distance of the code and still keep non-separation.

4.1 The case c = 2

To show our approach we first deal with a particular case.

Lemma 2 The [11, 4, 8] extended Reed-Solomon code over F11 is not 2-separating.
Proof We will find polynomials f1, f2 and g1,g2, such that the corresponding pairs of code-
words {f1, f2} and {g1, g2} are not separated.

Consider the polynomial f1 = 0, and take g1 = γ1
∏3

i=1(x − αi ), for some
{γ1, α1, α2, α3} ⊂ F11. Now, let

f2 =
3∑

i=1

g1(α3+i )

∏
j∈{1,2,3}, j �=i (x − α3+ j )

∏
j∈{1,2,3}, j �=i (α3+i − α3+ j )

+ φ2

3∏

i=1

(x − α3+i ),

for some {φ2, α4, α5, α6} ⊂ F11. Finally, consider

g2 = γ2

3∏

i=1

(x − α6+i ),

for some {γ2, α7, α8, α9} ⊂ F11.
By construction { f1(αi ), f2(αi )} ∩ {g1(αi ), g2(αi )} �= ∅ for i = 1, . . . , 9. Now, selecting

φ2, γ2 such that

3∑

i=1

g1(α3+i )

∏
j∈{1,2,3}, j �=i (α10 − α3+ j )

∏
j∈{1,2,3}, j �=i (α3+i − α3+ j )

(4)

=γ2

3∏

i=1

(α10 − α6+i ) − φ2

3∏

i=1

(α10 − α3+i ) (5)

3∑

i=1

g1(α3+i )

∏
j∈{1,2,3}, j �=i (α11 − α3+ j )

∏
j∈{1,2,3}, j �=i (α3+i − α3+ j )

(6)

=γ2

3∏

i=1

(α11 − α6+i ) − φ2

3∏

i=1

(α11 − α3+i ), (7)

which is possible whenever

3∏

i=1

(α10 − α6+i )(α11 − α3+i ) �=
3∏

i=1

(α11 − α6+i )(α10 − α3+i ),

we get

f2(α10) = g2(α10)

f2(α11) = g2(α11)
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and hence the pairs {f1, f2} and {g1, g2} are not separated. ��

As an example take αi = i . Then

3∏

i=1

(α10 − α6+i )(α11 − α3+i ) =
3∏

i=1

(4 − i)(8 − i) = 7!/4,

while
3∏

i=1

(α11 − α6+i )(α10 − α3+i ) =
3∏

i=1

(5 − i)(7 − i) = 4 · 6!.

In this case

g1 = x3 − 6x2 + 11x − 6

f2 = 5x3 + 10x + 9

g2 = 10x3 + x2 + x + 9

and we have that

f1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

f2 = (2, 3, 9, 6, 2, 5, 1, 9, 4, 5, 9)

g1 = (0, 0, 0, 6, 2, 5, 10, 1, 6, 9, 5)

g2 = (6, 1, 10, 5, 2, 6, 0, 0, 0, 5, 9)

are not separated. It is clear that the solution is not unique, Taking αi = i + 1, we get

g1 = x3 − 9x2 + 26x − 24

f2 = −13

4
x3 + 135

2
x2 − 1715

4
x + 1737

2
g2 = −x3 + 27x2 − 242x + 720,

which give the pairs

f1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

f2 = (9, 2, 3, 9, 6, 2, 5, 1, 9, 4, 5)

g1 = (5, 0, 0, 0, 6, 2, 5, 10, 1, 6, 9)

g2 = (9, 6, 1, 10, 5, 2, 6, 0, 0, 0, 5)

that are also not separated.
Note that the previous lemma answers Question 2, for q = 11 and c = 2 and for these

particular values improves Theorem 5. However, this approach does not fully generalize.
Fortunately, for general q we can give a fully explicit answer, by decreasing a bit the distance
of the code.

Theorem 6 The extended Reed Solomon code over Fq with distance given by d = q − [ q
3

]

is not 2-SEP.
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Proof Let q = 3l + r where 0 ≤ r ≤ 2, and consider for any 1 ≤ i, j ≤ 2, Ai, j ⊂ Fq

disjoint sets such that A2,2 = ∅, and |Ai, j | = l + 1 for r of them and |Ai, j | = l for the
remaining 3 − r sets. Now let pi, j = ∏

α∈Ai, j
(x − α). Observe that ∪i, j Ai, j = Fq . The

following polynomials, of degree at most l + 1 define a code that is not 2-SEP.

f1 = 0,

f2 = p2,1 − p1,1,

g1 = −p1,1,

g2 = −p1,2.

Indeed, for any α ∈ A1,1 we have f1 = g1, for those α ∈ A1,2, f1 = g2, and for those
α ∈ A2,1, f2 = g1, completing all the roots in Fq . ��

4.2 The case c = 3

Let us move to a larger value of c and deal with the case c = 3.
The representation of the Bezout identity in Definition 6 is not unique. For univariate

polynomials we have the following lemma.

Lemma 3 Let u, v ∈ Fq [x] be two non constant polynomials relatively prime and z ∈ Fq [x].
Then there exist non zero polynomials a, b ∈ Fq [x] such that

z = au − bv,

with max{deg(au), deg(bv)} ≤ max{deg(z), deg(uv) − 1}, if z is not a multiple of neither u
nor v, or max{deg(au), deg(bv)} ≤ max{deg(z), deg(uv)} if u|z or v|z.
Proof If u|z then all the solutions are of the form a = z/u + kv, b = ku and the result
follows taking k ∈ F

∗
q . So, we assume u � z and v � z. By the Bezout identity we have that,

for some â, b̂ ∈ Fq [x],
âu − b̂v = z (8)

Suppose deg(z) < deg(uv). If deg(â) < deg(v) then the theorem follows because

deg(b̂v) = deg(âu − z) ≤ max{deg(âu), deg(z)} < deg(uv) (9)

Assume deg(â) ≥ deg(v). As stated in (1), the pair a = â + tv, b = b̂ + tu also
satisfies Bezout’s identity for any t ∈ Fq [x]. Dividing â by v, we get â = qav + ra with
deg(ra) < deg(v) and taking t = −qa , we have that a = ra , b = b̂ − qau and the result
follows using the same reasoning as in (9), since a and b also satisfy Bezout’s identity.

Now, suppose deg(uv) ≤ deg(z). Dividing z by u we get z = qzu + r with r �= 0, and
deg(r) < deg(u). We solve

âu − b̂v = r

with deg(â) < deg(v), which is possible by using the previous case, since deg(r) < deg(u) <

deg(uv). Then, taking a = â + qz , b = b̂ we have

au − bv = z, (10)

with deg(a) = deg(â + qz) = deg(qz) = deg(z) − deg(u), since by the assumption done in
this case,

deg(â) < deg(v) ≤ deg(z) − deg(u) = deg(qz).
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Hence deg(au) = deg(z) and then, by identity (10), deg(bv) ≤ deg(z). Indeed, if deg(bv) >

deg(z), then
deg(z) = deg(au − bv) = deg(bv) > deg(z),

which is impossible. ��
We have the following theorem.

Theorem 7 Let q be a power of a prime, c = 3 and d < q − 2
[ q
8

]
. A Reed Solomon code of

length q over Fq with distance d is not 3-SEP.

Proof In order to get the result, we need to define 6 distinct polynomials f1, f2, f3, g1, g2, g3,
that satisfy (3) for c = r = s = 3, that is,

(xq − x)

∣
∣
∣
∣∣
∣

∏

1≤i, j≤3

( fi − g j ). (11)

Let q = 8l + r , where 0 ≤ r < 8. We make a partition of Fq in nine disjoint sets
Ui, j ⊂ Fq , 1 ≤ i, j ≤ 3, as follows: U1,1 = ∅, r sets of size l + 1 and the other remaining
8−r sets of size l. Since r < 8, we will always take |U2,1| = l. Observe that

∑
i, j |Ui, j | = q

and let u1,1 = −1, ui, j = ∏
α∈Ui, j

(x − α) for (i, j) �= (1, 1). Note that (11) is verified if

fi − g j = ui, jvi, j

for some vi, j ∈ Fq [x] and 1 ≤ i, j ≤ 3. This condition is equivalent to

fi = gi + ui,ivi,i . (12)

and
g3 − g j = ui, jvi, j − ui,3vi,3. (13)

for 1 ≤ j ≤ 3, 1 ≤ i ≤ 3. Indeed, one direction is immediate, while for the other we have

fi − g j = fi − f3 + f3 − g j

= gi − g3 + ui,ivi,i − u3,3v3,3 + u3,3v3,3 + g3 − g j

= ui,3vi,3 − ui,ivi,i + ui,ivi,i + ui, jvi, j − ui,3vi,3

= ui, jvi, j

Observe that, to verify (13) we need to define vi, j so that the right hand side is independent
of the value of i . So, for example let us start by taking vi, j for j �= 1, solutions of the Bezout
equations

vi,2ui,2 − vi,3ui,3 = 1, (14)

for i = 1, 2, 3. Note that according to Lemma 3, we can take the solutions such that
deg(vi, j ui, j ) ≤ 2l + 1, for j �= 1.

Then, we proceed similarly to define v2,1, v3,1 to be solutions of the Bezout equation

v3,3u3,3 − v2,3u2,3 = v3,1u3,1 − v2,1u2,1. (15)

Again, since deg(u2,1) = l, by Lemma 3 we can take the degree of v2,1u2,1, v3,1u3,1
at most 2l + 1. Finally, let us take the last entry v1,1 = v3,3u3,3 − v3,1u3,1 − v1,3u1,3. If
v1,1 = 0, then according to (1) we consider the solution to (15) given by v̂3,1 = v3,1 + cu2,1,
v̂2,1 = v2,1 + cu3,1 for some constant c �= 0 so that v̂3,1 �= 0 and v̂2,1 �= 0, and the
corresponding v̂1,1 = v3,3u3,3 − v̂3,1u3,1 − v1,3u1,3 = −cu2,1u3,1 �= 0.
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Observe that
deg(v̂3,1u3,1) = deg(v3,1u3,1 + cu2,1u3,1) ≤ 2l + 1

by our selection of u2,1, and then deg(v̂2,1u2,1) ≤ 2l + 1, so we can always take v1,1 �= 0.
Now we define

g1 = −v3,1u3,1, f1 = g1 + v1,1u1,1,
g2 = −v3,2u3,2, f2 = g2 + v2,2u2,2,
g3 = −v3,3u3,3, f3 = g3 + v3,3u3,3.

(16)

Note that f3 = 0. Now we need to prove (13). Observe that by definition,

g3 − g j = v3, j u3, j − v3,3u3,3.

It remains to prove (13) for i = 1, 2, j = 1, 2. For j = 2, the right hand of (13) is independent
of i as a consequence of (14). Now, for j = 1 on the one hand,

u2,1v2,1 − u2,3v2,3 = u3,1v3,1 − u3,3v3,3 = g3 − g1

by (15). On the oher hand, by the definitions of u1,1 and v1,1

u1,1v1,1 − u1,3v1,3 = u3,1v3,1 − u3,3v3,3 = g3 − g1

as wewanted. Observed that, by construction deg( fi ) ≤ 2l+1, deg(gi ) ≤ 2l+1 and fi �= g j

for 1 ≤ i, j ≤ 3, and hence the result follows by Lemma 1. Also, since 2l + 1 ≤ k − 1, for
extended Reed-Solomon codes n − d = q − d = k − 1, the claim about the distance follows
by Remark 1, since we are taking q = 8l + r . ��

5 The general case

In order to obtain stronger results, we have to deal with larger values of both c and the
minimum distance. The following theorem generalizes Theorem 6 for c ≥ 2.

Theorem 8 Let q be a power of a prime, c ≥ 2 and d < q−
[

q
2c−1

]
. Extended Reed Solomon

codes over Fq with distance d are not c-SEP.

Proof Let q = (2c − 1)l + r where 0 ≤ r < 2c − 1, and consider for any 1 ≤ i ≤ 2c − 1,
Ai ⊂ Fq disjoint sets such that: r of the sets are of size |Ai | = l + 1 and the remaining
2c − r − 1 are of size |Ai | = l. Now let pi = ∏

α∈Ai
(x − α). Observe that ∪i Ai = Fq . The

following polynomials, of degree at most l + 1 evaluate to code words of a code that is not
c-SEP.

f1 = 0,

fi+1 = pc+i − pi , for 1 ≤ i ≤ c − 1

gi = −pi , for 1 ≤ i ≤ c.

Indeed, observe that f1(α) = gi (α) for any α ∈ Ai , 1 ≤ i ≤ c, while fi+1(α) = gi (α) for
any α ∈ Ac+i for any 1 ≤ i ≤ c − 1.

The claim about the distance follows by Remark 1, using the same reasoning as in the
proof of Theorem 7. ��

To cope with a larger minimum distance, we would like to extend Theorem 7. Unfor-
tunately, the generalization is not immediate because when c grows, the degree of the
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polynomials vi, j blows up, so we try to take advantage of the structure of the field over
which the code is defined. In this case we are able to state a result for a minimum distance
matching the conjectured one.

Theorem 9 Let c be any integer and q ≡ 1 (mod c2). The non extended Reed Solomon code
over Fq with distance d = q − q−1

c2
− 1 is not c-SEP.

Proof Letα be a primitive root of themultiplicative groupF
∗
q . Since c

2|q−1, we can consider

gi = α
i (q−1)

c2 , and fi = α
−i(q−1)

c x
q−1
c2 , i = 0, . . . , c − 1. Now, every element of F

∗
q can be

written as αr ,s = αlc2+rc+s for some 0 ≤ s, r < c, and certain integer l. Then

fr (αr ,s) = α
−r(q−1)

c (αlc2+rc+s)
q−1
c2 = α

s(q−1)
c2 = gs,

proving the result. ��

Corollary 2 For any p and c there exist infinitely many integers e so that for q = pe the non

extended Reed-Solomon code over Fq of distance d = q −
[
q
c2

]
− 1 is not c-SEP.

Proof Simply note that by Euler’s theorem pϕ(c2) ≡ 1 (mod c2), so the result follows for
any e = kϕ(c2), k ∈ N, applying the previous theorem. ��

6 The “linear” case d = q− 1

The case presented in this section is already dealt with, in Corollary 1. We include it here,
because the proofs might provide new ways to approach a complete solution to the problem.

The first result we prove is a straight forward application of the following theorem of J.
Cilleruelo in [7].

Theorem 10 ([7], J. Cilleruelo) Let α be a generator of F
∗
q . Then

{αi − α j : 0 ≤ i, j ≤ 2q3/4} = Fq .

Now, we have

Theorem 11 Let c ≥ 2q3/4. Then, the [n, k, d] extended Reed Solomon codes over Fq and
distance d = q − 1 are not c-SEP.

Proof Let us first note that, since c ≥ 2q3/4, then c2 > q and then q − [q/c2] − 1 = q − 1.
So we take d = q − 1 as distance of the code. This means that we need to find two sets of
polynomials of size c each, with all polynomials of degree at most 1, such that

{ f1(α), . . . , fc(α)} ∩ {g1(α), . . . , gc(α)} �= ∅
for any α ∈ Fq . As already mentioned, this is the same as (3), with r = s = c. Now, let α be
a generator of F

∗
q , and consider fi = x − αi , gi = −αi , for i = 1, . . . , c. It follows that,

∏

1≤i, j≤c

( fi − g j ) =
∏

1≤i, j≤c

(x − (αi − α j ))
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and by the previous theorem we trivially have

(xq − x)

∣
∣
∣
∣
∣
∣

∏

1≤i, j≤c

( fi − g j ).

Observe that in this case deg( fi ) = 1 while deg(gi ) = 0 so they can not be equal. ��
But we can make it better.

Theorem 12 Suppose that q−1 = rs such that (r , s) = 1 and suppose c > max{r , s}. Then,
[n, k, d] extended Reed Solomon codes with distance d = q − 1 over Fq are not c-SEP.

Proof Let q − 1 = rs such that (r , s) = 1, α a generator of F
∗
q and consider the sets

A = {1, αr , . . . , αr(s−1)} and B = {1, αs, . . . , αs(r−1)}. Then, all the quotients a/b with
a ∈ A and b ∈ B are distinct. Indeed, suppose αri/αs j = αr I /αs J . Then αr(i−I )−s( j−J ) = 1
but, since α is a generator, this is only possible either if r(i − I ) − s(J − j) = 0 or else if
(q − 1)|r(i − I ) − s(J − j). In any of the two cases, since r |q − 1, we have r |s(J − j) and
since (r , s) = 1, then r |(J − j) but this is impossible, since |J − j | < r , unless J = j , and
then i = I .

Now, consider polynomials fi = αri x , g j = αs j with 0 ≤ i ≤ s − 1 and 0 ≤ j ≤ r − 1.
We can do that since max{r , s} < c. By the previous argument, the roots of fi − g j are all
distinct and we have rs = q − 1 distinct roots. Since r < c we can just add the root missing
by adding a polynomial gr = 0, and again the proof follows by (3).

Observe that, since c > s, then c2 > rs = q − 1, and we can suppose c2 > q
since the case c2 = q is already proved, (see Theorem 2 in [14]). So [q/c2] = 0 and
the correct distance is d = q − 1, so we in fact have to consider linear polynomials.

��
Note that, any q a power of a prime except q = 9, verifies the condition q − 1 = rs

with (r , s) = 1. Indeed, if not r and s would be powers of the same prime l, but then
q − 1 = pr − 1 = le. By the proof of Catalan ’s conjecture, we know that qx − py = 1 only
in the case 32 − 23.

The previous theorem improves Theorem 11 when q is an even power of a prime. Indeed,
in the case inwhich q = p2t , then either (pt−1)/2 is odd or (pt+1)/2 is odd.Without loss of
generality, assume (pt −1)/2 is odd. Then, we can take r = (pt −1)/2 and s = 2(pt +1) and
so s ≤ 4r+4. Therefore, q−1 = rs ≤ 4r2+4r or q ≤ 4r2+4r+1 = (2r+1)2 which gives
r ≥ (

√
q−1)/2. Then, q−1 = rs ≥ ((

√
q−1)/2)s which gives s ≤ q−1

(
√
q−1)/2 = 2(

√
q+1).

Hence, since Theorem 12 assumes c > s then for any c > 2(
√
q + 1) we have that Reed

Solomon code with distance d = q − 1 over Fq are not c-SEP, improving Theorem 11.
In general, the theorem provides a general bound on c, depending on the factorization of

the exponent. However, in the case of a sophie germain prime, q − 1 = 2p where q and p
are primes, then Theorem 12 only gives c ≥ q/2.

7 Conclusion

The aim of the paper, is to find out whether or not there exist values of the minimum distance
for which a Reed-Solomon is c-SEP but not c-TA. We start the presentation by considering a
sufficiently small value of the minimum distance. For this much convenient value, we prove
that codes do not posses the separating property. For cases c = 2 and c = 3, we improve
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this almost naive result by introducing to our discourse both polynomial interpolation and
Bezout’s identity.

The approach for case c = 3 does not generalize to larger values of c. In order to deal
with the general case, we resort to the structure of Fq , the finite field over which the code
is defined. This allows us to prove an assertion for all c, whenever q ≡ 1 (mod c2). Along
the same line of reasoning, we provide an alternative proof of existing results by applying an
elegant theorem concerning the generator of the multiplicative group of Fq .

Our presentation shows that for the general case, a constructive proof is by no means
trivial. This is because, when using the structure of the field defining the code one can not
encircle all cases and cases without “structure” do not seem to follow any common pattern.
So, although the problem is algebraic in nature, it seems that an existence proof could be
considered.

Finally, to put our contribution into perspective, we present a list of families of [n, k, d]q
Reed-Solomon codes, both from existing literature and this paper, for which Question 2 is
answered.

– Previous works

– Maximum minimum distance, d ≤ n − n
c2
.

• If c2 ≥ q − 1. Corollary 2 in [14].
• If c|q . Theorem 2 in [14].
• If k − 1|q − 1. Theorem 6 in [9].

– This paper

– Maximum minimum distance.
• If d = q − q−1

c2
− 1 and q ≡ 1 (mod c2). Theorem 9.

• If d = q − q−1
c2

− 1, for any p and c, there exist infinitely many integers e for
which we can take q = pe. Corollary 2.

• If d = q − 1 and c ≥ 2q3/4. Theorem 11.
• If d = q − 1 and q − 1 = rs with (r , s) = 1 and c > max{r , s}. Theorem 12.

– Conditions on the minimum distance.
• If d ≤ q − q

c
and c ≥ 2. Theorem 5.

• If d = q − [ q
3

]
and c = 2. Theorem 6.

• If d < q − 2
[ q
8

]
and c = 3. Theorem 7.

• If d < q −
[

q
2c−1

]
and c ≥ 2. Theorem 8.
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