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Abstract—The rapid development in computing technology
has paved the way for directive-based programming models
towards a principal role in maintaining software portability of
performance-critical applications. Efforts on such models
involve a least engineering cost for enabling computational
acceleration on multiple architectures while programmers are
only required to add meta information upon sequential code.
Optimizations for obtaining the best possible efficiency,
however, are often challenging. The insertions of directives by
the programmer can lead to side-effects that limit the available
compiler optimization possible, which could result in
performance degradation. This is exacerbated when targeting
multi-GPU systems, as pragmas do not automatically adapt to
such systems, and require expensive and time consuming code
adjustment by programmers.

This paper introduces JACC, an OpenACC runtime
framework which enables the dynamic extension of OpenACC
programs by serving as a transparent layer between the
program and the compiler. We add a versatile code-translation
method for multi-device utilization by which manually-
optimized applications can be distributed automatically while
keeping original code structure and parallelism. We show in
some cases nearly linear scaling on the part of kernel execution
with the NVIDIA V100 GPUs. While adaptively using multi-
GPUs, the resulting performance improvements amortize the
latency of GPU-to-GPU communications.

Index Terms—Multi-GPUs, Runtime System, Code Generation,
Directive-Based Programming

I. INTRODUCTION

Designing and building supercomputers is a complex task
in the field of high-performance computing (HPC). The
hardware, middleware and algorithms need to effectively
collaborate to achieve ideal results for massive and practical
problems. To facilitate the easy usage of supercomputers,
compiler technologies have been developed with highly
automated program optimizations that use domain-specific
knowledge and understandings of target architectures [1].

Directive-based programming has been employed for
enabling accelerator use, while replacing vendor-specific
coding with directive insertion. Keeping software portability
with minimum engineering efforts upon sequential code,
OpenACC and OpenMP are now widely used for accelerator
programming [2], [3]. However, pursuing ideal performance
is often challenging. The insertion of directives by the
programmers results in compilation side-effects that lead to
less program-characteristics exposure for compilation [4];
thus, programmers aiming at better efficiency are forced to
reshape their code merely for adjusting to the environment

such as compilers, software stacks and heterogeneous
architecture. Moreover, to follow the program modification,
additional runtime parameters are often introduced for each
program segment. Therefore, managing rewritten code is far
from clear regardless of the complexity of transformation.
Specifically, the parallelism among kernels is rarely
addressed and the multi-device utilization is basically
dismissed due to the little usability of data dependency
information.

To explore new optimization opportunities, this paper
extends OpenACC to hide code redundancy of optimization
behind the runtime system in order to facilitate compiler
development. While requiring no modification on original
programs, our framework JACC∗ provides an environment
for dynamic analysis, rescheduling and distribution of
execution along with on-the-fly kernel specialization by
wrapping up existing OpenACC compilers. Although other
directive-based programming work develops dedicated
runtime systems for specific optimization [5], [6], our
framework integrates the compilation and runtime phases so
as to utilize both aspects for additional efforts especially
aiming at exploiting parallelism.

Additionally, we address multi-GPU work distribution,
while considering the high memory latency of GPUs. To
accomplish this, we add a novel code-translation technique
named predicated-based filtering to automate multi-device
use. We never split loop ranges nor introduce fine
dependency analysis, but divide data ranges to be updated on
each device. This idea allows to distribute highly-tuned code
without changing code structure nor parallelism. Our
contributions are as follows:

• We create JACC, an OpenACC framework which facilitates
various dynamic features including runtime data analysis
and compilation. JACC enables kernel-level parallelization
through an asynchronous mechanism.

• We propose and describe a new multi-GPU kernel
distribution method by leveraging JACC for complex
applications. Our proposed technique is successful at
multi-GPU execution on application that previous work
fails to offload to multiple devices.

• We propose and describe an adaptive algorithm that
automatically determines the adequate kernels for

∗Available at http://github.com/epeec/JACC.
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multi-GPU execution. Our adaptive algorithm considers
the bandwidth of the peer-to-peer communication
between GPUs when selecting kernels for multi-GPU
execution.

• We evaluate all our contributions by using two different
OpenACC compilers on a NVIDIA V100 multi-GPU
system. We show that using our proposed methods and
techniques available through JACC, we are able to
achieve nearly linear scaling when excluding the latency
of communication. Additionally, we are able to
successfully improve the performance of a variety of
manually-tuned NAS Parallel Benchmarks.

The rest of the paper is structured as follows. Section II
discusses the recent trend of GPUs alongside a brief overview
of OpenACC. Section III introduces our runtime system with
basic extensions. In Section IV, predicate-based filtering is
described. Section V shows our experimental methodology.
Section VI evaluates our proposed technique on the state-of-
the-art hardware. Section VII discusses related work. Finally,
Section VIII concludes this paper.

II. BACKGROUND

A. GPUs

Graphics Processing Units (GPUs) originated as graphic
processors supporting massive parallelism. In contrast to
CPUs, which are used for general computations and system
management, GPUs are usually dedicated to those parts of
applications featuring a high degree of parallelism. Since
GPUs can hide the latency of memory requests by
overlapping it with execution, the peak bandwidth of GPUs
is significantly larger than that of CPUs. Furthermore, the
hierarchical memory system including multi-level caches,
shared memory and registers, allows exploiting spatial and
temporal locality. We show the recent performance changes
of NVIDIA GPUs in Fig. 1. Until P100, which began
employing the second generation of High Bandwidth
Memory (HBM2), the performance gap between memory
bandwidth and computational throughput had been growing
larger generation after generation. Therefore, memory
accesses tend to be the performance bottleneck of
applications. Currently, the NVLink interconnect [7] is
enhancing peer-to-peer communication among multiple
GPUs. The NVLink bandwidth allows not only
compute-intensive but memory- intensive applications to
utilize several devices. Notably, Unified Memory (UM)
realizes data accesses that automatically solve data coherence
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Fig. 1: Performance changes of recent GPUs. The bars show peak
performance in TFLOP/s. The ratio to the memory bandwidth is
shown by the line plot.

in the entire system while performing peer-to-peer
communications. However, frequent page faults cause heavy
performance degradation [8]; hence, users are basically
required to avoid data sharing or perform explicit memory
copies among GPUs.

B. OpenACC

Directive-based programming models have become
common in HPC. Application developers can take them for
granted in most supercomputing environments equipped with
modern accelerators such as GPUs or FPGAs. Programmers
benefit from their ability to target the same code easily to
different possible accelerator architectures. OpenACC [2]
offers compiler directives to program accelerators in existing
languages. Without introducing vendor-specific languages
such as CUDA, users are allowed to parallelize their code
and rely on the compiler for generating device-specific
application code. Fig. 2 shows an OpenACC code written in
C that updates array x with the multiplication of array y.

1 #pragma acc data copyout(x[0:N]) present(y)
2 #pragma acc parallel loop
3 for(int i=0; i<N; i++) x[i] = y[i] * y[i];

Fig. 2: Accelerator programming in OpenACC

The components of OpenACC are made of kernels and
routines. An OpenACC kernel is the unit of program
execution on accelerators to be launched with specified
parallelism (consisting of gang/worker/vector). Since
the host code is executed on CPUs, kernel execution can be
asynchronous to CPU execution and multiple kernels can be
simultaneously run on the same device. The environment for
kernel execution, such as device setting, data copies to/from
devices and synchronous behavior, can be controlled by
OpenACC routines.

OpenACC directives are provided for specifying code
segments as kernels or defining data on devices along with
several options (Lines 1-2 of Fig. 2). Although data-related
directives can be replaced by routine calls, OpenACC kernels
have to be embedded on original source files with directives
to be converted to device-specific code at compile time.
Therefore, additional code segments have to be put in place
along with additional variables in order to be calculated from

1 for (int d = 0; d < NUM_DEVICES; d++) {
2 acc_set_device_num(d, 0);
3 int length = N/NUM_DEVICES;
4 int init = length * d;
5 int until = length * (d + 1);
6 #pragma acc data copyout(x[init:length])\
7 present(y) async(d)
8 #pragma acc parallel loop async(d)
9 for(int i=init; i<until; i++)

10 x[i] = y[i] * y[i];
11 }

Fig. 3: Multi-device use in OpenACC



various dynamic parameters at runtime. Fig. 3 shows the
example of multi-device utilization in OpenACC with
asynchronous execution to each other devices. Additional
code segments surround the kernel, calling an OpenACC
routine to switch devices (Line 2 of Fig. 3) and setting
variables to divide the loop execution (Lines 3-5 of the same
figure). In real applications, many other factors such as
runtime information and device-to-device communication are
concerned; hence, in-situ kernel declarations bring additional
complexities to directive-based software development. Also,
OpenACC kernels are statically declared; thus, for a complex
dynamic application the programmer is required to prepare
adjusted kernels before compilation, regardless of whether
runtime information is available.

III. JACC: RUNTIME-EXTENDED OPENACC

Our work introduces dynamic analysis and compilation to
OpenACC directive-based programming, allowing further
efforts on optimization at runtime. All the components of
OpenACC, here, are provided as runtime routines leveraging
existing compilers. By transforming directives into a
sequence of routine calls, OpenACC compilers can enable
on-the-fly features such as kernel specialization and
load-balancing.

A. JACC

We build JACC, a just-in-time compilation system for
OpenACC, in which input directives are replaced with
runtime routines. JACC hides every OpenACC feature
behind a runtime library to cushion dependency to specific
compilers. Once a kernel is compiled for the first time, its
device code is cached to be reused for subsequent launches.
Even though JACC is developed upon existing compilers, it
allows calling of CUDA routines and kernels through its
library. Fig. 4 shows the converted code of Fig. 2 to call
runtime routines. First, combined directives (e.g. parallel
loop of Line 2 of Fig. 2) are decomposed into three basic
directives of parallel, loop and data. Then, for each
directive, JACC inserts corresponding routines that are
implemented in its library, shown in Fig. 4 (Lines 2, 5 and 12).

During program execution, JACC data-related routines that
wrap OpenACC routines (Lines 2 and 12 of Fig. 4) assume
the roles of the original directives. The routine

1 /* Entry of #pragma acc data */
2 jacc_create(x, N * sizeof(float));
3
4 /* #pragma acc parallel loop */
5 jacc_kernel_push(
6 "#pragma acc parallel present(x, y)\n"
7 "#pragma acc loop\n"
8 "for(int i=0; i<N ; i ++) /* ... */",
9 /* args */, /* flags */);

10
11 /* Exit of #pragma acc data */
12 jacc_copyout(x, N * sizeof(float));

Fig. 4: Converted code by JACC (arguments omitted)

jacc_kernel_push launches kernel execution while
accepting source code in a string with arguments that hold
runtime information (Lines 5-9 of the same figure). It should
be noted that the loop directive is used for marking
parallelism; therefore, the directive is kept in kernel strings.
When the routine finds no compiled kernel for given source
code or needs to update existing kernels, function code is
generated to emit device code by a specified compiler and to
have additional arguments for code extension. After linked
dynamically, this function is called through a foreign
function interface (FFI) for passing arbitrary arguments.
JACC’s library for each routine is extended to collect
runtime information and support dynamic features.

B. Basic Extension

OpenACC is a high-level programming model designed
for accelerator abstraction, which accepts program
optimizations through both direct APIs and program
modification in the base language (e.g. C, C++, Fortran).
Whereas the OpenACC APIs are added explicitly to a
program as directive clauses with a specific intent, the intent
and effect of base-language modifications to a program are
implicit. There exist a large body of work that studies the
implications of base-language modification on OpenACC
compilation. JACC works as a runtime solution for dynamic
optimization for both the OpenACC APIs and base-language
program modification. Because JACC’s ability to handle both
types of optimizations, it can automatically overlap kernel
execution, and thus achieve inter-kernel parallelism. Also,
additional on-the-fly kernel specialization using runtime
information extracted from profiling results for better
resource use and intra-kernel parallelism are possible.

1) Automated Asynchronous Execution: Since JACC
automatically provides a function interface for each
OpenACC kernel, additional runtime information needed for
extended execution shown in lines 2-5 of Fig. 3, can be
passed through as arguments to the JACC function interface
without the need to generate redundant code snippets.
Instead of compiler-generated code, which is hard to manage
as global program information, JACC’s runtime calculates
the required arguments on its own runtime environment and
then proceeds to call the kernel functions using them. The
benefit of this approach is that information across multiple
execution instances can be easily shared for further
optimizations. Moreover, JACC provides the ability to update
kernels dynamically with additional runtime information
after program compilation is invoked, thus, providing a
straightforward mechanism for runtime extensions of original
kernel declaration.

For asynchronous execution, we automatically overlap
kernel launches and data operations with each other as well
as host execution. Each JACC routine has the ability to track
array references, and if data dependencies are encountered
across two or more routines, JACC will schedule them in the
same asynchronous queue. When multiple queues are
concerned, synchronous operations are performed only



JACC Code JACC Runtime Dynamic Code

void kernel0(…, int async) {
#pragma acc …  async(async)
for (…) {

…
}}

jacc_create(…);      // Create a, b, c
jacc_kernel_push(…); // Initialize a
jacc_kernel_push(…); // Initialize b
jacc_kernel_push(…); // Update c from a, b
jacc_kernel_push(…); // Update c from b, c
jacc_copyout(…);     // Copyout c; Del a, bE

x
ec

async= 0 1 2

Input Code

#pragma acc kernels create(a, b) copyout(c)
{ for (…) a[i] = i;
for (…) b[i] = i;
for (…) c[i] = a[i] + b[i];
for (…) c[i] = b[i] + c[i];

}

① ② ③

④

(Create)  a    b    c 
(Kernel0) a
(Kernel1)      b
(Kernel2)           c
(Kernel3)           c
(Copyout)           c

Sync

Fig. 5: Execution flow of automated asynchronous execution. First, the JACC code is generated from the input ( 1 ). Following the execution,
the runtime manages data declarations and checks data dependency among asynchronous queues based on data ranges of actual kernel
arguments ( 2 ). Dynamic code is created from kernel code to be executed on a destined queue based on the kernel argument async ( 3 ) and
synchronization is performed with the host if necessary ( 4 ).

among those queues that require them, while skipping
redundant synchronization on already solved dependencies.
JACC achieves this by maintaining timestamps of data
accesses and the most recent synchronization among queues.
If there is no data dependency to prior execution, the least
recently used queue is selected. We guarantee original code
semantics by obligatory synchronization that is performed
immediately after kernel execution that deals with array
writes to undefined data regions and explicit variable updates
such as reduction. Data ranges linked to given pointers are
tracked through JACC’s runtime routines, and managed in a
red-black tree as OpenACC compilers do to accept any
address of declared data [9].

Fig. 5 shows JACC’s automatic asynchronous code
optimization and execution flow. During execution by the
JACC’s runtime (Step 2 of Fig. 5), the synchronization
between queues is performed. For example, before
Kernel2 execution is allowed, a synchronization call is
performed to wait for the updated arrays a and b. However,
for Kernel3, the dependency on b is already solved by the
previous synchronization, thus the execution does not wait
for other queues. For the overlapping execution, during the
dynamic code generation (Step 3 of Fig. 5), the OpenACC
clause async is set for each kernel declaration, and
asynchronous execution queues are selected.

JACC Code JACC Runtime

Profiled Dynamic Code

void kernel0(
float *x, float *y,
size_t N, float *sum_out) {
float sum;
// Kernel Code #pragma …
*sum_out = sum;

}

Args 0   1   2   …kernel(); // contains #pragma

jacc_optimize();

kernel();

(Kernel0)    0x…  0x… 1024 X 
(Kernel1) …    …    …
(Kernel2)           

...          

Specialized Dynamic Code

E
x
ec

①

③

④

#define N 1024
void kernel0_opt(
float (* restrict x),
float (* restrict y),
float *sum_out) {
// The same as profiled code

}

②

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Fig. 6: Compilation flow with on-the-fly kernel specialization. To
collect runtime information about kernel arguments, mainly addresses
of pointers and values of variables, profiling execution is conducted
( 1 ) with original kernel declarations ( 2 ). With a user-invoked
compilation event ( 3 ), specialized code is generated based on the
profile results and thereafter used for succeeding kernel execution
( 4 ). The sum variable in the profiled code is exported through the
sum_out pointer, thus it is kept for specialized code as a dynamic
variable (notated as “X” in the argument log of the JACC runtime).

2) Kernel Specialization: We attempt to refine resource
use by attaching runtime information to function code so as
to enable aggressive optimization in kernel compilation. The
compilation flow is shown in Fig. 6. For specialization,
profile execution is conducted before the optimization; then,
at an additional compilation event (jacc_optimize of
JACC code in Fig. 6), parameters being invariable during the
execution are substituted with constants (Line 1 of
specialized code in Fig. 6) to lower on-chip resource use.
Besides that, pointer references that never conflict with
others are declared with the restrict keyword to ensure
intra-kernel parallelism (Lines 3-4 of specialized code in
Fig. 6). Even though user-invoked events can be substituted
automatically by existing just-in-time compilation
techniques [10], we explicitly invoke the desired compilation
optimizations to measure the potential performance benefits.

IV. MULTI-GPU UTILIZATION WITH PREDICATES

We further improve utilization of intra-kernel parallelism
by enabling multi-GPU execution with JACC. Whereas
previous studies have persistently focused on loop splitting
over plural GPUs [5], [11], this work divides data regions
that each GPU updates to support real applications that
usually entangle memory accesses among loop iterations.

A. Predicate-Based Filtering

Our technique, named predicate-based filtering, limits
memory accesses depending on data regions that the GPU
writes to, assuming that redundant computational code and
parameters do not degrade performance due to low
computational latency and high memory latency on GPUs.
First, we introduce data ranges for each updated array so
that array writes can be filtered based on the assigned range.
For instance, in C code, array write a[i]*=2 is rewritten to
(a_lb <= i && a_ub >= i) ? a[i]*=2 : a[i], where
a_ub and a_lb indicate the upper and lower bound of
array a, that are specified depending on the GPU. In Fortran,
since there is no nested assignment, we use IF statement for
filtering, with subsequent ELSE statement which contains an
assignment of the same expression ( a(i)=a(i) ) that is
later optimized away but facilitates compiler analysis.
Additionally, we develop data-flow analysis for the
innermost parallel region in each kernel to detect data
dependencies between arrays. Then, we filter them to restrict
accesses while solving dependencies as shown in Fig. 7.
This analysis converts both array and variable references into



1 a[i]=x; b[i]=a[i]; x=c[j]; a[k]=x; b[k]=a[k];

1 /* a[i]=x */
2 ((a_lb<=i && a_ub>=i)||
3 (b_lb<=i && b_ub>=i)) ? a[i]=x:a[i];
4 /* b[i]=a[i] */
5 ((b_lb<=i && b_ub>=i)) ? b[i]=a[i]:b[i];
6 /* x=c[j] */
7 x=((a_lb<=k && a_ub>=k)||
8 (b_lb<=k && b_ub>=k)) ? c[j]:0;
9 /* a[k]=x */

10 ((a_lb<=k && a_ub>=k)||
11 (b_lb<=k && b_ub>=k)) ? a[k]=x:a[k];
12 /* b[k]=a[k] */
13 ((b_lb<=k && b_ub>=k)) ? b[k]=a[k]:b[k];

Fig. 7: Example of predicate-based filtering in C code. Original (top)
and filtered code (bottom). References to array a have predicates for
updating array b and itself (Lines 2-3 and 10-11), the references to
array b have for itself (Lines 5 and 13), and the reference to array
c has for array a and b (Lines 7-8).

the static single assignment (SSA) form, and iteratively finds
dependencies among array accesses.

Updated data are sent to all other GPUs after each kernel
execution to establish data coherency. Device-memory
allocations and host-to-GPU communications are replicated
on all the GPUs and the primary GPU is used for
GPU-to-host transfers. To guarantee the result of our
analysis, we check kernel arguments so as to duplicate
computation and disable communications on data that are
referred through more than two pointers which at least one
of them is read and one is written (i.e. aliased pointers,
which are usually avoided in OpenACC programs for loop
independence). When several pointers share the same array
to update, we merge their access ranges to follow the widest.
The necessary computation for array-write indexing is
always duplicated. Regarding reduction or variable writes
that are explicitly exported to host, we filter the computation
based on the range of the outermost parallel iterator.

B. Division of Multidimensional Arrays

While being applicable to all OpenACC kernels as far as
array writes are concerned, our filtering technique needs to
duplicate execution on each GPU when references between
split ranges (such as all-to-all dependencies in Fig. 8) are
found inside the kernel. We alleviate this restriction by
leveraging dimensional information.

If multidimensional arrays are linearly split regardless of
the dimensional characteristic, the data dependency could be
dispersed to the entire sections of array accesses. For
example, the write to lhsY in Fig. 8 (Lines 7-14) would be
filtered for succeeding reads; thus, all the computations
would be duplicated on each GPU. Here, we utilize parallel
iterators (such as i and k in Fig. 8) to locate parallel
dimensions, where arrays can be split without duplicated
computation. Based on the number of iterators each
dimension contains, we select the parallel dimension for

each updated array to have the most parallel iterators while
containing the least sequential iterators (such as m and n).
When there are several candidates, we choose the leftmost
dimension in the C language and the rightmost dimension in
Fortran to gain better performance with suitable accesses to
the memory layout (row-major and column-major order,
respectively).

Each kernel execution is performed while equally dividing
parallel dimensions among GPUs and accompanied by the
GPU-to-GPU communication through CUDA routine
cudaMemcpy2DAsync. Each array is concurrently
transferred regarding other data and other GPUs. We
synchronize GPUs at the beginning and ending of the
communication.

1 #pragma acc parallel loop gang
2 for (i = 1; i <= gp02; i++) {
3 #pragma acc loop worker vector
4 for (k = 1; k <= gp22; k++) {
5 for(m = 0; m < 5; m++)
6 for(n = 0; n < 5; n++) {
7 lhsY[n][m][BB][jsize][i][k] =
8 lhsY[n][m][BB][jsize][i][k]
9 - lhsY[n][0][AA][jsize][i][k]

10 * lhsY[0][m][CC][jsize-1][i][k]
11 /* - lhsY[n][1..4][AA][jsize][i][k]
12 * lhsY[1..4][m][CC][jsize-1][i][k] */;
13 }}}

Fig. 8: Kernel code from NPB-BT. Two inner loops are unrolled
in actual code. Linear splits cause all-to-all dependencies among
statements.

C. Adaptive Utilization

In order to avoid lower performance due to data distribution
overheads, we enable multi-GPU execution for each kernel in
an adaptive way, while otherwise duplicating computation on
all GPUs and performing no GPU-to-GPU communication.

First, we start the execution on the mode of duplication.
After an initial warm-up run, we profile the average ratio of
array-write size (WriteSize) to execution time (timeKernel) as
e f fdup, until we observe five executions that satisfy the
requirement to have the peak performance be better than
duplication:

timeKernel > timeKernel/nGPUs +WriteSize/peakP2P (1)

Here, peakP2P is the unidirectional bandwidth of one GPU-to-
GPU connection (e.g. 25GB/s in NVIDIA DGX-1) and nGPUs
is the number of GPUs used.

After switching to multi-GPU execution, we disable it when
either one of the two following conditions is satisfied at least
five times and the average difference of the left value and the
smaller right value goes above zero in equations (2-3).

1) The total execution time including the communication
time (timeComm) becomes longer than the kernel
execution time multiplied by nGPUs:

timeKernel + timeComm > timeKernel × nGPUs (2)



2) The total execution time surpasses the profiled execution
time of duplication:

timeKernel + timeComm > e f fdup ×WriteSize (3)

The first condition excludes the case that the GPU-to-GPU
communication has larger latencies than expected. The second
prevents performance degradation caused by kernels that are
unsuccessfully parallelized.

D. Implementation

We integrate predicated-based filtering into JACC, which
translator is implemented as a XcodeML [12] converter. The
execution flow of predicate-based filtering is shown in
Fig. 9. From OpenACC code in C or Fortran, our
implementation generates JACC code, in which kernel code
is embedded as strings. Although the kernel code can be
translated at runtime, we apply predicated-based filtering
beforehand for our experiments; thus, the embedded kernel
code already has the predicates. JACC’s runtime code
generator is utilized for setting array ranges and constructing
multi-GPU reduction code based on the arguments of
runtime routines. Runtime overheads of JIT dynamic
compilation are well known, and itself a target of
research [10], however it is outside the scope of this work
and left as a possible future area for optimization. Thus, we
evaluate the performance without dynamic compilation
overheads (Section III-B2), which is on average about 2
seconds per kernel for the initial compilation.

For simultaneous execution of multiple GPUs, we use
OpenMP rather than OpenACC’s asynchronous mechanism
that holds some non-negligible latencies [13], [14].
OpenMP’s pragmas are put only inside JACC’s library.
Whereas GCC does not allow the mix of OpenACC and
OpenMP, our separated-compilation strategy realizes a
combinatory use for both PGI and GCC. The OpenMP use is
not inherent here and our techniques introduced in this paper
are general enough to support other compilers and other
programming models.

V. METHODOLOGY

A. Hardware and Software

We measure the performance changes of our proposed
techniques using the NVIDIA Tesla V100 SXM2 GPUs
(16GB Memory) on NVIDIA DGX-1. DGX-1 contains eight
GPUs, where each four GPUs are interconnected with
NVLink in an all-to-all fashion. Additionally, each GPU has
one NVLink connection to one of the other four GPUs,
while the remaining GPUs and CPUs are connected with
PCI Express Gen3 x16. We use only the tightly coupled four
GPUs to perform our experiments where each link offers a
unidirectional bandwidth of 25GB/s while GPU0 ↔ GPU3
and GPU1 ↔ GPU2 are dually linked. Tesla V100 has a
peak single-precision performance of 15.7 TFLOP/s and a
peak memory throughput of 900GB/s. DGX-1 uses dual
20-core Intel Xeon processors.

x=c[j]; a[k]=x; b[k]=a[k];

Read

Read Read

①

②

Iterative Dataflow Analysis

Input Code

③

Data Management

- Array Mapping

- GPU-to-GPU or

CPU-to/from-GPU

Communication

Kernel Execution

- Code Gen/Compile

- Parameter Calculation

- Switching GPUs

- Adaptive Running

④

⑤

JACC Code

JACC Runtime Dynamic Code

void kernel0(…)
{ //Declarations

//Kernel Code
//Reduction

}

#pragma acc kernels ..

jacc_kernel_push(..);

Fig. 9: Execution flow of predicate-based filtering. Having the results
of iterative dataflow analysis ( 1 ), JACC code is generated from the
input ( 2 ). On the execution ( 3 ), dynamic code is created from kernel
code, extended declarations and reduction code in accordance with
runtime information ( 4 ). Once the dynamic code is compiled with a
specified compiler, the kernel execution is conducted with dynamic
parameters while switching GPUs and reflecting results to the host
and each other devices ( 5 ).

For the compilation, we use the PGI compiler 20.9 and
GCC 10.2.0 with CUDA 11.0. Currently, the Fortran
translation is tested only for predicate-based filtering with
PGI. The experiments with GCC are conducted while
omitting the worker parallelism (described in Section II) so
as not to exceed the maximum number of threads allowed in
GCC per thread-block.

B. Benchmarks

For the evaluation, we use a manually-tuned OpenACC
version of NAS Parallel Benchmarks (NPB) written in
C [15] and three Fortran mini-apps:CloverLeaf [16],
CCS-QCD [17] and the Himeno benchmark [18]. Each
benchmark of NPB is executed with the largest problem size
for the target GPUs (Class C) except EP, where we choose
Class D for longer execution. Moreover, to prolong the
execution time of CG and MG, we multiply the number of
iterations by 50. With regard to CloverLeaf, we select the
same input as the SPEC ACCEL benchmark suite [19],
while maximizing the GPU memory utilization of the other
two mini-apps.

EP is the only application to be compute-bound for
arithmetic operations of random-number generation involving
fewer array accesses, while other benchmarks become
memory-bound on the state-of-the-art accelerators. There is
no data dependency among parallel threads in EP.

BT/LU/SP deal with three-dimensional computational fluid
dynamics (CFD) with different solvers. BT updates
multidimensional arrays from 3D to 6D, especially 4D to 6D
have the leftmost 1D to 3D dimensions for loop-independent
indices as shown in Fig. 8 (Lines 7-14), respectively. LU/SP
use 3D to 4D arrays in a similar fashion to BT. LU has
relatively quicker execution for each kernel compared to
BT/SP and the latency of BT mainly consists of the
execution of several time-consuming kernels.



FT conducts 3D fast Fourier transform (FFT) incurring
all-to-all accesses, and MG is the benchmark of multigrid
computation which require long and short communications.
CG calculates a minimum eigenvalue of a sparse symmetric
positive matrix with the conjugate gradient method, causing
irregular accesses to an updated 1D array.

CloverLeaf is a hydrodynamics mini-application consisting
of 100+ kernels which sufficiently demonstrates the
workflow of real-world applications. Based on Euler’s
method, 2D stencil grids are updated by each kernel having
minimum control logics and halo accesses through double
buffers for avoiding dependencies among loop iterations.

CCS-QCD simulates lattice quantum chromodynamics
(QCD) with a linear-equation solver for a large sparse matrix
in 3D. Himeno iteratively updates a 19-point stencil grid
according to Jacobi’s method, which code structure is far
simpler than the other two mini-apps.

We report performance after an initial warm-up run that
causes runtime compilation and profiling for adaptive
utilization. The benchmark-reported data is quoted for the
result of NPB and the total execution times for the Fortran
mini-applications.

VI. RESULTS

A. Basic Extension

Fig. 10 shows the performance changes with JACC’s basic
extension for both the PGI compiler and GCC using NPB.
The JIT w/ (PGI/GCC) bars indicate the performance of
converted code without any optimization. Here, only one
asynchronous queue is used with +Async, whereas 16
queues are used with +Overlap. Along with that, the
+Var Opt execution adds kernel optimization with constant
parameters transformation discussed in Section III-B2.
Furthermore, +Restrict adds restrict to pointers.
Since GCC produces incorrect results with the original code
of CG/LU/MG, they are omitted from results.

First, performance degradation is observed for converted
code compared to original code in the case of BT/LU with
PGI, where generated code fails to leverage static array sizes
for some optimization at compile time because static arrays
are separately declared. However, improvements are
observed in the case of MG with PGI and EP with GCC.
Otherwise, original performances are mostly kept. On
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average, asynchronous execution with single queue achieves
better performance by 3.43% with PGI and 22.08% with
GCC, respectively. However, the time-consuming kernels in
each benchmark prevent overlap execution; thus, +Overlap
does not improve the performance from +Async. With
+Restrict, we achieve better performance up to 23.39%
in the case of BT/LU with PGI and 5.59% less performance
in EP with GCC. The performance difference between PGI
and GCC is primarily caused by the latency of memory
allocation; PGI owns memory pools for device memory,
while GCC does not.

The +Var Opt version has no performance change in
most cases and rather worsen efficiencies in the case of
EP/SP with GCC. Further exploration showed that some
cases of +Var Opt suffer from limited arithmetic unit
utilization caused by ineffective threads which are created
due to reduced register use. On the other hand, performance
improvements of +Restrict are achieved by parallelized
memory accesses which require additional registers.

B. GCC Custom Allocation

Since the original version of GCC suffers the performance
degradation by GPU-memory allocation, we integrate memory
pools into GCC’s runtime library libgomp for our multi-GPU
experiments to show explicitly the performance improvements
by kernel parallelization. We prepare two pools: one is for
user-invoked memory allocation such as through pragmas and
runtime routines. Another is for runtime-managed allocation
of variables and stacks which tends to be much smaller than
the former. We manage those pools to keep unused memory
segments and reuse them for new allocation by selecting the
smallest but capable one on the device.

With the memory-pool integration, GCC’s efficiency
becomes competitive to PGI while having -7.83% ∼ 5.05%
better throughputs for the plain JACC code except the case
of EP, where the kernel execution poses a 38.31% overhead
due to GCC’s device-code efficiency, as shown in Fig. 11.

C. Multi-GPU Utilization

1) Total Improvements & Kernel Speedups: We show the
overall performance and kernel speedups with
predicate-based filtering in Fig. 11. When compared to
single-GPU execution, the total execution time with our
proposed technique is better in five among 10 evaluated
benchmarks, from 4.05% up to 43.43% when enabling four
GPUs. Especially, when only the kernel execution and
GPU-to-GPU transfers are concerned, six benchmarks
(BT/CG/LU/SP/CCS-QCD/Himeno) improve the execution
time by 23.9% on average as shown in Table I. Other
benchmarks still remain unchanged with some slight
degradation up to 3.36% while having several kernels
enabled for multi-GPU execution. The noticeable slowdowns
we observe in the total execution time of LU/MG are caused
due to other factors necessary for multi-GPUs such as
memory allocation and synchronization. As an opposite
fashion to +Var Opt, the predicate-appended code mostly



TABLE I: Performance details with PGI in use of four GPUs (The result of duplicated execution on all the GPUs is used for the Kernel
Dup column only; Other columns use the results of adaptive execution. The Kernel Adapted column shows the kernel execution time for
multi-GPU adapted kernels with the average. The bold values indicate performance improvements from the duplicated execution)

Name Num
Kernels

Kernel
Dup [ms]

Num
Adapted

Comm +
Kernel [ms]

Kernel Total
(ave) [ms]

Kernel Adapted
(ave) [ms]

Comm
(ave) [ms]

Average
WriteSize

GPU-to-GPU
Bandwidth

BT 46 88,715 3 63,856 46,639 (0.44) 14,940 (24.75) 17,217 (28.52) 684.10 MB 23.99 GB/s
CG 16 75,178 7 44,137 38,720 (0.08) 34,365 (0.12) 5,417 (0.02) 0.10 MB 5.40 GB/s
EP 4 37,485 3 37,787 37,710 (24.55) 37,710 (24.55) 77 (0.05) 0.03 MB 0.54 GB/s
FT 12 8,472 4 8,757 6,096 (47.29) 4,983 (62.37) 2,661 (33.31) 806.92 MB 24.23 GB/s
LU 59 76,325 7 71,614 64,342 (0.09) 3,886 (0.03) 7,272 (0.06) 0.39 MB 6.28 GB/s
MG 16 83,586 3 83,654 83,654 (0.47) 5,604 (0.35) 0 (0.00) 0.00 MB 0.00 GB/s
SP 65 27,809 3 19,609 16,648 (0.64) 1,969 (1.64) 2,961 (2.47) 58.24 MB 23.60 GB/s

CloverLeaf 114 55,017 3 55,272 54,079 (0.22) 10,980 (4.27) 1,193 (0.46) 5.46 MB 11.76 GB/s
CCS-QCD 27 26,517 11 24,641 13,031 (0.97) 5,811 (1.91) 11,610 (3.82) 91.67 MB 24.02 GB/s

Himeno 2 33,726 1 23,149 11,894 (5.93) 8,318 (8.30) 11,255 (11.23) 271.47 MB 24.18 GB/s

holds the performance of the plain JACC code with
single-GPU use.

Profiling the kernel speedups with no adaptive execution
showed that predicate-based filtering parallelizes many
kernels. Using the memory-intensive benchmarks BT/SP,
PGI achieves 2.83x and 3.59x improvements on four GPUs
and GCC does 4.13x and 3.85x, respectively. For LU,
however, the shorter than 1ms running time of each kernel
execution limits acceleration to 1.40x, involving overheads
for duplicating program structures on all the GPUs. EP does
not have any improvement due to its compute-bound nature.
Comparing adaptive and non-adaptive execution, CG has
almost the same improvement despite other benchmarks are
prevented from full parallelization due to the high
communication-kernel ratios. For example, in Table I, around
the 20% execution of CloverLeaf is distributed over
multi-GPUs but those kernels are not well enhanced, while
the remaining execution is duplicated because of the
excessive communication latencies, hence, resulting in no
speedup.

2) Data-Size Scaling: Fig. 12 shows the performance
scaling with Himeno using different program sizes. Since we

equally split array ranges for each GPU, the transfer size per
GPU-to-GPU connection becomes smaller and the proportion
of communication decreases when the number of GPUs is
increased. From two to four-GPU use, we see different
scaling of total GPU-to-GPU transfers: 1.70x speedup with
size M, 1.95x with L and 1.99x with XL. In regard to kernel
performance scaling from single to four GPUs, we achieve
1.53x, 2.19x and 3.64x improvements for size M, L and XL,
respectively. For size M, multi-GPU execution suffers the
overheads of both kernel and communication. Better scaling
can be obtained with longer kernel execution and larger
transfers as in the case of BT, which is successfully
parallelized with communications of a six-dimensional array
decomposed per GPU in 75 segments of 8MB size, having
original kernel execution longer than 10ms.

Our technique further reduces the GPU-to-GPU
communication latency as more GPUs are used. As future
architectures move to having many accelerators with
all-to-all interconnects, applications could benefit further
from predicate-based filtering.

3) Comparison: Related work MACC [5] successfully
parallelizes only two of those applications over multi-GPUs
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based on code-level access-range analysis: CG and Himeno,
which performance bottlenecks have non-overlapping linear
writes for each loop iteration. Other multi-GPU work based
on memory coherence mechanisms [11], [20] is also unable
to support the remaining benchmarks without user effort.

We compare our technique to loop splitting. Fig. 12
includes the scaling of the manual code which uses the same
algorithm as MACC. We notice that the loop-splitting code
has better scaling for kernel execution: from single to four
GPUs, it achieves 2.08x, 3.57x and 5.26x improvements for
size M, L and XL, respectively. Moreover, the optimized
communication for the stencil application significantly
reduces the latencies. Those domain-specific approaches can
be automated as long as compiler analysis allows; thus, we
consider integrating them into our work for future
refinement.

Fig. 13 shows the comparison between our technique and
MACC using CG. MACC automates loop splitting of all the
kernels in CG but employs no adaptive algorithm. From two
to four-GPU utilization, our technique achieves better
efficiency up to 3.50% by disabling multi-GPU execution for
lower-latency kernels. Besides that, the adaptive execution
has smaller kernel latencies than non-adaptive execution due
to the same reason, with 44.09% better total efficiency.

VII. RELATED WORK

Several studies conduct optimization upon the source code
of directive-based programming models. In [21], Tian et al.
perform scalar replacement on OpenACC code, that
substitutes redundant array accesses with scalar references
until the compiler reports that all available registers are
utilized or all reused references are replaced. Barua et
al. [22] optimally unroll OpenACC loops while estimating
memory throughputs based on ILP. OptACC [6] finds a

better OpenACC parallelism with either grid or direct search.
JACC eases the implementation of those extensional work in
a portable fashion to the user’s environment while utilizing
dynamic information.

There is some work addressing automated multi-GPU
utilization with OpenACC. MACC [5] provides dynamic
access-range analysis to distribute execution with
GPU-to-GPU communication. Although MACC achieves
better performance than a UM system, its analysis is only
applicable to affine loops. Komada et al.’s compiler [11]
keeps data coherence by tracking array writes in a similar
way to UM but incurring additional array writes for it and
performing data transfers after each kernel execution. Both
previous work divides loop execution equally for each GPU
and principally does not allow any intersection of array
updates among devices, thus, cannot support many
applications that our work parallelize.

Distributed-memory systems including multi-GPUs are
also discussed regardless of programming models. Loop
models such as polyhedral model have been widely
employed to detect data dependency among compute
nodes [23]. However, the input is typically restricted to
affine or almost-affine loops and those work fixes workloads
on each node before computing dependency, which involves
intricate communication patterns or imposes loop
transformations beforehand. Some libraries and frameworks
are dedicated to multi-GPU execution through an abstraction
which entails GPU-to-GPU communication [24].
Software-level memory managements that maintain data
coherency are also capable for accommodating program
distribution with little user intervention but manual efforts
are required to adequately partition updated arrays while not
overlapping them or otherwise introducing overheads [25].
Our predicate-based filtering provides a new way to
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parallelize many kernels based on source-code level
transformation and dynamic information.

Dynamic compilation brings additional opportunities for
performance improvement to the runtime system. NVIDIA’s
jitifiy [26] is a library that simplifies the use of CUDA
Runtime Compilation. KernelGen [27] is a Fortran/C
compiler that automates GPU code generation with
polyhedral loop analysis of LLVM IR. Those works present
dynamic features such as runtime alias analysis and
parameter tuning alongside kernel specialization. On the
other hand, JACC wraps OpenACC compilers and holds
C/Fortran code for optimization.

VIII. CONCLUSION

Over the last decade, substantial work has been proposed
for the optimization of directive-based programming models
while facing difficulties with its implementation to arrange
compiler groundwork. In this paper, we presented JACC, an
OpenACC framework which facilitates runtime extension.
Organizing data mappings and kernel arguments as runtime
information, JACC creates dynamic code from original
kernels and compiles it with a specified compiler in order to
support on-the-fly code extension automatically. Due to the
memory-bound nature of GPUs, we proposed predicate-
based filtering, a novel code-translation technique of
multi-GPU utilization, for distributing highly-tuned
applications without additional user effort. JACC employs an
adaptive algorithm for switching distribution based on the
overhead of GPU-to-GPU communication. Having many
kernels parallelized on a multi-GPU environment, we showed
the performance improvements of several tested benchmarks
where precise data-dependency analysis is always restrained.
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