

Design, implementation and test of a fast

impedance spectroscopy measurement

system for biomedical applications

A degree Master Thesis Submitted to the

faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Marcel Palet Brandi

Directed by

Ramon Bragós Bardia

Index

Acknowledgment .. 5

Abstract ... 6

List of figures ... 7

List of tables .. 7

1. Introduction .. 8

1.1. Objectives of the project ... 8

1.2. Context of the project ... 8

1.3. The electrical impedance .. 8

1.3.1. Impedance of biological materials .. 9

1.3.2. Circuital models ... 10

1.4. Limitations of frequency sweep methodology ... 12

1.4.1. Multi-sine signal .. 13

2. Architecture and design of the system ... 14

2.1. Development tools .. 14

2.1.1. Front-end ... 14

2.1.2. RedPitaya development board .. 15

2.2. Hardware architecture for signal generation and acquisition 16

2.3. Software architecture ... 18

2.3.1. Different software solutions ... 18

2.3.2. Final software implementation ... 21

3. Validation with experimental results .. 26

3.1. Calibration process .. 26

3.2. Linearity and dispersion .. 27

3.3. Cell model .. 28

3.4. Body measurements ... 30

3.4.1. Muscular tension ... 30

3.4.2. Ventilation and heartbeat detection ... 30

3.4.3. Body fat mass .. 32

4. Conclusions and future work .. 34

4.1. Conclusions ... 34

4.2. Future work ... 34

Annex A: Main firmware code implemented .. 36

Annex B: MatLab representation code ... 41

Annex C: RedPitaya guide ... 45

Annex C.1: First time connecting RedPitaya to computer .. 45

Annex C.2: Executing the implemented code ... 47

Acknowledgment

First, I would like to sincerely thank the Dr. Ramon Bragós Bardia for all the help and

attention given along this project. He has not just been an exceptional tutor during this work but

an exceptional professor during my four years of degree and two of master. Without any need

to warm him up (he will probably not know that), I decided to enroll the Master in Electronics

thanks to him so I wouldn’t be where I am if I did not meet him. My more sincerely and honest

thanks Ramon.

Also, I would like to thank the Biomedical and Electronic Instrumentation group of the

Electronic Engineering Department of the UPC to give me the facilities and the opportunity to

do this work.

And at last, but not least, I would really like to thank myself, for working really hard during

these long six years, for waking up early on Sundays to study, for not even thinking of giving up

although sometimes it has not been easy, for this and other thousands of unnumerable things,

thank you Marcel.

Abstract

This project offers a detailed explanation on the design, implementation, and measures to

characterize the hardware and firmware programmed for the acquisition of the electrical

impedance spectra. It includes from the signal generation, which is based on the use of a

multifrequency signal, to the acquisition and signal processing. All have been implemented using

the development board RedPitaya.

Moreover, all the process of signal generation, signal acquisition and processing so as the

results calculation is done inside the commented RedPitaya board. The communication between

the board and the computer is handled through SSH via ethernet port. Finally, this project also

includes a brief script implemented in MatLab which objective is just to represent the acquired

results from the board.

To conclude, characterization measures are made to verify the system specifications.

List of figures
Figure 1. Simplified representation of current distribution at High and Low frequencies 9

Figure 2. Dispersion of the module of 𝜎 and 휀 in biological materials [4] 10

Figure 3. Model representing the main mechanisms that determine the impedance of a cell

suspension (a) and its simplified model [5] .. 11

Figure 4. Circuital model of a cell neglecting the resistive component of the cell membrane 𝑅𝑚

 ... 11

Figure 5. Module and phase representation of Debye relaxation with 𝑅0 = 70 𝛺, 𝑅∞ = 30 𝛺

and 𝜔𝑐 = 110 𝐻𝑧 ... 12

Figure 6. Spectrum of multi-sine signal ... 13

Figure 7. Bloc diagram of the implemented system ... 14

Figure 8. Circuit implementing the Front-end [7] ... 15

Figure 9. RedPitaya board characteristics ... 15

Figure 10. Generation module of the RedPitaya ... 16

Figure 11. RedPitaya acquisition module .. 17

Figure 12. Multi-sine signal used for impedance measurement .. 18

Figure 13. Flowchart of spectroscopy analyzer using pulsed arbitrary signal generation 19

Figure 14. Flowchart of spectroscopy analyzer using a continuous signal generation without

trigger .. 20

Figure 15. Phase coefficient dispersion over 100 iterations ... 20

Figure 16. Final flowchart of the implemented system .. 22

Figure 17. Modified multi-signal for handling trigger by software ... 23

Figure 18. Acquired multi-sine current component at iterations 1, 20 and 50< 24

Figure 19. Phase coefficients dispersion over 100 iterations ... 24

Figure 20. Example of one set of spectrum coefficients captured data 25

Figure 21. Physical model of an impedance measuring system ... 26

Figure 22. Linear regression for each frequency ... 28

Figure 23. Spectrum of the simple model from Figure 4.b measured with the implemented

system. 𝑅1 = 24 𝛺, 𝑅2 = 47 𝛺 and 𝐶 = 33 𝑛𝐹. ... 29

Figure 24. Cole-Cole arch of the simple model from Figure 4.b with estimated values 𝑅𝑒 =

70.61 𝛺, 𝑅∞ = 30.59, 𝑓𝑐 = 111.18 𝑘𝐻𝑧 and 𝛼 = 0.00106 .. 29

Figure 25. Magnitude and phase of arm contraction ... 30

Figure 26. Magnitude and phase of ventilation signal .. 31

Figure 27. Heart signal from respiratory signal ... 31

Figure 28. FFT module of heart signal ... 32

Figure 29. Body fat mass impedance spectrum .. 33

Figure 30. Cole-Cole arch of the body fat mass experiment results. 𝑅0 = 409.38 𝛺, 𝑅∞ =

269.44 𝛺, 𝛼 = 0.273 and 𝑓𝑐 = 26.52 𝑘𝐻𝑧. .. 33

List of tables
Table 1. Decimation factor relation with sampling frequency and temporal buffer capacity 17

Table 2. Data structure of the .txt files ... 25

Table 3. Linearity parameters for each frequency .. 27

Table 4. Measurement results of seven resistances ... 28

1. Introduction

1.1. Objectives of the project

The objective of the project is to design and implement the firmware and software of a

multifrequency impedance spectrum analyzer based on the development board RedPitaya. The

impedance spectrum must be obtained using one measurement at multiple frequencies at the

same time which can be achieved with the use of a multisine signal. In addition, the system must

be capable of measuring frequencies up to 1MHz with enough precision to detect impedance

changes in the range of 1Ω on a full scale of 1 kΩ.

All the needed code for signal generation, acquisition and processing must be running inside

the RedPitaya board thus, using the computer just for results representation as all the data

received is already processed. With this approach, the system becomes closed and compact as

no raw data is transferred between the board and the computer.

1.2. Context of the project

In order to measure the impedance spectrum of biological materials it is required a set of

measurement instruments. There is the possibility of buying these instruments but, for

experimental research it is more regular to design them for the own benefits of the projects, as

it is the case of the Electronic and Biomedical Instrumentation laboratory of DEE.

Until now, some of the implemented designs are based on directly programming an FPGA,

using development tools as Cadence or Quartus, as it is the case of [1] where a multifrequency

impedance analyzer is designed based on the development board DE3, in charge of the FFT

calculation and processing along with an external DDR2 memory which is in charge of the

embedded system. The system implemented in [1] can work at high-speed spectra per second

and encompasses a frequency range from some mHz to 10MHz. Although it is a high-efficient

system, it is very specific, expensive and not so compact solution, therefore it appeared the idea

of studying the possibility to implement a complete multifrequency spectrum analyzer system

inside a small development board, the RedPitaya.

An initial system using the above commented development board was implemented in [2].

In that work, the board is only dedicated to signal generation and acquisition so high spectra per

second rate is achieved (60 spectrums/second). After all the data acquisition process, the raw

data obtained is transferred to a computer which is the one in charge of the processing and

representation of the results, which means transferring 0.6 GB of data for an acquisition of 12

seconds through an ethernet link, this makes difficult the real-time processing and visualization

of data. Yet it is a very efficient and compact solution, the step beyond is what has been

implemented in the present work. Why not using the RedPitaya board not just as a signal

generator/acquisition but also as the processing tool, thus, the data transferred between the

board and the pc is considerably reduced so as the computer is just in charge of representing

the processed results. This is what has been implemented in this project but first, let’s introduce

some important key concepts for understanding the impedance of biological elements.

1.3. The electrical impedance

When characterizing biological systems as they could be tissues, organisms or even cellular

suspensions, the measurement of electric bioimpedance becomes very useful. The concept of

bioimpedance refers to the passive electrical characteristics of biological tissue when an electric

current travels through it. Consequently, it can be expressed as the relation between the voltage

and current that flow through a determined load. Speaking in terms of steady state, impedance

can be expressed as a complex number as 𝑅𝑒𝑗𝛼, where the module relates the voltage and

current amplitudes while the phase relates the phase shift between them. Moreover, this

relation is not constant along a certain frequency sweep, thus the impedance will be expressed

in terms of 𝜔 as:

𝑍(𝜔) =
𝑉(𝜔)

𝐼(𝜔)
 (1)

1.3.1. Impedance of biological materials

For this work, the main interest is to study the impedance that biological materials present

so as the physical phenomena to which it is associated. To further understand the behavior of

impedance along biological tissues we can understand these tissues as an ordered dispersion of

cells all suspended inside an ionic medium. The idea is that, at low frequencies, signals flow over

the extracellular space, as the cell membrane acts as an isolator (see Figure 1). On the other

hand, at high frequencies, the isolation feature of the cell membrane is lost so signals can flow

all over the space (see Figure 1). Thus, impedance at low frequencies will be bigger (signals will

have to travel bigger distances) than at high frequencies, where it will be lower.

Figure 1. Simplified representation of current distribution at High

and Low frequencies

The above commented effect is what is known as 𝛽 dispersion which is allocated between

some tens of kHz to tens of MHz. Furthermore, Schwan [3] described that there are three

different frequency ranges in which the impedance of a material produces a relaxation, these

where called the bio-impedance dispersions:

- 𝜶: The 𝛼 dispersion goes from mHz to tens of kHz. This relaxation is associated to the

dielectric losses of the tissue, its intracellular structure, and the ionic diffusion. This

region is not of much interest regarding tissue recognition, moreover, the contact of

electrodes itself introduces too much noise to the measurements making the analysis

inside this margin non profitable.

- 𝜷: This is the dispersion recently commented in Figure 1. It encompasses the range

between tens of kHz to tens of MHz and is directly related with the capacity of the cell

membrane, the conductivity of the protein molecules that that penetrates this

membrane and the intra and extra cellular ionic liquids. Thus, this band is the one of

interest for extracting information about the cellular composition of the tissue.

- 𝜸: Finally, 𝛾 represents the rest of the frequency band going to hundreds of GHz and is

related with dipolar relaxation phenomena of water molecules and salts present in

tissues. This frequency band is not relevant for tissue recognition, but its measurement

is interesting and is done with microwave techniques and instrumentation.

In Figure 2 it can be seen the effect of the above-described dispersions on the permittivity

and conductivity:

Figure 2. Dispersion of the module of 𝜎 and 휀 in biological materials [4]

1.3.2. Circuital models

The main cell component, in the case of this work, can be considered as the cell membrane

the structure of which can be understood as a two-layer lipidic medium that acts as a dielectric

interface which can be approximated to the one found between the layers of a capacitor. With

the objective of analyzing individual cells, it is assumed that the cell is suspended in an

environment that allows an ionic conductivity and that the intracellular liquid called cytoplasm

also allows ionic conductivity, we can model a unique cell as a set of resistors and capacitors:

Figure 3. Model representing the main mechanisms that determine the impedance
of a cell suspension (a) and its simplified model [5]

The model described in [5] is very interesting to finally understand how individual cells can

be modelled. In Figure 3.a, they are represented the extracellular and intracellular mediums with

the resistors 𝑅𝑒 and 𝑅𝐼 respectively and the capacity of the cell membrane with 𝐶𝑚 along with

its resistance 𝑅𝑚. Figure 3.b is the direct electrical simplification of the just commented model.

Furthermore, the behavior of the cell membrane is usually considered as fully capacitive,

thus 𝑅𝑚 can be neglected to ease a mathematical approach to the model. The resulting circuit

can be represented as:

Figure 4. Circuital model of a cell neglecting the resistive component
of the cell membrane 𝑅𝑚

By simple circuital analysis from Figure 4.b, impedance can be directly expressed as:

𝑍(𝜔) = 𝑅1 +
𝑅2

𝑗𝜔𝑅2𝐶 + 1
 (2)

Using the following relations:

𝑅0 = 𝑅1 + 𝑅2; 𝑅∞ = 𝑅1; 𝜔𝐶 =
1

𝑅2𝐶
 (3)

The impedance of the RC model from Figure 4 now can be expressed as what is known as

Debye complex relaxation model:

𝑍(𝜔) = 𝑅∞ +
𝑅0 − 𝑅∞

𝑗
𝜔
𝜔𝑐

+ 1
 (4)

Concluding, the impedance of a cell in an ionic suspension is fully characterized with the

three parameters 𝑅0, 𝑅∞ and 𝜔𝑐 of the Debye relaxation.

Figure 5. Module and phase representation of Debye relaxation with 𝑅0 = 70 𝛺, 𝑅∞ = 30 𝛺 and 𝜔𝑐 = 110 𝐻𝑧

There are mainly two different approaches to obtain impedance spectrums depending on

the requirements of the system used (velocity, accuracy…), the frequency sweep, which consists

in obtaining the spectrum by using signals with one frequency component, thus, the final

spectrum is the iteration over the desired frequency range with one iteration per frequency

sample. On the other hand, there is the possibility to use what is known as multi-sine or multi-

frequency signals which, as its name indicates, are signals with more than one frequency

component. This second approach is what has been implemented on this work so, on the next

chapter, it will be further discussed the advantages of using multi-frequency signals in this

project.

1.4. Limitations of frequency sweep methodology

The main drawback of using the frequency sweep methodology is clearly the time needed

to make one impedance spectrum measurement, as it depends on the number of frequential

steps where the spectrum wants to be represented and the cycles per frequency needed. This

implies a major excitation time for lower frequencies than for higher ones not to say the huge

amount of time needed for processing each iteration.

As it has been explained in 1.3.1, the frequency band of interest for characterizing biological

tissues is the one defined by the 𝛽 dispersion. A range from 1kHz to 1MHz provides enough

information of the biological material in the case of animal cells and tissues. To have a global

description of the material approximately between 15 and 30 logarithmically spaced frequential

point must be considered. With the frequency sweep methodology around 10 to 20 seconds are

needed to obtain the full spectrum. Depending on the application needed this is a good solution

but, for the current work, where dynamic biological systems as the heart or the lungs are

involved, it is not acceptable as the time modulation of the impedance changes produced by

them would be lost.

The most common technique to solve this problem is to use what is called multi-sine signals.

The main advantage is that this type of signals gives information in all the desired frequency

band. For instance, with just one period of this multi-sine signal a full impedance spectrum at

the frequencies conforming the signals can be obtained.

1.4.1. Multi-sine signal

Multi-sine signals consist of the summation of different sines or cosines at different

frequencies thus resulting in a signal with multiple frequency components [6]:

𝑥(𝑡) =
1

√𝑁
∑ 𝑎𝑛 · cos (𝜔𝑛𝑡 + 𝜑𝑛)

𝑁

𝑛=1

 (5)

In equation (5), 𝑁 represents the number of frequencies of the signal, 𝑎𝑛 is the amplitude

at each of these frequencies, 𝜔𝑛 stands for the angular frequency and 𝜑𝑛 is the phase.

Understanding this, the spectrum of 𝑥(𝑡) can be obtained by applying the Fourier

transformation to equation (5) resulting in:

𝑋(𝑓) =
𝑎𝑛

2√𝑁
∑ 𝛿(𝜔 − 𝜔𝑛)𝑒−𝑗𝜑𝑛 + 𝛿(𝜔 + 𝜔𝑛)𝑒𝑗𝜑𝑛 (6)

An example of how the spectra of the multi-sine described in equation (6) looks like, is the

one used along this work which has twelve frequency components:

Figure 6. Spectrum of multi-sine signal

2. Architecture and design of the system

As it has been explained in previous sections, the idea of this work is to go a step beyond

the work implemented in [2]. There, due to time development limitations and processing issues

regarding the triggering of signals received, the RedPitaya development board was fully

dedicated to signal generation and acquisition, thus, achieving very high spectrums per second

rates. Although this approach is perfectly feasible, the present project tries to upgrade it by

implementing all the signal processing inside the development tool, so no external hardware is

needed for that, and the computing power required for transmitting all the data is considerably

reduced.

In this chapter, a new architecture of the hole system will be explained, from the FPGA

hardware modules that I have taken advantage of, to the software implemented to handle the

generation and acquisition of data so as its processing. Finally, a discussion on the results will be

done in order that validate the complete system.

2.1. Development tools

The complete overview system overview can be seen in Figure 7:

Figure 7. Bloc diagram of the implemented system

From Figure 7, it can be seen how the system is basically divided into three different blocs:

Front-end, which is the hardware in charge of providing the system a tension and current

measurements from a load so as that making a final impedance measurement can be done. The

RedPitaya, the core of the system in charge of signal generation, signal acquisition, data

processing and data transmission. At last, but not least, the PC or laptop which just works as a

data representation tool in this work.

2.1.1. Front-end

The front end used in this work was developed in previous projects by the electronics

instrumentation and biomedical group inside the Electronic Engineering department of the UPC.

It is based on the use of a unipolar current source to transform the voltage signal coming from

the FPGA of our device to current so as to perform the impedance calculation. Moreover, this

Front-end also implements additional circuits to measure the differential voltage and current on

the load, using differential amplifiers, buffers and a transimpedance amplifier.

At a structural level, the front-end has an input port where the reference signal of about

2Vpp is introduced, an output measuring the tension drop on the load and a second output

proportional to the current injected on the load. Everything must be supplied at a constant 5Vdc.

Figure 8. Circuit implementing the Front-end [7]

2.1.2. RedPitaya development board

RedPitaya is an open-source development board that incorporates two DAC and two ADC

both of 14 bits able to convert and acquire at 125Ms/s and four more low speed DAC/ADC of 12

bits each. The board also has an FPGA and an ARM Cortex A9 microprocessor with two cores. It

also incorporates different peripherals for digital communication as they are Ethernet, USB, I2C,

SPI, UART and some general input-output GPIO pins. All the platform works with the Linux

operating system.

Figure 9. RedPitaya board characteristics

The device is based on a SoC that already integrates the ARM cortex along with the FPGA

from the family of Zynq 7000 of Xilinx. This has been in fact one of the main attractions of using

this board instead of using a Xilinx board based on the Zynq 7000, the RedPitaya already comes

with all the hardware needed for signal generation and acquisition, so no need of external

hardware is needed. At the same time this could be considered a drawback because, even

though all hardware modules implemented on the FPGA are said to be open source there is a

very limited documentation on how to access or reprogram them. Nevertheless, it is a very good

starting point just assuming all FPGA modules as they come just focusing on develop the

software in charge of handling an efficient way to collect and process the data.

2.2. Hardware architecture for signal generation and acquisition

As all the hardware modules for signal handling are already programmed inside the FPGA of

the board, no FPGA programming has been implemented. Even though, some considerations

and calibrations has been done to adjust the system to the requirements. A basic model of how

the generation block works can be seen in Figure 10:

Figure 10. Generation module of the RedPitaya

The already implemented bloc in the FPGA allows to load arbitrary waveforms to the 16384

samples buffer, this is a really great feature for this project were a multi-sine signal, that

practically seems white noise, must be generated. Moreover, the system also allows to set an

initial offset to start filling the buffer, a scale factor and an offset before the sample is sent to

the DAC.

One of the greatest features is that it also implements a digital counter, handled by the

application with a pointer, which keeps track on the position of the last sample sent. By

software, the increment of this counter can be adjusted relatively to the clock frequency of the

DAC, this way the waveform stored inside the buffer can be modulated to the desired frequency.

The multi-sine signal used in this project is 16384 samples length with one period of the

fundamental frequency, which is 1kHz, thus the frequency shall be adjusted to 1kHz.

On the other hand, the acquisition block is very similar to the generation:

Figure 11. RedPitaya acquisition module

As it can be seen in Figure 11, the acquisition block also implements a 16384-length buffer

with a pointer indicating the position being read at every iteration. It is of high importance to

notice the stage previous to writing the buffer, the decimation. Differently to the generation

part, the counter cannot be configured with the same freedom as before as it directly depends

on that decimation stage. There are a set of values, predefined by the RedPitaya platform, so

the correct one must be chosen:

Table 1. Decimation factor relation with sampling frequency and temporal buffer capacity

Decimation Sampling frequency Temporal buffer capacity

1 125 Ms/s 131 µs

8 15.6 Ms/s 1.048 ms

64 1.953 Ms/s 8.388 ms

For ease of the reader, in Table 1 a set of the three first decimation factors have been

included. For this work, the decimation factor that better fits our needs is by 8 as, considering

that 𝑓𝑚𝑖𝑛 will be determined by the sufficient time to capture one period of the fundamental

signal. On the other hand, being 𝑓𝑚𝑎𝑥 determined by the Nyquist condition, the range of

frequencies that our acquisition block would handle is determined by:

𝑓𝑚𝑖𝑛 =
1

1.048 𝑚𝑠
 (7)

𝑓𝑚𝑎𝑥 ≤
𝑓𝑠

2
= 1.812 𝑀𝐻𝑧 (8)

Within the acquisition stage there is one last aspect which results of key importance, the

trigger. As it can be seen in Figure 11, the acquisition bloc also offers some different possibilities

to handle this. Nevertheless, none of these options has been used and a new triggering protocol

has been implemented. This has been so because for measuring the impedance, the generation

and acquisition of signals must be synchronous, if this is not accomplished then it is impossible

to have a repeatable phase measurement as all the readings will be taken at different times.

One feasible option to make signals synchronous is to use on of the slow input-outputs of the

board to generate a pulse train which can be seen as a “clock”. It has been discarded as it implies

the use of external hardware, concretely a level-shifter, as the slow outputs of the board

generate signals of 3.3V amplitude and the fast inputs are limited to 1V. As one of the objectives

was to implement a fully software-controlled system and the use of level shifters was used in

previous works [2], this approach has been discarded.

2.3. Software architecture

Before the final solution, many approaches have been implemented with modifications

regarding the signal handling, triggering method… so an initial overview of them will be

discussed to better understand how it has been arrived to the final one.

2.3.1. Different software solutions

As commented in the Hardware architecture for signal generation and acquisition section,

the generation module already implements a 16384-samples buffer for arbitrary signal

generations, as it is the case of this project. Concretely, the signal used along this work is a

multifrequency sinusoid with twelve frequency components ranging from 1 kHz to 939 kHz, its

shape is the following:

Figure 12. Multi-sine signal used for impedance measurement

As the reader may notice, setting a trigger for a continuous generation of the signal in Figure

12 is quite complex as initially it may seem white noise. This is the main reason why the first and

more direct solution is to generate pulses of this multi-sine signal, this way the acquisition

process is directly eased as, when the acquisition thread receives something different than zero

then it starts saving data to the buffer. Although this solution may work for a first prototype it

has some important drawbacks that make it a no feasible approach:

- Regarding the FPGA block in charge of generating signals, it must be configured each

time an arbitrary signal is sent. This recurrent configuration considerably decreases the

spectrums per second rate which is one of the key points for achieving a live recording

system.

- The second and most important drawback is related to medical care. One of the

measurements that the system must handle is arm-to-arm impedance measuring and

even direct measurements in the heart using a catheter. A minimum rate of spectrums

per second is required in order to obtain the lungs behavior along with the heart rate,

concretely five spectrums per second. In this work, it means that the multi-sine signal of

1.047 ms must be generated every 200 ms thus obtaining the 5 spectrums per second

rate desired. From the software point of view, this is completely feasible to program but

due to medical care it is not possible for a final version as, the body of the subject will

receive the envelope of the pulsed arbitrary signal generated additionally to the signal

itself, thus, deriving in a low frequency signal very dangerous for the subject heart.

To conclude, a simple flowchart of the spectroscopy analyzer using this approach would be

the following:

Figure 13. Flowchart of spectroscopy analyzer using
pulsed arbitrary signal generation

Figure 13 is very illustrative as the before commented drawback can be clearly seen, at each

iteration the generation bloc must be reconfigured to create the needed arbitrary signal, thus,

deriving in a non-acceptable amount of time.

Owing to all the above considerations, the signal generation must then be continuous.

Moreover, by generating a continuous arbitrary signal, the two commented drawbacks are

solved as the generation bloc must be configured once, so no time is lost configuring it in each

iteration. On the other hand, here is where one of the major problems of this system appear,

the implementation of a trigger by software becomes very difficult as there is no way to stablish

a signal level to be triggered in a continuous multi-sine wave. Therefore, considering that the

system is ruled by the same clock and that the processes have fixed timings, it is tried to

eliminate the triggering. With this, there is no control on the part of the signal that is being

captured but all the captures shall be the same. To sum up, the updates flowchart is the

following:

Figure 14. Flowchart of spectroscopy analyzer using a
continuous signal generation without trigger

From Figure 14 it can be seen how the configuration process is done before entering the

loop, this way there is no loss of time reconfiguring the generation bloc. In addition, as there is

no triggering process the overall system timing is decreased.

Although this solution is valid for magnitude recording, it has huge affectations on the phase.

Let’s take the impedance phase spectrum of a 1 kΩ resistance over 100 iterations to illustrate

the phase issue:

Figure 15. Phase coefficient dispersion over 100 iterations

It can be seen how, even though the system has a common clock and fixed timings, there is

an exponential increase on the precision of the impedance phase coefficients as frequency

increases. This is a consequence of the small error present in the acquisition process of the

system, as Figure 13 and Figure 14 illustrate how acquisition of tension and current signals is

made sequentially accessing to the their respective buffers, this clearly affects the phase shift

between the acquired signals as the current will never be taken at the same time as voltage thus,

adding a small random error on the samples acquired. At lower frequencies this error does not

represent a huge affection on the variation of the samples but at higher ones it is not acceptable.

Let’s analyze then how an error of a few samples delay would affect the two extreme

frequencies, 954 Hz and 939 kHz.

Just one period of the lowest frequency is present in the multi-sine signal, it would

correspond to the fundamental frequency. Moreover, as it has been explained in the Hardware

architecture for signal generation and acquisition section, the sampling frequency of the

acquisition bloc is decimated to 15.6 Ms/s so the total amount of samples per period of the

fundamental frequency component are:

𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑝𝑒𝑟𝑖𝑜𝑑
=

1

954 𝐻𝑧
· 15,6

𝑀𝑠

𝑠
≅ 16352 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (9)

While the number of samples per frequency at the top frequency component of 939 kHz

are:

𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑝𝑒𝑟𝑖𝑜𝑑
=

1

939 𝑘𝐻𝑧
· 15,6

𝑀𝑠

𝑠
 ≅ 16 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (10)

Comparing equations (9) and (10) it can be seen that, at low frequencies, practically all buffer

samples are dedicated to representing the signal while, as frequency increases, less samples per

period are used. Thus, deviations of small samples at each iteration of the acquisition algorithm

are insignificant for the lower frequencies but can represent errors of 180º in phase at the higher

ones.

2.3.2. Final software implementation

Until now, some of the most important programmed solutions have been overviewed so as

the principal problems that have been appearing along the project. The last step is then to

discuss the final solution implemented, how all the technical considerations have been solved

and how each principal bloc of the tool work. The final flowchart of the system can be seen in

Figure 16.

Figure 16. Final flowchart of the implemented system

Making a quick look at Figure 16, the trigger stage is again present, and the acquisition

process has been divided into two different threads, thus, solving the before commented

synchronization problems.

Initially, a “System configuration” is done by means of initializing all the required variables

and loading the pre-defined multi-sine signal, which is directly load to a local buffer from an

external file loaded to the RedPitaya. In addition, the generation and acquisition modules of the

FPGA must be configured, that means choosing the channels that are going to be used for both

generation and acquisition. In this work, Channel 1 of the generation block is used, Channel 1

and Channel 2 of acquisition are used for tension and current measurement respectively. In the

case of the generation, it is needed to load the arbitrary signal (which is now stored in a local

buffer) to the generator buffer of the FPGA and set the desired generation frequency. Regarding

the acquisition bloc, the decimation value chosen is set (please go to Hardware architecture for

signal generation and acquisition).

Now that the two blocks are configured the main loop begins. A “Reset buffers” initial check

is done, saving the required memory space for each of the needed local buffers. The

implemented system uses eight local buffers of 16384-samples length for calculating the

impedance, these are:

- Signal buffers: four buffers for signal storing, two per channel. One is used for directly

storing the received signal and the other, called “worker buffer”, is a temporal buffer

reserved for calculations and processing.

- FFT_buffers: again, four buffers are used to store the calculated FFT coefficients, two

per channel. Two buffers have been used for each channel so as to store the module

and phase coefficients of the complete signal separately, otherwise the length of the

required buffers would have been too long and not so easy to work with.

At this point, the acquisition process is started, and the designed triggering methodology

begins. As it has been explained in the previous section, the trigger method is not trivial at the

time of precise recording the phase of the multi-sine, the generated and both voltage and

current signals must be as synchronized as possible to reduce the phase error. Thus, the first

improvement has been a very simple but consistent idea which consists of basically downscaling

the generated arbitrary signal, after this any of the samples confirming the signal reaches the

1V of maximum amplitude. Once this downscaling is done, four samples fixed at 1V of amplitude

are added to the beginning of the arbitrary signal. Thanks to this idea, the initial trigger based

on amplitude can be implemented as there is a clear flag inserted in each period of the

generated arbitrary signal. The new adapted signal has the following aspect:

Figure 17. Modified multi-signal for handling trigger by software

The reader may thing that by altering the multi-sine, the impedance measurement can be

affected, but please consider that the initial four samples of a 16384-sample length signal just

represent a 0.02% of the whole signal, so comparing pros and cons it is perfectly assumable.

Apart from this, looking at Figure 17, a second improvement has been done consisting of the

parallel acquisition (instead of sequentially) of both signals, thus reducing a lot the acquisition

time and considerably increasing the accuracy of the overall system. To implement this part

some of the internal controllers of the RedPitaya have been modified so as to allow this fast

acquisition. Finally, to check that the new triggering methodology works, three different

captures of the tension acquired signal, in three different iterations (1, 20 and 50), to validate

that effectively they are the same:

Figure 18. Acquired multi-sine current component at iterations 1, 20 and 50<

In Figure 18 it can be clearly seen how the three acquired signals are completely superposed;

it is always captured the same fragment of the multi-sine. To conclude, let’s look again at the

phase spectrum of a 1 kΩ resistor over 100 iterations of the algorithm:

Figure 19. Phase coefficients dispersion over 100 iterations

Again, it is finally demonstrated how the precision of the phase coefficients has considerably

improved compared with the one in Figure 15. In the case of Figure 19, taking a typical frequency

for measurements as it would be 50 kHz and considering a confidence level of 99%, the precision

can be easily calculated as ± 2.6𝜎. In the case under analysis, regarding the module we obtain

a standard deviation of 0.096 Ω which corresponds to a precision of 0.251 Ω. Regarding the

phase, considering that the deviation is 0.0034 𝐷𝑒𝑔 at this frequency, the system is even more

accurate with a precision of 0.008 𝐷𝑒𝑔.

Now that both tension and current signals have been stored, it is checked that effectively

the local buffer are correctly saved, and it proceeds to the FFT calculation for extracting the

needed coefficients. The extraction of the voltage and current coefficients is done sequentially

by taking the twelve samples of interest (corresponding to the twelve frequency components),

inside each of the four FFT buffers. This can be directly done as these samples corresponds to

the FFT maximum positions, which are fixed and known. For the FFT calculation the library

“kiss_fft” has been used, it is an already optimized library that calculates the Fourier transform

of a set of input samples and can be configured to return a struct consisting of the module and

phase of the calculated transformation. Finally, the achieved spectra per second rate with the

implemented algorithm is 30 spectra/second, which is more than enough considering that the

needed rate for real time acquisition is 5 spectra/second.

Once the coefficients are extracted, they are saved to two different .txt files (one for voltage

and one for current) with the following comma separated structure:

Figure 20. Example of one set of spectrum coefficients captured data

Table 2. Data structure of the .txt files

Module Phase Frequency component

%lf %lf %d

It has been decided to transfer separately the tension and current coefficients, with module

and phase distinction, to the computer to allow the user further processing with the received

coefficients.

Now that the voltage and current coefficients of this iteration have been saved, all the local

buffer memory spaces are released, and a “last iteration” check is done, if so, all the FPGA

modules are released and the algorithm ends.

3. Validation with experimental results

The last part of the work is to validate the implemented system with a set of experimental

results demonstrating that all the initial requirements have been accomplished. Nevertheless,

before the experiments an initial calibration must be done.

3.1. Calibration process

The calibration methodology followed has been the one implemented in [8] which starts

from the assumption of a physical model of 4 ports of the measuring system:

Figure 21. Physical model of an impedance measuring system

Assuming all the current applied by the generator is measured (𝑖1 ≈ 𝑖4) and that the tension

meter has high impedance (𝑖2 ≈ 0), the following equations are obtained:

(

𝑣1

⋮
𝑣4

) = (
𝑍11 + 𝑍14 𝑍13

⋮ ⋮
𝑍41 + 𝑍44 𝑍43

) · (
𝑖1

𝑖2
) (11)

Developing the equation (11), it can be expressed the measured impedance as a function of

the real one as:

𝑧 = −
𝑣3

𝑖3
; 𝑧𝑚 =

𝑣2

𝑖4
=

𝑣2

𝑖1
 →

𝑧𝑚 =
𝑧(𝑍21 + 𝑍24) + 𝑍33(𝑍21 + 𝑍24) − 𝑍23(𝑍31 + 𝑍34)

𝑧 + 𝑍33

(12)

The 𝑍𝑖𝑗 values are not known, but the equation (12) can be re-written simplifying in terms

of 𝑎𝑖 to finally isolate 𝑧 as a function of 𝑧𝑚:

𝑧 =
𝑎1𝑧 + 𝑎2

𝑧 + 𝑎3
→ 𝑧𝑚 =

𝑎2 − 𝑎3𝑧𝑚

𝑧𝑚 − 𝑎1
 (13)

In order to fins the coefficients 𝑎𝑖 present in equation (13), three different known

impedances should be measured to solve the following system:

(

𝑧𝑐1 1 −𝑧𝑚𝑐1

𝑧𝑐2 1 −𝑧𝑚𝑐2

𝑧𝑐3 1 −𝑧𝑚𝑐3

) · (

𝑎1

𝑎2

𝑎3

) = (

𝑧𝑐1𝑧𝑚𝑐1

𝑧𝑐2𝑧𝑚𝑐2

𝑧𝑐3𝑧𝑚𝑐3

) (14)

Finally, by isolating the 𝑎𝑖 coefficients from (14), we would obtain the three final calibration

coefficients:

(

𝑎1

𝑎2

𝑎3

) = (
𝑧𝑐1 1 −𝑧𝑚𝑐1

𝑧𝑐2 1 −𝑧𝑚𝑐2

𝑧𝑐3 1 −𝑧𝑚𝑐3

)

−1

· (

𝑧𝑐1𝑧𝑚𝑐1

𝑧𝑐2𝑧𝑚𝑐2

𝑧𝑐3𝑧𝑚𝑐3

) (15)

Now that the system is calibrated, three different experiments are done to validate the

system.

3.2. Linearity and dispersion

The first experiment tries to characterize the implemented multi-frequency system. For this

purpose, a set of seven resistors have been measured in the frequency range of 952 Hz to 894

kHz. In particular, the resistances used are 10 Ω, 20 Ω, 51 Ω, 100 Ω, 200 Ω, 510 Ω and 1kΩ.

To visualize the linearity of the system, a linear regression has been applied to the set of

seven measurements of each resistance over each particular frequency value, resulting in a total

of twelve lines. Each of these lines is characterized by the parameters 𝛽1 and 𝛽0 as:

𝑦 = 𝛽0 + 𝛽1𝑥 (16)

In equation (16), 𝑦 corresponds to the measured resistance value while 𝑥 corresponds to

the nominal resistance value. The 𝛽0 parameter corresponds to the vertical intercept at 𝑥 = 0

and the 𝛽1 to the slope of the linear regression line. Concluding, the parameters of each line can

be seen in Table 3:

Table 3. Linearity parameters for each frequency

 Parameter

Frequency 𝜷𝟎 𝜷𝟏
952 Hz 2.749 1.006

2.856 kHz 2.748 1.006

4.760 kHz 2.729 1.006

10.47 kHz 2.62 1.006

18.09 kHz 2.575 1.006

31.42 kHz 2.428 1.006

59.98 kHz 2.274 1.005

90.45 kHz 2.158 1.005

164.72 kHz 2.261 1.005

282.31 kHz 1.938 1.005

513.21 kHz 1.799 1.005

894.07 kHz 1.856 1.005

From Table 3, it can be concluded that the results obtained with the implemented system

are very linear in the working frequency range. Moreover, the slope of each of the lines remains

practically constant. All the numerical results of this experiment are shown in Table 4. Also, it is

very interesting to see the graphical linear regressions found in Figure 22 which finally confirms

the near perfect linearity of the system.

Table 4. Measurement results of seven resistances

Figure 22. Linear regression for each frequency

3.3. Cell model

The second experiment is related to the model of the cell explained in the Introduction,

which is shown in Figure 4.b. A set of two resistances with values 24 Ω and 47 Ω and a 33 nF

capacitor has been used in order to characterize the frequency response of the cell model.

Considering the circuit in Figure 4.b, it is expected to have the addition of 𝑅1 and 𝑅2 at low

frequencies, as the capacitor 𝐶 can be considered as an open circuit. On the other hand, at

higher frequencies we expect to have just the 𝑅1 component. Using the implemented system,

the results obtained are the following:

 Frequency (kHz)

Resistance 0.952 2.856 4.760 10.47 18.09 31.42 59.98 90.45 164.72 292.31 513.21 894.07

10 Ω 12.80 12.79 12.80 12.51 12.25 11.78 11.18 10.79 10.32 10.15 9.71 9.65

25 Ω 25.20 25.23 25.21 25.19 25.24 25.24 25.28 25.26 26.26 25.22 25.20 25.14

51 Ω 50.78 50.8 50.77 50.76 50.79 50.78 50.81 50.83 50.82 50.85 50.85 50.87

100 Ω 103.89 103.88 103.89 103.75 103.80 103.72 103.67 103.56 103.56 103.162 103.80 103.18

200 Ω 200.09 200.09 200.03 200.01 200.02 199.96 199.94 199.93 199.90 199.96 199.00 200.08

510 Ω 508.35 508.29 508.25 508.25 508.24 508.17 508.17 508.17 508.15 508.14 508.07 507.88

1kΩ 997.38 997.42 997.41 997.44 997.58 997.62 997.77 997.78 997.83 997.68 997.62 997.29

Figure 23. Spectrum of the simple model from Figure 4.b measured with the implemented system. 𝑅1 =

24 𝛺, 𝑅2 = 47 𝛺 and 𝐶 = 33 𝑛𝐹.

Figure 24. Cole-Cole arch of the simple model from Figure 4.b with estimated values 𝑅𝑒 = 70.61 𝛺, 𝑅∞ =

30.59, 𝑓𝑐 = 111.18 𝑘𝐻𝑧 and 𝛼 = 0.00106

Figure 23 demonstrates that the numbers are consistent with what would be expected

theoretically from such configuration. Nevertheless, it is more interesting to do the inverse step,

estimate the values of the components from the data. For this, it is very useful the Cole-Cole

arch. In the representation from Figure 24, they are plotted the real and (negative) imaginary

values of the impedance, for the twelve frequency values present in the multi-sine signal,

forming an arch (increasing frequency from right to left). From this arch, a value of 𝑅0 and 𝑅∞

can be determined just by taking the two intercepts with the horizontal axis. Moreover, the

value of 𝑅0 will correspond to the right intercept while the 𝑅∞ will correspond to the left

intercept. At the maximum point of the arch, the value of the central frequency will be found.

Finally, the 𝛼 parameter corresponds to the angle with respect to the horizontal axis at which

the center of the circle would be found. This is all described in equation (4) presented in Circuital

models section.

In the case of this experiment, the obtained results are 𝑅𝑒 = 70.61 Ω, 𝑅∞ = 30.59, 𝑓𝑐 =

111.18 𝑘𝐻𝑧 and 𝛼 = 0.00106. Considering the circuit used for the experiment, the value of

𝑅𝑒 would correspond to the additive effect of 𝑅1 and 𝑅2 at low frequencies. The value of 𝑅∞

corresponds to 𝑅1 which, at higher frequencies, is the only one remaining. Concluding the

experimental results are well adjusted taking into account possible variations due to the

components tolerances

3.4. Body measurements

3.4.1. Muscular tension

As a final experiment it has been decided to make body measurements to finally determine

the accuracy and good functionality of the system.

The first experiment is focused on detecting changes on muscular tension. For this purpose,

two pairs of electrodes have been putted in the forearm of the subject under test. The subject

was asked to maintain the arm relaxed for 5 seconds, then apply tension for 5 more seconds and

finally relax again. The results obtained were the following:

Figure 25. Magnitude and phase of arm contraction

Figure 25 shows the magnitude and phase of the arm contraction of the subject. It is also

interesting to comment the small dispersion present in the measurements, as it can be seen the

difference between the relaxed and contracted arm is just 3.5 Ω and the system is perfectly

capable of detecting that change without need of post-processing. Moreover, in the phase graph

the difference is even smaller, in the range of 0.1º-0.2º difference between relaxed and

contracted, and it is also detected by the system. Finally, there are two interesting effects that

should be commented. The first one is related to the contraction and relaxation moments, as it

can be seen in Figure 25, the contraction is more abrupt than the relaxation, this is because the

muscle fibers last less time in contracting (around 0.4 seconds) than in relaxing (around 1.6

seconds). The second effect is related to the different impedance levels at the two relaxed

states. It can be noticed that the initial relaxed impedance value is higher than the final one.

Although there is no concrete explanation to this effect, it could be due to an initial transitory

stage after a muscle contraction.

3.4.2. Ventilation and heartbeat detection

Now that the muscle contraction has been validated. A second and more interesting

experiment was done. It consisted in attaching two electrodes to one arm and two to the other

thus being able to detect the respiration of the subject. Furthermore, as the system is accurate

enough, it should be possible to detect the heart rate from the obtained signal.

Figure 26. Magnitude and phase of ventilation signal

It can be perfectly seen how, during the 16 seconds of the experiment, the subject did six

deep respirations which were perfectly recorded by the system. It must be said that, in the case

of the respiration signal, the changes in phase are even more difficult to detect than in the case

of muscular tension as they are in the order of 0.02º. Nevertheless, again the implemented

impedance analyzer can record those changes.

As it has been mentioned, by processing the respiration signal we can obtain the heart one.

Filtering the respiratory signal and subtracting it from the original one, it is possible to isolate

just the heart rate signal which, in the case of this experiment is the following:

Figure 27. Heart signal from respiratory signal

Considering that the heart beats at a frequency of 1 Hz – 1.5 Hz, by doing the FFT of the

signal in Figure 27 and checking the fundamental frequency it is possible to finally determine

heart rate of the subject:

Figure 28. FFT module of heart signal

From Figure 28 we know that the fundamental frequency is at 1.152 Hz. Considering that 1

Hz corresponds to 60 bpm, the subject under test had a cardiac frequency of 69 bpm at the

moment of the test, which is a reasonable and normal value for cardiac frequency.

3.4.3. Body fat mass

Finally, the last experiment consists in a leg-to-arm measurement with the objective of

estimating the body fat mass. The Cole-Cole arch in Figure 30 has been necessary to calculate

some parameters related with the body mass. The obtained values are 𝑅0 = 409.38 Ω, 𝑅∞ =

269.44 Ω, 𝛼 = 0.273 and 𝑓𝑐 = 26.52 𝑘𝐻𝑧. According to the approximations in [9] and [10], the

total body water considering a body weigh W = 85 kg and a height H = 170 cm of the subject, as

well as the estimated parameters of effective resistivity of the electrical fluid 𝜌∞ = 104.3 Ω ·

𝑐𝑚, a dimensional body shape factor of 𝑘𝑏 = 4.3 and a body density of 𝐷𝑏 = 1.05 𝑘𝑔/𝐿:

𝑇𝐵𝑊 =
1

100
(

𝜌∞𝑘𝑏𝐻2√𝑊

𝑅∞√𝐷𝑏

)

2
3

= 57.21 𝐿 (17)

With (13) and assuming a free fat mass of 𝑘ℎ = 0.732 𝐿/𝑘𝑔, the free fat mass is:

𝐹𝐹𝑀 =
𝑇𝐵𝑊

𝑘ℎ
= 78.15 𝑘𝑔 (18)

Finally, the body fat mass can be obtained subtracting the ft free mass from the weight:

𝐹𝑀 = 𝑊 − 𝐹𝐹𝑀 = 6.86 𝑘𝑔 (19)

Figure 29. Body fat mass impedance spectrum

Figure 30. Cole-Cole arch of the body fat mass experiment results. 𝑅0 = 409.38 𝛺, 𝑅∞ =

269.44 𝛺, 𝛼 = 0.273 and 𝑓𝑐 = 26.52 𝑘𝐻𝑧.

4. Conclusions and future work

4.1. Conclusions

This work illustrates the implementation of an impedance spectrum analyzer implemented

in the RedPitaya development board fully controller by software. Moreover, all the processing

and calculation of the impedance coefficients is done inside the processor of the board thus

achieving a rate of 30 spectra/second and needing less information transfer through the

communication link.

The core of this project is the RedPitaya development board which has already implemented

the FPGA hardware blocks in charge of signal generation and acquisition. It has been

implemented an algorithm in charge of correctly synchronizing the input and output channels

of the board, storing the received raw data from the ports and process it to obtain the final

impedance coefficients. Everything without the need of external hardware (excepting the analog

front-end).

As this work is developing a biomedical application, the experiments to test and validate the

system have been designed in order to give useful parameters in that field as it is the example

of the real body fat mass or the cardiac frequency. According to the obtained results, all the

desired initial specifications have been successfully accomplished.

4.2. Future work

Now that a functional acquisition and processing system has been developed and validated,

there are some improvements regarding future work that can be done to finally obtain a

complete closed system or just to improve the actual one. As the designer of this work my future

proposals are:

- Improve the FFT calculation by separating the voltage and current calculations in

separate threads. This way the algorithm would improve the spectra per second rate

achieved. Moreover, from a programming point of view, it makes more sense to have a

parallel calculation than the sequential approach implemented on this work as the

acquisition process is parallelized. Owing to the time dedication in other aspects it has

not been possible to implement.

- Implement a peak detector inside the main algorithm to automatically detect the FFT

maximums. As it has been explained in this project, the methodology used to obtain the

coefficients is by directly extracting them from the buffer as they have known positions,

the multi-sine signal is known. On very interesting improvement would be to

automatically detect these peaks so the system could work with any multi-sine signal,

even though it was unknown.

- Finally, the most useful improvement that would close the hole project is to implement

a web service running inside the RedPitaya processor thus allowing the manipulation

and visualization of data in real time from any mobile phone or computer. With this final

improvement, the designed system would be completely autonomous, anyone with the

knowledge of using a mobile or a pc could perfectly use it.

References

[1] S. Reig Quiroga, Design, implementation and validation of the software of an FPGA-based

multifrequency impedance analyser, Barcelona, 2013.

[2] R. Balderas Jiménez, Disseny i implementació d'un sistema d'espectroscòpia

d'impedància dinàmic basat en el mòdul Zynq, Barcelona, 2016.

[3] H. P. Schwan, "Analysis of dielectric data: Experience gained with biological material",

IEEE Trans. Electrical Insulation. Vol. 20, No. 6, pp. 913-922, 1985.

[4] H. P. Schwan, C. Ed. A. y N. C., “Dielectric properties of cell tissues”. "Interactins between

electromagnetic fileds and cells" chapter, PlenumPress, New York, 1985.

[5] K. S. Cole, "Membranes, Ions and Impulses. A chapter of classical biophysics”, University

of California Press. Berkeley, 1968.

[6] B.Sanchez, G. Vandesteen, R. Bragós and J. Schoukens. Basics of broadband impedance

spectroscopy measurements using periodic excitations., Barcelona: Universitat

Politécnica de Catalunya, 2012.

[7] B. Sanchez, X. Fernandez, S. Reig, R. Bragós, An FPGA-based frequency response analyzer

for multisine and stepped sine measurements on stationary and time-varying impedance,

Measurement Science and Technology, vol. 25, no. 1, p. 015501, 2014..

[8] J. Z. Bao, C. C. Davis and R. E. Schmukler, Impedance spectroscopy of human

erythrocytes: System calibration and nonlinear modeling, IEEE Trans. Biomed. Eng., 1993.

[9] B. Sanchez, A. L. P. Aroul, E. Bartolome, K. Soundarapandian and R. Bragós, Propagation

of Measurement Errors Through Body Composition Equations for Body Impedance

Analysis, Barcelona, June 2014. .

[10] I. Montsech, Design, implementation, and test of a low-cost, low-power, electrical

impedance spectroscopy system for biomedical applications, Barcelona: UPC, 2020..

Annex A: Main firmware code implemented

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <time.h>

#include <math.h>

#include "rp.h"

#include "kiss_fftr.h"

#define PI 3.14159265

// FUNCTIONS DECLARATION

int acq_fpga_fft_init();

int acq_fpga_fft_clean();

int acq_fpga_fft(double *ch_in, double **ch_out_mod, double

**ch_out_pha);

// GLOBAL VARIABLES DECLARATION

static const int BUFFER_SIZE = 16384;

static const int FFT_LENGTH = 16384;

kiss_fft_cpx *rp_kiss_fft_out = NULL;

kiss_fftr_cfg rp_kiss_fft_cfg = NULL;

int main(int argc, char **argv){

 if(rp_Init() != RP_OK){

 fprintf(stderr, "Rp api init failed!\n");

 }

 // REQUIRED FILES DECLARATION (SIGNAL, FILTER, V, I)

 FILE *signal_in = fopen("multisine16k_1V_ampTest.csv","r");

 FILE *trian_filt = fopen("triang_filt.csv","r");

 FILE *imp_V = fopen("impedance_V.txt","w");

 FILE *imp_I = fopen("impedance_I.txt","w");

 // BUFFER GENERAL VARIABLES AND SIGNALS MEMORY ALLOCATION

 uint32_t buff_size = 16384;

 uint32_t write_pos;

 float *x = (float *)malloc(buff_size * sizeof(float));

 double *tri_filt = (double *)malloc(buff_size * sizeof(double));

 // KNOWN POSITIONS FOR FFT COEFFICIENTS

 int i,k,j;

 int num_iterations = 100;

 int num_coeffs = 12;

 int max_fft_pos[12] = {1,3,5,11,19,33,63,95,173,307,539,939};

 // STORE TRIANGLE FILTER AND ARBITRARY SIGNAL

 for(i=0;i<buff_size;i++){

 fscanf(signal_in,"%f\n",&x[i]);

 fscanf(trian_filt,"%lf\n",&tri_filt[i]);

 }

 // RESET FPGA GENERATION AND ACQUISITION MODULES

 rp_GenReset();

 rp_AcqReset();

 // CONFIGURE GENERATION FPGA MODULE

 rp_GenWaveform(RP_CH_1, RP_WAVEFORM_ARBITRARY);

 rp_GenArbWaveform(RP_CH_1, x, buff_size);

 rp_GenFreq(RP_CH_1, 954);

 rp_GenAmp(RP_CH_1, 1.0);

 // CONFIGURE ACQUISITION FPGA MODULE

 rp_AcqSetDecimation(RP_DEC_8);

 rp_AcqSetTriggerLevel(RP_T_CH_2, 0.9);

 rp_AcqSetTriggerDelay(BUFFER_SIZE/2);

 // START GENERATING SIGNAL

 rp_GenOutEnable(RP_CH_1);

 // START CLOCK TO KNOW EXECUTION TIME OF ALGORITHM

 clock_t ex_time;

 ex_time = clock();

 // START LOOP, num_iterations DEFINES THE DESIRED NUMBER OF

SPECTRA

 for(k=0; k<num_iterations;k++){

 // RESERVE THE REQUIRED MEMORY FOR RECEPTION AND FFT BUFFERS

 float *buff_ch1 = (float *)malloc(buff_size * sizeof(float));

 double *buff_worker_ch1 = (double *)malloc(buff_size *

sizeof(double));

 double *buff_fft_ch1_mod = (double *)malloc(sizeof(double) *

buff_size);

 double *buff_fft_ch1_pha = (double *)malloc(sizeof(double) *

buff_size);

 float *buff_ch2 = (float *)malloc(buff_size * sizeof(float));

 double *buff_worker_ch2 = (double *)malloc(buff_size *

sizeof(double));

 double *buff_fft_ch2_mod = (double *)malloc(sizeof(double) *

buff_size);

 double *buff_fft_ch2_pha = (double *)malloc(sizeof(double) *

buff_size);

 // START DATA ACQUISITION MODULE

 rp_AcqStart();

 // SET TRIGGER TO POSITIVE EDGE AND WAIT FOR STATE TO BE

TRIGGERED, ONCE TRIGGERED SIGNALS CAN BE READ

 rp_AcqSetTriggerSrc(RP_TRIG_SRC_CHB_PE);

 rp_acq_trig_state_t state = RP_TRIG_STATE_TRIGGERED;

 while(1){

 rp_AcqGetTriggerState(&state);

 if(state == RP_TRIG_STATE_TRIGGERED){

 break;

 }

 }

 // START PARALLEL READ OF CHANNEL 1 (VOLTAGE MEASUREMENTS) AND

CHANNEL 2 (CURRENT MEASUREMENTS) BUFFERS

 rp_AcqGetWritePointer(&write_pos);

 rp_AcqGetDataV2(write_pos,&buff_size,buff_ch1,buff_ch2);

 //rp_AcqGetOldestDataV(RP_CH_1, &buff_size, buff_ch1);

 //rp_AcqGetOldestDataV(RP_CH_2, &buff_size, buff_ch2);

 // APPLY TRIANGULAR FILTER (NOT NECESSARY)

 /*for(i=0;i<buff_size;i++){

 buff_worker_ch1[i] = buff_worker_ch1[i]*tri_filt[i];

 buff_worker_ch2[i] = buff_worker_ch2[i]*tri_filt[i];

 }*/

 // INIT FFT MODULES BY ALLOCATING THE REQUIRED MEMORY SPACE

 if(acq_fpga_fft_init() < 0){

 acq_fpga_fft_clean();

 free(buff_ch1);

 free(buff_ch2);

 rp_Release();

 return -1;

 }

 // CALCULATION OF FOURIER TRANSFORM FOR VOLTAGE AND CURRENT

BUFFERS

 acq_fpga_fft(&buff_worker_ch1[0], (double

**)&buff_fft_ch1_mod, (double **)&buff_fft_ch1_pha);

 acq_fpga_fft(&buff_worker_ch2[0], (double

**)&buff_fft_ch2_mod, (double **)&buff_fft_ch2_pha);

 // FROM V AND I BUFFERS, STORE IN EACH OUTPUT FILE JUST THE

KNOWN COEFFICIENTS (12 FOR EACH ITERATION)

 for(j=0;j<num_coeffs;j++){

 fprintf(imp_V,"%lf,%lf,%d\n",

buff_fft_ch1_mod[max_fft_pos[j]],buff_fft_ch1_pha[max_fft_pos[j]],max_

fft_pos[j]);

 fprintf(imp_I,"%lf,%lf,%d\n",

buff_fft_ch2_mod[max_fft_pos[j]],buff_fft_ch2_pha[max_fft_pos[j]],max_

fft_pos[j]);

 }

 // RELEASE ALL USED RESOURCES

 acq_fpga_fft_clean();

 free(buff_ch1);

 buff_ch1 = NULL;

 free(buff_worker_ch1);

 buff_worker_ch1 = NULL;

 free(buff_fft_ch1_mod);

 buff_fft_ch1_mod = NULL;

 free(buff_fft_ch1_pha);

 buff_fft_ch1_pha = NULL;

 free(buff_ch2);

 buff_ch2 = NULL;

 free(buff_worker_ch2);

 buff_worker_ch2 = NULL;

 free(buff_fft_ch2_mod);

 buff_fft_ch2_mod = NULL;

 free(buff_fft_ch2_pha);

 buff_fft_ch2_pha = NULL;

 }

 // SHOW THE TOTAL EXECUTION TIME ON SCREEN

 ex_time = clock() - ex_time;

 double execution = ((double)ex_time)/CLOCKS_PER_SEC;

 printf("Total execution time: %f seconds\n", execution);

 // FREE TRIANGULAR FILTER AND ARBITRARY SIGNAL BUFFERS

 free(x);

 x = NULL;

 free(tri_filt);

 tri_filt = NULL;

 rp_GenOutDisable(RP_CH_1);

 rp_Release();

 return 0;

}

int acq_fpga_fft_init()

{

 if(rp_kiss_fft_out || rp_kiss_fft_cfg){

 acq_fpga_fft_clean();

 }

 rp_kiss_fft_out =

 (kiss_fft_cpx *)malloc(BUFFER_SIZE * sizeof(kiss_fft_cpx));

 rp_kiss_fft_cfg = kiss_fftr_alloc(BUFFER_SIZE, 0, NULL, NULL);

 return 0;

}

int acq_fpga_fft_clean()

{

 kiss_fft_cleanup();

 if(rp_kiss_fft_out){

 free(rp_kiss_fft_out);

 rp_kiss_fft_out = NULL;

 }

 if(rp_kiss_fft_cfg){

 free(rp_kiss_fft_cfg);

 rp_kiss_fft_cfg = NULL;

 }

 return 0;

}

int acq_fpga_fft(double *ch_in, double **ch_out_mod, double

**ch_out_pha)

{

 double *ch_o = *ch_out_mod;

 double *ch_o_ph = *ch_out_pha;

 int i;

 if(!ch_in || !*ch_out_mod || !*ch_out_pha){

 return -1;

 }

 if(!rp_kiss_fft_out || !rp_kiss_fft_cfg){

 fprintf(stderr, "acq_fpga_fft not initialized");

 return -1;

 }

 kiss_fftr(rp_kiss_fft_cfg, (kiss_fft_scalar *)ch_in,

rp_kiss_fft_out);

 // FFT limited to Fs/2 as there is no need to save the

periodification

 for(i = 0; i < FFT_LENGTH/2; i++){

 ch_o[i] = rp_kiss_fft_out[i].r;

 ch_o_ph[i] = rp_kiss_fft_out[i].i;

 }

 return 0;

}

Annex B: MatLab representation code

clear all

close all

clc

% GENERAL PARAMETERS

Fs = 15.6e6; % Sampling frequency

T = 1/Fs; % Sampling period

L = 16384; % Length of signal

t = (0:L-1)*T;

f = Fs*(0:(L-1))/L;

%% IMPORT SIGNAL AND COEFFICIENTS

coeffs_mod =

csvread('C:\Users\marce\Desktop\UNI\MEE\Q3\IR\TFM_Mem_Results\impedanc

e_mod.txt');

coeffs_pha =

csvread('C:\Users\marce\Desktop\UNI\MEE\Q3\IR\TFM_Mem_Results\impedanc

e_pha.txt');

%% COEFFICIENTS PROCESSING FOR MOD AND PHASE

impedanceX = coeffs_mod(:,3);

module_vector = complex(coeffs_mod(:,1),coeffs_mod(:,2))*1000;

phase_vector = complex(coeffs_pha(:,1),coeffs_pha(:,2));

complex_impedance = (module_vector./phase_vector);

complex_impedance_phase = angle(complex_impedance);

coeffs_pos = [1,3,5,11,19,33,63,95,173,307,539,939]; %Sample positions

of the coefficients

final_coeffs_mod_NC=[];final_coeffs_mod_C=[];

final_coeffs_angle_NC=[];final_coeffs_angle_C=[];

% Calibrate the raw coeicients

zm_51 = [-44.6990494582778 - 0.126608447030290i,-44.6480407350372 +

0.154648964976589i,-44.6055440426653 + 0.319154405132030i,-

44.3245545349840 + 0.603771015154968i,-43.8840667036474 +

0.689576754750671i,-43.4109511134249 + 0.477811324380020i,-

43.0581619624641 - 0.210134149324751i,-42.9017888875397 -

0.752856114990535i,-42.9135068304520 - 2.10007597044607i,-

43.1164354795468 - 2.01112796262936i,-42.7224169807245 -

5.10424827345497i,-42.2538460949995 - 9.40129517714810i];

zm_100 = [-97.7899254065843 + 0.164484765279426i,-97.7101529733256 +

0.325461414572930i,-97.6849058352528 + 0.424582682150166i,-

97.2873397830392 + 0.781036241931290i,-96.7600153400667 +

0.824843915932537i,-96.1348413344693 + 0.379657465219665i,-

95.6076976276256 - 0.687484615630656i,-95.3370585474023 -

1.53141713293398i,-95.2111194734964 - 3.74290792468531i,-

95.6701899136574 - 4.86621429842634i,-95.4466875376101 -

10.0316671419686i,-95.5918206375715 - 17.6279876621993i];

zm_200 = [-194.273739211977 - 0.0438906520337707i,-194.175422360071 +

0.259195216828560i,-194.085521730665 + 0.487906639654271i,-

193.682916806152 + 0.817851154114718i,-192.912333809970 +

0.794260776537110i,-192.081184393955 + 0.187041909008138i,-

191.446395827006 - 1.59044194804481i,-191.229077138486 -

3.11635084429169i,-191.152248470393 - 6.63253324124656i,-

191.554592248566 - 10.1676090235527i,-191.214811549116 -

19.6567850669284i,-191.160931798441 - 34.6162873206757i];

zm_510 = [-498.757044124281 - 0.0772638247127680i,-498.688648734786 +

0.239958852134571i,-498.633702503224 + 0.623086295325133i,-

498.105199472323 + 0.850158344550908i,-496.771776538016 +

0.551507728217158i,-495.459889341309 - 0.806735721936529i,-

494.508111682810 - 4.66172938610902i,-494.258849833638 -

8.19381077612987i,-494.166599135567 - 16.1131365124827i,-

494.541631693798 - 27.1310214392162i,-494.289543325634 -

49.6983273894444i,-494.530497016288 - 86.9376040633451i];

zm_1000 = [-974.091268885932 - 0.177613185417709i,-973.998433740153 +

0.180874073750818i,-973.802792660464 + 0.764845628678706i,-

973.121418031372 + 0.900882458079994i,-971.005154208130 +

0.315817271001525i,-968.845489474155 - 2.23106845239757i,-

967.337910343682 - 9.25014710685837i,-967.193994928793 -

15.7763221198167i,-967.127331303163 - 30.0205909140823i,-

967.622453956882 - 53.2148208991124i,-967.517976282203 -

95.4940683514293i,-968.541992302988 - 166.438773993765i];

A = [];

C = [];

mean_NC =[];

manual_mod_calib =

[1.03166873581575,1.03220005538645,1.03274255709646,1.03494511891756,1

.03894916474910,1.04325522264493,1.04678839958772,1.04791839100987,1.0

4775872712895,1.04459891051270,1.04257167088971,1.03175026433227];

manual_pha_calib = [-0.762364880755598,-1.30071991262699,-

3.02041563297107,-5.58187385868746,-10.2566081120738,-

20.3197572569601,-31.0999024417382,-57.1230356283771,-

100.258773551602,-180.010555650085,-220.030784037487,0];

for i = 1:size(coeffs_pos,2)

 temp_impedanceX = (impedanceX==coeffs_pos(i));

 % NON CALIBRATED COEFFICIENTS

final_coeffs_mod_NC(i)=mean(abs(nonzeros(diag(temp_impedanceX*complex_

impedance.'))));

final_coeffs_angle_NC(i)=180/pi*mean(nonzeros(diag(temp_impedanceX*com

plex_impedance_phase.')));

 % MANUAL CALIBRATED COEFFICIENTS

final_coeffs_mod_C_man(i)=mean(abs(nonzeros(diag(temp_impedanceX*compl

ex_impedance.'))))*manual_mod_calib(i);

final_coeffs_angle_C_man(i)=(180/pi)*mean(nonzeros(diag(temp_impedance

X*complex_impedance_phase.')));

 % VENTILATION REPRESENTATION FOR COEFFICIENT 7

 if(i==7)

 resp =

abs(nonzeros(diag(temp_impedanceX*complex_impedance.')));

 resp_im =

180/pi*nonzeros(diag(temp_impedanceX*complex_impedance_phase.'));

plot(abs(nonzeros(diag(temp_impedanceX*complex_impedance.'))),'x');

 end

 % DISPERSION REPRESENTATION

 hold on;

 yyaxis left;

%

plot(i,abs(nonzeros(diag(temp_impedanceX*complex_impedance.'))),'x');

plot(i,abs(180/pi*nonzeros(diag(temp_impedanceX*complex_impedance_phas

e.'))),'x');

 yyaxis right;

 stdrd_dev(i) =

std(abs(180/pi*nonzeros(diag(temp_impedanceX*complex_impedance_phase.'

))));

% stdrd_dev(i) =

std(abs(nonzeros(diag(temp_impedanceX*complex_impedance.'))));

 errorbar(i,0,stdrd_dev(i),'x');

 % FOR CALIBRATION PURPOSES

mean_NC(i)=mean(nonzeros(diag(temp_impedanceX*complex_impedance.')));

 % CALIBRATION USING COEFFICIENTS

 A(i:i,:) = getacal(51,510,1000,zm_51(i),zm_510(i),zm_1000(i));

 C(i:i,:) =

useacal(nonzeros(diag(temp_impedanceX*complex_impedance.')),A(i:i,:));

 final_complex_coeffs(i) = mean(C(i:i,:));

 final_coeffs_mod_C(i) = mean(abs(C(i:i,:)));

 final_coeffs_angle_C(i) = 180/pi*mean(angle(C(i:i,:)));

end

title("Phase impedance spectrum ");xlabel("Coefficient number");grid

on;

yyaxis left; ylabel("Angle [Deg]");

yyaxis right; ylabel("Standard Deviation [Deg]");

hold off;

%% COLE COLE

[ro,ri,alf,fc,ecm2]=colez(real(final_complex_coeffs),imag(final_comple

x_coeffs),f(coeffs_pos+1))

plot(real(final_complex_coeffs),-imag(final_complex_coeffs),'x');grid

on;hold off;

%% PLOTTING OF RESULTS

% NON-CALIBRATED COEFFICIENTS REPRESENTATION

figure;tiledlayout(2,1);

nexttile;semilogx(f(coeffs_pos+1),final_coeffs_mod_NC);hold

on;semilogx(f(coeffs_pos+1),final_coeffs_mod_NC,'x');hold off;grid

on;title("Impedance not calibrated");xlabel("Frequency

[Hz]");ylabel("Impedance [\Omega]");

nexttile;semilogx(f(coeffs_pos+1),final_coeffs_angle_NC);hold

on;semilogx(f(coeffs_pos+1),final_coeffs_angle_NC,'x');hold off;grid

on;title("Phase not calibrated [Deg]");xlabel("Frequency

[Hz]");ylabel("Phase [Deg]");

figure;hist(abs(module_vector),15);xlabel("Impedance

[\Omega]");ylabel("Count");title("Non calibrated impedance

histogram");

% CALIBRATED COEFFICIENTS REPRESENTATION

figure;tiledlayout(2,1);

nexttile;semilogx(f(coeffs_pos+1),final_coeffs_mod_C);hold

on;semilogx(f(coeffs_pos+1),final_coeffs_mod_C,'x');hold off;grid

on;title("Impedance calibrated");xlabel("Frequency

[Hz]");ylabel("Impedance [\Omega]");

nexttile;semilogx(f(coeffs_pos+1),final_coeffs_angle_C);hold

on;semilogx(f(coeffs_pos+1),final_coeffs_angle_C,'x');hold off;grid

on;title("Phase calibrated");xlabel("Frequency [Hz]");ylabel("Phase

[Deg]");

figure;hist(abs(C),15);xlabel("Impedance

[\Omega]");ylabel("Count");title("Calibrated impedance histogram");

% VENTILATION REPRESENTATION

resp_low_filt = filtfilt(ones(5,1),5,resp);

resp_low_filt_im = filtfilt(ones(10,1),10,resp_im);

figure;tiledlayout(2,1);

nexttile;plot(t1,resp,'x');hold

on;plot(t1,resp_low_filt,'LineWidth',2);hold off;grid

on;title("Impedance magnitude");xlabel("Time [s]");ylabel("Impedance

[\Omega]");

nexttile;plot(t1,resp_im,'x');hold

on;plot(t1,resp_low_filt_im,'LineWidth',2);hold off;grid

on;title("Impedance phase");xlabel("Time [s]");ylabel("Phase [Deg]");

Annex C: RedPitaya guide

This guide is based on the autonomous learning acquired along the project; the process

explained is the one that has been used, nevertheless there may be many ways to achieve the

same.

Annex C.1: First time connecting RedPitaya to computer

If it is the first time plugging the RedPitaya to the computer using Ethernet link, follow these

steps:

1. Go to windows bar and type “Estado de Red”, you should arrive to an interface similar

to this one:

2. Go to “Ethernet” option, the following site will be open:

3. Click on “Cambiar opciones del adaptador”, you Will go to a new window:

4. Go to the “Ethernet” option, the new window should look like this:

5. Click on “Protocolo de Internet versión 4 (TCP/IPv4)” and select “Propiedades” to open

the following window:

6. As you can see in the previous image, click on “Usar la siguiente dirección IP” and input

the desired IP direction. As a recommendation set the 192.168.1.1 as seen in the image.

The security mask section will be automatically filled, if not, insert the also the one in

the image “255.255.255.0”

7. Now you have set an IP direction that will be assigned when the Ethernet cable is

plugged. The next step is to insert the Ethernet cable connecting the RedPitaya with the

computer.

8. A software to stablish SSH connection with the RedPitaya must be installed in the

computer. For the case of this project the “Putty” software has been installed. It is a free

and open software available for Windows (access the following link to install it:

https://www.putty.org/).

9. Open the Putty application, the following window should open:

10. If the reader has followed all the steps until here, leave the “Port” section to 22 and

insert the Host Name: “192.168.1.100”. Then click “Open”.

11. You will be asked for user and password, both are “root”. You should see the

following:

12. Congratulations, you are now connected to the RedPitaya board.

Annex C.2: Executing the implemented code

1. Starting from the end of the previous Annex section, the reader may be now inside the

root directory. As commented in the work, the operating system of the RedPitaya is

linux-based so navigating through the system is equally done as there. To execute the

algorithm, go to “Examples” folder by typing:

cd RedPitaya/Examples/C/

https://www.putty.org/

2. The next step is to compile the code. Type the following command:

 make acquire_multisine_dualfft

3. Finally execute the code with:

 ./acquire_multisine_dualfft

4. The data will be stored in the files named “impedance_mod.txt” and
“impedance_phase.txt” containing the voltage and current measurements
respectively. To transfer the files to the computer, go to the command window
of windows (by typing “cmd” in the windows bar) and write:

 scp 192.168.1.100:~/RedPitaya/Examples/C/impedance_mod.txt

 -> C:\Users\Marcel Palet\Desktop\MEE\TFM

This command will copy the file from the first path (the RedPitaya one) to the
specified path in the second line. In the second line, the reader must specify
the desired path inside his/her computer, this is an example.

