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Abstract—In the last years, advances in next-generation se-
quencing technologies have enabled the proliferation of genomic
applications that guide personalized medicine. These applica-
tions have an enormous computational cost due to the large
amount of genomic data they process. The first step in many of
these applications consists in aligning reads against a reference
genome. Very recently, the wavefront alignment algorithm has
been introduced, significantly reducing the execution time of the
read alignment process. This paper presents the first FPGA-
based hardware/software co-designed accelerator of such relevant
algorithm. Compared to the reference WFA CPU-only imple-
mentation, the proposed FPGA accelerator achieves performance
speedups of up to 13.5× while consuming up to 14.6× less energy.

Index Terms—FPGA; co-design; acceleration; CAPI; ge-
nomics; WFA; Alignment;

I. INTRODUCTION

Next-Generation Sequencing (NGS) technologies have revo-
lutionized many aspects of biology and personalized medicine.
NGS systems significantly increase the throughput of DNA
sequencing, while drastically reducing their cost. The data gen-
erated by these sequencing machines is organized in millions
of small fragments called reads, which have a typical sequence
length of 30 to 200 base-pairs. Recently, third generation
sequencing machines have emerged, and they are expected to
be widely used in the near future. These sequencing machines
generate much longer reads (i.e. thousands of base-pairs) with
a further increased sequencing throughput and reduced cost.

The first step in most DNA sequence analysis pipelines is to
determine the location of each read in the reference genome.
This problem is known as read mapping or read alignment.
To solve it, modern read mappers such as BLAST [1], BWA-
MEM [2], Minimap2 [3], and GEM [4], [5] use variants of the
Smith-Waterman (SW) algorithm [6]. All these variants are
based on dynamic programming (DP) and require quadratic
O(n2) execution time and memory, where n is the sequence
length. Thus, the computational requirements of SW quickly
become the bottleneck with increasing sequence lengths.

Recently, the breakthrough wavefront alignment algorithm
(WFA) has been proposed [7]. Unlike other algorithms, the
WFA algorithm runs in O(n · s) time, proportional to the

sequence length n and the error score s between sequences. To
do so, the WFA uses a novel approach which only computes
a reduced number of the DP-matrix cells to find the optimal
alignment. With this approach, the WFA algorithm performs
exact pairwise sequence alignment between the query and
every potential candidate of the database, so its results are
identical to the gapped Smith-Waterman-Gotoh (SWG) [8].
Thus, the SWG algorithm of any full mapper could be replaced
by the WFA algorithm to improve the mapper performance.
Since the error score is typically much smaller than the
sequence length, the WFA algorithm is significantly faster
than other algorithms when aligning short reads. In addition,
the WFA algorithm also scales much better with increasing
sequence lengths, achieving 10−100× speedups over other
methods with long reads such as those produced by third
generation sequencing systems.

This paper presents the first FPGA-based accelerator for the
WFA algorithm. In a hardware/software co-designed scheme,
the FPGA accelerator computes the alignment of pairs of
sequences and generates the results in a compacted form that
eases CPU-FPGA communication. Then, the CPU threads
unpack the compacted forms to achieve the final results in
parallel. The FPGA accelerator design is composed of multiple
aligners that collaboratively compute the sequence alignments.
The proposed design of the aligners allows a configurable
maximum read length and error score between the reads.
Thus, they can be adapted to the characteristics of the reads
generated by different sequencing machines and technologies.
These two design parameters determine the resources required
by each aligner and, thus, the number of parallel aligners that
can be placed in the FPGA. The source code of the proposed
WFA accelerator is open source and publicly available [9].

We evaluate the proposed WFA accelerator with different
designs for typical read lengths and error score values on
a high performance system with a POWER9 CPU and 2
FPGAs. Compared to the reference WFA CPU-only imple-
mentation [10], the FPGA accelerator achieves speedups of
4.5× to 8.8× with 1 FPGA, and of 8.2× to 13.5× with
2 FPGAs, while reducing the energy-to-solution by 6.1× to
9.7× with 1 FPGA, and by 11.4× to 14.6× with 2 FPGAs.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising 
or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/FPL53798.2021.00033



This paper is organized as follows: Section II introduces
the background on read alignment and the WFA algorithm.
Then, Section III presents the co-designed accelerator, which is
evaluated in Section IV. Section V discusses the related work.
Finally, Section VI remarks the conclusions of this work.

II. BACKGROUND

A. Read Mappers and Pairwise Alignment

Sequence-data analysis pipelines require locating the input
sequences into a reference genome using a read mapper [11],
[12]. Due to the large scale of genomic databases, read
mappers are usually guided by seeding or filtering strategies
that narrow down the search to a few candidate locations [1]–
[5]. Then, each candidate location is aligned against the input
sequence to assess the similarity between the two sequences.

Pairwise alignment of sequences is implemented using one
of the many variants of the SW algorithm [6]. In biology,
the SWG variant [8] is commonly preferred due to its abil-
ity to capture critical properties when comparing biological
sequences. The SWG algorithm implements the gap-affine
distance of two sequences for a given set of penalty scores
{a, x, o, e} (i.e., a match, x mismatch, o gap-opening, and e
gap-extension). All SWG algorithms are based on DP tech-
niques and require quadratic time and memory, proportional
to the sequence length. Despite its computational complexity,
SWG is still the most accurate and widely used algorithm for
biological sequence comparison.

B. Wavefront Alignment Algorithm

Very recently, the novel WFA pairwise alignment algorithm
has been proposed [7]. Unlike other approaches, the WFA
algorithm proposes an alternative encoding of the DP-matrix,
shown in Equation 1, and an efficient algorithm to compute
partial alignments with an increasing score. As a result, the
WFA algorithm computes the cells of the DP-matrix by
increasing score and only needs to compute a minimal number
of cells to find the optimal alignment.

Ĩs,k = max{M̃s−o−e,k−1, Ĩs−e,k−1}+ 1

D̃s,k = max{M̃s−o−e,k+1, D̃s−e,k+1}
M̃s,k = max{M̃s−x,k + 1, Ĩs,k, D̃s,k}

(1)

Basically, the WFA algorithm computes three offset vectors
of increasing length per each score value. Instead of encoding
the alignment score s of the DP-matrix as the SWG algorithm,
the WFA algorithm encodes the diagonal offset from the left-
most column of the DP-matrix to the farthermost cell that
has score s. The wavefront vectors Ĩs,k, D̃s,k, and M̃s,k

track alignments that end with an insertion, a deletion, or a
match/mismatch, respectively. Starting from M̃0,0 = 0, the
WFA algorithm computes wavefront vectors for increasing
scores applying two operators: extend() and compute().

First, the operator extend() increases each offset of the
wavefront vector according to the number of contiguous
matching characters between the sequences. That is, for each
diagonal offset in the wavefront vector, the algorithm computes
the corresponding positions h and v in the DP-matrix. Then,

Fig. 1. The alignment of 2 sequences using penalties (x, o, e) = (4, 6, 2).
Left) SWG DP-matrix with the corresponding cells computed by the WFA
algorithm. Right) Wavefront vector offsets resulting from the execution of the
WFA algorithm with the detailed computation of the wavefront vector M̃12,k .

it computes the number of contiguous matching characters
between the sequences starting from h and v, respectively.
Note that, given a zero match penalty (a = 0), the score along
the diagonal remains constant. That is, matches between the
sequences do not penalize the alignment score.

Once the offsets of the wavefront vector have been extended,
the operator compute() computes the next wavefront vectors
using Equation 1, for a given set of penalty scores {x, o, e}
under the gap-affine distance.

The WFA algorithm iterates over extend() and compute()
until a wavefront, with score s, reaches the end of both
sequences. Hence, the optimal alignment has score s. Then,
the WFA retrieves the alignment CIGAR. From the optimal
alignment offset M̃s,k, the algorithm traces the wavefront
vectors back to the initial wavefront M̃0,0 = 0. For that, the
operator backtrace() computes which values from Equation 1
generated each offset towards the optimal alignment.

Fig. 1 shows an example of aligning two sequences using
the WFA algorithm, with penalties (x, o, e) = (4, 6, 2), and the
corresponding cells in the DP-matrix using the classical SWG
algorithm. The example depicts the detailed computation of
the wavefront vector M̃12,k. First, Equation 1 is applied using
the offsets from wavefront vectors Ĩ12,k, D̃12,k, and M̃8,k. For
each resulting offset on M̃12,k, the operator extend() is used
to compute exact matches along each diagonal. For instance,
the offset M̃12,0 = 6, which corresponds to positions h = 5
and v = 5 in the DP-matrix, is extended 4 positions (i.e.,
M̃12,0 = 10) as both sequences match the same substring
”CTCG” from positions h = 5 and v = 5, respectively.

As a result, the WFA algorithm runs in O(n · s) time,
proportional to the sequence length n and the alignment
score between them s. Unlike the SWG algorithm, the WFA
algorithm performs simple and independent operations over
the elements of the wavefronts, taking advantage of matching
regions between the sequences to accelerate the alignment
computation, while using a regular computational pattern.
These properties make the WFA algorithm an efficient alter-
native to classic pairwise alignment methods, suitable for the
design of efficient FPGA-based accelerators.



Fig. 2. Steps in the WFA co-design and an example of the compact and full
CIGAR. The compact CIGAR is computed in the FPGA and only returns
differences between sequences. Then, the CPU recovers the full CIGAR
inserting matches by comparing both sequences in the CPU.

III. WFA ACCELERATOR METHOD

This section presents the proposed WFA accelerator. Fig. 2
shows the accelerator steps. First, the CPU parses the input
files and stores them in the memory. Then, the FPGA reads
the data, computes the alignments by iteratively performing the
extend and compute steps, and writes the results to the memory
in compact CIGAR form. After that, multiple CPU threads
read and check the FPGA results and finish the backtrace step
by unpacking the compact CIGARs to full CIGARs.

In our experiments with the reference CPU-only imple-
mentation of the WFA algorithm [10], the extend, compute
and backtrace steps are responsible for around 50%, 45%
and 5% of the total execution time, respectively. Hence,
offloading the extend and compute steps to the FPGA is
crucial to accelerate the algorithm. In addition, offloading
the backtrace step to the FPGA is also beneficial because,
although this step has a small weight on the total execution
time, it requires reading the whole data of all the wavefronts.
Thus, to minimize bandwidth-bound data transfers between
the CPU and the FPGA, the presented accelerator innovatively
divides the backtrace step in two parts, one in the FPGA that
computes the CIGARs in a compacted form of only 8 bytes,
and one in the CPU that unpacks the compact CIGARs and
generates the full CIGARs. An example of a compact and a
full CIGAR is shown in Fig. 2.

The FPGA design is composed of three main modules, as
shown in Fig. 3. The Aligner module implements the main
computational steps of the WFA algorithm. A configurable
number of Aligners can be instantiated in the design so
they process alignments in parallel. The Extractor module
distributes sequences among the Aligners and the Collector
module gathers results from them.

A. Extractor Module

The Extractor module distributes sequences among Align-
ers. This module has two states, Extract and Assign. The first
state reads data from memory and extracts the DNA sequences,
their IDs, and their lengths. The second state compresses the
sequences by mapping each base to two bits and sequentially
packs them in groups of 8 bases. When an Aligner becomes
idle, the Extractor module assigns it one pair of sequences
along with their lengths and IDs to process the alignment.

Fig. 3. Structure and different modules of the WFA-FPGA accelerator design.

B. Collector Module

The Collector module collects the results of the Aligners and
writes them to memory. The result of each Aligner is 16 bytes,
while the FPGA data width is 128 bytes. Thus, the Collector
module packs 8 results of each Aligner in one 128-byte word
and then sends it to the CPU. A Scheduler handles the order
in which the results of the different Aligners are sent.

C. Aligner Module

The Aligner module computes the sequences alignment.
Each Aligner contains a configurable number of Extend and
Compute sub-modules, a Backtrace sub-module, and a Con-
troller sub-module that controls the operations and the data
flow. The Extend and Compute sub-modules operate sequen-
tially multiple times, as the output of one is the input of the
other one. At the end, the Backtrace sub-module computes the
compact CIGAR. Although these steps are executed sequen-
tially, they are pipelined and internally parallelized.

1) Aligner Parallel Structure: The parallel operation of
the Aligners is achieved by dividing a wavefront matrix in
independent parts. A wavefront matrix, as shown in Fig. 4(a),
is a structure that unifies all the wavefront vectors of a given
type (Ĩ , D̃, and M̃ ). The values stored in the cells of the
matrix are called offsets. The X axis of the wavefront matrix
represents the distances, and each column of the matrix stores
the wavefront vector for the corresponding distance (i.e, the
column 0 of the wavefront matrix M̃ stores the wavefront
vector M̃0). The Y axis is defined at compile time with a
parameter called K, which limits the maximum supported error
score between sequences and sets the range of the Y axis
from −K to K. Since the length of the wavefront vectors
increases with the distance, some cells of the wavefront matrix
are invalid. In the example of Fig. 4(a), valid cells are marked
with an X. Each column also has a Null tag that indicates if
all the cells of that column are invalid.

The proposed accelerator exploits parallelism by computing
all the values in a column of a wavefront matrix at the same
time. For a given distance, the corresponding frame columns
in the 3 wavefront matrices can be calculated in parallel, as
they only depend on the previously calculated columns of the
wavefront matrices (see Equation 1). We define window as
the set of columns of a wavefront matrix that are needed to
compute a given column. The rightmost column of a window,
called frame column, is the one being processed, and the other
columns of the window are needed as inputs to compute the
frame column. The width of the windows depends on the
penalty scores. For typical penalties (x, o, e) = (4, 6, 2), the
computation of the frame column requires 2, 2 and 8 previous
columns of the Ĩ , D̃, and M̃ wavefront matrices, respectively.
When all the offsets of a frame column are calculated, all



Fig. 4. a) An example WFA wavefront matrix with K = 8. Valid cells are
marked with an X. Same colored cells of each column are the parallel inputs
of the Extend and Compute modules at each clock cycle. The appropriate
Extend and Compute inputs are selected using multiplexers shown in (b).

the columns of the window are shifted to the left and the
leftmost one is discarded. This allows to reduce the FPGA
resource utilization, as we only need to keep a limited number
of columns of the wavefront matrices. The windows of the
wavefront matrices are implemented as 2D-arrays of 8-bit
elements to provide concurrent and fast access to the cells.

To compute a frame column, each of its cells is fed to a
configurable number of Extend and Compute sub-modules, 8
of each in our setup. Note that the number of Extend and
Compute sub-modules can be lower than the number of cells
in a frame column, so the computation of the frame column
can take several cycles. To efficiently use the FPGA resources,
we restrict the possible inputs of the multiplexers that pass
the offsets of the frame column to the Extend and Compute
modules. In the example of Fig. 4(b), the offsets of cells -8
and 0 are inputs of the first Extend and Compute sub-modules,
cells -7 and 1 are inputs of the second sub-modules, and so on.
In Fig. 4(a) the colors represent the cycle in which each cell
is processed. In the example, the frame column of distance 6
has 13 valid cells, and the computation of the cells in rows
K = −6 to K = −1 is performed in the first cycle, while
the computation of the cells in rows K = 0 to K = 6 are
performed in the second cycle. We pipeline the processing
of frame columns that require more than one cycle by first
performing the compute for 8 cells and, while these 8 cells
are extended, the next 8 cells are computed.

The next subsections explain in detail the architecture of
the Aligner module and its sub-modules, shown in Fig. 5.

2) Extend Sub-module: The Extend sub-module receives
the offset of a cell, its K position and a start signal. From these
inputs, the Extend sub-module calculates the initial positions
in sequence 1 and sequence 2, compares the bases of both
sequences starting from the initial positions until a mismatch
is found, and returns the number of matching bases.

To increase the speed of the design and minimize resources,

Fig. 5. Architecture of the Aligner module and its sub-modules.

the sequences are compared in blocks of 8 bases. To do so,
the Extractor module packs blocks of 8 bases in an array of
registers. However, each base of sequence 1 can be compared
with any base of the sequence 2, and their positions may not
be at the boundaries of the blocks of 8 bases. For this reason,
2 blocks of 8 bases of each sequence are passed to the Extend
sub-module, which uses 2 multiplexers for each sequence to
select the 8 bases that need to be compared. The selected 16
bases of each sequence are then concatenated and passed to
a shift register that aligns them to the comparator input. The
design is pipelined in such a way that the comparator compares
8 bases of the sequences at each clock cycle.

The extend operation continues until a mismatch is found.
Then the Extend sub-module returns the number of matches
and the new offset for the cell. The new offsets are stored in the
rightmost column of M̃ wavefront window. After extending
a column, if the alignment has not reached the end of the
sequences and K has not reached the maximum value, the
Controller moves the window to the right, increases the score
by 1, and extends K by 1 from both ends.

3) Compute Sub-module: After the extend step, the com-
pute step determines the new offset of a cell of each wavefront
frame column by comparing some of the previously calculated
offsets of previous columns, as described in Equation 1.

The Compute sub-module is also in charge of managing the
Null tags of the columns of the wavefront matrices. The Null
tag of the frame column is determined by the Null tags of the
input columns that are used to compute the frame column. If
the Null tag of any of the input columns is not set, the Null tag
of the frame column is set to 0 and the offsets are computed
normally. Otherwise, the Null tag of the frame column is set
to 1, a negative value is returned, and the upcoming extend
operation is skipped because the extend of an invalid offset
always returns the same offset.

This sub-module also tracks the origin of each computed
cell in a Backtrace RAM, as the backtrace step requires this
information. As shown in Equation 1, the origin of a cell in the
Ĩ , D̃, and M̃ wavefronts matrices can come from 2, 2 and 5
positions, respectively, so we need 1, 1 and 3 bits to store them.
At the end of the compute step, the origins of the computed
cells are concatenated in 5 bits. Since 8 Compute sub-modules
process 8 cells in parallel, the width of the Backtrace RAM
is 40 bits, and a depth of 250 words is needed to support K
values of up to ±32. The write address of the Backtrace RAM
is controlled by the Controller sub-module of the Aligner.



TABLE I
DIFFERENT FPGA DESIGNS, THEIR INPUTS, RESOURCE UTILIZATION AND

NUMBER OF ALIGNERS IN EACH FPGA.

FPGA Design
Len - K

Input Set
Len - Avg K

LUT
(%)

FF
(%)

BRAM
(%)

Aligners
Num

100 - 16 100 - 12 88 26 9 100
100 - 32 100 - 24 91 33 8 80
150 - 16 150 - 12 84 26 8 80
150 - 32 150 - 25 86 32 7 64
150 - 64 150 - 45 86 37 6 45
300 - 32 300 - 26 87 30 7 55
300 - 64 300 - 49 90 37 6 40

4) Backtrace Sub-module: At the end of alignment, the
backtrace determines the mismatches, insertions and deletions
that have to be applied to one sequence to make it identical
to the other sequence. For this step we propose a novel hard-
ware/software co-designed technique that reduces the amount
of memory required by the algorithm and avoids doing a
traditional memory-bound backtrace. On the FPGA side, the
Controller of the Backtrace sub-module receives the final
score, the difference in the length of sequences, and the output
stored in the Backtrace RAM. With these values it calculates
the new K and score and it passes them to the Address Decoder
to find the Backtrace RAM addresses of the previous location
of the last cell. This process is iteratively repeated until the
calculated score becomes 0 and the backtrace is done. Then, an
8-byte backtrace in compact CIGAR form is sent back to the
CPU along with the sequence IDs, and the CPU then traverses
the 2 sequences to unpack the backtrace in full CIGAR format.
CPU threads can recover different backtraces in parallel, as
they are completely independent processes.

IV. EVALUATION

A. Experimental Setup

We evaluate our proposal on a POWER9-based system
with 512GB of RAM (16 32GB DDR4 DIMMs running at
2666MHz) and 2 FPGA boards. The POWER9 CPU has 16
cores with 4 threads per core running at 2.3GHz, and it is con-
nected to 2 ADM-PCIE-9H7 FPGA boards with OpenCAPI,
which provides coherent access to the host memory from the
FPGAs and data transfer speeds of up to 22GB/s. The FPGAs
are Xilinx Virtex UltraScale Plus XCVU37P-2E (FSVH2892),
which run at 200MHz and have 2607k FFs, 1304k LUTs,
9024 DSPs, 70.9Mb BRAMs and 270Mb URAMs each. The
evaluation reports results for executions with 1 and 2 FPGAs.

The proposed WFA accelerator is open source and publicly
available [9]. The code allows to configure the sequence length
and the maximum K of the FPGA design to better meet
the input set characteristics. For the experimentation, we use
7 FPGA designs with different configurations of sequence
lengths and K values representative of state-of-the-art sequenc-
ing technologies. Table I describes the 7 designs, showing
their maximum sequence lengths and Ks, their input sets, their
resource utilization, and the number of parallel aligners that
fit in each FPGA. The parameters of the input sets are repre-
sentative of current sequencing platforms [13]. Using the same

Fig. 6. Speedup of the FPGA designs with respect to WFA-CPU.

methodology as in related studies [7], [14]–[16], we randomly
generate 7 input sets with different maximum sequence lengths
and K values and we feed them to their corresponding FPGA
design. Each input set contains 10 million pairs of sequences
with random mismatches, insertions and deletions. Note that,
given a maximum sequence length and K, an FPGA design
can correctly process any input containing shorter sequences
for smaller Ks. Nevertheless, a tailored instantiation requires
less space in the FPGA and maximizes the number of aligners
that can fit in the FPGA.

The baseline used in the evaluation is the reference CPU
implementation of the WFA algorithm proposed by Marco-
Sola et al. [7], which is open source and publicly avail-
able [10]. In the evaluation we refer to this CPU-only baseline
implementation as WFA-CPU. In all the experiments we do
an exploration of the number of CPU threads (from 1 to 64)
on the FPGA designs and the WFA-CPU implementation,
and we report the execution time of the best performing
number of threads unless stated otherwise. The time and
energy measurements include the data transfers between the
CPU and the FPGAs, and parsing the input files is not included
in the measurements of any execution (FPGA or WFA-CPU).

Compared to a reference multithreaded CPU implemen-
tation of the traditional SWG [8], the WFA-CPU achieves
speedups of 8.4× to 53.3× for the 7 input sets we consider,
and the proposed accelerator outperforms it by 42.6× to
383.8× with 1 FPGA and by 76.6× to 634.3× with 2 FPGAs.
In addition, compared to a Banded Smith-Waterman heuristic
method [10] that does not perform the backtrace, the proposed
WFA accelerator achieves speedups of 37.4× to 93.5× with
1 FPGA and of 55.9× to 154.8× with 2 FPGAs for the same
7 input sets considered in this work.

B. Results

Fig. 6 shows the speedup achieved by the 7 different designs
of the proposed FPGA accelerator compared to the WFA-CPU.
The different FPGA designs achieve speedups of 4.5× to 8.8×
with 1 FPGA, and of 8.2× to 13.5× when the 2 FPGAs in the
system are used. The lowest speedups belong to the designs
with biggest Ks. This happens because the size of the aligner
module increases as K grows, so fewer aligners fit in the FPGA
and fewer sequences are aligned in parallel. Using 2 FPGAs
increases the speedup by a factor of 1.5× to 1.8× compared
to 1 FPGA. Using 2 FPGAs doubles the speed of FPGA part
of the co-design, but the time of CPU part remains unchanged,
so the whole execution time is not halved.



TABLE II
DURATION (CLK) OF ALIGNMENT AND BACKTRACE OF ONE SEQUENCE

PAIR AND MAXIMUM POSSIBLE ALIGNERS IN 1 FPGA.

FPGA Alignment Backtrace Total Extract Max
Design (clk) (clk) (clk) input (clk) Aligners

100 - 16 185 15 200 3 67
100 - 32 265 23 588 3 196
150 - 16 185 15 200 4 50
150 - 32 265 23 588 4 147
150 - 64 1900 39 1939 4 485
300 - 32 265 23 588 6 98
300 - 64 1900 39 1939 6 324

Table II shows, for each FPGA design, the maximum
possible number of aligners before saturating the OpenCAPI
bandwidth. The table indicates, for each design, how many
FPGA clock cycles are needed to do the alignment, the
backtrace, and to extract one pair of sequences. From these
numbers, the maximum possible aligners in each system is
calculated and shown in the last column. In this test we feed
each design with inputs with K values equal to the maximum
supported K in each design. If these designs are fed with
inputs with smaller Ks, the bandwidth is saturated with even
fewer aligners. As shown in Table I, the design with sequence
length 150 and K=16 has 80 aligners per FPGA, although
Table II shows that this design saturates the bandwidth with
50 aligners. So, in this design, adding more than 50 aligners
per FPGA does not provide any benefit because the Extractor
module cannot feed them with data on time due to bandwidth
limitations.

Fig. 7 shows the scalability of multi-threaded runs of the
FPGA accelerator with 1 FPGA and of the WFA-CPU. All
the speedups are computed over the single threaded execution
of the WFA-CPU. The POWER9 CPU has 64 threads, so the
scalability of the WFA-CPU and the FPGA designs saturates at
that point. In single threaded runs, the FPGA designs achieve
speedups over WFA-CPU of 19× to 32×. The scalability of
the WFA-CPU is linear up to 16 threads but, after that point,
the parallel efficiency drops because the threads have to share
the resources of the CPU cores. The scalability of the co-
designs is less effective because, when increasing the number
of threads, the time spent in the CPU part decreases and,
hence, the constant thread-independent FPGA time dominates
the total execution time.

Next we study the impact of encountering input pairs of
sequences with Ks larger than the maximum K supported in
the FPGA designs. We feed the FPGA design with maximum
sequence length of 150 and K=32 with an input in which
90% of the sequences have K lower than 32 and the other
10% have K larger than 32, so the alignment of these 10% of
sequences has to be done in the CPU. The best execution times
of the FPGA design are 1318ms with 1 FPGA and 1030ms
with 2 FPGAs, while the fastest WFA-CPU execution for this
input is 4500ms, so the FPGA design achieves speedups of
3.4× and 4.4× with 1 and 2 FPGAs, respectively.

Finally, Fig. 8 shows the improvement in energy consump-
tion of the different FPGA designs compared to the WFA-

Fig. 7. Speedup of the FPGA designs with 1 FPGA (left) and WFA-CPU
(right) for multi-threaded runs over single-threaded WFA-CPU.

Fig. 8. Energy improvement of the FPGA designs with respect to WFA-CPU.

CPU. To report meaningful power consumption measurements,
in this experiment we repeat the alignment of the same
input set several times so the fastest execution takes at least
30 seconds. For each input set, the number of repetitions
and the total amount of work to be performed is the same
in the WFA-CPU and the FPGA design. We use in-band
readings from Linux to the OCC (On Chip Controller) [17]
to measure the power consumption of the whole node (CPU
and FPGAs). Results show that the different FPGA designs
consume significantly less energy than the WFA-CPU, with
energy improvements of 6.1× to 9.7× with 1 FPGA and of
11.4× to 14.6× with 2 FPGAs.

V. RELATED WORK

In recent years, many accelerators have been proposed to
improve the performance of read mappers. These accelerators
leverage different technologies such as in-memory computa-
tions [18]–[23], GPUs [24]–[29], ASICs [15], [30]–[35], and
FPGAs [14]–[16], [32]–[64].

In-memory computation is a promising technique to acceler-
ate read alignment, either using the SW algorithm [19], [21] or
the Needleman-Wunsch (NW) algorithm [18]. Similarly, GPUs
can also be leveraged to accelerate the SW algorithm [24],
[28], [29], while other works propose GPU-based accelerators
for both the SW and the NW algorithms [25], [26].

Many ASIC and FPGA-based methods have been pro-
posed to accelerate the SW algorithm. As a result, some
surveys [65]–[67] have been published summarizing the
many contributions done over the years. In addition, many
production-ready bioinformatics tools already incorporate cus-
tom FPGA accelerators [35]–[38], [45], [52], [53].

Some of the earlier works on sequence alignment tried
to fully optimize the FPGA LUTs by doing custom opti-
mizations using simple cost models, like the edit-distance,
the Levenshtein distance [39] or being limited to compute
the longest common subsequence [40]. Despite their good
performance, these solutions do not fulfill the requirements
of modern bioinformatics tools due to algorithmic limitations.



Other FPGA-based proposals tackled the problem of ac-
celerating the SW algorithm using linear gap penalties [16],
[41]–[51]. The design of these accelerators has improved
from optimized designs based on systolic architectures [41],
[45], [46], [49] and custom FPGA designs to large-scale
accelerators running on supercomputing infrastructures [47],
[48]. Nevertheless, these solutions lack the flexibility to meet
the requirements of many biological applications. For this
reason, FPGA accelerators that fully implement the gap-affine
model (i.e., the SWG algorithm) are usually preferred [14],
[15], [32]–[35], [53]–[64].

Other works propose to accelerate SWG approximate meth-
ods such as banded SWG. These heuristic methods are usually
employed to align long reads [15], [32], [33], although some
works also apply them to short reads [30], [35]. The main lim-
itation of these approaches is that the result of the algorithms
is not guaranteed to be the optimal one, so they trade speed
for accuracy.

Another problem of the gap-affine model is the complexity
of producing the full alignment. For this reason, some accel-
erators proposed in the literature are limited to compute the
alignment score [54], [55], but not the CIGAR. In contrast,
other designs offer more flexibility and allow the computation
of the full CIGAR alignment at the expense of lower perfor-
mance [31], [56], [63].

Cell Updates Per Second (CUPS) is a common metric used
to measure the performance of SW algorithms, regardless
of their target devices and implementation specifics. CUPS
represent the number of cells from the DP-matrix computed
per second. Table III compares the most relevant FPGA
accelerators for the exact gap-affine SWG algorithm. It is
important to note that the WFA algorithm avoids the full
computation of the DP-matrix. So, for a fair comparison, we
compute the CUPS considering the equivalent number of DP
cells that the SWG algorithm would need to compute the
optimal alignment; that is, to generate the same results as the
WFA algorithm. Altogether, Table III shows that our WFA
accelerator achieves 9.7× and 16.1× more CUPS than the
best FPGA solution in the state-of-the-art.

VI. CONCLUSIONS

This paper presents an efficient hardware/software co-
designed accelerator of the WFA algorithm. The proposed
approach consists of an FPGA design that accelerates the
pairwise alignment of sequences and calculates the backtrace
in compact CIGAR, while the CPU part gathers the com-
pact CIGARs and recovers the complete alignment in full
CIGAR form. Results show that, for different combinations
of sequence lengths and error rates, the presented WFA
accelerator achieves speedups over the reference WFA CPU
implementation of 4.5× to 8.8× with 1 FPGA, and of 8.2× to
13.5× with 2 FPGAs. The proposed accelerator also reduces
the energy-to-solution by 6.1× to 9.7× with 1 FPGA and by
11.4× to 14.6× with 2 FPGAs.

TABLE III
PEAK GCUPS OF DIFFERENT SWG FPGA ACCELERATED METHODS.

Paper Year Device Freq.
(MHz) GCUPS

Ours 2021 2× Xilinx Virtex U+ XCVU37P 200 2073.7
Ours 2021 1× Xilinx Virtex U+ XCVU37P 200 1251.7
[56] 2019 Xilinx VU9P Ultrascale 200 8.7*

[57] 2018 Altera Stratix V n/a 58.4
[14] 2018 Xilinx Virtex7 XC7VX485T 200 105.9
[54] 2018 Intel Arria 10 GX n/a 125.0**

[64] 2013 Altera Stratix V A7 200 24.7
[58] 2011 Xilinx XC5VLX330T 130 129.0***

[63] 2009 Xilinx XC2V6000-4 47.6 8.0
[59] 2007 Altera EPS1S30 82 6.6

* GCUPs for this accelerator are not reported explicitly, we calculate them
from the data provided in the original paper [56].

** This accelerator does not perform backtrace.
*** This accelerator reports the theoretical FPGA peak performance, without

considering I/O limitations.
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