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ABSTRACT We consider the quantum multiple hypothesis testing problem, focusing on the case of
hypothesis represented by pure states. A sequential adaptive algorithm is derived and analyzed first. This
strategy exhibits a decay rate in the error probability with respect to the expected value of measurements
greater than the optimal decay rate of the fixed-length methods. Amore elaborated scheme is developed next,
by serially concatenating multiple implementations of the first scheme. In this case each stage considers as a
priori hypothesis probability the a posteriori probability of the previous stage. We show that, by means
of a fixed number of concatenations, the expected value of measurements to be performed decreases
considerably. We also analyze one strategy based on an asymptotically large concatenation of the initial
scheme, demonstrating that the expected number of measurements in this case is upper bounded by a
constant, even in the case of zero average error probability. A lower bound for the expected number of
measurements in the zero error probability setting is also derived.

INDEX TERMS Quantum sensing, quantum hypothesis testing, fixed-length algorithms, adaptive algo-
rithms.

I. INTRODUCTION
The task of discriminating between hypothesis is essential in
a wide variety of scientific fields. In particular, the quantum
hypothesis testing problem has an important role in quantum
information theory with applications to quantum commu-
nication [1] and cryptography [2]. Existing techniques that
solve this testing problem can be classified into fixed-length
methods, which measure a predetermined number of copies
or samples of the state, and sequential schemes, where the
number of copies is variable and depends on a stopping
criterion. Moreover, a hypothesis test for quantum states is
adaptive when the measurement procedure of a given state
copy depends on the outcome of the measurements of the
previous samples.

Fixed-lengthmethods are themost extensively studied type
of strategies. The optimal method in terms of error probability
was presented in the seminal works of Helstrom [3] and
Holevo [4] in the late 70s, and makes use of a collective
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measure of all the state copies. In the binary case with states
{σ1, σ2} and L samples, the probability of error is given by
1
2

(
1−

∥∥∥π1σ⊗L1 − π2σ
⊗L
2

∥∥∥
1

)
, where πi denotes the a priori

probability of hypothesis i [3].
The results presented in [5], [6] show that the decay

rate associated with this error probability, i.e., the expo-
nent of the error probability as L goes to infinity,
is CQ(σ1, σ2) = − log

(
min0≤s≤1 Tr(σ s1σ

1−s
2 )

)
, which

defines the quantum Chernoff distance between two quan-
tum states. This expression generalizes the classical result
where the maximum decay rate is given by C(p1, p2) =
− log

(
min0≤s≤1

∑
i(p1(i)

sp2(i)1−s)
)
[7]. More recently, [8]

shows that for a fixed-length scheme the maximum
decay rate in the discrimination of N quantum states is
mini,j:i6=j CQ(σi, σj).

In general, the maximum decay rate is achieved by means
of collective quantum measurements which are difficult to
implement. This motivates the quest for techniques that limit
themaximum number of states to bemeasured jointly. Specif-
ically, authors in [9] propose a method for binary state dis-
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crimination that measures each copy individually using an
adaptive strategy, and attains the minimum error probability
achievable with collective measurements. This result does
not hold however for the case of two non-pure states, where
the maximum decay rate is strictly lower than the quantum
Chernoff distance [10].

An alternative strategy to fixed-length procedures are the
variable-length or sequential techniques where the number of
state copies to be measured depends on a stopping criterion
and is typicallymodeled as a random variable. The error prob-
ability of sequential schemes is hence assessed in terms of the
expected value of the number of copies required. In fact [11],
[12] show that, for the binary case, the asymptotic rate of the
error probability of sequential techniques might decay faster
than for fixed-length methods.

In particular, [11] uses an optimal classical method called
Sequential Probability Ratio Test where the algorithm stops
and decides a hypothesis when the a posteriori probability
of the state associated to this hypothesis is above a given
threshold. The asymptotic rate of the error probability of first
kind, p(Ĥ2|H1), and second kind, p(Ĥ1|H2), attain the optimal
values given by D(σ1||σ2) and D(σ2||σ1), where D(·||·) is the
quantum relative entropy,1 even though not simultaneously.
An adaptive sequential strategy is adopted in [12], and

the asymptotic rate decays of D(σ1||σ2) and D(σ2||σ1) are
achieved simultaneously for errors of the first and second
kind, respectively. The latter is impossible using fixed-length
schemes due to the Quantum Hoeffding Bound [13], [14],
which implies that if the decay rate of the first kind error
is D(σ2||σ1) then the rate of the second kind will be 0 (or
alternatively decay rate of D(σ1||σ2) of the second kind error
and 0 of the first).

In this paper we focus on sequential methods for
the multiple hypothesis testing problem and present an
adaptive sequential scheme, named Sequential Discarding
Method (SDM), that attains an asymptotic decay rate with
respect to the expected value of measurements higher than
mini,j:i6=j CQ(σi, σj). Unlike the techniques in [11], [12], the
number of required state copies in the proposed method is
random but bounded for any given error probability. It is
further shown that by applying the SDM method c times in
a serial fashion, the expected value of measurements to be
performed decreases from O(ln 1/ε) to O(ln(c) 1/ε), where
ε is the mean error probability and ln(c)(·) indicates c-times
composition of the ln(·) function. Interestingly, we show that
the expected number of samples is bounded even in the case
of zero error probability.

The paper is organized as follows. In section II we intro-
duce the problem of quantum hypothesis testing, and present
the Sequential Discarding Method. Next, in section III the
performance of the SDM algorithm is analyzed. Specifically,
three aspects are studied, the number ofmeasurements L, ana-

1 The quantum relative entropy is defined as D(σ ||ρ) :=

Tr (σ (log σ − log ρ)) if supp(σ ) ⊆ supp(ρ), and D(σ ||ρ) := ∞ otherwise,
where the support of state σ is the subspace spanned by the eigenvectors,
|φk 〉, with associated eigenvalues λk > 0.

lyzing its probability mass function and expected value; the
average error probability; and the decay rate of the average
error probability for large values of LU . In section IV the
serial concatenation of SDMalgorithms is presented, yielding
new strategies with a significant reduction in the number
of measurements. In section V, numerical experiments are
performed supporting our theoretical findings. Conclusions
are drawn in section VI.

II. QUANTUM HYPOTHESIS TESTING
The problem of quantum hypothesis testing for pure states
consists in the discrimination of the true hypothesis among
a set {Hs}Ns=1. Hypothesis Hs corresponds to the observation
of the pure quantum state2 σs = |ψs〉 〈ψs| ∈ D(H), where
D(H) represents the set of density operators acting on the
Hilbert spaceH. Each hypothesis occurs with prior probabil-
ity {πs}Ns=1. Without loss of generality, the states are assumed
sorted by decreasing probability, i.e., π1 ≥ π2 ≥ · · · ≥ πN .
It is also assumed that an unlimited number of copies of the
unknown state can be measured before taking a decision.

Quantum state measurements are modelled through Posi-
tive Operator-Valued Measure (POVM), each of which con-
tains P operators. We then denote the POVM by the set
L = {3x}

P
x=1, the outcome of which is x ∈ [1 : P].

Recall that the probability that a measurement of state σ using
POVM L gives outcome x is equal to Tr(3xσ ), where Tr(·)
is the trace operator. When measuring different copies of a
given quantum state, xi represents the measurement outcome
associated to the ith copy, and vector xm = [x1 x2 . . . xm]T

gathers measurements from 1 to m.
The decision taken as the true hypothesis is denoted by

random variable (r.v.) D, a particular realization of which
is expressed as d ∈ [1 : N ]. The total number of mea-
sured copies of the quantum state is denoted by integer L.
In fixed-length schemes L is a constant. However, in sequen-
tial schemes, e.g. [12] and the one we present in this paper, L
is a r.v. and realizations of this r.v. are denoted by l.

A. BINARY HYPOTHESIS TEST: UNANIMITY VOTE
This section describes the unanimity vote method [9], which
solves the binary hypothesis test problem for N = 2 pure
states, as an introduction to the scheme presented later in
Section II-B. The unanimity vote strategy belongs to the set
of fixed-length techniques, i.e., it measures a fixed number
L of copies of the unknown state and takes a decision about
the true hypothesis, d ∈ {1, 2}, afterwards. The POVM used
for the L measurements is L = {31,32} = {|ψ1〉 〈ψ1| , I −
|ψ1〉 〈ψ1|} with π1 ≥ π2 and where I is the identity operator.
Hypothesis H1 (or, equivalently, d = 1) is decided if all
measurements are equal to 1, i.e., {xi = 1 ; ∀i = 1, . . . ,L};
otherwise, H2 is assumed true.
Denoting by E the error event, the probability of error of

this scheme is

p(E) = π2 | 〈ψ1| |ψ2〉 |
2L (1)

2We refer to a pure quantum state by |ψ〉 or σ = |ψ〉 〈ψ |, indistinctly.
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which has an optimal asymptotic behaviour, since the decay
rate associated to the error exponent as L → ∞, coincides
with the quantum Chernoff distance [9]. This follows from
the fact that CQ(σ1, σ2) = − log Tr(σ1σ2) if at least one of
the two states is pure [15].

Note that the number of measurements might be reduced
without increasing the error probability by taking a decision
as soon as one measurement outcome is equal to 2, so that
state |ψ1〉 can be discarded. This means that, in fact, the
unanimity vote method can be reformulated as a sequential
strategy with a stopping condition given by either measure-
ment xi = 1 is obtained for all i ∈ [1,L], or any measurement
gives xi = 2 and thus the unanimous measurement outcome
is not reached.

B. MULTIPLE HYPOTHESIS TEST: SEQUENTIAL
DISCARDING
The previous observation motivates the proposed scheme,
named sequential discarding method (SDM), which solves
the multiple hypothesis testing problem, with N ≥ 2 hypoth-
esis, by discarding states in a sequential manner. The SDM
method defines a total of (N − 1) POVM sets, each of which
includes only two operators, i.e., P = 2, as

L(k)
= {3

(k)
1 ,3

(k)
2 }

= {|ψk 〉 〈ψk | , I − |ψk 〉 〈ψk |} (2)

for k ∈ [1 : N − 1]. Note that each POVM L(k) is matched
to one quantum state |ψk 〉 and the outcome of the measure-
ments are xi ∈ {1, 2}. The definition of the POVM in (2) is
motivated by the fact that when L(k) is used to measure state
|ψk 〉, the measurement outcome is deterministic and equal to
1. Clearly, state |ψk 〉 can be discarded if any measurement
outcome is different from 1 when L(k) is used.

The SDM scheme proceeds as follows. It starts by measur-
ing with POVM L(1) associated with state |ψ1〉. Additional
measurements using the same POVM are performed unless
either onemeasurement output is different from 1, or outcome
1 is unanimously obtained after LU measurements, where
LU ∈ N is a predefined parameter of themethod. If the second
event occurs, decision d = 1 is taken and the method stops.
If, on the contrary, one measurement xi = 2 is obtained, state
|ψ1〉 is discarded as the true hypothesis, and the algorithm is
repeated using POVM L(2). Again, if measurement xi = 1 is
obtained LU times, decision d = 2 is taken and the method
stops; otherwise, i.e., if one measurement yields xi = 2, state
|ψ2〉 is discarded. The procedure is iterated for increasing
state indexes up to index (N − 1) until, either the stopping
condition is reached, i.e. xi = 1 is obtained LU times with the
same POVM, or all states except |ψN 〉 are discarded, so that
the decision becomes d = N . A pseudo-code of the SDM
scheme, denoted byMSDM (LU ), is given in Algorithm 1.
Interestingly, the SDM scheme falls within the set of adap-

tive sequential methods but uses the predefined collection
of POVMs shown in (2), unlike other adaptive methods that

Algorithm 1 SDM SchemeMSDM (LU )
Input: The observed state σs = |ψs〉 〈ψs|, parameter LU ,
and POVMs {L(k)

}
N−1
k=1 .

Output: Decision d .
k = 1
Nrep = 0
while k < N and Nrep < LU do

Measure state σs with L(k) yielding outcome x
if x=1 then

Nrep = Nrep + 1
else

Nrep = 0
k = k + 1

end if
end while
d = k

solve an optimization problem to redesign the POVM at each
iteration as, for instance, in [12].

III. PERFORMANCE ANALYSIS
In this section the performance of the SDM algorithm is
analyzed, initially in terms of the required number of mea-
surements and later looking into the average error probability.
As in other sequential methods, the number of measurements
L is a r.v. so that we study its probability mass function
and expected value in the large sample regime, defined as
LU →∞. Afterwards, the average error probability of SDM
is obtained and the decay rate for increasing values of LU is
evaluated.

A. NUMBER OF MEASUREMENTS
The number of measurements made by the SDM algorithm is
a r.v. that can be expressed as

L =


LU if d = 1
L1 + · · · + Ld−1 + LU if 2 ≤ d ≤ N − 1
L1 + · · · + LN−1 if d = N

(3)

where Lk ∈ [1 : LU ] is a r.v. that denotes the number of
measurements using L(k), if this POVM is used. Therefore, L
can be lower and upper bounded as follows

min {LU ,N − 1} ≤ L ≤ LU (N − 1) (4)

The lower bound is the minimum between LU and (N − 1),
which are the number of measurements in two different situa-
tions: (a) d = 1 because the first LU measurements are equal
to 1, i.e. {xi = 1; ∀i = 1, . . . ,LU }; and (b) states {|ψs〉}

N−1
s=1

are discarded, each after one single measurement, implying
{xi = 2; ∀i = 1, . . . ,N−1} and, {Li = 1; ∀i = 1, . . . ,N−1}
and therefore d = N . The upper bound in (4) corresponds
also to the case when d = N , so that states {|ψs〉}

N−1
s=1 are

discarded, but in this case after LU measurements each, i.e.,
{Li = LU ; ∀i = 1, . . . ,N − 1}. We are interested in the
performance analysis of the SDM scheme in the large sample
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FIGURE 1. Histogram p̂L(l ), with 10.000 realizations of SDM algorithm
with N = 3, π1 = π2 = π3 = 1/3, and LU = 100.

regime, defined in our case when LU → ∞. Assuming a
limited number of states N , the upperbound in (4) shows that
the SDM method might need an infinite number of copies
only when LU → ∞. The following theorem assesses the
behaviour of the expected value of L, denoted by E[L],
in terms of LU in the large sample regime.
Theorem 1: The expected value of number of measure-

ments L of the SDM scheme in Algorithm 1 satisfies

lim
LU→∞

E[L]
LU
= 1− πN (5)

Proof: See Appendix A. �
This result implies that E[L] in SDM increases proportion-

ally with LU with a factor equal to (1 − πN ), where πN is
the minimum among all the a priori state probabilities. Note
that if the states had been sorted by increasing probability
(instead of decreasing), this factor would be smaller, but then,
as we show later in Section III-C, the decay rate of the error
probability would also be smaller.

As a complementary result, next corollary shows the
moments of L in the large sample regime.
Corollary 1.1: The wth-order moment of the number of

measurements L of the SDM scheme in Algorithm 1 satisfies

lim
LU→∞

E[Lw]
LwU

= 1− πN (6)

Proof: See Appendix B. �
For illustrative purposes, Figure 1 shows the normalized

histogram of L computed after 10.000 realizations of SDM
algorithm with N = 3, π1 = π2 = π3 =

1
3 , and

LU = 100. Clearly, the number of measurements tends to
be concentrated in two intervals. This particular shape of the
probability mass function of L, denoted by pL(l), is justified
by the following theorem.
Theorem 2: There exist α, β ∈ R+ with β < 1 such that

pL(l) ≤ (1− pD(N ))αβ l−LU u(l − LU )+ pD(N )αβ lu(l)

(7)

where u(a) = 1{a ≥ 0} and pD(N ) is the probability of
deciding state N .

Proof: See Appendix C. �
Note that αβ l−ku(l − k) is an exponentially decaying

window in the interval l ∈ [k, k + 1], where 1 depends on
β. Consequently, expression (7) shows that pL(l) is mostly
concentrated in the intervals [1,1] and [LU ,LU +1].

B. AVERAGE PROBABILITY OF ERROR
The average probability of error is given by

p(E) =
N∑
d=1

pE |D(E |d)pD(d) (8)

where E denotes the error event and D the decision regarding
the true hypothesis. Similarly, the conditional error probabil-
ity pE |D(E |d) can be expressed as

pE |D(E |d) =
N∑
s=1

pE |D,S (E |d, s)pS|D(s|d)

=

N∑
s=1
s6=d

pS|D(s|d) (9)

where S is the r.v. that represents the index of the observed
state, and the second equality follows by pE |D,S (E |d, s) =
1{d 6= s}. Using Bayes theorem and the fact that in the SDM
algorithm pD|S (d |s) = 0 ∀d > s, (9) becomes

pE |D(E |d) =
N∑

s=d+1

pD|S (d |s)
pD(d)

πs (10)

Substituting (10) in (8), we get

p(E) =
N−1∑
d=1

N∑
s=d+1

pD|S (d |s)πs (11)

Then, noting that Tr(|ψd 〉 〈ψd | σs)LU = Tr(σdσs)LU is the
probability of obtaining outcome xi = 1 LU times when
POVM L(d) is used, the conditional probabilities pD|S (d |s)
for d ∈ [1,N − 1] are equal toTr(σ1σs)

LU if d = 1

Tr(σdσs)LU
∏d−1

j=1

(
1− Tr(σjσs)LU

)
if d > 1

(12)

The expression of pD|S (d |s) for d > 1 comes from the
observation that

∏d−1
j=1

(
1− Tr(σjσs)LU

)
is the probability of

discarding the states {|ψi〉}
d−1
i=1 , and Tr(σdσs)LU is the proba-

bility of deciding d once lower indexed states are discarded.
Substituting (12) in (11), the probability of error becomes

p(E) =
N∑
s=2

πsTr(σ1σs)LU +
N−1∑
d=2

N∑
s=d+1

πsTr(σdσs)LU

×

d−1∏
j=1

(
1− Tr(σjσs)LU

)
(13)
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Since 0 < Tr(σdσs) < 1 for d 6= s, all terms of the
sum decrease exponentially with LU and, hence, the average
error probability also decreases exponentially with LU . This
observation is further supported by the following proposition,
to be used in next subsection where the decay rate of error
probability is assessed.
Proposition 1: The average probability of error p(E) of the

SDM algorithm is upper and lower bounded as

BL max
i,j:i6=j

Tr(σiσj)LU ≤ p(E) ≤ BU max
i,j:i6=j

Tr(σiσj)LU (14)

where BL ,BU ∈ R+ and BL < BU .
Proof: See Appendix D. �

C. DECAY RATE OF THE AVERAGE ERROR PROBABILITY
The asymptotic decay rate of p(E) as LU tends to infinity is
defined as

lim
LU→∞

− ln p(E)
LU

(15)

To compute this limit we first observe that, using Proposi-
tion 1, the ratio can be lower and upper bounded as follows

−
lnBU
LU
+ min

i,j:i6=j

{
− ln Tr(σiσj)

}
≤
− ln p(E)
LU

≤ −
lnBL
LU
+ min

i,j:i6=j

{
− ln Tr(σiσj)

}
(16)

which implies that

lim
LU→∞

− ln p(E)
LU

= min
i,j:i6=j

{
− ln Tr(σiσj)

}
(17)

As the quantum Chernoff distance, in the case that at
least one state is pure, can be written as CQ(σ1, σ2) =
− ln Tr(σ1σ2) [15], the decay rate with respect to LU becomes

lim
LU→∞

− ln p(E)
LU

= min
i,j:i6=j

CQ(σi, σj) (18)

We are also interested in assessing the decay rate of the
average error probability with respect to the expected number
of samples, defined as

lim
LU→∞

− ln p(E)
E[L]

(19)

Applying the product rule of the limit, (19) can be expressed
as

lim
LU→∞

LU
E[L]

lim
LU→∞

− ln p(E)
LU

(20)

since both limits are finite. Then, using (5) from Theorem 1
and (18), the final result is obtained

lim
LU→∞

− ln p(E)
E[L]

=
mini,j:i6=j CQ(σi, σj)

1− πN
(21)

This decay rate differs only in the factor 1/(1 − πN )
with respect to the optimal fixed-lengthmethod. Interestingly,
since (1−πN ) < 1, the decay rate with respect to the expected
number of measurements of the sequential discarding method

is greater than the optimal decay rate of the fixed-length
strategies.

It is worth noting that the decay rate obtained in (21)
remains valid even if one of the states is not pure. In this
scenario, the index of themixed statemust beN , and therefore
no POVM associated with this state needs to be defined.

IV. SERIAL CONCATENATION OF SDM ALGORITHMS
In this section we study how the serial concatenation of
sequential discarding methods can be employed to yield a
newmeasuring strategy by properly transferring the posterior
probabilities of the states. The concatenation operation of two
SDM algorithms, namely MSDM (LU ,1) and MSDM (LU ,2),
consists of:

1) Indexing states in increasing order of a priori probabil-
ity.

2) Executing algorithm MSDM (LU ,1). The number of
measurements performed in this stage is denoted l1.

3) Computing the posterior probabilities pS|X l1 (s|x
l1 ) and

reordering them in increasing order. In case any poste-
rior probability is zero, the associated state is discarded
and the total number of states is reduced.

4) Executing MSDM (LU ,2) using pS|X l1 (s|x
l1 ) as a priori

probability for each possible state.

This procedure can be iterated to concatenate an arbitrary
number of SDM algorithms (see Appendix E details). Our
analysis assesses the expected number of measurements in
two cases: (i) when a predetermined number of SDM stages
are concatenated; and (ii) when the number of concatenated
SDM algorithms can be arbitrarily large such that the proba-
bility of error can be made equal to zero.

A. NUMBER OF MEASUREMENTS WITH SERIAL
CONCATENATION
In this subsection, we first study the expected number of
measurements when two SDM algorithms are concatenated.
This value is then compared to the expected number of mea-
surements obtained with a single SDM algorithm. Finally,
the result is generalized to the case when multiple SDM
algorithms are concatenated.

1) NUMBER OF MEASUREMENTS WITH TWO SDMs
Expression (21) implies that, for a sufficiently large value
of LU ,1, the expected number of measurements required by
MSDM (LU ,1) is

E[L1] '
1−maxs∈[1:N ] πs

mini,j:i6=j CQ(σi, σj)
ln
(
1
ε1

)
, (22)

where πs for s ∈ [1 : N ] is the a priori state probability
and ε1 is the average probability of error of MSDM (LU ,1).
Assuming thatMSDM (LU ,1) performs l1 measurements, then
the a priori probabilities for MSDM (LU ,2) are given by
the posteriors pS|X l1 (s|x

l1 ). Consequently, the expected total
number of measurements required by the concatenation of
MSDM (LU ,1) andMSDM (LU ,2), conditioned by the fact that
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l1 measurements were performed in the first one, is given by

E
[
L|x l1

]
= E

[
L2|x l1

]
+ l1

'
1−maxs pS|X l1 (s|x

l1 )

mini,j:i6=j CQ(σi, σj)
ln
(
1
ε2

)
+ l1 (23)

where ε2 is the probability of error of MSDM (LU ,2) using a
priori state probabilities equal to pS|X l1 (s|x

l1 ). The expected
total number of measurements, E[L], of this two stage con-
catenation scheme can be computed taking the expected value
of (23) with respect to x l1 as follows

E[L] = EXL1
[
E
[
L|x l1

]]
'

EXL1
[
1−maxs pS|X l1 (s|x

l1 )
]

mini,j:i6=j CQ(σi, σj)
ln
(
1
ε2

)
+ EXL1 [l1]

(24)

Note that EXL1
[
1−maxs pS|X l1 (s|x

l1 )
]
is the probability of

error of the first SDM algorithmwhen using aMAP criterion.
Hence,

EXL1
[
1−max

s
pS|X l1 (s|x

l1 )
]
≤ ε1 (25)

Substituting (25) in (24), the expected total number of mea-
surements becomes upper bounded as

E[L] ≤
ε1

mini,j:i6=j CQ(σi, σj)
ln
(
1
ε2

)
+ EXL1 [l1]

'
1

mini,j:i6=j CQ(σi, σj)

(
ε1 ln

(
1
ε2

)
+ ε0 ln

(
1
ε1

))
(26)

where the approximation follows from (22) denoting ε0 :=
1− πN .

2) COMPARISON WITH A SINGLE SDM
In order to assess the expected number of measurements
required by the concatenation of two SDM algorithms,
as compared to a single SDM, we fix the probability of error
to a given value ε. Note that this value corresponds to ε2 in the
two-stage concatenation scheme since the decision is taken
only after the second stage.

Again, using (21), for a sufficiently large value of LU the
expected number of measurements of one single SDM is

E[L] '
ε0

mini,j:i6=j CQ(σi, σj)
ln
(
1
ε

)
, (27)

where ε0 = 1 − πN . Therefore, comparing (27) with (26)
and substituting ε2 = ε, the two stage concatenation strategy
requires a smaller expected number of measurements if ε1 is
designed such that

ε1 ln
(
1
ε

)
+ ε0 ln

(
1
ε1

)
< ε0 ln

(
1
ε

)
(28)

FIGURE 2. Normalized histogram p̂L(l ) of MSDM (LU ) with LU = 125
(upper) and of [MSDM (LU,1),MSDM (LU,2)] (lower), both with the same
average error probability ε = 2.5 · 10−9. Vertical lines indicate the average
value of L.

In general there exist a range of values ε1 that fulfill the
previous inequality. Specifically, if ε1 is set equal to

ε∗1 = argmin
0<ε1<1

(
ε1 ln

(
1
ε

)
+ ε0 ln

(
1
ε1

))
=

ε0

ln
(
1
ε

) (29)

then the expected measurement number can be upper
bounded as

E[L] ≤
ε0

mini,j:i6=j CQ(σi, σj)

(
1+ ln ln

(
1
ε

)
+ ln

(
1
ε0

))
≤

ε0

mini,j:i6=j CQ(σi, σj)

(
ln ln

(
1
ε

)
+

1
ε0

)
(30)

where the second inequality follows from ln (1/ε0) ≤ 1/ε0−
1. It is important to note that ε1 cannot take any arbitrary
value since it depends on parameter LU ,1, which must be
integer. That is, a value LU ,1 such that ε1 takes exactly the
optimal value, ε∗1 = ε0/ ln

(
1
ε

)
, does not exist in general.

However, by taking LU ,1 as the smallest natural number that
fulfills ε1 ≤ ε∗1 , the upper bound of the expected number of
measurements grows as O(ln ln 1/ε) as well.

For illustrative purposes, Figure 2 plots the normalized
histogram of L when one single SDM with LU = 125 is used
(upper plot) and when 2 SDM algorithms are concatenated
(lower plot). A total of 105 realizations are evaluated and
the average error probability is set to ε = 2.5 · 10−9. The
states and prior probabilities are the same as the ones used in
Figure 1 i.e., N = 3 and π1 = π2 = π3 = 1/3. Parameters
LU ,1 and LU ,2 are computed as the smallest integers such that
ε1 <

ε0

ln
(
1
ε

) and ε2 < ε.

The approximated probability mass function p̂L(l) for the
two stage concatenated strategy is mostly concentrated near
the origin where two maxima appear. The first maximum is
associated with the scenario whereMSDM (LU ,1) decides d =
N . As for the second maximum, it comes from the case where
MSDM (LU ,2) discards N−1 states and therefore the decision

13818 VOLUME 10, 2022



J. Pérez-Guijarro et al.: Quantum Multiple Hypothesis Testing Based on Sequential Discarding Scheme

has a zero probability of error. The difference between both
maxima is approximately LU ,1 = 21. Moreover, we can
see that exists another region of values of l, around l ≈
LU ,1+LU ,2, which is probable. This is due to the double band
effect shown in Figure 1. Remarkably, the expected number
of measurements of the two stage concatenation strategy is
reduced by a factor of 1/3 in comparison with the single SDM
strategy.

3) NUMBER OF MEASUREMENTS WITH MULTIPLE SDMs
The expression of the expected number of measurements
obtained by the concatenation of two sequential discarding
methods given in (30) can be generalized by mathematical
induction to an arbitrary number of stages. The resulting
expected number of measurements is given by

E[L] ≤
ε0

mini,j:i6=j CQ(σi, σj)
ln(c)

(
1
ε

)
+ O(c) (31)

where ε is the intended average error bound at the final stage,
and ln(c)(·) indicates c-times composition of the ln(·) function.

At the induction step, a concatenation of c SDM stages
is built by adding one SDM block as the first stage to an
existing concatenation of c − 1 SDM stages. We assume the
expected number of measurements of the c−1 concatenation
is bounded by

E[L] ≤
ε0

mini,j:i6=j CQ(σi, σj)
ln(c−1)

(
1
ε

)
+ O(c− 1) (32)

Hence, following an analogous procedure to the one shown
in (26), the expected number of measurements of the c stage
concatenation becomes upper bounded by

E[L] ≤
ε1

mini,j:i6=j CQ(σi, σj)
ln(c−1)

(
1
ε

)
+

ε0

mini,j:i6=j CQ(σi, σj)
ln
(
1
ε1

)
+ O(c−1) (33)

where the optimal probability of error of the additional SDM
stage is ε∗1 =

ε0
ln(c−1) 1

ε

. Substituting this value in (33), expres-

sion (31) is obtained.
In a nutshell, comparing (27) to (31) the number of mea-

surements can be reduced from O(ln 1/ε) to O(ln(c) 1/ε)
using a concatenation of c SDM algorithms, where ε denotes
the average error probability.

B. NUMBER OF MEASUREMENTS FOR ZERO ERROR
PROBABILITY
In this section, we let the number of SDM stages c to be
arbitrarily large so that the algorithm only finishes once N −
1 states are discarded, which yields a zero probability of error.
Note that in this case inequality (31) cannot be used to study
the expected number of measurements since the upper bound
tends to infinite.

The conducted analysis is summarized in Theorem 3 and
4 which provide an upper and lower bound for the expected
number of measurements, respectively.

Theorem 3: The expected number of measurements, E[L],
of an asymptotically large concatenation of SDM stages, all
of which use LU ,min ≤ LU ,i ≤ LU ,max , is bounded as

E[L] ≤ LU ,max(N − 1)
(

1
p+
+ 1

)
− LU ,max (34)

where p+ = 1
2 (1−maxi,j:i6=j Tr(σiσj)LU ,min ).

Proof: Since zero error probability is required, all except
one of the possible states must be discarded. This requires
at most LU ,max measurements per state yielding a total of
at most (N − 1)LU ,max measurements. In addition, all SDM
stages MSDM (LU ,i), except the final one, end up with a
non-discarding measurement and, therefore, use LU ,i mea-
surements each. The total number of required measurements
is then upper bounded by

L ≤ LU ,max(N − 1)+
Ce−1∑
i=1

LU ,i ≤ LU ,max(N − 2+ Ce)

(35)

where Ce is a r.v. that denotes the number of stages used.
As shown in appendix F, the expected number of required
SDM stages E[Ce] satisfies

E[Ce] ≤
N − 1
p+

(36)

Therefore,

E[L] ≤ LU ,max(N − 1)
(

1
p+
+ 1

)
− LU ,max (37)

�
Theorem 4: Any algorithm that decides with certainty the

observed hypothesis, Hs, i.e., with p(E) = 0, fulfills that

E[L] ≥
N∑
s=1

πs

N∑
i=1
i6=s

1
1− | 〈ψs| |ψi〉 |2

(38)

if all the POVM used belong to the set {L(k)
}
N
k=1 given in (2).

Proof: The expected value of measurements can be
computed as

E[L] =
N∑
s=1

πsE[L|s] (39)

Since we require p(E) = 0, all states except s must be
discarded when the true state is s. Since POVM {L(k)

}
N
k=1 can

discard only one state, E[L|s] satisfies

E[L|s] ≥
N∑
i=1
i6=s

E[Mi|s] (40)

where Mi denotes the number of measurements used to dis-
card state i when POVM L(i)

= {|ψi〉 〈ψi| , I − |ψi〉 〈ψi|} is
used. The inequality follows since additional non-discarding

VOLUME 10, 2022 13819



J. Pérez-Guijarro et al.: Quantum Multiple Hypothesis Testing Based on Sequential Discarding Scheme

FIGURE 3. Empirical average of the number of measurements with the
asymptotically large concatenation scheme as a function of LU estimated
using 2 · 104 realizations. Upper and lower bounds obtained in (34) and
(38), respectively.

measures can also be performed. The value of E[Mi|s] is
given by

E[Mi|s] =
∞∑

mi=1

mi
(
1− | 〈ψs| |ψi〉 |2

)
| 〈ψs| |ψi〉 |

2(mi−1)

=
1

1− | 〈ψs| |ψi〉 |2
(41)

which implies that

E[L] ≥
N∑
s=1

πs

N∑
i=1
i6=s

1
1− | 〈ψs| |ψi〉 |2

(42)

�
Setting LU ,i equal in all stages, i.e. LU ,min = LU ,max = LU ,

then the gap between upper and lower bounds in Theorem 3
and 4 is minimized for LU = 1. This result follows since the
lower bound does not depend on LU , and the upper bound can
be expressed as

(N − 1) · gT ∗ (LU )+ LU · (N − 2) (43)

where T ∗ = maxi,j:i6=j Tr(σiσj), and gT (LU ) is given by

gT (LU ) =
2LU

1− T LU
, (44)

which is an increasing function on LU , ∀T ∈ [0, 1). Figure 3
shows the empirical average of the number of measurements
when the number of SDM stages is arbitrarily large until
p(E) = 0, and both the upper and lower bounds obtained
in Theorem 3 and 4 for different values of LU . Interestingly,
the expected number of measurements of the asymptotically
large concatenation strategy only moderately increases with
LU . Also, it is clear that the upper bound is not tight for large
values of LU .

C. NUMBER OF MEASUREMENTS WITH MIXED STATES
The reduction in the number of expected measurements
obtained by the concatenation of multiple SDM stages can
also be achieved when quantum states are mixed if certain
requirements are met. In particular we can generalize the
previous results to the multiple hypothesis testing problem
for mixed states, denoted by {ρs}Ns=1, ρs ∈ D(H), provided3

supp(ρi) * supp(ρj) ∀i 6= j, or equivalently, D(ρi||ρj) = ∞
∀i 6= j.
To show this, we consider the spectral decomposition of

ρk =
∑

q λ
k
q

∣∣∣φkq 〉 〈φkq ∣∣∣ and POVM {5k , I−5k}, where5k =∑
q:λkq>0

∣∣∣φkq 〉 〈φkq ∣∣∣ is the projection onto the support of ρk .
Proceeding as in Section III, it is not difficult to show that the
decay of (21) becomes

lim
LU→∞

− ln p(E)
E[L]

=
− lnmaxi,j:i<j Tr

(
5iρj

)
1− πN

(45)

Note that maxi,j:i<j Tr(5iρj) < 1 since supp(ρi) * supp(ρj)
∀i 6= j. Using (45), similar results to the ones presented in
Section IV-A and IV-B can be obtained. In particular, the
expected number of measurements when c SDM stages are
concatenated is upper bounded by

E[L] ≤
ε0

− lnmaxi,j:i<j Tr
(
5iρj

) ln(c) (1
ε

)
+ O(c), (46)

Finally, the expected number of measurements of an asymp-
totically large concatenation of SDM stages, all of which use
LU ,min ≤ LU ,i ≤ LU ,max , is bounded by

E[L] ≤ LU ,max(N − 1)
(

1
p+
+ 1

)
− LU ,max (47)

where p+ = 1
2 (1−maxi,j:i<j Tr(5iρj)LU ,min ).

V. NUMERICAL EXPERIMENTS
This section includes simulations that support our theoretical
findings, both of the SDM algorithm and of the serial con-
catenation of SDM algorithms.

Figure 4 shows results of the SDM algorithm with N =
3 and states |ψi〉 = cos

(
θi
2

)
|0〉 + ejφi sin

(
θi
2

)
|1〉, with

φ1 = 5.40 rad, φ2 = 0.45 rad, φ3 = 5.91 rad

θ1 = 2.63 rad, θ2 = 2.21 rad, θ3 = 1.91 rad

The a priori state probabilities are π1 = π2 = π3 =
1
3 .

Specifically, 104 simulations of the SDM algorithm are run
for each value of LU in the interval [1 : 300]. In each
simulation, the average probability of error is computed using
(13) and the number of measurements L is saved. Using these
results, a histogram of L for each value of LU is obtained, and
represented using the gray scale on the right of the figure. For
comparison, the optimal number of measurements for a fixed-
lengthmethod, the estimated expected value ofmeasurements
of the SDM method, E[L], and its theoretical value on the
large sample regime given in (5) are also indicated.

3 The support of a quantum state ρk is the subspace spanned by its
eigenvectors

∣∣∣φkq 〉 with positive associated eigenvalues, i.e. λkq > 0.
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FIGURE 4. Histogram of the number of measurements L for
LU ∈ [1 : 300], optimal values for fixed-length methods, and estimated
and predicted values.

FIGURE 5. This figure shows a comparison between the expected value of
measurements for SDM, serial concatenation of SDM, and optimal
fixed-length schemes.

Figure 4 shows that the expected value of samples is
very close to the asymptotic theoretical value. Moreover, the
expected value of measurements is significantly smaller than
the number of samples used by a fixed-length method for the
same average probability of error.

Figure 5 compares the expected value of measurements of
the SDM scheme, the serial concatenation of SDM stages
with c ∈ {2, 3}, and the optimal fixed-length method. The
states and their a priori probability are the same as the ones
used in the previous example. Clearly, the expected number
of measurements for the serial concatenation scheme is sig-
nificantly smaller than the others.

Finally, Figure 6 illustrates the quotient between E[L]
and the lower bound shown in Theorem 4, when an arbi-
trarily large concatenation of SDM algorithms is used.
This ratio is calculated for different values of prior prob-
abilities {π1, π2, π3}, i.e, for coordinate values inside tri-
angle co({[1, 0, 0], [0, 1, 0], [0, 0, 1]}), where co(·) denotes
the convex hull operator. For each value of the a priori

FIGURE 6. Quotient between E[L] and the lower bound shown in
Theorem 4 for the method described in Section IV-B with LU,i = 1∀i .

probabilities, the method is run 5000 times to obtain an
estimate of E[L].
As shown in Figure 6, for a priori probabilities close to the

vertices, the expected number of measurements is approx-
imately equal to the lower bound in Theorem 4, that is,
the method is approximately optimal in terms of expected
number of measurements. As for less informative prior prob-
abilities, that is, those probability values represented close to
the center of the triangle, a moderate increase in the number
of measurements is obtained, specifically E[L] is 1.7 times
higher than the lower bound in Theorem 4.

VI. CONCLUSION
This article demonstrates that sequential discarding meth-
ods for the discrimination of pure states, even when simple
binary projective measurements are employed, can yield a
sub-logarithmic increase of the expected number of measure-
ments with respect to the error probability. The measuring
strategy that achieves this decay rate consists of the con-
catenation of multiple stages of the SDM algorithm. This
result also applies to the discrimination of mixed states under
certain restrictions on their respective support subspaces.
Moreover, this work also shows that, when a single SDM
stage is used, the number of measurements required to reach
a given probability of error is similar to the one required by
the optimal fixed-length strategy, and smaller on average for
sufficiently small error probability. Furthermore, in the case
of employing an asymptotically large concatenation of SDM
stages, the expected value ofmeasurements remains bounded,
even in the case of zero error probability.

APPENDIX A
EXPECTED VALUE OF L IN THE LARGE SAMPLE REGIME
The large sample regime is defined as LU →∞ and thus we
assume LU > (N − 1). The expected value of the number of
measurements E[L] can be expressed as

E[L] :=
LU (N−1)∑
l=N−1

l pL(l)
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=

LU (N−1)∑
l=N−1

N∑
d=1

l pL|D(l|d)pD(d)

=

N∑
d=1

pD(d)EL|D[L|d] (48)

where the first equality follows by the law of total prob-
ability, and the second by the definition of EL|D[L|d] :=∑LU (N−1)

l=N−1 l pL|D(l|d), which denotes the average number of
measurements when decision d is taken.

Let us define a r.v. A, which denotes the number of mea-
surements made before POVM L(d) is used and decision d is
taken. This r.v. takes values

A =

{
0 if d = 1
L1 + L2 + · · · + Ld−1 if 1 < d ≤ N

(49)

Substituting (49) in (3), the total number of measurements
becomes

L =

{
A+ LU if 1 ≤ d < N
A if d = N

(50)

Consequently, for 1 < d < N :

EL|D[L|d] =
LU (N−1)∑
l=N−1

l pL|D(l|d)

=

(d−1)LU∑
a=d−1

(a+ LU )pA|D(a|d)

= LU +
(d−1)LU∑
a=d−1

a pA|D(a|d) (51)

In the second equality we use the fact that, for a given decision
d , A can take values between d − 1 and LU (d − 1). That is,
A = d − 1 when a single measurement is used to discard
each of the d − 1 previous states, and LU (d − 1), when all
previous states are discarded after LU measurements. Using
(49) pA|D(a|d) becomes

pA|D(a|d) =
∑

ld−1∈Ta

pL1|D(l1|d) · · · pLd−1|D(ld−1|d) (52)

where ld−1 := (l1, . . . , ld−1) and Ta = {ld−1 ∈ Nd−1
:

l1+· · ·+ld−1 = a}. Since d ≤ s ≤ N , probabilities pLj|D(lj|d)
are given by

pLj|D(lj|d) =
N∑
s=d

pLj|S,D(lj|s, d)pS|D(s|d)

=

N∑
s=d

Tr(σjσs)lj−1
(
1− Tr(σjσs)

)
pS|D(s|d)

where Tr(σjσs) = Tr(
∣∣ψj〉 〈ψj∣∣ σs) is the probability of obtain-

ing the outcome x = 1 when POVM L(j) is used, and

pS|D(s|d) is the probability of observing state σs when d is
decided. Substituting this result in (52) gives

pA|D(a|d) =
∑

ld−1∈Ta

d−1∏
j=1

N∑
s=d

Tr(σjσs)lj−1

×
(
1− Tr(σjσs)

)
pS|D(s|d) (53)

Now the term
d−1∏
j=1

N∑
s=d

Tr(σjσs)lj−1
(
1− Tr(σjσs)

)
pS|D(s|d) (54)

which incorporates d − 1 factors, can be expressed by the
following sum of Nd = (N − d + 1)d−1 terms

Nd∑
i=1

ci · β
l1−1
1,i β

l2−1
2,i · · ·β

ld−1−1
d−1,i (55)

where 0 < ci < 1 gathers the product of d − 1 factors of the
form

(
1− Tr(σjσs)

)
pS|D(s|d), and 0 < βj,i < 1 is equal to

Tr(σjσs). Defining β̂i := maxj βj,i then expression (55) can
be upper bounded by

Nd∑
i=1

β̂a−d+1i (56)

since l1 + · · · + ld−1 = a. Noting that this upper bound does
not depend on the element l(d−1), pA|D(a|d) in (53) can be
then upper bounded by

pA|D(a|d) ≤
Nd∑
i=1

|Ta|β̂a−d+1i (57)

where |Ta| is the cardinality of the set Ta. Substituting (57) in
(51), we have

EL|D[L|d] ≤ LU +
(d−1)LU∑
a=d−1

Nd∑
i=1

a|Ta|β̂a−d+1i (58)

Now, note that |Ta| is the number of solutions of equation
a = l1 + l2 + · · · + ld−1 for lj ∈ N. Defining l̄j = (lj − 1),
we have

∑d−1
j=1 l̄j =

∑d−1
j=1 lj− d + 1 and, therefore, |Ta| also

amounts the number of solutions of
∑d−1

j=1 l̄j = a− d + 1 for
l̄j ≥ 0. Then denoting v = a − d + 1, the cardinality of the
set Ta is equal to

|Ta| =
(
v+ d − 2

v

)
=

(
a− 1

a− d + 1

)
, (59)

where
(x
y

)
=

x!
y!(y−x)! . Substituting (59) in (58), we have

EL|D[L|d]

≤ LU +
Nd∑
i=1

(d−1)LU∑
a=d−1

a
(

a− 1
a− d + 1

)
β̂a−d+1i

= LU +
Nd∑
i=1

(d−1)LU∑
a=d−1

a!
(a− d + 1)!(d − 2)!

β̂a−d+1i
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≤ LU +
Nd∑
i=1

1
(d − 2)!

∞∑
a=0

d−2∏
j=0

(a− j)

 β̂a−d+1i

where the second inequality follows increasing the range of
the summation from [d−1, (d−1)LU ] to [0,∞). Next, using
that

dd−1

d β̂d−1i

∞∑
a=0

β̂ai =

∞∑
a=0

d−2∏
j=0

(a− j)

 β̂a−d+1i , (60)

and
∑
∞

a=0 u
a
= 1/(1− u) if |u| < 1, gives

EL|D[L|d] ≤ LU +
Nd∑
i=1

d − 1

(1− β̂i)d
(61)

Since L = LU for d = 1, the conditional expected value
EL|D[L|d] for 1 ≤ d < N is lower and upper bounded by

LU ≤ EL|D[L|d] ≤ LU +
Nd∑
i=1

d − 1

(1− β̂i)d

meaning that

lim
LU→∞

EL|D[L|d]
LU

= 1 (62)

for d < N .
The case d = N can be analyzed similarly, except for the

fact that LU does not appear in EL|D[L|d = N ] since the
algorithm stops if the other N −1 states have been discarded.
Thus,

N − 1 ≤ EL|D[L|N ] ≤
NN∑
i=1

N − 1

(1− β̂i)N

which gives

lim
LU→∞

EL|D[L|N ]
LU

= 0 (63)

Results (62) and (63) can be used to compute the limit

lim
LU→∞

E[L]
LU
= lim

LU→∞

∑N
d=1 EL|D[L|d]pD(d)

LU

=

N∑
d=1

lim
LU→∞

pD(d) lim
LU→∞

EL|D[L|d]
LU

=

N−1∑
d=1

lim
LU→∞

pD(d) (64)

Using (12), it is not difficult to check that limLU→∞ pD(d) =
πd , giving the final result and completing the proof.

lim
LU→∞

E[L]
LU
=

N−1∑
d=1

πd = 1− πN (65)

APPENDIX B
MOMENTS OF L IN THE LARGE SAMPLE REGIME
This annex shows the proof of Collonary III-A. First, let’s
analyze, EL|D[Lw|d], when w > 1 and d < N , which can be
expressed as

EL|D[Lw|d] =
LU (N−1)∑
l=N−1

lw pL|D(l|d)

=

(d−1)LU∑
a=d−1

(a+ LU )wpA|D(a|d)

= LwU +
w∑
i=1

Lw−iu

(w
i

) (d−1)LU∑
a=d−1

ai pA|D(a|d)


(66)

where the second equality follows from (50), i.e., L = A+LU
if d < N , and the third equality is obtained by expanding (a+
LU )w. Following an analogous procedure to the one shown in
Appendix A, the following inequality is obtained

(d−1)LU∑
a=d−1

ai pA|D(a|d) ≤ qi,d (67)

where qi,d is a positive constant. Therefore,

LwU ≤ EL|D[Lw|d] ≤ LwU +
w∑
i=1

Lw−iu

(
w
i

)
qi,d

= LwU + Qd (LU ) (68)

where Qd is a polynomial of degree w − 1. The case d = N
can be computed using L = A instead of L = A+LU , to yield

EL|D[Lw|N ] =
(d−1)LU∑
a=d−1

awpA|D(a|d) ≤ qw,N (69)

Hence, combining (68) and (69),

lim
LU→∞

EL|D[Lw|d]
LwU

= 1{d 6= N } (70)

Using (70), the limit of the ratio E[Lw]/LwU is computed as
follows

lim
LU→∞

E[Lw]
LwU

= lim
LU→∞

∑N
d=1 EL|D[Lw|d]pD(d)

LwU

=

N∑
d=1

lim
LU→∞

pD(d) lim
LU→∞

EL|D[Lw|d]
LwU

=

N−1∑
d=1

lim
LU→∞

pD(d) = 1− πN (71)

where the last equality is obtained since limLU→∞ pD(d) =
πd .
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APPENDIX C
BOUND OF THE PROBABILITY MASS FUNCTION OF L
In order to prove Theorem 2, we hereafter derive the probabil-
ity mass function of L, denoted by pL(l). According to (50),
the total number of required measurements is given by

L =

{
A+ LU if 1 ≤ d < N
A if d = N

(72)

Then, the probability mass function of L can be expressed as

pL(l) =
N∑
d=1

pL|D(l|d)pD(d)

=

N−1∑
d=1

pA|D(l−LU |d)pD(d)+ pA|D(l|N )pD(N ) (73)

As shown in equation (57) of Appendix A, there exist α, β ∈
R+ with β < 1 such that pA|D(a|d) ≤ αβau(a), where u(a) =
1{a ≥ 0}. Substituting this inequality in (73), the probability
mass function of L can be upper bounded as follows

pL(l) ≤
N−1∑
d=1

αβ l−LU u(l − LU )pD(d)+ αβ lu(l)pD(N )

= (1− pD(N ))αβ l−LU u(l − LU )+ pD(N )αβ lu(l).

(74)

APPENDIX D
BOUNDS FOR THE PROBABILITY OF ERROR
This appendix derives upper and lower bounds for the average
error probability. The upper bound is obtained using equation
(13) from section III − B:

p(E) =
N∑
s=2

πsTr(σ1σs)LU +
N−1∑
d=2

N∑
s=d+1

πsTr(σdσs)LU

×

d−1∏
j=1

(
1− Tr(σjσs)LU

)
(75)

Since
∏d−1

j=1

(
1− Tr(σjσs)LU

)
≤ 1, the two sums can be

combined to yield an upper bound as

p(E) ≤
N−1∑
d=1

N∑
s=d+1

πsTr(σdσs)LU (76)

Now, using Tr(σdσs) ≤ maxi,j:i6=j Tr(σiσj),

p(E) ≤ max
i,j:i6=j

Tr(σiσj)LU
N−1∑
d=1

N∑
s=d+1

πs

= BU max
i,j:i6=j

Tr(σiσj)LU (77)

where BU =
∑N−1

d=1
∑N

s=d+1 πs.
Similarly, for the lower bound, starting with the exact

expression for the average probability of error

p(E) =
N∑
s=2

πsTr(σ1σs)LU +
N−1∑
d=2

N∑
s=d+1

πsTr(σdσs)LU

×

d−1∏
i=1

(
1− Tr(σjσs)LU

)
(78)

Since all the elements of the sum are positive, the sum
is greater or equal than any of its terms, in particular
than the term corresponding to maxi,j:i6=j Tr(σiσj)LU . Also,
as Tr(σiσj) < 1, or equivalently 1−Tr(σiσj)LU > 1−Tr(σiσj),
the following bound is obtained

P(E) ≥
(
πj

i−1∏
l=1

(
1− Tr(σlσj)

))
max
i,j:i6=j

Tr(σiσj)LU (79)

Therefore,

p(E) ≥ BL max
i,j:i6=j

Tr(σiσj)LU (80)

where BL = πj
∏i−1

l=1

(
1− Tr(σlσj)

)
.

APPENDIX E
COMPUTATION OF POSTERIORS PROBABILITIES
This annex shows the procedure followed to compute the
posterior probabilities, pS|X l (s|x

l). To do this, we rewrite
pS|X l (s|x

l) in terms of pS|X l−1(s|x
l−1), thus obtaining a recur-

sive expression.

pS|X l (s|x
l) =

pS,X l−1,Xl (s, x
l−1, xl)

pX l−1 (x l−1)
pX l−1(x

l−1)
pX l (x l)

=
pS,Xl |X l−1(s, xl |x

l−1)

pXl |X l−1(xl |x
l−1)

=
pXl |X l−1,S (xl |x

l−1, s)pS|X l−1 (s|x
l−1)∑N

s=1 pXl |X l−1,S (xl |x
l−1, s)pS|X l−1(s|x l−1)

=
Tr
(
3xl (x

l−1)σs
)
pS|X l−1 (s|x

l−1)∑N
s=1 Tr

(
3xl (x l−1)σs

)
pS|X l−1(s|x l−1)

(81)

where the first and second equalities follow from the defini-
tion of conditional probability, the third equality from the law
of total probability, and the last step follows from substitut-
ing probabilities pXl |X l−1,S (xl |x

l−1, s) by their corresponding
values, i.e, Tr

(
3xl (x

l−1)σs
)
. Matrix3xl (x

l−1) denotes the xl
element of POVM L(x l−1), which depends on the previous
outcomes x l−1.
Using this recursive expression together with the rules

defined by the implemented algorithm to decide the POVMs
L(x l) ∈ {L(k)

}
N
k=1, the posterior probabilities pS|X l (s|x

l) can
be computed.

APPENDIX F
UPPER BOUND ON THE EXPECTED NUMBER OF STAGES
FOR ZERO ERROR PROBABILITY
This section shows that the average number of sequential
discarding stages E[Ce] required to attain zero error proba-
bility is bounded. Note that we assume that LU ,min ≤ LU ,i ≤
LU ,max ∀i.
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Denoting by N̄c the number of discarded states after the
execution of the stages from 1 to c, we have:

N̄c =
c∑
i=1

n̄i = N̄c−1 + n̄c (82)

where n̄c denotes the number of discarded states at stage c
and N̄0 := 0. Note that in general 0 ≤ N̄c−1 < N − 1 for c ≤
Ce, since the method stops when N − 1 states are discarded.
Let us assume without loss of generality that N̄c−1 = 0, that
is, no states where discarded in the previous stages, and that
the state with the lowest probability after execution of state
c− 1 is s = 1, i.e., 1 = argmins pS|XLc−1 (s|x

lc−1), where x lc−1
is the outcome from all measurements performed at stages up
to c− 1. Note that this implies

pS|XLc−1 (1|x
lc−1 ) ≤

1
2

(83)

since the rest of the states must accumulate more probability.
Then, the probability that at least one state is discarded at
stage c can be expressed as

p(n̄c > 0) = p(dc 6= 1) (84)

where dc indicates the decision taken at stage c. The equality
follows since if a decision dc 6= 1 is taken, then at least
state 1 is discarded. The probability p(n̄c > 0), taking into
account all measurements completed before stage c, can then
be written as

p(n̄c > 0) = 1−
N∑
s=1

pDc|S (1|s)pS|XLc−1 (s|x
lc−1) (85)

Now, using pDc|S (1|s) = Tr(σ1σs)LU ,c (85) becomes

1− pS|XLc−1 (1|x
lc−1 )

−

N∑
s=2

Tr(σ1σs)LU ,cpS|XLc−1 (s|x
lc−1) (86)

This expression is lower bounded by

1− pS|XLc−1 (1|x
lc−1 )

− max
j6=1

Tr(σ1σj)LU ,c (1− pS|XLc−1 (1|x
lc−1 ))

= (1− pS|XLc−1 (1|x
lc−1 ))(1−max

j6=1
Tr(σ1σj)LU ,c ) (87)

Now, combining equation (87) with (83) we can set the
following lower bound,

p(n̄c > 0) ≥
1
2

(
1−max

j6=1
Tr(σ1σj)LU ,min

)
≥

1
2

(
1− max

j,i:j6=i
Tr(σiσj)LU ,min

)
(88)

Parameter p+ := 1
2

(
1−maxj,i:j6=i Tr(σiσj)LU ,min

)
, is defined

as this lower bound. Now,

E[n̄c] ≥ p(n̄c > 0) ≥ p+ (89)

Let us now define N̂c = N̂c−1+V , where N̂0 := 0, andV ∼
Bern(p+). Clearly, r.v. N̂c needs on average more steps than
N̄c to reach the value N − 1. Therefore, the random variable
Z ∼ pZ (z), where pZ (z) is the probability that N̂z = N−1 and
N̂z−1 = N − 2, fulfills

E[Ce] ≤ E[Z ] (90)

To conclude the proof we only have to compute E[Z ]. Since
N̂c ∼ B(c, p+) 4 for a fixed value of c, the probability pZ (z)
is given by

pZ (z) =
((

z− 1
N − 2

)
pN−2+ (1− p+)z−N+1

)
p+ (91)

where the first term of the product is p(N̂z−1 = N − 2), and
the second p(v = 1) = p+. Hence, the expected value of Z is

E[Z ] =
∞∑

z=N−1

z pZ (z)

=

∞∑
z=N−1

z
(
z− 1
N − 2

)
pN−1+ (1− p+)z−N+1 (92)

Substituting the binomial coefficient
( z−1
N−2

)
by (z−1)!

(N−2)!(z−N+1)!
and arranging terms, the previous expression becomes

pN−1+

(N − 2)!

∞∑
z=N−1

N−2∏
j=0

(z− j)(1− p+)z−N+1 (93)

The sum can be rewritten as a derivative of the geometric
series,

∑
∞

z=0(1− p+)
z, this is

pN−1+

(N − 2)!
(−1)N−1

dN−1

dpN−1+

∞∑
z=0

(1− p+)z (94)

Finally, since
∑
∞

z=0(1 − p+)
z
=

1
p+

the expected value of Z
can be expressed as

E[Z ] =
N − 1
p+

(95)

Therefore, E[Ce] is bounded E[Ce] ≤ N−1
p+

.
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