
Theta-Scan: Leveraging Behavior-Driven Forecasting
for Vertical Auto-Scaling in Container Cloud

Josep Lluis Berral†, David Buchaca†, Claudia Herron‡
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya†, Universitat Pompeu Fabra‡

{josep.berral, david.buchaca, claudia.herron}@bsc.es

Chen Wang, Alaa Youssef
IBM Research

Yorktown Heights, NY
Chen.Wang1@ibm.com, asyousse@us.ibm.com

Abstract—Detection of behavior patterns on resource usage
in containerized Cloud applications is necessary for proper
resource provisioning. Applications can use CPU/Memory with
repetitive patterns, following a trend over time independently.
By identifying such patterns, resource forecasting models can
be fit better, reducing over/under-provisioning via fewer re-
sizing operations. Here we present ThetaScan, a time-series
analysis method for vertical auto-scaling of containers in the
Cloud, based on the detection of stationarity/trending and
periodicity on resource consumption. Our method leverages
the Theta Forecaster algorithm with deseasonalization that, in
our provisioning scenario, only requires the estimated period-
icity for resource consumption as principal hyper-parameter.
Commonly used behavior detection methods require manual
hyper-parameter tuning, making them infeasible for automa-
tion. Besides, it can be used at multi-scales (minute/hour/day),
detecting hourly and daily patterns to improve resource usage
prediction. Experiments show that we can detect behaviors
in resource consumption that common methods miss, with-
out requiring extensive manual tuning. We can reduce the
resizing triggers compared to fixed-size scheduling around
∼ 10%− 15%, reduce over-provisioning of CPU and Memory
through periodic-based provisioning. Also a ∼ 60% on multi-
scale resource forecasting for traces showing periodicity at
different levels in respect to single-scale.
Index Terms—Cloud Native; Machine Learning; Container;
Auto-scaling; Stationarity Detection; Periodicity Detection;
Time series Forecasting; Theta Forecaster

1. Introduction

Understanding resource usage behaviors for better re-
source usage prediction is critical for proactive resource
provisioning. Resource requirement from services and user-
depending applications might change along time, and such
changes might be gradual or sudden, making easier or
harder to predict such consumption behaviors. Optimizing
container resource allocation (e.g., CPU, Memory) requires
accurate usage forecasting methods, which may vary for
workloads with different usage behaviors, to prevent CPU
throttling and container Out-Of-Memory evictions while
avoiding over-allocating resources.

Numerous studies have focused on resource prediction
using statistical modeling and learning, but automating the
detection of stationary, trending or periodic patterns is still
a challenge. Even more when detection must be com-
bined with resource usage forecasting methods to auto-scale
containers in large-scale Cloud environments, as current
methods require hyper-parameter tuning. Such reliance on
manual tuning impedes its applicability to auto-scaling, re-
quiring tuning for applications with different resource usage
behaviors. Also, usage patterns can occur at different time-
scales. Fast-changing patterns are hard to catch at a large
scale, or gradual long-term ones at a small scale, requiring
detection at multiple scales.

In this paper, we present Theta-Scan, a method to detect
and forecast behavior patterns on CPU/Memory demand in
containerized applications at different time scales for con-
tainer vertical autoscaling. Traditional forecasting methods
usually show unsatisfactory accuracy on containers with pe-
riodic patterns, as they require an appropriate time window
for forecasting, which is hard to know before detecting their
cycle. Our method is based on the deseasonalized Theta
Forecaster algorithm, a time-series method that only requires
the observation window and the expected periodicity as
parameters for a prediction. Theta-Scan is in charge of
finding the cycle from the observed window, indicating
stationarity/trending/periodic patterns, and obtaining a fore-
caster model without additional computational cost.

The contributions of this work are the following:

• We propose Theta-Scan, an online detection method
to discover stationarity, trending, and periodic be-
haviors on resource consumption in containerized
applications.

• We implement a resource provisioning method based
on behavior-driven resource usage forecasting, par-
ticularly effective for periodic patterns, with a multi-
time-scale approach (minute/hour/day).

• We employ a dynamic time window for auto-scaling
to reduce container resizing operations, using the
detected periodicity as reference.

• We compare our method to detect patterns against
existing ones, revealing the obstacles of each one
towards the required automation for auto-scaling.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. DOI 10.1109/CLOUD53861.2021.00054



The method is evaluated on the traces of container-
ized applications from the IBM Cloud Services for CPU
and Memory consumption. Our method is agnostic of the
type of resource, thus applicable to other resource types
such as network or I/O utilization. Experimentation results
show that our methodology identifies stationary and periodic
traces successfully as classic methods do, which requires
additional manual tuning not to miss specific periodic pat-
terns. Also, periodicity detection helps to reduce the number
of forecasting and resizing triggers by around 10%-15%
on containers where frequent resizing is highly needed
(≤ 1hour). Finally, through multi-scale forecasting, we
can reduce the under-provisioning by ∼ 60% compared to
provisioning using single time-scale forecast models.

2. Related Work

Time series pattern detection has been an active area of
research during the last decade. St-Onge et al. [1] propose an
offline workload periodicity detection algorithm, based on
prefix transposition, capable of identifying periodic cycles
in the CPU and throughput workload when the lengths and
amplitude of the patterns are dynamic. Elfeky et al. [2] show
a convolution-based algorithm focusing on segment period-
icity and symbol periodicity, while considering the whole
time-series. Furthermore, Rasheed et al. [3] presented a
suffix tree-based noise resilient algorithm that detects all the
periodicity types and also multiple symbol patterns. These
methods focused on identifying periodic patterns while our
work, apart from detecting the potential period, uses it to
forecast future resource usage. In addition, they consider
discrete-value time-series while we assume continue-valued
time-series, dealing with a large number of potential inputs.
Also, Zhang et al. [4] developed a pattern-sensitive resource
scheme that chooses the most suitable prediction method
based on the detected pattern by using the Fast-Fourier
Transform (FFT). However, FFT does not always succeed
in detecting the optimal period.

About resource autoscaling in the Cloud using ML,
Google’s AutoPilot [5] is a state-of-art autoscaling method
that estimates resource demands from statistics in the pre-
vious time window, showing good accuracy on stationary
resource usage. However, it still fails to proactively adjust
the provision for sudden changes of CPU/Memory demands.
Other works propose load predictors based on the request
arrivals, including regression and ARMA/ARIMA methods,
i.e., Roy et al. [6], Yang et al. [7] and Calheiros [8]. These
methods are well known for time-series, including trending
and seasonality. However, such models do not fit well with
irregular behaviors and sudden pattern changes. Finally,
works like Berral, Buchaca et al. [9] [10] propose models
to learn and predict higher-abstraction patterns like ”phases”
on resource consumption. Our work focuses on identifying
stationary, trending, and recurring behaviors directly from
resource usage in an online fashion without fully character-
izing applications.

Our presented method leverages a time-series model, the
Theta Forecaster introduced in [11] and [12], for automatic

stationarity, trending, and periodicity detection, and resource
demand forecasting. The Theta Forecaster implementation
here used is a Simplification of the Exponential Smooth-
ing [13] (aka Holt-Winters or SES) with detrending and
deseasonalization. Having as input the time-series and a
potential period, the time-series is 1) deseasonalized by re-
moving the average ”period” pattern along the series, 2) de-
trended by performing a period-by-period linear-regression,
and removing the trend at each period, and 3) fitted a SES
to learn the drift of the series. The model stores the SES,
the average period pattern and the series trend. The SES is
used then to forecast the drift for next steps, then the trend
and period pattern are introduced again, returning in result
the forecast for that series.

3. Methodology

This paper presents Theta-Scan, a forecasting technique
focused on predicting resource usage behavior on container-
ized applications, where resource usage exhibits periodic
patterns to provision such resources proactively. Here, high
accuracy on forecasting is not as crucial as upper/lower-
bound prediction on resources, usually depending on hard-
to-capture cyclical trends. Our method goes through three
steps: detecting time-series behavior, forecasting based on
detected behaviors and refining the prediction with behavior-
driven multi-scale forecasting.

3.1. Behavior Detection

When managing a resource (CPU/Mem/...), we are in-
terested in its predictability towards the future. We consider
a time series ”periodic” when it has a recurring pattern
repeated at least twice. We consider a time-series ”station-
ary” when its statistics do not change much over time,
and we consider a time series ”trending” when its first-
order difference is constant or the time series increases
with a defined slope (also with some noisy variation). Such
differences in behaviors will determine how we forecast
container consumption towards auto-scaling.

Periodicity Detection. We want to detect the recurring
resource usage patterns on containers, then forecast such
usage for the next period rather than a predefined time
window to finally adjust their provisioning. To identify such
behavior, we look for periodicity in resource consump-
tion. Many methods for periodicity detection require ei-
ther human supervision, interpretation, or none-fit-all hyper-
parameter tuning, preventing them from full automation.

Here we introduce the Theta-Scan Algorithm (THS),
whose objective is to determine the period of an observed
time window, based on the Theta Forecaster (deseasonalized
SES) that only requires the expected period as input. Con-
sidering an observed window with the resource consump-
tion [XT−N . . . XT ] where N = length(window), such
window is split into training/test sets: the training set is the
first N−ntest values and the test set is the last ntest values.
Given the training segment and a potential period, the Theta
Forecaster will attempt to forecast the test segment. To find



Algorithm 1: The Theta-Scan algorithm
best model, best period, errors list = null;
best error = ∞;
for i in 2 . . . bntrain/2c do

model = fit (data = training set, period = i);
results = predict (model = model, steps = ntest);
error = evaluate (results, test set);
if error < best error then

best model, best period = model, i;
best error = error;

end
errors list = errors list ∪ error;

end
return (best model, best period, errors list);

the period, we scan a range of potential periods, i.e., from
2 . . . bntrain/2c, and that one achieving the lowest Mean
Absolute Error (MAE) is considered the expected period.
Algorithm 1 shows the algorithm for Theta-Scan, consider-
ing that fit() fits a Theta Forecaster, predict() forecasts the
indicated n steps from the last training point in the model,
and evaluate() returns the MAE. As long as the training set
is bigger than two times of (and the testing set equals to) the
actual periodic cycle, the algorithm should be able to detect
the period. Once we detect the periodicity, we can forecast
resource usage using that period as the forecasting window.
Also, we can use the fitted model in Theta-Scan ”for free”,
while other preferred time-series forecasters could be used
fitting them with the detected period as forecasting window.

Stationary Detection. Containers showing periodic pat-
terns with maximum and minimum values of resources not
far from the mean can be treated as stationary because no
container resizing actions are needed. A commonly used
test for stationarity is the Augmented Dickey-Fuller test
(ADF). ADF test detects series with periodic patterns as
non-stationary and returns the p–value indicating the likeli-
hood of being stationary. However, when testing this method
on CPU/Memory traces, it shows a high False Negatives as it
gets fooled by fluctuations or noises. Nevertheless, the ADF
test can be used as a reference to evaluate our method.

When using Theta-Scan, we expect a stationary trace
will not have the best period to be found, as the variance of
errors for different scanned periods should be very low. The
ThetaScan method returns the Best Model to be used for
forecasting, the corresponding Best Period for the dynamic
window, and a vector of obtained errors for each candidate
period. When the error variance is below a certain threshold
(e.g., experimentally < 10−5), we consider stationarity.
Notice that non-stationarity does not imply periodicity. By
selecting a history window to fit a model, THS can select
the best fitting window rather than a randomly chosen one.

Trending Detection. For trending detection in time
series, as the Theta Forecaster model already fits the slope
for the next window, it provides information of whether the
trace will grow on the next step. There is no need to apply
additional trending detection methods.

Algorithm 2: Behavior-driven forecast algorithm
series: resource consumption time-series
default step: minimum resize time-span
n: observation window size
t = n;
while t < len(series) do

w = series [t− n . . . t];
〈b model, b period, errors〉 = ThetaScan (w);
stationary = var(errors) > threshold;
if not stationary then

step = b period;
model = b model;

else
step = default step;
model = fit (data = window, period = step);

end
forecast = predict(model = model, steps = step);
t = t + step;

end

3.2. Behavior-Driven Forecasting

CPU and memory resource usage is monitored for a
containerized application, , producing a time series of the
current application behavior. We attempt to detect periodic
behavior before forecasting to prevent frequent model re-
fittings and unnecessary triggers of container resizing when
a pattern is recurring. Moreover, the periodicity detection
helps us better fit the Theta forecaster. Algorithm 2 describes
the procedure to fit a theta forecaster based on scanning over
different period values. Notice that we do not recompute the
moving window w = series[t− n . . . t] at every time step.
We want to avoid the high cost of frequent model fitting
when there is periodicity detected in the time series, and the
selected best Theta model can accurately predict elements
in the next time window w. Figure 1 shows the workflow
of the ThetaScan given a resource consumption trace.

Figure 1: Diagram of the ThetaScan Algorithm

Note that the previous algorithm has two hyper-
parameters, the default step referring to the minimum time
interval for one resizing operation and the observation win-
dow size. In our environment, application containers run for
minutes, hours, days, and weeks.



3.3. Multi-scale Forecasting

Applications might contain periodic behaviors at dif-
ferent time scales, and processing the observed metrics at
different scales allows us to perform the periodicity and
stationarity detection at varied time scales. We aggregate
the elements in w by their maximum value. This decision
favors over-provisioning against under-provisioning to avoid
Out-Of-Memory evictions and CPU Throttling. Note that
aggregating with the maximum implies that higher time-
scales will tend to be more generous on resource providing,
and lower ones will under-provision more often. The main
challenge here is to choose the best time scale for prediction.

We adapt our predictions at different time scales with a
simple rule-based mechanism. We use different forecasters
at each time scale, fm for minutes, f30m for half hours,
fh for hours and fd for days. Each forecaster makes pre-
dictions (one per time-scale), and the best one predicting
the last values in W is selected. When predicting series
at different time scales, lower-scale forecasters are more
accurate than higher-scale forecasters when fitting the same
model. However, making container resizing decisions based
on predictions at a small time scale might introduce too
many resizing operations, which is costly and unnecessary.

4. Experiments

The following experiments evaluate our method, first by
comparing it with other used methods for stationarity and
periodicity detection, and second by evaluating its capacity
to forecast and allocate resources against default methods.
The used workload are real traces from the IBM Cloud
Services, from ∼300 executions of hours to weeks of length,
with a metric sampling rate of 15 seconds. For some ex-
periments, we have also manually generated some traces
to produce extreme scenarios (e.g., overlapping of periodic
patterns at different time scales) towards testing the method
with non-trivial behaviors.

4.1. Evaluation Metric

Evaluating a forecasting method using traditional error
metrics (MAE, SME, etc.) works for scenarios favoring the
average usage. But here we want to assesses the over/under-
provisioning trade-off through two metrics: the percentage
of time the resource manager has provisioned a container
above/under its demand and the accumulated resources
over/under-provisioned over time, shown in Equation 1.

Container provisioning requires allocating at least
the required resources needed while minimizing over-
provisioning. Under-provisioning a container produces
CPU throttling (degrading application progress) and Out-
Of-Memory errors (OOM, killing the container). Over-
provisioning resources waste unused resources that other
containers could use. Note that applications with sudden
bursts might become unpredictable unless there is peri-
odicity detected, and resource provisioning methods will

always fail to provision without prohibitive high margins.
We consider these cases as outliers in our scenario.

over prov =
∑
t

max(Resprovt −Resreqt , 0)

under prov =
∑
t

max(Resreqt −Resprovt , 0)
(1)

4.2. Evaluation of Behavior Detection Methods

Stationarity Detection. Here we compare the classic
Augmented Dickey–Fuller (ADF) method with our sta-
tionarity detection method. We use both methods over
CPU/MEM traces and compute the false negatives/positives
observed. Figure 2 shows the agreement between both meth-
ods, where both methods agree in half of the series. Since we
do not have the ground truth of the ”periodic” behaviors, we
manually inspected traces where both methods disagree on
the stationarity behavior. We observed that ADF-Stat/THS-
NonStat traces, ADF considers the average trend station-
ary and can not detect long periodic patterns. From those
traces, in more than 75% the CPU is constant or with
Memory variation lower than 100MB, low enough to be
ignored for autoscaling. Also, those traces considered ADF-
NonStat/THS-Stat have a slight slope or are step-wise traces,
displaying long stationary steps.

THS (CPU)
ADF↓ Stat NoStat
Stat 102 68
NoStat 31 61

THS (MEM)
ADF↓ Stat NoStat
Stat 83 11
NoStat 134 34

Figure 2: Confusion matrices for stationary detection of
CPU and Memory, in number of analyzed containers

Periodicity Detection. We have evaluated our periodic-
ity detection method against the classical Auto-Correlation
(AC) [14]. Such a method shows the similarity between the
original time series and a delayed time series. Figure 3
compares the periods detected (with a maximum of 500
steps) using AC against our method, and we observed that
most of the periods found by AC are longer than the given
maximum. To be specific, in many examples, AC considers
as period the entire length of the trace. For THS, detected
periods are distributed across the different ranges. We have
also experimented with Fast Fourier Transform (FFT) [15]
to find periodicity, using high FFT frequency values as
candidates of periodicity, and we found similar behaviors
as with AC. Again, the best candidates given by FFT are
usually the length of the whole time series.

4.3. Evaluation of Prediction for Resource Demand

Next, we evaluate different forecasting methods for con-
tainer resource autoscaling by measuring the over/under-
provisioning. We choose an observation window always at
a larger time scale than the forecasting window, e.g., if we
forecast a minute, the observation window is an hour, and
for hourly forecasting, the observation window is a day.



0 100 200 300 400 5000

10

20

30

40

50

60
AutoCorrelation Periods

0 100 200 300 400 5000

5

10

15

20

25

ThetaScan Periods

Figure 3: Histogram comparison of periods found in the
data, for 300 analyzed containers

As default-step for forecasting, we choose 1/6th of the
observation window W . THS can find periods at a maximum
1/3rd of W , and we select 1/2 of that length to minimize
the risks of missing periodicity.

Dynamic vs. fixed forecasting window. We compare
the period-based dynamic size forecasting window against
always using a default-sized window, fixing the default
size as the minimum window. Figure 4 shows how the
dynamic window triggers fewer resizing operations for short
time scales than the fixed-window policy. Also, over/under-
provisioning remains similar for both methods, considering
results ”good enough”. For 30-minutes and 1-hour periods,
we reduce the number of CPU resizing between 10% and
15%; while we increase an 18% in 3 to 6-hour periods, that
in such time-scale it means only 1 or 2 additional resizing
per application. While for Memory, we reduce them between
10% and 13% in 30-minute and 1-hour periods and increase
them a 3% for 3 to 6-hour periods.

30-Minute Hourly 3-Hourly 6-Hourly
0

100

200

300

400

500

600

Nu
m

. o
f E

va
lu

at
io

ns
/R

es
ize

s Evaluations/Resizings of CPU
Period-based
Default Step-based

30-Minute Hourly 3-Hourly 6-Hourly
0

100

200

300

400

500

600

Nu
m

. o
f E

va
lu

at
io

ns
/R

es
ize

s Evaluations/Resizings of Memory
Period-based
Default Step-based

Figure 4: Number of times we evaluate and resize container,
guided by period-detection vs. the default time-step

Comparison of forecasting methods. Here we compare
the THS to popular forecasting methods to avoid fitting com-
plex and costly models repeatedly. These methods include
time-series K-NN (KN), Linear Regression (LR), Naı̈ve
prediction (NV), and a simple heuristic (denoted as Max)
that returns the maximum usage in the previous window
as the forecasting value. Under and over-provisioning are
used as quality metrics, and it is more important to avoid
under-provisioning than over-provisioning. Other methods
like SARIMA are compared. Although they perform sim-
ilar to THS, they show high complexity and difficulty for
automation and execution times ×30 compared to THS.

Figure 5 shows the comparison of the different methods.
Results are similar for the TH, KN, and LR, and accumu-
lated under-provision is in acceptable limits compared to
over-provisioning amounts, even more in hourly resizing.
Please note the 1:1000 scale difference on the figure, where

0

5000000

10000000

15000000

20000000

25000000

30000000

CP
U 

(m
illi

co
re

s)

Avg. Over-provisioning CPU per Hour

0

250000

500000

750000

1000000

1250000

1500000

M
EM

 (K
Bs

)

Avg. Over-provisioning MEM per Hour

30-Minute Hourly 3-Hourly 6-Hourly
0

20000

40000

60000

80000

100000

CP
U 

(m
illi

co
re

s)

Avg. Under-provisioning CPU per Hour

30-Minute Hourly 3-Hourly 6-Hourly
0

2000

4000

6000

8000

10000

12000

14000

M
EM

 (K
Bs

)

Avg. Under-provisioning MEM per Hour
Max
KN
Theta
LR
Naive

Figure 5: Accumulated Over/Under-provision obtained from
using different forecasting methods (on regular workloads)

the over-provisioning reduction in memory is ×100 the
under-provisioning gain in the worst scenario (30-minute).
For some specific workloads, i.e., step-wise ones, we ob-
serve some differences between methods. THS and LR tend
to over-provision on higher time scales, unlike Max, KN,
and NV. From these results, it is preferred to use the previous
window maximum in forecasting-based provisioning.

4.4. Evaluations of Multi-Scale Behavior Methods

We evaluate the method at multiple time scales to detect
different periodic patterns, e.g., if periodicity occurs both
hourly and daily. For such test, we took traces with a
known ∼11-minute period and added a four-hour periodic
pattern on top, then performed periodicity detection with
two forecasters fm and f30m fitted with a minute and half-
hour scales Detection at minute-scale finds a mean period
µ = 12.9 and standard deviation σ = 8.9 for an actual 11-
minute period, observing that some detections correspond
to period ×2 (22-minute periods are detected). Detection at
30-minute-scale finds a mean period µ = 7.8 (3.9 hours) and
a standard deviation σ = 0.7 (20 minutes) from the 4-hour
pattern. Figure 6 shows that in both forecasting scales, the
sequences fit by guiding the Theta Forecaster with the de-
tected periods. The third sub-figure shows how higher-scale
aggregation using “max” produces a conservative forecast
preventing CPU-Throttling and OOM errors (green line) by
losing the precision offered by more fine-grained forecasting
(orange line). In real scenarios, a per-minute resizing is
infeasible, and a larger scale becomes preferable.

4.5. Combined Multi-Scale for Provisioning

Finally, we evaluate the error and over/under-
provisioning with different time-scale patterns, predicting
using the two different scales vs. combining them. Table 1
shows how smaller time-scales (hourly) adjust more to
resources than larger ones (daily), but when combined,
the error is slightly reduced compared to single time-scale
forecasting. Also, Table 2 shows how, when we combine
time-scale forecasts, we reduce under-provisioning between
58% and 64% (for CPU and Memory) compared to
the hourly time-scale forecasting while maintaining the



0 1000 2000 3000 40000.2

0.4

0.6

0.8

1.0

By
te

s (
x1

e9
)

1e9 MEM consumption in minute granularity
real consumption
predicted by minute

0 10 20 30 40 50 60 70
0.4

0.6

0.8

1.0

By
te

s (
x1

e9
)

1e9 MEM consumption in half hour granularity
real consumption
predicted by half-hour

1450 1475 1500 1525 1550 1575 1600 1625

0.4

0.6

0.8

1.0

By
te

s (
x1

e9
)

1e9 Zoom of combined MEM consumption in minute granularity
real consumption
predicted by minute
predicted by half hour

Figure 6: Provisioning at different time-scales (minutes and
half-hours), and zoom on the red-marked region.

Error Hour Error Day Error Combined
CPU 0.004354 0.009777 0.003662

Memory 0.006078 0.010314 0.005266

TABLE 1: Relative MAE per Hour on demand vs. prediction, for
Hourly and Daily forecasting (average ratio)

Ov CPU Un CPU Ov MEM Un MEM
Hourly 0.002910 0.001444 0.004271 0.001807
Daily 0.009562 0.000215 0.010302 0.000012

Combined 0.002892 0.000770 0.004406 0.000860

TABLE 2: Average ratio of Over/Under-provisioning (missed
millicores and KBs) at Hourly scale

over-provisioning. Notice that the daily forecasting could
reduce even more under-provisioning but by doubling
over-provisioning as expected. E.g., Figure 7 shows a zoom
of execution with hourly and daily periodicity, provisioning
according to our multi-scale policy.

10000 10250 10500 10750 11000 11250 11500 11750 12000
Execution Time

1.0

1.2

1.4

1.6

1.8

2.0

CP
U 

(m
illi

co
re

s *
 1

e1
0)

1e10 Dynamic Provision by Multi-Scale Resource Prediction

real consumption
hour prediction
day prediction
provisioned

Figure 7: Example of hourly and daily CPU forecasting,
selecting the t− 1 best forecaster for provisioning

5. Conclusion

This paper presented ThetaScan, a methodology for
autoscaling of containerized applications. We can auto-scale
applications using a dynamic time window instead of a fixed
time window for triggering container resizing by detect-
ing periodicity or stationarity/trending. Such an approach
reduces the number of resizing without skipping potential
patterns in resource consumption. In addition, we detect
periodicity and stationarity to forecast resource usage at
different time scales, taking seasonality at different scales
into account and reduce over and under-provisioning. We
evaluated our method against classic behavior detection
methods, compared different machine learning methods for
forecasting after behavior detection, and evaluated our multi-
scale forecasting process showing a reduction of under-
provisioning when forecasting at multiple time scales in-
stead of a single scale. The presented multi-scale method-
ology is applicable to handle the challenging problems of
resizing Containers in Cloud scenarios.

Acknowledgments. This work has been partially supported by
the Spanish Government (contract PID2019-107255GB) and by
Generalitat de Catalunya (contract 2014-SGR-1051).

References
[1] C. St-Onge, N. Kara, O. A. Wahab, C. Edstrom, and Y. Lemieux,

“Detection of time series patterns and periodicity of cloud computing
workloads,” Future Generation Computer Systems, vol. 109, 2020.

[2] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Periodicity
detection in time series databases,” IEEE Transactions on Knowledge
and Data Engineering, vol. 17, no. 7, pp. 875–887, 2005.

[3] F. Rasheed, M. Alshalalfa, R. Alhajj, and A. Member, “Efficient
Periodicity Mining in Time Series Databases Using Suffix Trees,”
vol. 23, no. 1, pp. 79–94, 2011.

[4] F. Zhang, J. Wu, and Z. H. Lu, “PSRPS: A workload pattern sensitive
resource provisioning scheme for cloud systems,” in Proceedings -
IEEE 10th International Conference on Services Computing, SCC
2013, pp. 344–351, 2013.

[5] K. Rzadca and et al, “Autopilot: Workload autoscaling at google,” in
EuroSys conference, EuroSys ’20, ACM, 2020.

[6] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in IEEE Intl. Conf.
on Cloud Computing, pp. 500–507, 2011.

[7] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, “Workload predicting-
based automatic scaling in service clouds,” in 2013 IEEE Sixth
International Conference on Cloud Computing, pp. 810–815, 2013.

[8] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications’
qos,” IEEE Transactions on Cloud Computing, vol. 3, no. 4, 2015.

[9] J. L. Berral, C. Wang, and A. Youssef, “AI4DL: Mining behaviors of
deep learning workloads for resource management,” in 12th USENIX
Workshop HotCloud, 2020.

[10] D. Buchaca, J. L. Berral, C. Wang, and A. Youssef, “Proactive
container auto-scaling for cloud native machine learning services,”
in 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD), pp. 475–479, 2020.

[11] V. Assimakopoulos and K. Nikolopoulos, “The theta model: a de-
composition approach to forecasting,” International Journal of Fore-
casting, vol. 16, no. 4, pp. 521–530, 2000. The M3- Competition.

[12] R. J. Hyndman and B. Billah, “Unmasking the theta method,” Inter-
national Journal of Forecasting, vol. 19, no. 2, pp. 287–290, 2003.

[13] C. C. Holt, “Forecasting seasonals and trends by exponentially
weighted moving averages,” International Journal of Forecasting,
vol. 20, no. 1, pp. 5–10, 2004.

[14] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and
structural periodic similarity,” Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining, SDM 2005, 2005.

[15] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Cal-
culation of Complex Fourier Series,” Mathematics of Computation,
vol. 19, no. 90, p. 297, 1965.


