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We report two-dimensional simulations and analytic results on the effect of the inclination on the transient
heat transfer, flow, and melting dynamics of a Phase Change Material within a square domain heated
from one side. The liquid phase has Prandtl number Pr = 60.8, Stefan number Ste = 0.49 and Rayleigh
numbers extend over eight orders of magnitude 0 ≤ Ra ≤ 6.6 · 108 for the largest geometry studied. The
tilt determines the stability threshold of the base state. Above a critical inclination, there exists only a
laminar flow at the melted phase, irrespective of the Rayleigh number. Below that inclination, the base
state destabilizes following two paths according to the inclination: either leading to a turbulent state for
angles near the critical inclination or passing through a regime of plume coarsening before reaching the
turbulent state for smaller angles. We find that the Nusselt and Reynolds numbers follow a power law as
Nu ∼ Raα, Re ∼ Raβ in the turbulent regime. Small inclinations reduce very slightly α and strongly β.
The inclination leads to subduction of the kinematic boundary layer into the thermal boundary layer. The
scaling laws of the Nusselt and Reynolds numbers and boundary layers are in agreement with different
results at high Rayleigh convection. However, some striking differences appear as the stabilization of
turbulent states with further increasing of the Rayleigh number. We find as well that the turbulent regime
exhibits a higher dispersion in quantities related to heat transfer and flow dynamics on smaller domains.

I. INTRODUCTION

Phase Change Materials (PCM) exploit the latent heat of phase change to store large amounts of heat during
its fusion or release it to its environment during the inverse solidification process. Historically, they have been a
subject of interest in engineering due to their usage in thermal energy storage and management1,2. However, the
behaviour of the liquid phase has received considerably less attention in the fluid dynamics literature despite the
close relations with the classic problem of Rayleigh-Bénard convection (RB). Thus, it has been found how PCM
melted from below can reach a turbulent state with similar scaling laws for the Nusselt number (Nu ∼ Ra0.29) and
thermal and kinematic boundary layers (δT /h ∼ Ra−0.29 and δu/h ∼ Ra−0.16 respectively) as in high Rayleigh
convection despite the different transition to turbulence and moving domain3.

The inclination of the domain changes the symmetries of the flow and alters the heat transfer and flow dynamics
rectangular enclosures heated from one side filled with PCMs of moderate to high Prandtl numbers (paraffin,
lauric acid, or n-octadecane) shows no tilt for optimum heat transfer4–9. These works have been carried out only
for a small set of inclinations, usually in steps of 45◦ or 30◦, without enough resolutions to discern the effect of
small inclinations. More involved configurations with homogeneous heating in the enclosure show θ = 60◦ as the
optimum angle10, or configurations with a constant flux of heat on a side in experiments to cool photovoltaic cells
show θ = 45◦ as the optimum angle11 within a set of three angles. In simulations with a very low Prandtl, as in
gallium melting, no inclination has been as well reported as favourable12.

The scarcity of works on inclined PCM melting contrasts with the interest in heat transfer and flow dynamics
in tilted geometries in the closely related Rayleigh-Bénard problem. It has been found that in horizontal heating
(θ = 90◦), as opposed to vertical heating (θ = 0◦), there is not a closed relation between kinematic and thermal
dissipation with the Nussetl, Rayleigh and Prandtl numbers13. Convection in the presence of melting shares that
feature at any tilt, as discussed next in the text. The effect of the inclination on the heat transfer and dynamics of
convective flows have been measured and simulated mainly in rectangular and cylindrical geometries. Experiments
and direct numerical simulation (DNS) of turbulent thermal convection for low Prandtl fluids shows that the highest
heat transfer occurs after setting a large-scale circulation flow through the inclination of the cell. This inclination
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does not correspond to the classic cases of vertical or horizontal heating. Furthermore, for low Pr . 1 this angle
provides a single maximum for Nu(θ), and for greater inclinations, Nu(θ) exhibits a monotonous decay14–18. At
intermediate and high Pr, the influence of the tilt on the heat transfer seems to be more involved. Increasing the
tilt pushes the turbulent threshold to higher Ra at high Prandtl numbers19. Thus, while a similar relation between
Nu and tilt has been found at Pr ∼ 4.320 or Pr = 717, other authors report a monotonous decrease of Nu with
increasing the inclination in rectangular cells for Pr = 6.321 and Pr = 1022. In experiments and simulations at
high Prandtl, Pr ∼ 480 contained in a quasi-two-dimensional square cell with Ra ∼ 108 or Ra ∼ 5 · 108,23 finds
as well that Nu(θ) is maximum for θ > 0◦ but with two local maxima. In cylindrical geometries,19 covers a wide
range of Prandtl numbers Pr ∈ [0.1 − 100] in a set of DNS for inclinations θ ∈ [0◦ − 90◦] and Ra ∈ [106 − 108].
They find a dependence of Nu with the small inclinations for large Pr (decrease) and small Pr (increase).

The transient melting problem studied in this work generates a reduction of the aspect ratio Γ (ratio of distances
between conductive walls and transversal direction) of the melted phase up to Γ = 1 for complete melting. It
is interesting to observe that the aspect ratio also influences the heat transfer features in RB. Thus 2D (two-
dimensional) simulations in rectangular geometries at Pr = 0.71, Ra = 107 and θ ∈ [0◦ − 180◦] show that only for
Γ ≤ 4 exists an inclination θ > 0◦ with maximum Nu, and a monotonous decrease of Nu with the tilt for higher
aspect ratios24.

The effect of the inclination on the Reynolds number (Re) is another topic of interest. There are much fewer
studies than on Nusselt number, and we are not aware of research on the effect of the inclination on the Reynolds
number in melting PCM. DNS in cylinders with Γ = 1/5 filled with fluids at Pr = 0.1, 1 and Ra ∈ [106 − 109]15

finds a tilt that maximizes the Reynolds number. While the behaviour is the same as for Nu, the maximum value
of Re occurs at lower inclinations. It is worth noticing that they report a case for Ra = 108 and Pr = 1 where
Re(θ) decays monotonously, as what we find in this work. Other works with DNS report as well an increase of Re
up to a global maximum, followed by a gradual decrease in a wide range of Pr19. The aspect ratio Γ influences
as well the behaviour of Re with the inclination. Thus24 report minimal changes in Re for small inclinations, and
only an apparent decrease of Re for θ > 25◦ for Γ ≤ 4. For Γ ≥ 8, they find a local minimum and maximum.
Interestingly, several definitions of the Reynolds using different speeds in experiments at Pr = 0.7 in Ref.21 reveal
an increase of Re up to a global maximum, followed by a decaying trend at higher inclinations. As noticed before,
this departs from the Nu(θ) relation observed in the same work. At high Pr,23 finds that Re increases with θ up to
a maximum corresponding to a small tilt to later drop rapidly. Also, they find a scaling Re ∼ Ra1/2 in agreement
with Prandtl-Blasius laminar boundary layer theory. We will discuss as well how the definition of Re is relevant to
characterize the effect of the inclination, and how the inclination leads to a trend of decaying Re for the melting
PCM.

This article is structured as follows. We present the momentum and energy equations governing the PCM
evolution in Section II. Besides, the balance equations for the kinematic and thermal dissipation rates are shown in
Section III. A brief sketch of the numeric methods with convergence criteria is provided in Section IV. The results in
Section V are organized in subsections on the angle of inclination, dynamic melting regimes, overall liquid fraction,
storage of energy, Nusselt and Reynolds numbers, kinematic and thermal boundary layers. Finally, conclusions are
discussed in Section VI.

II. PHYSICAL SETUP AND GOVERNING EQUATIONS

The PCM is enclosed in four squares of length L = 4, 6, 8 and 10 cm. A conductive boundary is held at constant
temperature Th = 353.15K, and the rest are adiabatic. The PCM used is n-octadecane, because it is one of the
most studied PCM in thermo-regulation and energy storage applications with very well-known thermo-physical
properties, due to the phase change taking place at room temperature and good stability properties. The Prandtl
number of the liquid phase is Pr = 60.8 and the Stefan number Ste = cl (Th−Tl)/δh = 0.49, where δh is the latent
heat, and cl, Tl are the specific heat of the liquid phase and liquidus temperature, respectively.

The PCM is initially in solid form held at an uniform temperature Ti = 298.15K, and the phase change occurs
in a tight range of temperatures between solidus Ts = 298.65K and liquidus Tl = 299.65K. The simulations use,
for the solid and liquid phases, the thermo-physical properties listed in Table 1 of25.

The vertical axis of the cartesian domain is aligned with the gravity vector, and the angle θ corresponds to the
angle formed by the horizontal axis with the conductive wall. The domain is inclined from θ = 0◦ up to θ = 180◦

in steps of ∆θ = 5◦. Finer steps in the inclination ∆θ = 1◦ are employed around θ = 0◦ to analyze in more detail
the effect of the inclination over the reference of vertical heating.

The momentum and energy equations used to simulate the PCM are derived in the solidification literature and
are outlined below. They are thoroughly discussed in26–28.
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A. Momentum equation

We consider a two-dimensional and incompressible flow where, for simplicity, viscous dissipation is neglected.
We also assume that the solid and liquid phases are in local thermal equilibrium.

Within the range of temperatures considered, it is assumed that all physical properties are constant except the
density in the buoyancy term (Boussinesq approximation). The momentum equation reads:

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u− ρ g [1− α(T − Tref )] ê−Dau, (1)

being ρ the density, µ the dynamic viscosity, g the gravity acceleration, Tref a reference temperature, α the thermal
expansion coefficient, and ê = (sin θ, cos θ) a unit vector. The term Da generates a diffusive interface between the
solid and liquid phases of the PCM. This Darcy term is added to use (1) in the whole domain, thus avoiding the
burden of tracking the solid/liquid interface when fluid motion is present26,27,29. The functional form is model

dependent, and the Carman-Kozeny equation for porous media K(f) = δ+f3

C(1−f)2
= 1/Da is the most frequent

election in the PCM literature. This term is zero at the liquid phase, damps the velocity strongly within the mushy
region, and suppress the velocity at the solid phase. Here, f is the volume fraction of melted PCM in a control
volume of PCM and gives the porosity of the Carman-Kozeny equation, and δ is a tiny constant without physical
meaning δ � 1 to avoid division by zero. We choose C = 1.6 · 106kgm−3 s, in compliance with previous works3,30.
Notice that the Darcy constant is a parameter that can be estimated through experimental tracking of the position
of the solid/liquid interface along the time31.

B. Energy equation

The thermal energy of the system reads as a function of temperature, assuming the same density in solid and
liquid phases, as follows:

[
∂

∂t
+ u · ∇

]
(Cp T + δh f) = ∇(λ/ρ∇T ) (2)

where the specific heat Cp = (1−f)cs+f cl, and conductivity λ = (1−f)λs+f λl are averaged by the contribution
of the solid (subscript s) and liquid (subscript l) phase and δh is the latent heat of the solid/liquid transition of
the PCM.

C. Coupling between Phase Change and Momentum Equation

The liquid fraction f allows the coupling of equations (1) and (2). The field f is modelled by a linear function
of the temperature between the temperature of the solid phase Ts and the temperature of the liquid phase Tl as
follows

f =

 0 if T ≤ Ts
1 if T ≥ Tl
(T − Ts)/(Tl − Ts) if Ts < T < Tl

(3)

Notice that the temperature field rules the solid/liquid transition. The global liquid fraction fl = (
∫
fdΩ)/Ω,

frequently used in the thermal storage literature, provides the overall ratio between the volume of PCM in the
liquid phase and the volume of the whole domain Ω.

III. BALANCE EQUATIONS

Averaging the equation for the conservation of kinematic energy over the whole domain at time t leads to the
balance equation
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εu = β g (sin θ〈T u〉Ω + cos θ〈T v〉Ω)− 〈∂t
(

1

2
U2

)
〉Ω + 〈DaU2〉Ω (4)

where εu = ν
2 〈
∣∣∇u +∇uT

∣∣2〉Ω is the kinematic dissipation rate and ν = µ/ρ the kinematic viscosity. The brackets
〈·〉Ω correspond to the spacial average over the domain indicated at the subscript.

Furthermore, multiplying the energy equation by T we obtain the mean temperature fluctuation balance

εT =
1

LH

∫
∂Ω

(Cp T + δh f)λ/ρ ∂nT ds−
1

2
〈∂t (Cp T + δh f)

2〉LH (5)

where εT = 〈λ/ρ∇T∇ (Cp T + δh f)〉LH is a modified thermal dissipation rate (by a factor c2l in absence of phase
change), and the domain is supposed to be rectangular with L the length of the conductive side, and H the
thickness.

There are two distinctive differences relatives to the classic Rayleigh-Bénard problem. Firstly, the problem is
transient; there is not an average in the long-time limit that suppresses the temporal term. Secondly, the presence of
the latent heat term modifies the thermal dissipation rate. Notice that without phase change, this term disappears,
Cp becomes the constant cl, and the dissipation term becomes the same as in the classic RB problem.

For the case of a conductive bottom with T = Th and Th > Tl, and adiabatic top wall, the balance equation (5)
simplifies to

εT =
λl/ρ

H
〈∂yT 〉y=0 (cl Th + δh)− 1

2
〈∂t (Cp T + δh f)

2〉LH (6)

where 〈·〉y=0 is the spacial average along the plane y = 0.
The evolution equation for the mean temperature provides more insights into the differences with the RB problem

ρ∂t (〈Cp T + δh f〉LH) = − 1

H

∫
∂yJ dy = −λl

H
〈∂yT 〉y=0 (7)

where J(y) = 〈ρ v (cp T + Lf)− λ∂yT 〉y is the vertical heat flux averaged on a horizontal plane at height y. Thus
the vertical flux J(y) is not constant along the vertical coordinate, which is a fundamental difference with respect
to Rayleigh-Bénard. The lack of constancy prevents a closure relation for the kinematic and thermal dissipation
with the Nusselt number as in relations developed by32, even for the transient case.

The velocity fields are null at the solid phase, and the adiabatic walls remove the thermal gradients in the
solid phase, reducing the integration domain from the whole domain to the evolving region with T > Tl for the
computation of the kinematic and thermal dissipation rates. Thus it is possible to study the melting dynamics in
the natural domain of melted PCM:

εu = β g (sin θ〈T u〉m + cos θ〈T v〉m)− 〈∂t
(

1

2
U2

)
〉m + 〈DaU2〉m (8)

εT =
λl/ρ

h
〈∂yT 〉y=0 (cl Th + δh)− 1

2
〈∂t (Cp T + δh f)

2〉m (9)

where the integral averages are calculated over the melted region (subscript m), and h is the average thickness of
the melted PCM. No conservation of the heat flux makes relevant the plane where the flux is measured to report
the results. We choose the conductive plate at this work.

IV. NUMERICAL METHODS

To solve the equations of the model outlined in Section II, we use the open-source software OpenFOAM33, based
on finite volumes.

The model equations are integrated in time employing a second order Crank-Nicolson scheme with variable time
step limited by a CFL condition.

We use a second-order upwind scheme to discretize the convective terms. Following34, the source term in (2)
is linearized as a function depending on temperature by split it in an explicit and implicit part (zero and first-
order term, respectively). The liquid fraction is updated at every iteration, and a Rhie-Chow interpolation avoids
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FIG. 1. Sketch of the different regimes of the melted phase as a function of the inclination and Rayleigh number. For
inclinations above θc there is a laminar flow. For θ ≤ θc the melted phase can be, depending on the Rayleigh number, in a
base state, plume growth regime, coarsening plumes regime, turbulent regime, or a laminar regime after a restabilization of
the turbulent regime.

checkerboard solutions. The PIMPLE algorithm (see35) is used to solve the momentum and continuity equations
because it ensures a right pressure-velocity coupling by combining PISO and SIMPLE algorithms.

In previous experimental and numerical works25,29,36 the model has been validated, and the implementation of
the bulk equations have been widely verified in different geometries (circular and rectangular domains). The code is
stable and accurate and can model the strong coupling between energy and momentum equations typical of phase
change problems in a wide range of Stefan numbers.

Regarding the spatial discretization, an uniform and structured mesh of different number of cells is used depending
on the domain size. For domain size L = 0.04m and L = 0.06m, we use 600 × 600 cells and 800 × 800 cells for
L = 0.08 and 0.1m.

This provides the largest grid size for L = 0.1m with 1.25 · 10−4m and smallest grid for L = 0.04m with

6.7 ·10−5m. These grid resolutions resolve the Kolmogorov scale ηk = ν3/4/ε
1/4
u and the more demanding Batchelor

scale relevant at high Prandtl numbers ηb = ηk(t)/
√
Pr. Here ηk is the minimum value reached by the Kolmogorov

scale up to complete melting of the PCM for all the angles ηk = minθ∈[0,π](ηk(t)) (ηk decreases from 8.5 · 10−4 at

L = 4 cm up to 7.6 · 10−4 at L = 10 cm). ηk corresponds to angles near θ = 90◦, and for turbulent behaviour that
appears at lower inclinations it increases to ηk ∼ 10−3.

In addition to the validation with experimental and numeric works of the code, we also check that the input

energy into the system Einput(t) =
∫ t

0

(∫ L
0
λl〈Ty〉y=0 dx

)
dt′ agrees with the change of enthalpy of the system with

differences lower than 0.1%. Furthermore, we compute the LHS and RHS of the balance equation (7) to verify that
both terms are numerically coincident along the time for θ ∈ [0, π].

V. RESULTS

Two parameters determine the main dynamic regimes occurring during melting: the gap of the melted phase
h and the inclination angle θ. Other factors, like the size of the domain L, affect the thresholds, but they serve
secondary roles as advancing or delaying the main regimes. Figure 1 shows a conceptual diagram of the regimes of
the melted phase according to the inclination and Rayleigh number that we will discuss along this section.

A. Angle of inclination

1. No inclination θ = 0◦

In a previous work3 is described a sequence of four regimes during the melting of a layer of n-octadecane heated
from below with horizontal periodic boundary conditions as time advances. The article identifies (i) a conductive
regime with no fluid motion, (ii) a linear regime where, after the conductive layer destabilizes by a Rayleigh-Bénard
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(a) (b)

FIG. 2. The onset of the destabilization of the base state as function of the inclination (a) overall liquid fraction fl, (b)
Rayleigh number.

instability, thermal plumes appear and develop vertically (iii) a coarsening regime where these plumes destabilize
and merge up to recover a similar aspect ratio to the cells at the onset of convection, and (iv) a final turbulent
regime characterized by high deformation of the thermal boundary layer and the appearance of new plumes on
the hot wall. These regimes are triggered by the increasing Rayleigh number resulting from the advancing of the
solid/liquid interface, and a minimum thickness of the liquid phase is required to develop each one of them.

In this work, we use adiabatic boundary conditions on the vertical walls. At no inclination θ = 0◦, the secondary
instability leads as well to the coarsening of plumes, but they become not ordered as happens with periodic boundary
conditions. The rest of the regimes are similar to those described above for periodic boundary conditions.

2. Inclination 0 < θ ≤ θc

The inclination of the domain transforms the quiescent conductive regime into a base flow with a cubic shear
velocity profile37. A single counterclockwise cell is formed within the liquid phase where the fluid moves up along
the hot side and returns cooler along the solid/liquid interface. As the melted gap reaches a critical value, the base
flow destabilizes and thermal plumes appear (for θ < θc as discussed later). These plumes elongate during the
linear regime, coarse and transition to turbulence for large enough domains.

The threshold of destabilization of the base flow depends on the inclination. Figure 2 shows the overall liquid
fraction fl and Rayleigh number at the onset of the destabilization of the base state. These values are calculated
locating the origin of the growth stage of the thermal dissipation rate of the liquid phase (εT (T > Tl)). The
values of fl and Ra at the threshold, fl,c(θ) and Rac(θ) respectively, decreases up to an absolute minimum at
θ ∼ 10◦, and further inclinations lead to a monotonous increase of them up to θ = θc. Differences on the onset
of destabilization among different sizes L are pronounced at small and large inclinations but becomes very small
near the absolute minimum. While Rac(θ) is calculated from fl,c(θ) and L the global liquid fraction provides a
better representation of the onset of destabilization. The curves of fl,c(θ) are well separated across the domain
sizes L while the curves Rac(θ) cross between them. Bidimensional geometry in the simulations force rolls to be
transversal to the inclination angle and the onset corresponds to the stability of transverse rolls38–40.

Notice that figure 2 provides the beginning of the destabilization of the base state, not its complete replacement
for thermal plumes, which takes further melting. Figure 3 shows a sequence of snapshots at the same time for
L = 4 cm and θ = 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, where is observed how tilting the domain creates the plumes from
the vertical walls (where the change of circulation of the base flow takes place). The figure also shows how the
reminiscent base flow dominates the central region of the hot side, and how θ = 10◦ exhibits the fastest development
of plumes.

3. Critical inclination θc

There exists a critical inclination θc where a global bifurcation of the flow occurs. It separates the region for
multicellular flow θ ≤ θc from the region with laminar flow θ > θc, irrespective of the Rayleigh number. Up to θc,
the base state becomes unstable with increasing Ra, above θc the base state is stable despite the high deformation
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(a)θ = 0◦ (b)θ = 5◦ (c)θ = 10◦

(d)θ = 15◦ (e)θ = 20◦ (f)θ = 25◦

FIG. 3. Snapshots of the streamfunction (top) and temperature (bottom) fields at t = 50 s for θ =
0◦(a), 5◦(b), 10◦(c), 15◦(d), 20◦(e), 25◦(f) and L = 4 cm.

of the solid/liquid interface characteristic of advanced melting. For θ > θc, a single plume develops with the stem
on the right wall up to complete melting of the PCM.

The value of θc depends on the size of the domain. Thus we find θc = 29◦ for larger geometries, L = 6, 8, 10 cm,
and a decrease for smaller domains, θc = 28◦ for L = 4 cm, θc = 27◦ for L = 2 cm, and θc = 23◦ for L = 1 cm. The
transition towards the laminar regime occurs through the progressive stability and widening of the base flow of the
central region from the absolute minimum at θ ∼ 10◦ up to θc.

The bifurcation angle θc splits the dynamics of melting in two regions with very different features. The global
bifurcation at θc is observed in measurements related to heat flow, as Nu, and strength of fluid motions, as the
Re. However, we will see as integral quantities frequently used in the PCM literature, such as the overall liquid
fraction, are not suitable to detect the global bifurcation angle.

Since at θ = 180◦ only conductive heat transport occurs, there must be a transition or critical angle 0◦ < θ < 180◦

that separates the turbulent from the laminar states even in the absence of phase change. Thus, in experiments
with silicone oil at Pr ∼ 480 and 2D DNS23 find as well that at θ = 75◦ there is a change in the flow structure
from turbulence to laminarity. In simulations at low Prandtl Pr = 0.71 in rectangular geometries with Γ = 824

shows a transition to laminar flow at θ = 140◦.
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(a)θ = 0◦ (b)θ = 5◦ (c)θ = 10◦

(d)θ = 15◦ (e)θ = 20◦ (f)θ = 25◦

FIG. 4. Snapshots of the streamfunction (top) and temperature (bottom) fields at t = 100 s for θ =
0◦(a), 5◦(b), 10◦(c), 15◦(d), 20◦(e), 25◦(f) and L = 4cm.

B. Dynamic melting regimes

1. Destabilization of the base state

The destabilization of the base flow up to θc occurs through a RB instability. There is an ordered state of thermal
plumes up to θ = 15◦ (L = 4 cm) and non-equispaced plumes at higher inclinations (figure 4). Near θc, the plumes
appear only in the proximity of the vertical walls, and the distance between them is very irregular (see figure 4(f)).

As the melting front advances, the plumes coarse, reducing their number and generally become not equidistant
for θ > 0◦.

2. Secondary instability

Figure 5 shows a sequence of streamfunctions (top) and temperature fields (bottom) for θ = 0◦, 5◦, 10◦, 15◦, 25◦

at t = 200 s. A secondary instability generates the coarsening of the plumes, excepting angles close to θc, such
as θ = 25◦, where the hot side is not covered by plumes. Figure 6 shows the overall liquid fraction fl and the
Rayleigh number at the onset of the coarsening as a function of the inclination for L = 4, 6, 8, 10 cm. We locate
the destabilization of plumes tracking the onset of chaotic behaviour of the total flux integrated over the whole
domain 〈Jy〉. We observe a general decay of the onset of the coarsening instability at small inclinations. However,
the dispersion of values in the smaller geometries L = 4, 6 cm makes that decay with the inclination appears as a
general trend, instead of monotonous decay. The largest domain L = 10 cm exhibits fastest onset of the coarsening
with increasing inclination, and the rest of the domains at θ = 10◦, which corresponds to the inclination where first
appear the thermal plumes. At fixed inclination, the secondary instability develops faster for larger sizes. Likewise
to the first instability, the representation based on the overall liquid fraction provides more explicit information on
the influence of the domain size. The coarsening of plumes can also be appreciated in streamlines and temperature
fields during melting in rectangular enclosures of PCMs with high Prandtl number, such as lauric acid, at 0◦ and
45◦6 and at 0◦ for finned enclosures41, and very low Prandtl number such as gallium for 30◦ and 60◦12.
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(a)θ = 0◦ (b)θ = 5◦ (c)θ = 10◦

(d)θ = 15◦ (e)θ = 20◦ (f)θ = 25◦

FIG. 5. Snapshots of the streamfunction (top) and temperature (bottom) fields at t = 200 s showing different stages of the
coarsening of plumes after the secondary instability forθ = 0◦(a), 5◦(b), 10◦(c), 15◦(d), 20◦(e), 25◦(f) and L = 4cm.

We observed in a previous work3 how the coarsening without inclination is independent of ∆T . The origin of
this stability is the destabilization of the melted region that occurs when the density becomes unstably stratified.
Figure 7 shows the normalized density ρ/ρ0 = 1− α(T − Tref ) at θ = 0◦ and θ = 10◦ averaged on vertical planes
as a function of the height over the hot wall. When the melted phase reaches a density profile completely stratified
with layers of heavier PCM over lighter, the liquid phase destabilizes by buoyancy and the second instability is
triggered.

3. Turbulent regime

As melting progress, and the gap of the liquid phase is large enough, a turbulent regime appears after the
coarsening of plumes, or without that coarsening for angles near to θc. This regime is characterized by a high
deformation of the thermal boundary layer on the hot wall and the emergence of new plumes from this side. The
turbulent regime corresponds to the latest stage of melting, and notably most of the melting occurs within this
regime for large enough domains.

Figures 8 and 9 show the temperature and velocity profiles at t = 300 s and 600 s, respectively. Deformation of
the thermal boundary layer is small for 300 s and pronounced for 600 s with the emergence of some plumes in most
of the angles at the latter time. This regime is similar to the turbulent state of high Rayleigh convection at high
Prandtl numbers, as discussed in Subsec. V E-V G based on scaling arguments.

Interestingly, at some inclinations near θc there happens a substantial reduction of turbulent motions, or a
transition to laminarity, after the solid/liquid interface at the right wall touches the top wall (θ = 15◦ at L = 4 cm,
θ = 15◦, 20◦ at L = 6 cm). Furthermore, we find a return to the laminar state even before the melting front reaches
the top wall, neglecting the requirement of forcing boundaries to recover the stability. For instance, at L = 4 cm we
find the return to the laminar state at θ = 20◦ and θ = 25◦. This result is very striking since it involves a turbulent
motion that regains stability at higher Ra. The transition occurs through the merging of the convective cells up to
the creation of a counterclockwise laminar flow. This process is illustrated in figure 10 in a sequence of snapshots
of streamlines and temperature fields at different times. Notice that the recovery of stability at high Ra is only
observed for angles close to θc, and the transition towards laminarity occurs at lower Ra for higher inclinations.
Another instance of recovery of ordered states at higher Ra is found in non-Boussinesq convection, where hexagons
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(a) (b)

FIG. 6. The onset of the plume coarsening as a function of the inclination: (a) liquid fraction (b) Rayleigh number.

(a)θ = 0◦ (b)θ = 10◦

FIG. 7. Normalized density ρ/ρ0 = 1 − α (T − Tref ) averaged on horizontal layers over the hot wall at different times
for θ = 0◦ (a) and 10◦ (b), and L = 4 cm. The secondary instability is triggered when the whole density profile becomes
unestably stratified.

reappear at a higher Rayleigh number after a disordered state42.

C. Global liquid fraction

Figure 11 shows the global liquid fraction fl as a function of the time. This integral quantity is commonly used
to describe the thermal performance of PCM systems. The curves show a smooth evolution from no inclination at
θ = 0◦ up to θ = 180◦, where only conductive heat transport occurs. The curves overlap up to the destabilization
of the base state for θ ≤ θc. Later they depart in two groups: (i) for θ ≤ θc, they continue to be concave, and
(ii) for θ > θc they become convex until the melting front reaches the top wall, recovering the concavity after this
merge.

Tracking the value of fl when the melting front at the right wall reaches the top wall fl,right provides a clear
picture of the different melting regimes. Thus figure 12 (circles) shows scattered values close to fl,right = 1 up
to θ = 5◦, and further inclinations within the turbulent regime show a monotonous decrease of fl,right. From θc,
there is a smooth decrease of fl,right up to θ = 90◦, which is the angle where the right wall melts the fastest. From
this angle there is an increase of fl,right with the inclination, but from θ = 135◦ the dependence on the system size
becomes very small due to the diminutive effects of convection in melting compared with conduction. Figure 12
shows as well (×) the value of fl at complete melting of the top wall fl,top and shows how for θc < θ < 90◦ there
is solid PCM constrained on the left wall and surrounded by liquid PCM.
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(a)θ = 0◦ (b)θ = 5◦ (c)θ = 10◦

(d)θ = 15◦ (e)θ = 20◦ (f)θ = 25◦

FIG. 8. Snapshots of the streamfunction (top) and temperature (bottom) fields at t = 300 s for θ =
0◦(a), 5◦(b), 10◦(c), 15◦(d), 20◦(e), 25◦(f) and L = 4cm.

The time for complete melting tm is correlated with the melting regimes but not determined by them as seen in
figure 13. The first regime of tm ends at θc. Below this angle the presence of the turbulent regime and associated
irregular melting front generate scattered values of total melting time tm as a function of the inclination. The
dispersion of melting times decreases for larger L. The reason is that more thermal plumes fit into the domain, and
the corrugation of the solid/liquid interface is averaged and less influential on the time to complete melting. For
tilts beyond θc, all the sizes exhibit a monotonous decrease of tm from θc up to θ = 45◦, and a monotonous growth
of tm with the inclination from this minimum, shaping a jockey stick form. Thus within the laminar regime at
θ > θc, we observe two opposed trends for tm. Notice that the absolute minimum for tm can be found at an angle
below θc for domains large enough to develop a turbulent regime due to the corrugations of the melting front.

The global behaviour of tm respect to θ exhibited in figure 13 shows a depression in the region θ < 45◦ for
L = 10 cm, which flattens progressively for smaller sizes, and for L ≤ 4 cm this region changes of curvature making
θ = 45◦ the absolute minimum. The curvature becomes more pronounced for lower sizes L (not shown).

D. Storage of energy

Figure 14(a) shows the total input of heat Qm per unit of PCM mass (K J/Kg) required for complete melting
as a function of the inclination. The total input of heat Qm(θ) exhibits dispersed values in the turbulent regime,
although there is trend upwards with the inclination. Beyond θc there is a monotonous increase of Qm(θ) up to
an absolute maximum at θ = 95◦, roughly ∼ 15% higher than Qm(θ = 0◦). Beyond θ = 95◦, Qm(θ) exhibits a
monotonous decay with the inclination. The energy required for complete melting with no inclination is very close
to the energy at θ = 180◦, where only melting through conduction takes place.

From θc, fixed the inclination, the energy per unit of mass increases slightly with the size L, about 0.2% between
successive sizes L up to θ ∼ 105◦. This weak dependence on size is due to the compensation of the higher input of
heat in geometries with longer conductive walls with the need to move further the melting front to liquify the whole
PCM. Notice that at the conductive limit of θ = 180◦, the same input energy is required for full melting in all L.
It is especially meaningful for applications in thermal storage that the total energy per unit of mass harvested up
to full melting depends much more strongly on the inclination of the enclosure than its size.

Figure 14(b) shows the total input of energy Qm per unit of mass over the melting time tm, which is a measure of
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Snapshots of the streamfunction (top) and temperature (bottom) fields at t = 600 s for θ =
0◦(a), 5◦(b), 10◦(c), 15◦(d), 20◦(e), 25◦(f) and L = 4cm.

the efficiency of the PCM to collect thermal energy. The greater variation of the melting time across the inclinations
with respect to the input of energy, makes tm dominate the ratio and provides the same information as figure 13:
at large sizes L no or small inclinations are the most efficient, and for smaller L inclinations about θ = 45◦ are the
most efficient. The progressive reduction of convective transport leads to a strong decay of the efficiency in energy
harvesting from θ = 90◦, and the dominating conductive transport from θ = 135◦ makes these inclinations more
than one order magnitude more inefficient than no inclination.

E. Nusselt and Rayleigh numbers

We employ an effective Rayleigh number in this work, defined using the averaged thickness of the solid/liquid
melting interface h as

Ra =
ρα∆T h3 g

µκl
(10)

where κl is the thermal diffusivity of the liquid phase κl = λl/(ρ cl) and ∆T = Th − Ttop. In this definition, Ttop is
the melting front temperature (Tl + Ts)/2, or the weighted temperature between melting front and top adiabatic
wall when the liquid phase partially covers the latter. Notice that with this definition, the value of Ra depends
on the melting front position. Since the interface is diffuse, we choose the cells with liquid fraction fl = 0.5 as
the criterium for the thickness of the interface. This liquid fraction corresponds to the melting front temperature
(Ts + Tl)/2.

The local Nusselt number is defined by Nux = h
Th−Tm

∂yT |y=0. In this definition, due to the finite thickness of
the interface, Nux 6= 1 when conduction prevails on the liquid phase. Henceforth, we will use the averaged Nusselt

number along the hot wall Nu = 1
L

∫ L
0
Nux dx to discuss the results.

We discuss next, the Nusselt curves allow to distinguish clearly the turbulent regime with irregular oscillations
(figures 15(a,b)) from the laminar regime with smooth curves (figures 15(c,d)).

The relation between the heat flux, represented by the Nusselt number, and strength of the convective motions,
represented by the Rayleigh number, has been thoroughly studied in the high Rayleigh convection literature and
shown to exhibit a power-law Nu ∼ Raα in a wide range of Ra43. We observe as well this behaviour at the
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FIG. 10. Snapshots of the streamfunction (top) and temperature (bottom) fields at t = 600, 800, 1000 s for θ = 25◦ and
L = 4cm. The fields show a re-stabilization of the turbulent dynamics at higher Ra.

(a) (b)

FIG. 11. Liquid fraction versus time for 4cm: (a) 0 ≤ θ ≤ 25◦, (b) θ ≥ 30◦

turbulent regime during PCM melting. For vertical heating (no inclination), the average exponent is α ∼ 0.29 in
n-octadecane melting3, in agreement with theoretical predictions of 2/732,44,45. Also, it has been found in vertical
heating of gallium that phase change induces a greater Nusselt number for small Rayleigh numbers46. Figure 15(b)
shows the evolution of the Nusselt number as function of the Rayleigh number during melting in a log-log scale for
θ < θc. Fluctuating curves at the turbulent regime overlap without a clear trend introduced by the inclination.

Figure 16(a) shows the exponent α as a function of the inclination for all the sizes. At the turbulent regime, the
mean of this exponent is higher for larger L (α = 0.3, 0.3095, 0.3128, 0.3149 for L = 4, 6, 8, 10 cm ) However, at
fixed L, there is not a univocal effect on the enhancement or suppression of the heat flux for small inclinations. This
is observed in figure 16(b), which zooms the turbulent region and shows additional values of α for θ = 1◦, 2◦, 3◦, 4◦.
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FIG. 12. Value of the overall liquid fraction at complete melting of the PCM on the right wall fl,righ (circles) and top wall
fl,top (×) as a function of the inclination.

FIG. 13. Melting time as function of the inclination for L = 4 , 6 , 8 , 10 cm.

Most of the domains L = 4, 6, 10 cm exhibit a decay of the heat flux tilting the domain just ∆θ = 1◦, however for
L = 8 cm there is a minimal increase of the heat flux. From θ = 10◦ there is a clear increase of the heat flux with
the tilt up to θ = θc. The dispersion of the values of α increases for lower L, as a consequence of greater influence
of irregular interface deformations at these sizes, as discussed in Section V C.

Similarly to our results, some experiments in water with Pr = 4.38 in cylinders for Ra = 1.8 ·1010 and 7.2 ·101020

and 109 ≤ Ra ≤ 101147 have found very small variation in Nu with respect to the vertical case for small inclinations.
Also, experiments in rectangular cells with fluids of Pr = 10 at Ra ∼ 101022 and Pr = 6.3 at Ra ∼ 10921 find
small declines on the Nusselt number for small tilts. Other experiments covering a wide range of aspect ratios
Γ ∈ [1− 6] and Pr = 348 find that heat transfer is not affected by tilting θ = 10◦ in spite of meaningful changes in
the flow structure. Thus, our findings agree with a subset of works in the high Rayleigh literature that concludes
that inclinations of small angles influence the heat transfer slightly while having a profound influence on the flow
structure.

At the laminar regime θ > θc, there is a monotonous decay of the exponent α with the inclination. The exponent
α is very similar for all the sizes up to θ = 90◦, with a small increase with L until this angle. There is a jump in α at
the laminar regime with respect to the turbulent regime near θc. The highest values of α locate near θc. Notice that
the exponents for the laminar regime have been obtained only in the region that follows a power law (maximum
Rayleigh of this region decreases with the inclination, as shown in figure 15(d)), which covers progressively fewer
decades of the Rayleigh number and loses significance for very high inclinations.

Within the laminar regime θ > θc appear two sub-regimes for the heat flux: up to θ = 45◦ the Nusselt curves
increase with the inclination: above θ = 45◦, the Nusselt curves decay monotonously with the inclination as a
consequence of diminishing strength of convective motions. These trends are observed as well in the location of
max(Nu(θ)) that exhibits a maximum at θ = 45◦. This behaviour is appreciated more clearly in the curves of
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(a) (b)

FIG. 14. (a) Total input of energy per unit of mass Qm (K J/Kg) up to complete melting of the PCM, and (b) input of
energy over melting time Qm/tm (K J/Kg s) as a function of the inclination for L = 4 , 6 , 8 , 10 cm.

(a) (b)

(c) (d)

FIG. 15. Nusselt number with respect to the overall liquid fraction (left), Nusselt number with respect to the Rayleigh
number (right) for domain size L = 4 cm: (a) and (b) 0 ≤ θ ≤ 25◦, (c) and (d) θ ≥ 30◦

flux integrated along the whole domain 〈J(y)〉 shown in figures 17(b,d). The flux J(y) includes as well the vertical
velocity and the curves around 45◦ surround the rest of the inclinations, exhibiting a maximum when the melting
front reaches the top wall. At the turbulent regime, the flux curves exhibit as well a power-law relation with Ra
(c.f. figure 17(c)), as shown in figures 17(b,d), with no significant differences at small inclinations. An interesting
feature of the flux curves is that they explain the minimum of the melting time at θ = 45◦ as the inclination with
the highest area under curve within the laminar regime (θ > θc).
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(a) (b)

FIG. 16. (a) Exponent α of the relation Nu ∼ Raα for domain sizes L = 4, 6, 8, 10, cm. (b) Close-up of (a) for θ ≤ 25◦.

(a) (b)

(c) (d)

FIG. 17. Total Flux J(y) averaged versus liquid fraction f and Rayleigh number at 4cm. (a,c) 0 ≤ θ ≤ 25◦, (b,d) θ ≥ 30◦.

DNS in cylinders at Pr = 0.1, 115, experiments in sodium14,18, DNS and experiments in air in parallelepipeds16,
DNS in square cavities at Pr = 717, or at the turbulent regime in experiments and DNS at high Prandtl Pr ∼ 48023,
find in common a Nu(θ) with a maximum at 0◦ < θ < 90◦ and later a decay. We find this behaviour in the exponent
α at the laminar regime, θ > θc, instead of the turbulent regime of those works.
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(a) (b)

FIG. 18. Reynolds number based on the wing velocity definition Rev as a function of the Rayleigh for (a) 0 ≤ θ ≤ 25◦ and
(b) 30 ≤ θ ≤ 170◦ at L = 4 cm.

(a) (b)

FIG. 19. (a) Exponent β of the relation Rev ∼ Raβ for domain sizes L = 4, 6, 8, 10 cm, respectively. (b) Close-up of (a) for
θ ≤ 10◦.

F. Reynolds number

We have investigated two types of definitions of the Reynolds number. The first type corresponds to properties
of the velocity field in the liquid phase, such as the Reynolds number related to the averaged module of velocity on
the liquid phase ReU ≡ h〈U〉l/ν, or based in the maximum value of some velocity field Remax|U | ≡ h max|U |/ν,
where U can be u, v, u or their modulus. The second type corresponds to definitions based on the wind velocity
ReU ≡ hUM/ν, where U is some velocity field, such as v, |v|, u, |u|, |u|, and UM is the maximum of 〈U〉y, where
〈·〉y is the spacial average across the horizontal line y = cte (cf. figure 4 of13). The second definition can include in
the average horizontal liquid and solid phases of the PCM.

At non-inclination, all those definitions allow to fit the turbulent regime to a power law. However, for increasing
inclinations, there is a progressive bending of the curves in the log-log diagram (not shown). The departure from
the power-law occurs at different angles according to the Reynolds definition; thus, Re|u| exhibits a power-law
until the melting front reaches the top wall, Re|v| exhibits still a power law in the turbulent regime up to θ ∼ 10◦.
Reynolds based on vertical wind velocity Rev exhibits a power law for a broader range of inclinations and very
high Ra, extending even to the laminar regime, as shown in figure 18. Based on these observations, we choose the
definition based on the wing velocity Rev to study how it affects the Nusselt number.

Figure 19 shows the exponent β of the relation Nu ∼ Reβv as a function of the inclination for all the domains. It
exhibits two remarkable differences with respect to the exponent α discussed in the previous section: the dispersion
of β is greater than the dispersion of α, and there is not a direct relationship between size and value of β. This
points towards the exponent α being a more robust quantity to characterize the dynamic regimes.

At the turbulent regime, the mean of the exponents Rev ∼ Raβ (β = 0.29, 0.24, 0.23, 0.21 for L = 4, 6, 8, 10 cm,
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respectively) exhibits an increasing trend for smaller domains L. Opposite to the Nusselt number, Reynolds
decreases clearly as a consequence of inclining the domain. Figure 19(b), shows that Rev decays with a small
inclination ∆θ = 1◦, and a general trend downwards by further augmenting the inclinations. A comparison of
figures 19(b) and 16(b) up to θc shows that the inclination has a greater effect on diminishing the strength of
the convective motions than on changing the strength of the flux of heat. The laminar regime θ > θc exhibits a
smooth downwards trend with increasing the inclination, as a consequence of the reduced strength of the convective
motions at higher inclinations within the laminar regime. Similarly to the exponent α, the angles slightly above θc

exhibit a strong increase of the exponent β with respect to the turbulent regime.
While at high Rayleigh convection frequently occurs a maximum of Re at a non-zero inclination in a wide range of

Prandtl numbers15,19,21,23, we find that the high dispersion of β and downtrend at θ < θc does not favour an extreme
value of Re. We notice, however, that other results in RB convection are similar to this work. Thus in a set of 2D
DNS in rectangles at Pr = 0.7 and Ra = 10724 report as well very slight changes in Re for small inclinations and a
clear decrease of Re for θ > 25◦ for aspect ratios ≤ 4 with a definition based on Re|u|. Interestingly, experiments in
water in cylindrical cells with aspect ratio Γ = 1 show and increase of Reynolds for small inclinations47, and others
experiments at Pr = 5.3 in a range 2.4 · 108 ≤ Ra ≤ 5.6 · 109 and a narrow range of inclinations 0◦ ≤ θ ≤ 3.4◦ by49,
show a similar exponent to this work using a definition of Reynolds as ReU . They find Re ∼ Re−0.43, which is very
close to our results for the largest geometries, and they find not extreme of ReU either. However, notice that this
work finds a strong decay of β in the same range of angles where49 measure invariance with the inclination.

G. Thermal and kinematic boundary layers

The thickness of the thermal boundary layer δT , following13, is the distance between the intersection of the
tangent of the horizontally averaged temperature profile at the hot wall T̄ = Th + d T/d y|y=0 y with the mean

temperature between the hot wall and the interface Tm = (Th + (Ts +Tl)/2)/2. From this definition, and using the
Nusselt number defined in Section V E, the thickness of the thermal boundary layer δT can expressed as well as

δT =
h

2Nu
(11)

The thickness of the boundary layer normalized by the gap of the melted phase as a function of Ra for inclinations
lower than θc is provided in figure 20(a), and for higher inclinations in figure 20(b). For θ < θc the curves follow a
power law δT /h ∼ RaαT since the destabilization of the base state, whose exponents are shown in figure 21(a). For
θ < θc, the averaged value of the exponent αT = −0.25 − 0.26, −0.27, −0.28, for L = 4, 6, 8, 10 cm decreases with
the size L. For the laminar regime θ > θc, the exponents αT vary smoothly with the inclination, with a minimum
at θ = 45◦ and a monotonous increase for higher inclinations. In absolute value, they behave as the exponent α
since they are derived from the Nusselt curves.

Following13, we define the thickness of the kinematic boundary layer δu/h as the distance from the hot wall to

the intercept of u = d u
d y

∣∣∣
y=0

y and u = max(u), where u(y) is the spatial average along the horizontal axis of the

module of the velocity. A detailed graphical representation of the kinematic and thermal boundary layers can be
found in Figure 4 of Ref.13.

The thickness of the kinematic boundary layer normalized by the gap of the melted phase is shown in figure
22(a) for inclinations below θc, and figure 22(b) for inclinations over θc. In opposition to the rest of the curves
for θ < θc as a function of Ra, such as Nusselt, flux, Reynolds, or thickness of the thermal boundary layer; there
is a noticeable separation between δu/h(θ) curves in the turbulent regime, with the slope decreasing progressively
for higher inclinations. The trend continues for θ > θc up to θ = 105◦, when the trend reverses in a region where
the convective motions are very weak. Since the destabilization of the base state the curves follow a power law
δu/h ∼ Raαu for θ < θc, and for most of the range of Ra for θ > θc. The exponents αu are shown in figure
21(b). The exponents decrease from αu = −0.15 at θ = 0◦ to αu = −0.26 at θ = θc for L = 4 cm. Similar
number are found for the rest of the sizes given the scattered values and not clear dependence on L at this region.
At the laminar region θ > θc there is a monotonous decrease since from αu = −0.26,−0.28,−0.27,−0.28 up to
αu = −0.36,−0.37,−0.38,−0.38 for L = 4, 6, 8, 10 cm respectively at θ = 105◦. Thus, the laminar region exhibits
a a clear dependence on size with a decrease for higher L.

The boundary layers kinematic δu/h and thermal δT /h are superposed for θ = 0◦. However, the inclination
progressively separates them. The separation becomes very noticeable since roughly θ = 10◦ and higher inclinations,
where the kinematic boundary layer becomes contained within the thermal boundary layer δu/h < δT /h.

The scaling of the boundary layers in the presence of melting has received attention on the non-inclined RB
literature for lateral periodic boundary conditions (c.f.3). This works finds similar values for αT and αu. The
average scaling δu/h ∼ Ra−0.29 does not agree with the exponent −0.25 predicted by the Prandtl-Blasius theory.
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(a) (b)

FIG. 20. Thickness of the thermal boundary layer over melted gap as a function of Ra, δT /h vs Ra for 4cm: (a) 0 ≤ θ ≤ 25◦,
(b) θ ≥ 30◦.

(a) (b)

FIG. 21. (a) Exponent αT of the relation δT /h ∼ RaαT and (b) exponent αu of the relation δu/h ∼ Raαu as a function of
the inclination for L = 4, 6, 8, 10 cm

No studies of these scalings are known to us in inclined convection coupled with phase change. On the other hand,
while the scaling of boundary layers in RB is a common topic at non-inclination, it is comparatively much less
studied in the presence of a tilt. Thus, in DNS for 3D rectangular geometries with horizontal heating (θ = 90◦) at
low Prandtl Pr = 0.709 for Ra ∈ [105−109] is found that boundary layer thickness for the temperature and velocity
field comply with scalings of the Prandtl-Blasius-Pohlhaussen theory13. Interesting, the experiment in water by49

reports for αu a sharper decline with the inclination, from −0.19 at θ = 0.5◦ to −0.32 at θ = 3.4◦. Their value for
θ = 0◦ is closer to Prandtl-Blasius than our results.

VI. CONCLUSIONS

We have studied the effect of the inclination on the melting dynamics of a PCM heated from below. The work
studies systematically how the tilt affects metrics related to the performance of PCM systems, such as melting
times or energy storage capacity, and quantities related to the dynamics of the melted phase of the PCM, such as
the exponents of the Nu and Re relations with the Rayleigh number, or the thickness of the thermal and kinematic
boundary layers.

The inclination generates two global regimes: (i) a multicellular regime for angles below a critical angle θc, and
(ii) a laminar regime above θc. The first regime exhibits a sequence of states similar to melting with no inclination
when time advances: (i) destabilization of the base flow, (ii) stable growth of thermal plumes, (iii) coarsening of
plumes (for angles not very close to θc), and (iv) turbulent heat transfer (for large enough domains).

We find that the mechanism that leads to destabilization of the thermal plumes is a buoyancy-driven instability
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(a) (b)

FIG. 22. Thickness of the kinematic boundary layer over melted gap as a function of Ra, δu/h vs Ra for 4cm: (a) 0 ≤ θ ≤ 25◦,
(b) θ ≥ 30◦.

that arises when the density of the melted PCM increases monotonously with the height. After this buoyancy
induced destabilization appears a turbulent state.

An interesting finding is that the turbulent state can recover stability by further increasing the Rayleigh number.
These restabilizations occur only at inclinations near the global bifurcation angle θc. After the restabilization, there
is a return to the laminar flow with a very corrugated solid/liquid interface that remains up to complete melting
of the PCM.

The presence of the turbulent regime in the liquid phase for θ ≤ θc is relevant on metrics related to heat transfer
performance of the whole PCM. Thus the melting time is only slightly affected by small inclinations, but the effect
is more irregular and profound for small geometries. In these, the strongly corrugated solid/liquid interface play an
important geometric role in the filling of the square domains. Because of that, global measures like melting time
or input of energy are more scattered at small sizes than in larger domains. For the named laminar regime θ > θc

all the measures evolve smoothly with the inclination angle. The optimum angle (fastest melting time) depends
on the size of the system. For increasing domain sizes the curve of melting times as a function on the inclination
flattens, and the optimum angle is at θ = 0◦ or close angles; however, for small L ≤ 4 cm the region around 45◦

increases the curvature, and this local minimum becomes global and thus the optimum angle.
The input of thermal energy per unit of mass required to melt the PCM is very similar across all the geometries.

It exhibits a dome form with a peak for θ = 95◦. Interestingly, the extreme cases: θ = 0◦, where convective motions
are the strongest, and the conductive case at θ = 180◦ require a similar amount of energy per unit of mass for
full melting. While at the peak at 95◦, the PCM stores more energy, it does not efficiently. The highest efficiency,
measure as energy per unit of mass per melting time, follows the melting time curve (inverted): with the highest
melting efficiency at θ = 45◦ at L = 4 cm and around θ = 0◦ for higher inclinations.

Regarding metrics on thermoconvective problems in fluids, there are two distinctive differences relative to the
classic Rayleigh-Bénard (RB) problem. Firstly, the problem is transient; there is not an average in the long-time
limit that suppresses the temporal term. Secondly, the latent heat term modifies the thermal dissipation which
only depends on the melted phase. The evolving melting front scans a full range of Rayleigh numbers and allows
to compare Nusselt, Reynolds numbers and thermal and kinematic boundary layers with those of Rayleigh-Bénard
convection.

We find that the Nusselt number scales with Rayleigh as Nu ∼ Raα for inclinations below the global bifurcation
angle θc, and for a decreasing range of Ra with increasing the inclination for θ > θc. At small inclinations
(θ . 10◦) the exponent decreases overall slightly with the inclination, with a more clear decrease with the size
(ᾱ = 0.25, 0.26, 0.27, 0.28 for L = 4, 6, 8, 10 cm ). Higher inclinations lead to a trend of greater heat flux up to θc.
At the laminar regime (θ > θc) there is a smooth decrease of α with the inclination. In addition, we find that the
curve for θ = 45◦ has a higher area under curve than the rest. The higher value of integrated heat flux at θ = 45◦

explains the local (or global depending on size) minimum of the melting time curves at this inclination. Notice that
this work uses 2D geometries, and from previous works on tetracosene melting in cubic geometries31 is expected
an enhancement of heat transfer in 3D, also is reported an enhacement of the Nusselt number in RB convection
when 3D geometries support three dimensional flows50. How three-dimensional effects can modify the value of the
exponents needs further investigation.

The Reynolds number also follows a power law Rev ∼ Raβ for θ ≤ θc and a wide range of Rayleigh numbers at the
laminar regime. We have evaluated several definitions of the Reynolds number, and the definition based on the wing
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Nomenclature
PCM Phase Change Material
Ra Rayleigh number Nu Nusselt number
Pr Prandtl number T temperature
Re Reynolds number f liquid fraction
ρ density µ dynamic viscosity
g magnitude of gravity acceleration p pressure
ê = (sin θ, cos θ) unit vector Γ aspect ratio
Da Darcy term Tref reference temperature
α thermal expansion coefficient fl volume liquid fraction
u = (ux, uy) fluid velocity C Darcy coefficient
δ tiny constant H thickness (domain size)
δh latent heat L length (domain size)
Th temperature at the bottom wall Tm mean temperature
Ti initial temperature at the solid state Ste Stefan number
h averaged height of the melted PCM t time
Qm total input of energy per unit of mass tm melting time
δu thickness of the kinetic boundary layer θ angle
δT thickness of the thermal boundary layer θc critical inclination
εu kinematic dissipation rate ν kinematic viscosity
εT thermal dissipation rate ηk Kolmogorov scale
Ts (Tl) temperature in the solid (liquid) phase ηb Batchelor scale
cs (cl) specific heats in the solid (liquid) phase J(y) vertical heat flux
λs (λl) conductivity in the solid (liquid) phase

velocity Rev characterizes the effect of the inclinations with better fits to power laws. In contrast to the Nusselt
number, we find that the exponent β decays strongly even at small inclinations. Thus, we find at non-inclination
β = 0.51, 0.50, 0.44, 0.39 for L = 4, 6, 8, 10 cm, and for a small inclination of θ = 1◦, β = 0.44, 0.34, 0.36, 0.33. The
general trend of declining β with higher inclinations continues across the whole turbulent regime. At the laminar
regime, we find as well a global trend of decaying β with the inclination.

The thickness of the thermal and kinematic boundary layers follow as well a power law when normalized with
the average thickness of the melted phase δT /h ∼ RaαT , and δu/h ∼ Raαu . The exponent αT is barely affected
by small inclinations, similarly to α, with an averaged of ᾱT = −0.24,−0.27,−0.27,−0.27 for L = 4, 6, 8, 10 cm up
to θ = 10◦. These values are not very distant from the −0.25 exponent predicted by the laminar Blasius-Prandtl
boundary layer theory. On the other hand, the scaling of the kinematic boundary layer based on the wing velocity v
is very slightly affected by very small inclinations θ ∼ 1◦ contrary to the strong decrease of exponent β of Reynolds.
At higher inclinations there is a strong decrease, from ᾱu = −0.15 at θ = 0◦ up to ᾱu = −0.38 at θ = 105◦. The
exponent αT does not exhibit a discontinuity at θc as the rest of exponents. It transitions from the turbulent to the
laminar regime through gaining smoothness instead of a change of trend. An important effect of the inclination is
that for θ > 10◦ progressively leads to the embedding of the kinematic boundary layer into the thermal boundary
layer δu/h < δT /h.

Finally, we notice that to compare the results with the high Rayleigh literature, we have shown representations
as a function of Rayleigh. However, representations based on the overall liquid fraction fl, such as the threshold of
stability of the base sate, secondary instability, Nusselt or Reynolds curves are more suitable to discern the effect
of size and inclination.
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