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Abstract— This paper presents the performance of zonotopic
fault detection (FD) for additive and multiplicative fault using
direct test and inverse test. Zonotopic set-based approaches
use the zonotope to describe the uncertain state, parameter
and noise which are assumed unknown but bounded to reduce
their influences on FD. These FD test methods aim at checking
the consistency between the measured and estimated behaviour
obtained from estimator in the parameter or output space.
When an inconsistency is detected between these two, a fault
can be indicated. At last, a motor model will be used to compare
the performance of direct test and inverse test for additive and
multiplicative faults.

I. INTRODUCTION

Fault Detection (FD) plays an important role in improv-
ing the safety and reliability of automatic control systems.
Model-based fault detection checks the consistency based on
generating the residual between the estimated behaviors and
the observations obtained from sensors. Ideally, the residuals
should only be zero when there’s not fault. However, due to
the existence of modelling uncertainty, unknown noise and
disturbance, it leads to mismatch between actual process and
estimated process. Therefore, it’s important to deal with the
uncertainties. Besides, due to the different locations where
the faults happen in, there are two types of fault, i.e. additive
faults and multiplicative faults. So, the other important issue
is to make sure which test method is suitable for certain
type of fault through comparing the detection performances
of different test methods on these two-types faults.

In this paper, the uncertainty is assumed to be unknown
but bounded. So it’s better to use zonotopes to describe the
uncertainties that is related to measurement noise, distur-
bances and the modelling error. The advantage is that basic
set operations can be reduced to simple matrix calculations
[1]. Then the fault can be detected by comparing the residual
with a threshold value derived from zonotope [2]. If the
residual is larger than such threshold, the existence of the
fault can be proved [3], [4],[5]. Otherwise, the system is
assumed to be still healthy.

As for fault detection methods, the direct test is based
on verifying if the residual is inside the interval of possible
values. The inverse test is based on verifying if there exists
a value that can explain the measured output of the system,
inside the set of possible parameters. If there isn’t a value
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satisfying the actual output, then a fault has been detected
[6]. Based on [3]and [7], the direct test is closely related
to state estimation methods and more suitable for additive
faults, while the inverse test is related to parameter estimation
methods better suited for multiplicative (parametric) faults.

Based on the above research, this paper will make a
contrast of the performance of direct test in output space and
inverse test in parameter space by computing the sensitivity
of the residual. The main contribution of this paper is to study
the performance of zonotopic fault detection of additive and
multiplicative fault when using direct test and inverse tests.

This paper is organized as follows. Section II introduces
the considered uncertain dynamic model for the system
which is able to deal with uncertainties. Section III reviews
two ways to detect faults. Section IV presents and compares
Interval Observer Approach (IOA) and Set-Membership Ap-
proach (SMA) using zonotopes for state estimation. Section
V proposes zonotopic Recursive Least Square (ZRLS) for
parameter estimation. Section VI presents the performance
of direct test and inverse test for additive faults and mul-
tiplicative faults mathematically. In Section VII, an actual
motor model with additive fault and multiplicative fault for
fault detection using direct test and inverse test are presented.
Finally, conclusions are summarised in Section VIII.

II. PROBLEM FORMULATION

The system considered in this paper can be described by
uncertain parameter-dependent discrete-time dynamic model
which is shown as below.

xk+1 = A(θ)xk +B(θ)uk +wk (1a)

yk =C(θ)xk +D(θ)uk + vk (1b)

where uk ∈ Rnu , yk ∈ Rny , xk ∈ Rnx , wk ∈ Rnx , vk ∈ Rny

are the input, output, state, process noise and measurement
noise vectors, respectively. Moreover, the process noise and
measurement noise are assumed to be unknown but bounded.
Besides, A(θ) ∈ Rnx×nx , B(θ) ∈ Rnu×nu , C (θ) ∈ Rny×nx ,
D(θ) ∈ Rny×nu are the state-space matrices, where θ ∈ Rnθ

is the vector of parameters.
To simplify the notations, the index k+1 will be replaced

by +, k− 1 will be replaced by − and k will be omitted.
Then, the dynamical model (1) can be rewritten as

x+ = A(θ)x+B(θ)u+w (2a)

y =C(θ)x+D(θ)u+ v (2b)



III. DIRECT VS INVERSE TESTS
The main idea of detection methods is to compare the

estimated behavior obtained with the system model against
the behavior measured with sensors from physical system.
The inconsistencies between them are called residuals, which
are calculated in the following way under ideal conditions.

r(k) = y(k)− ŷ(k) (3)

where r(k) is the residuals vector, y(k) is the system output
measurement, and ŷ(k) is the estimated output.

Ideally, the detection test is based on checking if r(k) = 0.
If this condition is satisfied then there is no inconsistency
between the model and the system and therefore it is assumed
that there is no fault. Otherwise if r(k) 6= 0, a fault can be
indicated. However under actual conditions, it is necessary to
consider the influence of the different sources of uncertainty.
Furthermore, considering the faults type, this paper utilizes
two methods, i.e. direct test in output space and inverse test
in parameter space respectively, for better recognizing the
faults.

A. Output Space
Considering noise, the fault detection test in output space

yields to check if

y(k) ∈ [ŷ(k)−σ , ŷ(k)+σ ] (4)

where σ is the noise bound. In output space, the test can
be implemented by zonotopic sate estimation in Section IV.
In this case, the estimated output is generated from the
estimated state bounded by a zonotope. Then, the direct test
involves checking whether the measured output is contained
in the estimated output interval. If not, a fault can be
indicated.

B. Parameter Space
The inverse test tends to check if there exists a parameter

in the set of nominal parameters set that enables the model
to be consistent with the measurement.

∃θ ∈Θ | ŷ(k,θ) ∈ [y(k)−σ ,y(k)+σ ] (5)

This test can be implemented by parameter estimation
procedure in Section V checking the intersection between
parameter zonotope and strip at each instant.

Θk+1 = Θk ∩Fk (6)

where

Fk =
{

θ ∈ Rnθ | y(k)−σ ≤ c(k)T
θ (k)≤ y(k)+σ

}
(7)

is the strip of parameters consistent with the current measure-
ments. In the inverse test if Θk+1 = /0, a fault is indicated .

IV. DIRECT TEST IMPLEMENTATION USING
ZONOTOPES

The direct test implementation methods use state esti-
mation methods to obtain the nominal estimation plus the
uncertainty interval based on measured data from the system.
Then, they check whether the measurement behavior is
consistent with the estimated behavior in output space.

A. Interval Observer

To estimate the interval dynamic model (1), IOA designs
an observer of the form

x̂+ = Ax̂+Bu+L(y−Cx̂−Du− v) (11)

where x̂+ is the estimated state, L is the observer gain,
which changes the modeling of uncertainty propagation by
weighting the relative influences of v and w.

Assume that the initial state x̂0 belongs to the set X io
0 =〈

cio
x,0,R

io
x,0

〉
, where cio

x,0 ∈ Rnx denotes the center and Rio
x,0 ∈

R
nx×nRio

x,0 is a shape matrix of the initial state bounding
zonotope. According to [8], [9], the state x̂ at each instant
belongs to such state bounding zonotope X̂k

io , i.e.,

X̂k
io
=
〈
cio

x ,R
io
x
〉

which can be recursively computed using

cio
x,+ = (A−LC)cio

x +Bu+Ly (12a)

Rio
x,+ =

[
(A−LC) R̄io

x w −Lv
]

(12b)

where R̄io
x =↓q

{
Rio

x
}

and L provides degrees of freedom to
tune the system with respect to some aim. This approach can
be regarded as the deterministic counterpart of the stochastic
Kalman Filter (KF) when uncertainties are assumed to be
unknown but bounded [1].

Thus, this IOA is equal to Zonotopic KF in [9]. And the
optimal observer gain L∗ can be obtained according to [9],
with the aim of min

∥∥Rio
x
∥∥2

F,W

L∗ =
ARio

x Rio
x

TCT

CRio
x Rio

x
TCT + vvT

(13)

B. Set-Membership

The Set-Membership Approach (SMA) is an alternative
approach for estimating the state of the system. Considering
the dynamical model (2), the center csm

x and the shape matrix
Rsm

x of the state bounding zonotope X̂ sm corrected by the ith

output [10], [1],
X̂ sm

i = 〈csm
x ,Rsm

x 〉 (14)

can be obtained by the intersection of the prediction state set
Psm =

〈
csm

p ,Rsm
p
〉
, where csm

p and Rsm
p denote the center and

shape of the zonotope Psm
k , respectively, and the set of states

consistent with each output strip Sy as

csm
x = csm

p +λ
(
y−Ccsm

p
)

(15a)

Rsm
x =

[
(I−λC)Rsm

p −λv
]

(15b)

with
csm

p = Acsm
x,−+Bu− (16a)

Rsm
p =

[
ARsm

x,− w−
]

(16a)

where the optimal λ can be obtained with the aim of
min‖Rsm

x ‖
2
F .

λ
∗ =

Rsm
p Rsm

p
TC

CRsm
p Rsm

p
TCT + vvT

(17)



C. Comparison of IOA and SMA

From theoretical aspect, IOA obtains the estimated state
by the propagation of state and output at the previous time
instant. SMA allows to estimate the state set by means
of the intersection between the predicted state set at the
previous time instant with the strip obtained by the current
measurement [10]. So, the main difference between IOA and
SMA is the instant that the used measurements to obtain the
state estimation.

Following the work of [11] and [9], Pourasghar[12] pro-
posed a current IOA (CIOA), which is the deterministic case
of stochastic Current estimation-type KF, to relate IOA to
SMA given by

ccio
x = ccio

p +L
(
y−Cccio

p
)

(18a)

Rcio
x =

[
(I−LC)Rcio

p −Lv
]

(18b)

with
ccio

p = Accio
x,−+Bu− (19a)

Rcio
p =

[
ARcio

x,− w−
]

(19a)

L∗ =
Rcio

p Rcio
p

TC

CRcio
p Rcio

p
TCT + vvT

(20)

where ccio
x and Rcio

x denote the center and the shape of
zonotope bounding the set of estimated states. It is worth
noted that the CIOA is performed based on the information of
the measurement given at the current time instant. And also
the observer gain L∗ of CIOA and parameter λ of SMA are
identical with the same aim of minimizing the zonotope size.
Therefore, SMA and IOA are related through introducing
CIOA.

V. INVERSE TEST IMPLEMENTATION USING
ZONOTOPES

The inverse test implementation methods related to pa-
rameter estimation are only based on a set of inputs and
measurement outputs in a non-faulty scenario to obtain
estimated parameters in the form of zonotopes, and then
check whether there is an intersection between parameter
zonotope and strip at each instant.

Based on Ogata’s book [11], current estimation-type KF
(for state estimation) after applying the substitution (21) and
Recursive Least Square (RLS) (for parameter estimation) are
of identical form. Hence, we can establish a conversion from
state estimation to parameter estimation by using (21). Thus,
zonotopic RLS (ZRLS) can be obtained from zonotopic
current estimation-type KF (CIOA) with the substitution
(21).

A = I,B = 0,C = c(k)T ,D = 0,w = 0 (21)

After using (21), the system can be expressed in the
regressor form as follows:

y(k) = c(k)T
θ + v(k) = ŷ(k)+ v(k) (22)

where c(k) is the regressor vector with dimension of nθ

which contains functions of inputs u(k) and outputs y(k);

v(k) is additive noise where |v(k)| ≤ σ . Then, regard param-
eters as the states: x(k) = θ (k). The regressor model can be
rewrited in the sate space form:

θ (k+1) = θ (k) (23a)

y(k) = c(k)T
θ (k)+ v(k) (23b)

where θ ∈ Θk is the parameter vector of dimension nθ and
Θk is the set that bounds parameter values, which can be
described by a zonotope as follows [13]:

Θk = P⊕HBn = {P+Hz : z ∈ Bn} (24)

Thus, substituting (18)-(20) by (21) and combining (24),
the inverse test implementation method ZRLS is as follows:

P = P−+L
(
y− cT P−

)
(25a)

H =
[(

I−LcT )H−,−Lv
]

(25b)

L∗ =
H−H−T c

cT H−H−T c+ vvT
(26)

It is worth to note that after applying the substitution (21) to
SMA, we can obtain SMA for parameter estimation, which
has the same formula as ZRLS.

VI. COMPARISON IN FAULT DETECTION

In order to compare the performance of proposed fault
detection methods, the sensitivity of residual to a fault can
be used [14][7]:

S f =
∂ r
∂ f

(27)

which describes how sensitive the residual r is to a given
fault f . Normally, S f ∈ [−1,1]. If S f is equal to a non-zero
constant, it means the residual is sensitive to the fault. And
the closer the constant to 1, the greater the sensitivity. on the
contrary, if S f is varying or equal to 0, it means the residual
is not sensitive to the fault.

In fault detection, two kinds of faults are typically consid-
ered [15]:

• Additive faults: input sensor fault fu, output sensor fault
fy and actuator sensor fault fa.

• Multiplicative faults: parametric fault fθ

Fig. 1. Different faults



A. Direct Test in Output Space

In case of considering these faults in direct test, then the
dynamical model can be rewritten as:

x+ = A(θ)x+B(θ)(u+ fa)+w (28a)

y =C(θ)x+D(θ)u+ v+ fy (28b)

where θ = θn f + fθ , and θn f denotes θ in non-faulty sce-
nario. Besides, fu will affect the observer:

x̂+ = A(θ)x̂+B(θ)(u+ fu)+L(y− ŷ) (29)

Hence, y is affected by fa, fθ and fy, ŷ is affected by fu. In
output space the residual

r = y− ŷ (30)

Then, fault sensitivity can be particularized, in the case of:
• sensor output faults as

S f y =
∂ r
∂ fy

=
∂ (y− ŷ)

∂ fy
= 1 (31)

• sensor input faults as

S f u =
∂ (−ŷ)

∂ fu
=−∂ (C(θ)(A(θ)x̂+B(θ)(u+ fu))+ v)

∂ fu

=−C(θ)
∂B(u+ fu)

∂ fu
=−C(θ)B(θ)

(32)
• actuator faults as

S f a =
∂ r
∂ fa

=
∂y
∂ fa

=C(θ)
∂ (A(θ)x+B(θ)(u+ fa)+w)

∂ fa

=C(θ)B(θ)
(33)

• parametric faults

S fθ =
∂ r
∂ fa

=
∂y
∂ fa

=
∂ (C(θ)x+D(θ)u+ v)

∂ fa

=
∂C(θ)

∂ fa
x+

∂D(θ)

∂ fa
u

(34)

Based on (31)-(34), direct test for sensor output faults,
input sensor faults and actuator faults are non-zero constant,
so it is sensitive to additive faults. While for parametric
faults, the sensitivity is varying. Therefore, direct test is not
permanently sensitive to multiplicative faults.

B. Inverse Test in Parameter Space

For inverse test, the dynamic model considering faults is
as follows:

θ (k+1) = θ (k) (35a)

y(k) = c(k)T
θ (k)+ v(k)+ fy (35b)

and the observer is:

θ̂(k+1) = θ̂(k)+L(y(k)− ŷ(k)) (36)

So, parametric faults are fθ = θ − θ̂ . Then considering
residual with
• y(k) affected by fy and actuator faults fa.

• regressor vector c(k) affected, depending on the regres-
sor structure, by fu if u is present in the regressor and
by fy and fa if y is present in the regressor [15].

• θ(k) affected by multiplicative faults f θ .
Furthermore, the residual in parameter space is

r = θ − θ̂ (37)

Then, fault sensitivity can be obtained separately in param-
eter space:
• sensor output faults as

S f y =
∂ r
∂ fy

=
∂ (θ − θ̂)

∂ fy
=−L

∂ (cT θ + v+ fy)

∂ fy

=−L(
∂cT

∂ fy
θ +1)

(38)

• sensor input faults as

S f u =
∂ (θ − θ̂)

∂ fu
=−∂ (L(y− ŷ))

∂ fy
= L

∂cT

∂ fy
θ (39)

• actuator faults as

S f a =
∂ (θ − θ̂)

∂ fa
= 0 (40)

• parametric faults

S fθ =
∂ (θ − θ̂)

∂ fu
= 1 (41)

Based on (38)-(41), inverse test for sensor output faults,
input sensor faults and actuator faults are varying or zero,
so it is not sensitive to additive faults. While for parameter
faults, the sensitivity is 1. Therefore, inverse test is sensitive
to multiplicative faults.

VII. EXAMPLE
This section introduces a BLDC motor model to test

the above approaches, namely, to estimate the states and
parameters of this model in no-faulty situation using IOA and
SMA, and then apply inverse test and direct test using both
state estimation and parameter estimation in each different
faulty situation to compare the test performance.

A. BLDC Motor Model
A BLDC motor bears a resemblance to a permanent

magnet synchronous machine (PMSM): surface-mounted
permanent magnets in the rotor and a 3-phase connected to
winding in the stator. The state space model is as follows,
which is from [16]

d
dt

[
i

ωr

]
=

[
− Req

Leq
− ke

Leq
kT
Leq

− Br
J

][
i

ωr

]
+

[
1

Leq
0

0 − 1
J

][
Vdc
TL

]
where the state variables are the current i and rotor speed
ωr; the input variables are DC voltage Vdc and resisting (or
load) torque TL; the parameters in state transmission matrix
are the equivalent resistance of the simplified circuit Req,
the back emf coefficient ke, the equivalent inductance of the
simplified circuit Leq, the torque coefficient kt , damping (or
viscous friction) coefficient Br and the moment of inertia of
the rotational system J, respectively.



B. BLDC Motor Faults

As discussed in Section III, faults can be classified into
additive faults and multiplicative faults. Usually, additive
faults happen in input or output sensors, while multiplicative
faults happen in parameters. Here, introduce both types of
faults into this motor model:
• Additive faults: stuck sensor fault ( fθ ), current sensor

fault ( fi).
• Multiplicative faults: resistance fault ( fR), inductance

fault( fL), friction fault ( fB) and inertia fault ( fJ).
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C. Consistency Test

For implementation the consistency test, state estimation
and parameter estimation are conducted firstly based on the
discrete-time motor model in no-faults scenario. And the

parameter and state estimation results are shown as Fig.(2,3)
and Fig.(4,5) respectively.

To compare the performance of zonotopic fault detection
of additive and multiplicative fault direct test and inverse
test, this paper introduces 6 faults using the implementation
methods in Section IV and V. The detection results are as
Fig.(6-11).

It’s worth remarking that if there is no intersection between
the zonotope and the strip in inverse test in Figs.6-9. It
means that this system contains a fault. For direct test, if the
measured output (yellow line) is not in the estimated output
bound, it indicates a fault, for example Fig.10. Especially,
faults can also be detected during state estimation stage using
SMA, to check whether the intersection (15) is empty or not.
The fault will be detected if the intersection is empty, like
Fig.(11), the intersection at instant 100001 is empty.
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According to these detection results, inverse test can detect
all the multiplicative faults, while for some additive faults it
not works. At the same time, direct test works well in the
detection of additive faults, but is not suitable for multiplica-
tive faults. Hence, we can conclude that inverse and direct
test have a better detection performance for multiplicative
faults and additive faults respectively.

VIII. CONCLUSIONS
This paper has mathematically and experimentally proved

that direct test and inverse test have a better performance
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for additive faults and multiplicative faults respectively in
FD. To take modelling uncertainty into consideration, set-
based estimation approaches use zonotopes to enclose the
exact possible behaviors in the parameter or output space.
When an inconsistency is detected between the observed and
estimated behaviors, a fault can be indicated. At last, a motor
model has been used to illustrate the performance of direct
test and inverse test for different faults.
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