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Abstract. An important task when working with terrain models is computing viewsheds:
the parts of the terrain visible from a given viewpoint. When the terrain is modeled as
a polyhedral terrain, the viewshed is composed of the union of all the triangle parts that
are visible from the viewpoint. The complexity of a viewshed can vary significantly, from
constant to quadratic in the number of terrain vertices, depending on the terrain topography
and the viewpoint position.
In this work we study a new topographic attribute, the prickliness, that measures the number
of local maxima in a terrain from all possible perspectives. We show that the prickliness
effectively captures the potential of 2.5D terrains to have high complexity viewsheds, and
we present near-optimal algorithms to compute the prickliness of 1.5D and 2.5D terrains.
We also report on some experiments relating the prickliness of real word 2.5D terrains to
the size of the terrains and to their viewshed complexity.
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1 Introduction

Digital terrain models are representations of (parts of) the earth’s surface and are used to solve a
variety of problems in geographic information science (GIS). An important task for which terrain
models are used is visibility analysis: determining which parts of a terrain are visible from some
other point(s). A point q on the terrain is said to be visible from p if the line segment pq does
not intersect the interior of the terrain. The viewshed of p is the set of all points that are visible
from a given viewpoint p. Viewsheds are useful, for example, in evaluating the visual impact of
potential constructions [3], analyzing the coverage of an area by fire watchtowers [9], or measuring
the scenic beauty of a landscape [20].

There are two major ways to represent terrains in GIS: as a raster, i.e., a rectangular grid
where each cell stores an elevation, or as a polyhedral terrain, a triangulation of a set of points in
the plane, where each point has an elevation. In this paper we focus on the latter, which is the
standard model in computational geometry. A polyhedral terrain can be seen as an xy-monotone
polyhedral surface in R3. This is sometimes called a 2.5D terrain. From a theoretical standpoint,
it will be also interesting to consider the simpler setting of 1.5D terrains, defined as x-monotone
polygonal lines in R2. In a 2.5D polyhedral terrain, a viewshed is formed by the union of the
maximal parts of each terrain triangle that are visible from at least one viewpoint. In 1.5D, a
viewshed is composed of parts of terrain edges.

The computational study of viewsheds focuses on two main aspects: the complexity of the
viewsheds, and their efficient computation. In a 1.5D terrain, the viewshed of one viewpoint can
have a complexity that is linear on the number of vertices, and can be computed in linear time [8].
In contrast, in 2.5D terrains the complexity of the viewshed of one viewpoint can be quadratic in
the number of vertices [14], which makes its computation too slow for most practical uses when
terrains are large.
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Fig. 1: A 2.5D terrain where the visible triangles form a viewshed of quadratic complexity.

A typical quadratic construction is shown schematically in Fig. 1, where the viewpoint would
be placed at the center of projection, and both the number of vertical and horizontal triangles
is Θ(n), for n terrain vertices. Notice that the vertical peaks form a grid-like pattern with the
horizontal triangles, leading to Θ(n2) visible triangle pieces. There exist several output-sensitive
algorithms to compute the viewshed for a 2.5D terrain [10,18].

While a viewshed in a 2.5D terrain can have quadratic complexity, this seems to be uncommon
in real terrains [1]. Indeed, there have been attempts to define theoretical conditions for a terrain
to be “realistic” that guarantee, among others, that viewsheds cannot be that large. In particular,
Moet et al. [17] showed that if terrain triangles satisfy certain “realistic” shape conditions, view-
sheds have O(n

√
n) complexity. De Berg et al. [1] showed that similar conditions are enough to

guarantee worst-case expected complexity of Θ(n) when the vertex heights are subject to uniform
noise.

1.1 Viewsheds and peaks

The topography of the terrain has a strong influence on the potential complexity of the viewshed
(something well-studied for sitting observers on terrains to maximize coverage, see e.g., [11]). To
give an extreme example, in a totally concave± terrain, the viewshed of any viewpoint will be the
whole terrain, so it will have a trivial description. Intuitively, to obtain a high complexity viewshed
as in the figure above, one needs a large number of obstacles obstructing the visibility from the
viewpoint, which in turn requires a somewhat rough topography.

In fact, it is well-established that viewsheds tend to be more complex in terrains that are
more “rugged” [11]. This leads to the natural question of describing the terrain characteristics that
can create high complexity (i.e., quadratic) viewsheds. Many topographic attributes have been
proposed to capture different aspects of the shape or roughness of a terrain, such as the terrain
ruggedness index [19], the terrain shape index [15], or the fractal dimension [13]. These measures
focus on aspects like the amount of elevation change between adjacent parts of a terrain, its overall
shape, or the terrain complexity. However, none of them is particularly aimed either to capture
the possibility to produce high complexity viewsheds or to show any theoretical evidence for such
a correlation.

One very simple and natural measure of the ruggedness of a terrain that is relevant for viewshed
complexity is to simply count the number of local maxima, or “peaks”, in a terrain. There has been
evidence that areas with higher elevation difference, and hence, more peaks, cause irregularities
in viewsheds [5,9], and this idea aligns with our theoretical understanding: the quadratic example
from Fig. 1 is designed by creating an artificial row of peaks, and placing a viewpoint behind
it. However, there is no theoretical correlation between the number of peaks and the viewshed
complexity, as is easily seen by performing a simple trick: any terrain can be made arbitrarily flat
± In this work, as is common in terrain analysis but unlike functional analysis, a vertex v of a 2.5D terrain
is convex (resp., concave) if there exists a non-vertical plane through v leaving all neighboring vertices
below it (resp., above it). Convex/concave vertices of 1.5D terrains are defined analogously using lines
rather than planes.
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by scaling it in the z-dimension by a very small factor, and then tilted slightly—this results in
a valid terrain without any peaks, but retains the same viewshed complexity. In fact, viewshed
complexity is invariant under affine transformations of the terrain, and hence, any measure that
has provable correlation with it must be affine-invariant as well. This is a common problem to
establish theoretical guarantees on viewshed complexity, or to design features of “realistic” terrains
in general [1,17].

1.2 Prickliness

In this work we explore a new topographic attribute: the prickliness. The definition follows directly
from the above observations: it counts the number of peaks in a terrain, but does so for every
possible affine transformation of the terrain.

Formally, let T be a polyhedral surface. We say that T is a terrain if the surface is xy-monotone;
that is, if any vertical line intersects T at most once. Let A be an affine transformation. We define
the number of peaks or local maxima of A(T ), m(A(T )), to be the number of internal and convex
vertices of T² which are extremal in the z-direction in A(T ); that is, all adjacent vertices have a
lower or equal z-coordinate. Let A(T ) be the set of all affine transformations of T . Then we define
the prickliness of T , π(T ), to be the maximum number of local maxima over all transformation of
T ;³ that is, π(T ) = maxA∈A(T )m(A(T )).

We start by observing that, essentially, the prickliness considers all possible directions in which
the number of peaks are counted, and we can, in fact, provide an alternative definition that will
be helpful in our analysis of the concept. Let v be a vector in R3. Let πv(T ) be the number of
internal and convex vertices of T that are local maxima of T in direction v; that is, the number of
internal and convex vertices of T for which the local neighborhood does not extend further than
that vertex in direction v.

Observation 1 π(T ) = maxv πv(T )

Proof. Clearly, for every vector v there exists an affine transformation A such that m(A(T )) =
πv(T ): choose for A the rotation that makes v vertical. We will show that also for every affine
transformation A there exists a vector v for which m(A(T )) = πv(T ). In particular this then
implies that the maximum value of m(A(T )) over all A is equal to the maximum value of πv(T )
over all v.

Let A be an affine transformation, and let H be the horizontal plane z = 0. Consider the
transformed plane H ′ = A−1(H). Then any vertex of T which has the property that all neighbours
are on the same side of H ′ in T , will be a local maximum or local minimum in A(T ). Now, choose
for v the vector perpendicular to H ′ and pointing in the direction which will correspond to local
maxima. ut

Using this observation, we reduce the space of all possible affine transformations to essentially
the 2-dimensional space of all possible directions. Further note that, since T is a terrain, for any
v with a negative z-coordinate we have πv(T ) = 0 by definition. This provides a natural way to
visualize the prickliness of a terrain. Fig. 2 shows a small terrain and the resulting prickliness,
shown as a function of the direction of v.

² We explicitly only count vertices which are already convex in the original terrain, since some affine
transformations will transform local minima / concave vertices of the original terrain into local maxima.

³ It might happen that, in the affine transformation achieving prickliness, some of the vertices considered
local maxima have neighbors at the same height, which might be considered non-desirable. However,
under certain reasonable non-degeneracy assumptions for the terrain, there exists a small perturbation
of that transformation giving one fewer local maxima and such that in that transformation all vertices
considered local maxima have all neighbors at strictly lower height. An assumption guaranteeing this
property is that no two edges of T have the same slope, and no two faces are parallel.
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Fig. 2: (left) A polyhedral terrain T . Triangulation edges are shown in black, height (z-coordinates)
are indicated using colors. (right) A visualization of the prickliness πv(T ) as a function of v, in
degrees from vertical (0, 0, 1). The maximum prickliness is 8, attained at a direction about 13◦

north-east from the origin.

Results and organization The paper is organized as follows.

– In Section 2, we show that the prickliness of a 1.5D terrain and the viewshed complexity of
a single viewpoint are not related: we given examples where one is constant and the other is
linear.

– In contrast, we show in Section 3 that such a correlation does exist for 2.5D terrains: we show
that the viewshed complexity of a single viewpoint cannot be higher than O(n · π(T )), and this
is tight.

– In Section 4, we consider the question of how to compute the prickliness of a 1.5D terrain. We
provide an algorithm that runs in O(n log n) time, as well as a matching lower bound.

– In Section 5, we consider the question of how to compute the prickliness of a 2.5D terrain.
We provide an O(n2) time algorithm, and show that this is near-optimal by proving that the
problem is 3SUM-hard.

– Finally, in Section 6, we report on experiments that measure the prickliness of real terrains, and
confirm the correlation between prickliness and viewshed complexity in practice.

2 Prickliness and viewshed complexity in 1.5D terrains

The prickliness of a 1.5D terrain and the viewshed complexity of a single viewpoint do not seem
to be related. In order to show it, we need to introduce some notation.

For every internal and convex vertex v in T , we are interested in the vectors w such that v
is a local maximum of T in direction w. Note that these feasible vectors w can be represented
as unit vectors, and then the feasible set becomes a region of the unit circle S1, which we denote
by se(v) ⊂ S1. To find se(v), for each edge e of T incident to v we consider the line ` through
v which is perpendicular to e. Then we take the half-plane bounded by ` and opposite to e, and
we translate it so that its boundary contains the origin. Finally, we intersect this half-plane with
S1, which yields a half-circle. We intersect the two half-circles associated to the two edges of T
incident to v, and obtain a sector of S1. For each direction w contained in the sector, the two
corresponding edges do not extend further than v in direction w. Thus, v is a local maxima in
direction w and this sector indeed represents se(v). See Fig. 3 for an example.

Theorem 2. There exists a 1.5D terrain T with n vertices and constant prickliness, and a view-
point on T with viewshed complexity Θ(n).

Proof. The construction is illustrated in Fig. 4. From a point p, we shoot n/2 rays in the fourth
quadrant of p such that the angle between any pair of consecutive rays is 2/n. On the ith ray,
there are two consecutive vertices of the terrain, namely, vi and wi. The vertices are placed so
that ∠wi−1viwi = 180− 3/n.
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Fig. 3: In shaded, se(v) for the corresponding vertices.

p

vi

vi+1

wiwi−1

wi+1

Fig. 4: Terrains with low prickliness can have high viewshed complexity.

For every i, we have that se(vi) has angle 3/n, while se(wi) is empty because wi is not convex.
Since the angle between wi−1vi and wivi+1 is 2/n and the angle between viwi and vi+1wi+1 is
also 2/n, we have that se(vi+1) can be obtained by rotating counterclockwise se(vi) by an angle of
2/n. Thus, se(vi) ∩ se(vi+1) has angle 1/n, and se(vi) ∩ se(vi+j) is empty for j ≥ 2. We conclude
that the prickliness of the terrain is constant.

If a viewpoint is placed very near p along the edge emanating to the right of p, then for every i
the section viwivi+1 contains a non-visible portion followed by a visible one. Hence, the complexity
of the viewshed of the viewpoint is Θ(n). ut

3 Prickliness and viewshed complexity in 2.5D terrains

Surprisingly, and in contrast to Theorem 2, we will show in Theorem 3 that in 2.5D there is a
provable relation between prickliness and viewshed complexity.

We recall some terminology introduced in [7]. Let v be a vertex of T , and let p be a viewpoint.
We denote by ↑vp the half-line with origin at v in the direction of vector −→pv. Now, let e = uv be an
edge of T . The vase of p and e, denoted ↑ep, is the region bounded by e, ↑up , and ↑vp (see Fig. 5).

p

e

v

u
↑up

↑vp

↑ep

Fig. 5: A vase.

Vertices of the viewshed of p can have three types [7]. A vertex of type 1 is a vertex of T , of
which there are clearly only n. A vertex of type 2 is the intersection of an edge of T and a vase.
A vertex of type 3 is the intersection of a triangle of T and two vases. With the following two
lemmas we will be able to prove Theorem 3.
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p

e1
q

t

r

↑e2p

↑e1p

e2

Fig. 6: The situation in the proof of Lemma 2.

Lemma 1. There are at most O(n · π(T )) vertices of type 2.

Proof. Consider an edge e of T and let H be the plane spanned by e and p. Consider the viewshed
of p on e. Let qr be a maximal invisible portion of e surrounded by two visible ones. Since q and
r are vertices of type 2, the open segments pq and pr pass through a point of T . On the other
hand, for any point x in the open segment qr, there exist points of T above the segment px. This
implies that there is a continuous portion of T above H such that the vertical projection onto
H of this portion lies on the triangle pqr. Such portion has a local maximum in the direction
perpendicular to H which is a convex and internal vertex of T . In consequence, each invisible
portion of e surrounded by two visible ones can be assigned to a distinct point of T that is a local
maximum in the direction perpendicular to H. Hence, in the viewshed of p, e is partitioned into
at most 2π(T ) + 3 parts.´ ut

Lemma 2. There are at most O(n · π(T )) vertices of type 3.

Proof. Let q be a vertex of type 3 in the viewshed of p. Point q is the intersection between a
triangle t of T and two vases, say, ↑e1p and ↑e2p ; see Fig. 6. Let r be the ray with origin at p and
passing through q. Ray r intersects edges e1 and e2. First, we suppose that e1 and e2 do not share
any vertex and, without loss of generality, we assume that r ∩ e1 is closer to p than r ∩ e2. Notice
that r ∩ e2 is a vertex of type 2 because it is the intersection of e2 and ↑e1p , and ↑e1p partitions e2
into a visible and an invisible portion. Thus, we charge q to r∩ e2. If another vertex of type 3 was
charged to r ∩ e2, then such a vertex would also lie on r. However, no point on r after q is visible
from p because the visibility is blocked by t. Hence, no other vertex of type 3 is charged to r ∩ e2.

If e1 and e2 are both incident to a vertex v, since t∩ ↑e1p ∩ ↑e2p is a type 3 vertex, we have that
r passes through v. Therefore, q is the first intersection point between r (which can be seen as the
ray with origin at p and passing through v) and the interior of some triangle in T . Therefore, any
vertex v of T creates at most a unique vertex of type 3 in this way. ut

Theorem 3. The complexity of a viewshed in a 2.5D terrain is O(n · π(T )).

Next we describe a construction showing that the theorem is best possible.

Theorem 4. There exists a 2.5D terrain T with n vertices and prickliness π(T ), and a viewpoint
on T with viewshed complexity Θ(n · π(T )).

Proof. Consider the standard quadratic viewshed construction, composed of a set of front moun-
tains and back triangles (Fig. 7 (left)). Notice that there can be at most π(T ) mountains “at the
front”. We add a surrounding box around the construction, see Fig. 7 (right), such that each vertex
of the back triangles is connected to at least one vertex on this box. We set the elevation of the
box so that it is higher than all the vertices of the back triangles, but lower than those of the front
mountains. In this way, no vertex of the back triangles will be a local maximum in any direction,
and all local maxima will come from the front. ut

´ We obtain 2π(T ) + 3 parts when the first and last portion of e are invisible; otherwise, we obtain fewer
parts.



Terrain prickliness: theoretical grounds for low complexity viewsheds 7

Fig. 7: Schematic top-down view of the classic quadratic construction (left), and the same adapted
to have small prickliness (right). The camera with quadratic behaviour is at (0,−∞) (see Fig. 1
for the resulting view). Blue vertices/edges are low, red are medium hight, and green are high.
The right construction introduces a new height (yellow) between medium and high, and changes
the triangulation slightly, to ensure that all convex vertices in the construction are green.

4 Prickliness computation in 1.5D terrains

4.1 Algorithm

For every internal and convex vertex v in T , we compute se(v) in constant time using the charac-
terization given in Section 2. The prickliness of T is the maximum number of sectors of type se(v)
whose intersection is non-empty. We sort the bounding angles of the sectors in O(n log n) time,
and obtain the maximum in a single pass. Thus, we obtain:

Theorem 5. The prickliness of a 1.5D terrain can be computed in O(n log n) time.

4.2 Lower bound

Now we show that Ω(n log n) is also a lower bound for finding prickliness in a 1.5D terrain.
The reduction is from the problem of checking distinctness of n integer elements, which has an
Ω(n log n) lower bound in the bounded-degree algebraic decision tree model [12,22].

Suppose we are given a set S = {x1, x2, . . . , xn} of n integer elements, assumed w.l.o.g. to
be positive. We multiply all elements of S by 180/(maxS + 1) and obtain a new set S ′ =
{x′1, x′2, . . . , x′n} such that 0 < x′i < 180, for each x′i. We construct a terrain T that will be
an instance of the prickliness problem. For each x′i, we create in T a convex vertex vi such that
se(vi) = [x′i− ε, x′i + ε], where ε = 18/(maxS+ 1), and such that its two neighbors are at distance
1 from vi.µ See Fig. 8 for an example. We denote the incident vertices to vi to its left and right
by wl

i and wr
i , respectively.

We arrange these convex vertices in the order of the elements in S ′ from left to right, and we
place all of them at the same height. Then we place a dummy vertex ui between every pair of
consecutive vertices vi and vi+1, and connect ui to wr

i and wl
i+1; see Fig. 8c. The height of ui is

chosen so that its two neighbors become concave vertices, and also so that [min (S ′)−ε,max (S ′)+
ε] ⊆ se(ui). This is possible because moving ui upwards increases its feasible region se(ui), the
limit being [0, 180]. The following lemma allows us to prove Theorem 6 below.

Lemma 3. The prickliness of T is n if and only if all elements in S are distinct.

Proof. Every vertex of type ui satisfies that [min (S ′)− ε,max (S ′) + ε] ⊆ se(ui). Thus the prick-
liness of T is at least n − 1. For every vertex of type vi, se(vi) has an angle of 2ε. Finally, the
vertices of type wl

i and wr
i are concave, so se(wl

i) and se(wr
i ) are empty.

Consequently, the prickliness of T is n if and only the sectors of type se(vi) are pairwise disjoint,
which happens if and only if the elements in S are all distinct. ut

Theorem 6. The problem of computing the prickliness of a 1.5D terrain has an Ω(n log n) lower
bound in the bounded-degree algebraic decision tree model.
µ We sometimes write se(v) = [α, β], where α and β are the angles bounding the sector.



8 Acharyya et al.

vi+1

ui ui+1

vi
vi+1

wl
i

wr
i

wl
i+1

wr
i+1

(b) (c)

0

90

180

45135

225 315

0

90

180

270

45135

225 315
270

(a)

vi

Fig. 8: (a) Sectors associated to the element set {160, 25}. (b) The corresponding convex vertices.
(c) Construction of the terrain.

5 Prickliness computation in 2.5D terrains

5.1 Algorithm

A basic observation is that the sphere of potential directions is subdivided into n2 cells by the
n planes through the origin parallel to the triangles of T . For any pair of directions v and w
in the same cell, the values of πv and πw are equal. This gives a trivial O(n3) time algorithm
to calculate the prickliness: compute this subdivision, for each cell take a single vector, and for
this vector count the number of local maxima (testing whether a vertex is a local maximum is a
local operation that takes time proportional to the degree of the vertex; the sum of degrees of all
vertices is linear).

We propose a faster algorithm that extends the idea from Section 4.1 to 2.5D terrains as
follows: For every convex terrain vertex v, we compute the region of the unit sphere S2 containing
all vectors w such that v is a local maximum of T in direction w. As we will see, such a region is
a cone and we denote it by co(v). Furthermore, we denote the portion of co(v) on the surface of
the sphere by coS2(v).

In order to compute co(v), we consider all edges of T incident to v. Let e = vu be such an
edge, and consider the plane orthogonal to e through v. Let H be the half-space which is bounded
by this plane and does not contain u. We translate H so that the plane bounding it contains the
origin; let He be the intersection of the obtained half-space with the unit sphere S2. The following
property is satisfied: For any unit vector w in He, the edge e does not extend further than v in
direction w. We repeat this procedure for all edges incident to v, and consider the intersection
co(v) of all the obtained half-spheres He. For any unit vector w in co(v), none of the edges incident
to v extends further than v in direction w. Since v is convex, this implies that v is a local maxima
in direction w.

Once we know all regions of type co(v), computing the prickliness of T reduces to finding a unit
vector that lies in the maximum number of such regions. To simplify, rather than considering these
cones on the sphere, we extend them until they intersect the boundary of a unit cube Q centered
at the origin. The conic regions of type co(v) intersect the faces of Q forming (overlapping) convex
regions. Notice that the problem of finding a unit vector that lies in the maximum number of
regions of type co(v) on S is equivalent to the problem of finding a point on the surface of Q
that lies in the maximum number of “extended" regions of type co(v). The second problem can
be solved by computing the maximum overlap of convex regions using a topological sweep [4], for
each face of the cube.

Computing the intersection between the extended regions of type co(v) (for all convex vertices
v) and the boundary of Q takes O(n log n) time, and topological sweep to find the maximum
overlap takes O(n2) time. We obtain the following:
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Fig. 9: Instance of the problem of coverage with strips (left), and the equivalent problem of coverage
with rectangles (right).

Theorem 7. The prickliness of a 2.5D terrain can be computed in O(n2) time.

5.2 Lower bound

In this section we show that the problem of computing the prickliness of a 2.5D terrain is 3SUM-
hard. This implies our result in Theorem 7 is likely to be close to optimal: The best-known
algorithm for 3SUM runs in O(n2(log log n)O(1)/(log n)2) time, and it is believed there are no
significantly faster solutions [2].

The reduction is from the following problem, which is known to be 3SUM-hard [6]: Given a
square Q and m strips of infinite length, does there exist a point in Q not covered by any of these
m strips?

Let us take an instance of the problem above. The complement of each strip is given by two
half-planes. Let us consider the 2m half-planes obtained in this way, together with the square Q.
Answering the above question is equivalent to answering whether there exists a point in Q covered
by m of the half-planes.

For every half-plane, if it does not intersect Q, we discard it. Otherwise, we replace the half-
plane by the smallest-area rectangle that contains the intersection of Q with the half-plane; see
Fig. 9. Then the problem becomes determining whether there exists a point in Q covered by m of
these rectangles.

Let A be the arrangement containing Q and the rectangles. By construction, we have:

Observation 8 Any point is covered by at most m+ 1 objects of A. If a point is covered by m+ 1
objects of A, it lies inside Q.

Next we consider the plane containing A as a horizontal plane in R3 such that (0, 0, 2) lies
on Q. For every object in A, we connect all its vertices to (0, 0, 0), which gives a cone, and we
intersect this cone with the unit sphere centered at (0, 0, 0). The intersection of the cone with the
surface of the sphere is referred to as the “projection” of the original object in A. We denote the
projection of Q by Q̃, and the projection of rectangle Ri by R̃i. With some abuse of notation, we
still refer to the objects R̃i as “rectangles”. Let Ã be the arrangement containing the projection of
the objects in A. Observation 8 implies:

Observation 9 Any point is covered by at most m+ 1 objects of Ã. If a point is covered by m+ 1
objects of Ã, it lies inside Q̃.

We next construct a terrain T . The terrain contains red, green and blue vertices. We associate
one red vertex to Q̃ and to each of the rectangles intersecting it. The red vertices are placed at
height two, and the distance between any pair of them is at least three.

Each red vertex has four green vertices as neighbors, placed as follows. Let R̃i be one of the
rectangles on the sphere (either Q̃ or one of the rectangles intersecting it), and let vi be the red
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vertex of T associated to R̃i. For each of the sides of R̃i, consider the plane containing the side of
R̃i and passing through the origin. Consider the half-space H that is bounded by this plane and
contains R̃i. Take a normal vector w of the plane that does not point towards H. Then place a
green vertex x of T such that the vector vix is congruent to w and has length one.¶ By following
this procedure for all sides of R̃i, we obtain four green vertices of T which are adjacent to vi. We
denote this set of vertices by N(vi). There are no more vertices of T adjacent to vi.

Lemma 4. Vertex vi satisfies:

(a) It is a convex vertex of T .
(b) If we project vi and N(vi) onto the XY -plane, then the convex hull of the projection of the

vertices in N(vi) contains the projection of vi.
(c) coS2(vi) = R̃i.

Proof. The intersection of the four half-spaces associated to the four sides of R̃i forms a cone that
can be described as the set of points x̄ ∈ R3 satisfying the equation Ax̄ ≤ 0, where A is a 4 × 3
matrix. It can also be described as cone(W ) –the conic hull of vectors in W–, where W is the set
of four vectors pointing from the origin to the four endpoints of Ri.

Let W̃ be the 4×3 matrix where each row corresponds to the components of one of the vectors
in W . Let Ã be the set of four vectors corresponding to the four rows of A. By polar duality, the
cones described by W̃ x̄ ≤ 0 and cone(Ã) are also the same.

Notice that the vectors of Ã are the four vectors used to place the four neighbors of vi in T .
Therefore, (b) is equivalent to the following: If we project the endpoints of the vectors of Ã onto
the XY -plane, then the convex hull of the projected points contains the origin. We will prove that
(0, 0,−1) ∈ cone(Ã), which implies this claim.

Since the four endpoints of R̃i have positive z-coordinate, (0, 0,−1) satisfies the equation
W̃ x̄ ≤ 0. Since the cones W̃ x̄ ≤ 0 and cone(Ã) are the same, we obtain (0, 0,−1) ∈ cone(Ã).

Regarding (a), let α 6= (0, 0, 0) be such that Aα ≤ 0. Then cone(Ã) is contained in the half-
space αTx ≤ 0, which proves that vi is a convex vertex of T .

By construction of N(vi) and the fact that vi is a convex vertex of T , (c) follows. ut

By Lemma 4b (and the facts that red vertices are at pairwise distance at least three and each
red vertex has its green neighbors at distance one), the projection of the red and green vertices,
and the edges among them, onto the XY -plane is a set of pairwise disjoint wheel graphs. Next,
we triangulate this graph. Then, for every triangle defined by three green vertices, we place a
blue vertex inside the triangle and we connect this vertex to the three vertices of the triangle (see
Fig. 10). It only remains to specify the height of the blue vertices. Each blue vertex u is placed at a
height high enough so that: (i) the three neighboring green vertices become non-convex vertices of
T , and (ii) coS2(u) contains Q̃. Regarding (ii), if u is placed higher than all of its neighbors (which
are all green, so they already have specified heights), then coS2(u) contains the north pole. By
moving u upwards, co(u) becomes bigger and bigger, the limit being the upper hemisphere of S.
Therefore, from some height onwards coS2(u) contains Q̃. Let Ã+ be the arrangement Ã augmented
with coS2(u) for all blue vertices u. Let the number of blue vertices be k. By Observation 9,

Observation 10 Any point is covered by at most m + 1 + k objects of Ã+. If a point is covered
by m+ 1 + k objects of Ã+, it lies inside Q̃.

Lemma 5. The prickliness of T is m + k + 1 if and only if there is a point in Q covered by m
rectangles.

Proof. Suppose that the prickliness of T is m + k + 1. This means that, when we compute co(v)
for all vertices v of T , a unit vector that is covered by the maximum number of such cones is
covered by m+k+ 1 cones. If v is a blue vertex, coS2(v) contains Q̃. If v is a green vertex, co(v) is
empty because v is a concave vertex of T . If v is a red vertex, either v is associated to Q̃ or v = vi

¶ Since red vertices have height two, the obtained green vertex has positive height.
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Fig. 10: Projection of T onto the XY -plane.
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Fig. 11: (left) The prickliness values for the terrains we considered. (right) The relation between
the (median) viewshed complextity of the high viewpoints in a terrain and its prickliness.

for some i. By Lemma 4c, in the first case coS2(v) = Q̃, while in the second case coS2(v) = R̃i.
Therefore, the problem of computing the prickliness of T is equivalent to the problem of finding a
point in Ã+ covered by the maximum number of objects. By Observation 9, if the prickliness of
T is m+ k + 1, there is a point in Q̃ covered by m+ 1 + k objects of Ã+. This implies that there
is a point in Q covered by m rectangles.

If there is a point in Q covered by m rectangles, there is a point in Q̃ covered by m + 1 + k
objects of Ã+. By Observation 9, there is no point in Ã+ covered by more than m+ 1 +k objects,
so the prickliness of T is m+ k + 1. ut

Thus we have the following:

Theorem 11. The problem of computing the prickliness of a 2.5D terrain is 3SUM-hard.

6 Experiments

We briefly report on some experiments relating the prickliness to the viewshed complexity in
real world 2.5D terrains (see [16] for details). We considered a collection of 52 real-world terrains
around the world. They varied in ruggedness, including mountainous regions (Rocky mountains,
Himalaya), flat areas (farmlands in the Netherlands), and rolling hills (Sahara), and in number
of vertices. For each of these terrains we computed the prickliness, and the viewsheds of nine
“sufficiently separated” high points on the terrain. We refer to [16] on how we pick these points
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Fig. 12: A real-world terrain with 583 vertices from the neighborhood of California Hot Springs
whose prickliness is only 62. On the right the value πv for vectors near (0, 0, 1).

exactly. Fig. 11 (left) shows the number of vertices in each of the terrains and their prickliness.
We see that the prickliness is generally much smaller than the number of vertices. See also Fig. 12.
Fig. 11 (right) then shows the relation between the prickliness and the viewshed complexities. The
viewshed complexities seem to scale nicely with the prickliness. These results suggest that the
prickliness may indeed be a valuable terrain descriptor.

7 Conclusions

We introduced the prickliness as a new measure of terrain ruggedness, and showed that for 2.5D
terrains it has a direct correlation with viewshed complexity. As far as we know, this constitutes
the first topographic attribute that has a provable connection with viewshed complexity, and
is independent of the viewpoint location. Furthermore, we presented near-optimal algorithms to
compute the prickliness of 1.5D and 2.5D terrains. We also performed some experiments indicating
that, in real-world terrains, prickliness is significantly smaller than the number of vertices, and
also that the correlation between prickliness and viewshed complexity translates into practice.

An intriguing question is whether the computation of the prickliness itself can be done more
efficiently on real terrains, as our lower bound construction results in a very artificial terrain. It
is conceivable that one could achieve this assuming, for instance, realistic terrain conditions [17],
or a slope condition [21]. Finally, extending our study to viewsheds of multiple viewpoints, whose
complexity was studied recently for the first time [7], is another interesting direction for further
research.
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