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Abstract 
 

In recent years the scientific community has been developing new techniques in structural health 

monitoring (SHM) to identify the damages in civil structures specially in bridges. The bridge health 

monitoring (BHM) systems serve to reduce overall life-cycle maintenance costs for bridges, as their 

main objective is to prevent catastrophic failure, cracking, damages, corrosion of steel members 

among others. In the BHM using dynamic data, there are several problems related to the post-

processing of the vibration signals such as: (i) when the modal-based dynamic features like natural 

frequencies, modes shape and damping are used, they present a limitation in relation to damage 

location, since they are based on a global response of the structure; (ii) presence of noise in the 

measurement of vibration responses; (iii) inadequate use of existing algorithms for damage feature 

extraction because of neglecting the non-linearity and non-stationarity of the recorded signals; (iv) 

environmental and operational conditions can also generate false damage detections in bridges; (v) 

the drawbacks of traditional algorithms for processing large amounts of data obtained from the BHM. 

This thesis proposes new vibration-based parameters, methods and tools with focus on damage 

detection, localization and quantification, considering a mixed robust methodology that includes 

signal processing and machine learning methods to solve the identified problems. The increasing 

volume of bridge monitoring data makes it interesting to study the ability of advanced tools and 

systems to extract useful information from dynamic and static variables. In particular, in the field of 

Machine Learning (ML) and Artificial Intelligence (AI), powerful algorithms have been developed 

to face problems where the amount of data is much larger (big data). In the present thesis, the 

possibilities of machine learning techniques (unsupervised algorithms) were analyzed for application 

to bridge structural analysis taking into account both operational and environmental conditions. 

A critical literature review was performed, identifying the problems and limitations that some 

algorithms present for damage identification, localization and quantification on real bridges. A deep 

study of the accuracy and performance of a set of algorithms for detecting damage in four case studies 

of bridges was carried out (three real bridges and one numerical model of a bridge). In the BHM 

literature review inherent to the vibration-based damage detection, several state-of-the-art methods 

have been studied that do not consider the nature of the data and the characteristics of the applied 

excitation (possible non-linearity, non-stationarity, presence or absence of environmental and / or 

operational effects,) and the noise level of the sensors. This is identified as problematic when applied 

to BHM. Besides, most research uses modal-based damage characteristics (natural frequencies, mode 

shapes, and damping) that have some limitations. A poor data normalization is performed by the 

majority of methods and both operational and environmental variability is not properly accounted for.  

Likewise, the huge amount of data recorded requires automatic procedures with proven capacity to 

reduce the possibility of false alarms. On the other hand, many investigations have limitations since 

only numerical or laboratory cases are studied. All these problems are identified. As a consequence, 
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a methodology is proposed by the combination of several algorithms to avoid them. Their good 

performance is checked by the application to several case studies of real bridges. 

Finally, the results of all case studies, conclusions and future research lines are presented. The 

conclusions show a robust methodology based on machine learning algorithms capable to detect, 

localize and quantify damage. It allows the engineers to verify bridges and anticipate significant 

structural damage when occurs, under operational and environmental conditions. Moreover, the 

proposed non-modal parameters show their feasibility as damage features using ambient and forced 

vibrations in two real bridges. Hilbert-Huang Transform (HHT) in conjunction with Marginal Hilbert 

Spectrum and Instantaneous Phase Difference shows a great capability to analyze the nonlinear and 

nonstationary response signals in real bridges for damage identification under operational conditions. 

The proposed strategy combines algorithms for signal processing (ICEEMDAN and HHT) and 

machine learning (k-means) to conduct damage detection and localization in bridges by using the 

traffic-induced vibration data in real-time operation. 
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Resumen 
 

En los últimos años la comunidad científica ha estado desarrollando nuevas técnicas en 

monitoreo de salud estructural (SHM) para identificar los daños en estructuras civiles especialmente 

en puentes. Los sistemas de monitoreo de salud de puentes (BHM) sirven para reducir los costos 

generales de mantenimiento del ciclo de vida de los puentes, ya que su objetivo principal es prevenir 

fallas catastróficas, grietas, daños, corrosión de los miembros de acero, entre otros. En el BHM que 

utiliza datos dinámicos, existen varios problemas relacionados con el procesamiento posterior de las 

señales de vibración, tales como: (i) cuando se utilizan características dinámicas basadas en modales 

como frecuencias naturales, forma de modos y amortiguamiento, presentan una limitación en relación 

a la localización del daño, ya que se basan en una respuesta global de la estructura; (ii) presencia de 

ruido en la medición de las respuestas de vibración; (iii) uso inadecuado de los algoritmos existentes 

para la extracción de características de daño debido a que no se toma en cuenta la no linealidad y la 

no estacionariedad de las señales registradas; (iv) las condiciones ambientales y operativas también 

pueden generar falsas detecciones de daños en puentes; (v) los inconvenientes de los algoritmos 

tradicionales para procesar grandes cantidades de datos obtenidos del BHM. 

Esta tesis propone nuevos parámetros, métodos y herramientas basados en vibraciones con 

enfoque en la detección, localización y cuantificación de daños, considerando una metodología 

robusta y mixta que incluye métodos de procesamiento de señales y aprendizaje automático para 

resolver los problemas identificados. El creciente volumen de datos de monitoreo de puentes hace 

que sea interesante estudiar la capacidad de herramientas y sistemas avanzados para extraer 

información útil de variables dinámicas y estáticas. En concreto, en el campo del Machine Learning 

(ML) y la Inteligencia Artificial (IA) se han desarrollado potentes algoritmos para afrontar problemas 

donde la cantidad de datos es mucho mayor (big data). En la presente tesis, se analizaron las 

posibilidades de las técnicas de aprendizaje automático (algoritmos no supervisados) para su 

aplicación al análisis estructural de puentes teniendo en cuenta tanto las condiciones operativas como 

ambientales. 

Se realizó una revisión crítica de la literatura, identificando los problemas y limitaciones que 

presentan algunos algoritmos para la identificación, localización y cuantificación de daños en puentes 

reales. Se llevó a cabo un estudio profundo de la precisión y rendimiento de un conjunto de algoritmos 

para la detección de daños en cuatro casos de estudio de puentes (tres puentes reales y un modelo 

numérico de un puente). En la revisión de la literatura de BHM inherente a la detección de daños 

basada en vibraciones, se han estudiado varios métodos de última generación que no consideran la 

naturaleza de los datos y las características de la excitación aplicada (posible no linealidad, no 

estacionariedad, presencia o ausencia de efectos ambientales y/o operacionales,) y el nivel de ruido 

de los sensores. Esto se identifica como problemático cuando se aplica a BHM. Además, la mayoría 

de las investigaciones utilizan características de daño basadas en modales (frecuencias naturales, 
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formas modales y amortiguamiento) que tienen algunas limitaciones. La mayoría de los métodos 

realizan una normalización deficiente de los datos y no se tiene en cuenta adecuadamente la 

variabilidad operativa y ambiental. Asimismo, la enorme cantidad de datos registrados requiere de 

procedimientos automáticos con capacidad comprobada para reducir la posibilidad de falsas alarmas. 

Por otro lado, muchas investigaciones tienen limitaciones ya que solo se estudian en casos numéricos 

o de laboratorio. De esta manera, todos estos problemas están identificados. En consecuencia, se 

propone una metodología mediante la combinación de varios algoritmos para evitarlos. Su buen 

desempeño se comprueba mediante la aplicación a varios casos de estudio de puentes reales. 

Finalmente, se presentan los resultados de todos los casos de estudio, conclusiones y futuras 

líneas de investigación. Las conclusiones muestran una metodología robusta basada en algoritmos de 

aprendizaje automático capaces de detectar, localizar y cuantificar daños. Permite a los ingenieros 

verificar puentes y anticipar daños estructurales significativos cuando ocurran en condiciones 

operativas y ambientales. Además, los parámetros no modales propuestos muestran su viabilidad 

como características de daño usando vibraciones ambientales y forzadas en dos puentes reales. La 

Transformada de Hilbert-Huang (HHT) junto con el Espectro Marginal de Hilbert y la Diferencia de 

Fase Instantánea muestran una gran capacidad para analizar las señales de respuesta no lineales y no 

estacionarias en puentes reales para la identificación de daños en condiciones operativas. La estrategia 

propuesta combina algoritmos para el procesamiento de señales (ICEEMDAN y HHT) y el 

aprendizaje automático (k-means) para realizar la detección y localización de daños en puentes 

mediante el uso de datos de vibraciones inducidas por el tráfico en tiempo real. 
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Chapter 1 – Introduction and objectives 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  
 

2 

  



 

  
 

3 

1.1. Introduction and motivation 

 Bridges play a crucial role in our society, regardless of geographical location, for example in the 

economic development, connecting people, goods and transports. Bridges must be well maintained and 

managed to preserve safety, durability at a low cost. In this sense, the maintenance and inspection, the 

permanent quantitative and objective control of the structural condition of bridges must be raised 

against operational, environmental and accidental factors [1] [2]. This is the main purpose of Structural 

Health Monitoring (SHM), which is an important field that permits to identify early and progressive 

structural damage [3] [4]. Likewise, the large amount of data obtained from a bridge monitoring system 

increasingly requires the implementation of modern techniques and sophisticated algorithms, what 

derives on other more specific fields currently being developed such as the bridge health monitoring 

systems (BHMS). 

The SHM research area has the general objective of managing infrastructures by detecting 

structural damage. The SHM process involves the observation of a structural system throughout its 

useful life using periodic measurements or in real time through a series of sensors, taking into account 

that a damaged structure produces hidden abnormal changes in structural behavior [5]. Damage 

identification procedures are carried out by extracting such anomalies using damage-sensitive features 

and in-depth statistical analysis to discriminate the condition of the actual structure. Some authors [6] 

[7] mention that the information obtained from long-term SHM monitoring is periodically updated and 

provides valuable information on the ability of the structure to fulfill its function despite degradation 

and inevitable aging due to operational and environmental variability. Damage identification 

procedures can be used to assess the condition of damage and to predict the residual useful life of 

structures. 

To assess the damage condition of a structure, three operational levels are usually targeted: 

damage detection, diagnosis, and prognosis (Figure 1.1). Nevertheless, damage diagnosis can be 

subdivided into location, type, and severity; likewise, the hierarchical structure of damage 

identification can be decomposed in five levels and each one answers the following questions [8]. 

1. Is the damage present in the system (detection)? 

2. Where is the damage (localization)? 

3. What kind of damage is present (type)? 

4. What is the extent of damage (severity, quantification)? 

5. How much useful lifetime remains (prognosis)? 

The answers to the proposed questions follow an order and a logical sequence since if the response 

to the severity of the damage is considered, then the type of damage can be known in advance. On the 

other hand, the damage prognosis cannot be achieved without a prior understanding of the damage 

accumulation process [9]. Although it is correct, as mentioned in [8], that damage identification 
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hierarchy comprises five levels, this thesis focuses mainly on the detection, location and quantification 

aspects.  

 
 

Figure 1.1. Hierarchical structure of damage identification [8]. 

The previous approach can be applied in many civil infrastructures including bridges. Generally, 

when bridge damage occurs, the required repair is costly and time consuming. Different types of 

damage can be cracks [10] (Figure 1.2a), corrosion [11] (Figure 1.2b), absence and deflection of a 

neoprene pad [12] (Figure 1.2c), faulty expansion joints, impact-induced delamination in composite 

structures, degradation of structural connections, etc.  SHM has several stages such as: collection of 

reliable data on the current state of the bridge, observation of the evaluation throughout the service 

life and the characterization of the degradation. In this sense, SHM systems imply the permanent 

installation of a series and variety of sensors (Figure 1.3), for which the parameters sensitive to 

damage must be continuously measured (static and dynamic parameters) as well as the environmental 

parameters (temperature, humidity, wind). 
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Figure 1.2. Structural damages in bridges (a) Sydney Harbour Bridge, Cracks [10] (b) Old 

Lidingö Bridge, heavily corroded cross beam [11] (c) Guadiana Bridge, absence and 
deviation of a neoprene pad [12]. 

 

   
 

Figure 1.3. Installation of sensors for SHM (a) Old Lidingö Bridge, installing a strain 
gauge [11] (b) Guadiana Bridge, many kinds of sensor installed (thermometers, 

inclinometers, etc) [12]. 
 

Numerous monitoring and detection SHM approaches have been developed, for instance, 

physics- and data-based. The first one uses the inverse problem technique to calibrate numerical 

models (e.g., finite element models). Besides, during the last decades with emerging computing power 

and sensing technology, the data-based field like Machine learning (ML) has grown enormously, 

where the algorithms are in the condition of learning and/or modeling the behavior of the structure 

through data collected over time. Besides, the machine learning algorithms can be divided in 

supervised and unsupervised. [13] [14] [15]. The supervised algorithms require a set of labeled data 

for their training and their general objective is to discover the optimal mapping of the inputs to the 

desired outputs (objective function). That is, these algorithms require a human supervisor to assign a 

label to each data sample before training [16] [17]. On the other hand, unsupervised learning 

algorithms require output-only data without any label and their aim is to investigate the statistical 

distribution of the data to obtain important information about its underlying structure [18]. 

Considering the transition from research to practice, SHM technology makes a great contribution 

to caring for the economy and life safety. SHM systems should prove to be a very useful tool to reduce 

overall maintenance costs within the life cycle of a bridge. For instance, currently, the initial investment 

for a bridge health monitoring (BHM) system for new bridges ranges from 0.5% to 3% of the total 

construction cost [19]. The deployed system generates an annual management and maintenance cost 

(c) 

(a) (b) 
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between 5% and 20%. Therefore, BHM systems may require an investment in the order of 4.5% to 9% 

of the total construction cost of a medium-size bridge during the first 10 years of useful life [20]. 

Likewise, most of the current infrastructure in North America and Europe is relatively old as it has 

deteriorated over the years. For example, in the year 2021, 7.5% of the total number of bridges 

managed by the National Bridge Inventory in the U.S. was considered structurally deficient and 42% 

of these were over 50 years old. In addition, a recent estimate for the U.S. backlog of bridge repair 

needs is $125 billion [21]. For this reason, there is a great demand in the evaluation and maintenance 

of those structures that are gradually suffering damage.  

Bridge monitoring must consider robust systems both in the construction stage and during the 

service life of the structure. For this reason, there are many researchers who recommend and provide 

the implementation of BHM systems using modern techniques for data collection, processing and 

analysis [22] - [25]. In addition, these data obtained through monitoring are useful for the detection, 

location and quantification of damages.  

In Europe, for instance, there have been many cases of the abrupt collapses such as: Morandi 

Bridge [26] in Genoa, Italy in August 2018 (Figure 1.4a), which caused the death of 43 people, that 

has aroused concern by the authorities and the scientific community to investigate in greater detail 

the causes of this regrettable fact. As mentioned, [27], the possible causes of bridge collapse include: 

poor structural design, questionable construction practices, and improperly planned or implemented 

maintenance. So, it is inevitable to think that maintenance work has dropped significantly in some 

European countries during the last decade. This can be seen in Figure 1.5. The Figure 1.4b shows a 

20-year-old single-arch steel bridge located in Taiwan known as Nanfang'ao, which collapsed in 

October 2019, injuring 12 people and killing six. According to the investigations, the main cause 

could have been the corrosion in the suspension cables of the bridge, for which the independent bridge 

consultant Simon Bourne mentioned to the New Civil Engineer magazine [28] that it must have been 

necessary to carry out a proactive maintenance and in this way avoid that the cables rust. Likewise, 

two cases of structural collapses of bridges in Brazil [29] and Peru [30] can be seen in Figure 1.4c 

and Figure 1.4d respectively. The first case in Brazil occurred during the construction stage of the 

viaduct, which at that time had a budget of R$ 905 million and caused the loss of two human lives 

and twenty-two injuries. In the case of Peru, the Topará bridge, whose investment was US $ 33.9 

million, collapsed in July 2015 after the passage of a truck that transported scrap metal, in this case it 

is presumed that the causes have to relationship with a poor structural design. 
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Figure 1.4. Structural bridge collapses around the world (a) Morandi Highway Bridge, 
Italy [26] (b) Nanfang`ao Bridge, Taiwan [28] (c) Guararapes Battle Viaduct, Brazil [29] 

(d) Topará Bridge, Peru [30]. 
 

 
 

 
 

Figure 1.5. The investment in Italian infrastructure, which is related to Genoa bridge 
collapse [26]. Source: Statista. 

 

Finally, many authors [31] - [33] mentioned that the systems of SHM can be designed in order to: 

1. Manage, plan and execute structural monitoring during the construction stage of 

lightweight structures using resistant materials at low cost; 

(a) (b) 

(c) (d) 
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2. Measure the real structural response to validate the calculations made in the structural 

design, and thus in the future to improve the design specifications; 

3. Detect anomalies, cracks, damages in early stages; 

4. Reduce and improve visual inspections with the help of non-destructive testing; 

5. Extend the useful life of the structures by placing a real-time monitoring system and thus 

carry out maintenance work to prevent and reduce management costs, traffic control and 

downtime; 

6. Place SHM systems in order to evaluate the integrity conditions of the structure after the 

occurrence of damage due to environmental and operational conditions; 

7. Implement SHM systems to prevent structural damage due to catastrophic events such as 

earthquakes, tsunamis, etc. and thus safeguard people's lives. 

 

1.2. Problem Identification 

The SHM strategy explores the availability of sensor data and measurements to complement 

traditional inspection schemes. SHM has emerged as a promising solution due to recent advances in 

transmission systems, transducers, data acquisition, and signal processing techniques. In addition, 

within the monitoring of sensitive characteristics, natural frequencies, mode shapes, damping ratios, 

and modal curvatures are generally considered to detect damage. For instance, the natural frequencies 

are intrinsically related to the global stiffness of a structure, since if the stiffness decreases it may be 

an indication of the presence of damage [34] [35]. However, modal parameter-based damage 

detection techniques contain a number of drawbacks and limitations when applied to bridges. For 

instance, when the natural frequencies, modes shape and damping are used, they present a limitation 

in relation to damage location, since they are based on a global response of the structure. According 

to recent research, the authors [36] [37] have developed exhaustive comparisons in order to identify 

these problems and provide alternative solutions for the use of other parameters such as non-modal 

ones. In this sense, the research on this subject is not closed at all and new challenges and 

developments to solve these problems and to propose efficient non-modal parameters for damage 

detection and locations are still necessary and worth of further research. 

On the other hand, dynamic parameters such as modal frequencies, damping ratios and mode 

shapes can be easily obtained through conventional time-frequency signal processing such as Fast 

Fourier Transform (FFT) [38] and short-time Fourier Transform (STFT) [39]. However, these signal 

processing methods are based on the fact that the signal is linear and stationary. . Besides, there are a 

few inherent drawbacks of FFT that can affect the performance of system identification and the 

subsequent damage detection [40]. For example (i) the reduction of data process is particularly 

obtained by FFT and the structural health condition can be lost during the process [41]. (ii) the time 

dependency of dynamic parameters cannot be obtained by FFT and considering the signals obtained 
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from naturally excited structures, it will not be able to capture the evolutionary characteristics that are 

observed in these signals [42]. The higher frequency modes that are obtained generally represent 

damages that are local phenomena [43] [44] and the higher frequencies are poorly excited and spaced 

[45]. In conclusion, damage detection techniques using FFT have relevant drawbacks because the 

assumption done is that the dynamic process from which the signal is an observation, is linear and 

stationary. However, the signals obtained from the crossing of vehicles along a bridge do not present 

these characteristics as the frequency spectrum of the response varies along the crossing due to the 

vehicle-bridge interaction and also the amplitude of the signal changes depending on the position of 

the vehicle in relation to the location where the response is recorded. The time dependency of 

frequency and amplitude of the recorded vibration becomes evident. As a consequence, methods of 

extraction of modal parameters that assume the linearity and stationarity of the process (as FFT) are 

not of application to obtain reliable and accurate damage indicators. In this regard, the wavelet 

transform (WT) [46] [47] and Hilbert–Huang transform (HHT) [40] [48] [49] can analyze non-linear 

and non-stationary signals and solve these problems efficiently. More research on the accurate 

implementation of these techniques in real world bridges is still needed in order to check their validity 

Additionally, the SHM has two main drawbacks during continuous monitoring. First, several 

features sensitive to damage are not measured directly, but are estimated from monitoring data using 

increasingly modern extraction techniques. For example, natural frequencies are obtained from 

measurements of vibration responses, such as accelerations, which can have estimation errors. 

Second, the characteristics obtained from monitoring are not only sensitive to changes produced by 

structural damage, but also to environmental (changes in temperature, humidity, wind speed) and 

operational (traffic load) conditions. Therefore, in the correct practice of SHM, the accuracy of the 

estimated features and the environmental and operational variability must be taken into account.  

Many environmental factors such as ambient temperature, humidity, wind, affect the vibration 

parameters since they are features sensitive to damages [6]. However, the variability of environmental 

factors is very slow compared to the structural change suffered by civil infrastructures [50], since, for 

example, extreme temperature changes occur during the four seasons of the year. Furthermore, a 

linear invariant system in time is considered to be a structure that is monitored for a short period of 

time. But structures generally must be monitored for long periods (days, months, years), since there 

is a direct non-linear relationship between temperature and stiffness of the materials used. For this 

reason, it is important to consider temperature variations as the cause of these changes [51] [52]. 

Researchers have developed different techniques and methods for damage detection on bridges 

considering dynamic and environmental characteristics monitored during years. One of the most 

studied cases worldwide is the emblematic bridge Z-24 [53] [54], where progressive damage tests 

were carried out and taking into account that the bridge operates within its undamaged condition 
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(baseline condition BC). The bridge was in operation in undamaged situation in both environmental 

and operational conditions for a year where the natural vibration frequencies were extracted. Figure 

1.6 shows the first three frequencies of the Z-24 bridge. The samples obtained from the beginning of 

the monitoring until August 8, 1998 correspond to the characteristics extracted within the undamaged 

condition under the operational and environmental variability. From the occurrence of damage 

(August 8, 1998), the samples obtained correspond to the period of progressive damage, where a 

decline in vibration frequencies is clearly shown, especially the second. However, the drop in the 

natural frequencies were not being so evident if the damage had been produced during the winter 

months, as frequencies even higher than during the past summer could be measured, concluding that 

the bridge was in good condition because the environmental effect would hidden the structural 

damaged condition. Only if the environmental effect could be removed, the right conclusion could be 

achieved. 

 
 

Figure 1.6. Influence of temperature on the modal frequencies obtained from the Z-24 
bridge. 

In the studies of the Z-24 bridge it is seen how the stiffness is significantly affected, since the 

jumps observed in the natural frequencies are related to the asphalt layer in cold periods. This problem 

indicates the need for a correct data normalization process to eliminate the influence of environmental 

factors. Likewise, it is observed that the changes produced by temperature are greater compared to 

those caused by structural damage. In this sense, if the process of eliminating these environmental 

factors is not carried out properly, changes in the structural response characteristics caused by 

temperature can mask false indications of damage.  
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In summary, as dynamic response in real bridges in service will be always affected by 

environmental and traffic effects (inducing non-linearity and non-stationarity in the recorded signals), 

two main issues appear in the on-site application of damage detection techniques in operating bridges: 

how to remove the ambient effects and extract accurate damage features feasible for damage 

detection, location and quantification from short non-linear and non-stationary vibration records. 

Numerous applications of damage detection in the civil engineering field can be found. In the 

majority of them, there is currently a large amount of data obtained from structural monitoring of 

bridges that needs to be evaluated and analyzed (big data). However, this is a latent problem as 

traditional damage detection methods are not sufficient to achieve good results when large amounts 

of experimental data have to be analyzed on-line. In this sense, to overcome these drawbacks and 

thanks to improvements in computational power and the advancement of sensor technology, machine 

learning (ML) and artificial intelligence (AI) techniques are being developed with greater attention 

by the scientific community [14]. However, many big-data methods and tools are available and have 

been used in several scientific fields, but the most suitable to be applied in the case of damage 

detection in real world bridges is still an open question. 

1.3. Objectives 

According to the problems detected in the previous sub-chapter, the main objective of the thesis 

is the development of a robust and theoretically sound methodology for bridge performance analysis, 

efficient in early damage detection that can be applied to large volumes of data (big data, many years 

of monitoring) or in specific measurements (load tests). For this, a methodology is proposed that 

applies in each case the most appropriate techniques, tools and algorithms depending on the 

monitoring system characteristics and sensors used (dynamic and / or static) as well as on the nature 

of the recorded time signals (non-linear and highly non-stationary in the case of operational traffic) 

and the need to remove the environmental influences, taking into account or not the need of a baseline 

for damage detection (supervised and non-supervised techniques). To achieve this general objective, 

these specific objectives are addressed: 

1. Review the literature about the relevant state of the art on SHM and BHM and the most 

used methods and tools available and applied in other scientific fields but with potential 

for application to the specific case of bridges. 

2. Identify the appropriate methods to be used for data processing, analysis and 

interpretation of results for bridge damage identification, location and quantification. 

The selected methodology and corresponding tools should take into account the type of 

data provided by monitoring depending on the characteristics of the applied excitation 

(possible non-linearity, non-stationarity, presence or absence of environmental and / or 

operational effects,) and the noise level of the sensors 
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3. Identify new vibration-based damage features based on the characteristics of the 

vibration signal and more specific of the damage condition of the sensor location. The 

objective is to overcome the limitations of the modal-based damage features (natural 

frequencies, mode shapes and damping) in damage location and quantification. 

4. Determine some criteria to set detection thresholds that allow to accurately identify the 

presence of damage in bridges, under real conditions, both operational and 

environmental. The huge amount of data recorded requires automatic procedures with 

proven capacity to reduce the possibility of false alarms. 

5. To test the performance of the proposed methodology when applied to both real bridges 

and numerical models of bridges. The numerical models are used when experimental 

data is not available with the desired characteristics to check the goodness of the method. 

In particular, it has not been possible to get experimental data from a real bridge where 

environmental and operational loads are applied in both original and damaged 

conditions. 

 

1.4. Organization of the thesis and publications 

This present thesis is organized in five chapters in order to fulfil the previous mentioned 

objectives and goals, plus a chapter on conclusions and future research needs. Moreover, this thesis 

is presented as a compendium of articles, which were previously published in indexed scientific 

journals.  

Following the present chapter, Chapter 2 gives a general overview of the actual state of 

knowledge in SHM (Objective 1). 

Chapter 3 includes the overall methodology developed for damage detection, localization and 

quantification on bridges and describes the required tools and their combination for an efficient result 

(Objectives 2, 3 and 4). To this end, a set of vibration-based damage features are first introduced and 

defined to produce better damage estimations than modal-based ones. Some of these proposed 

features are later on re-defined to overcome the mentioned problems of signal non-linearity and non-

stationarity. To this end, the HHT is introduced. The procedures for empirical mode decomposition 

of the signal (EMD) are also presented. Different techniques as CEEMDAN, ICEEMDAN) [49] [55] 

[56] and Variational Mode Decomposition (VMD) [57] [58] [59] are investigated.  

The Implementation of algorithms based on machine learning, artificial intelligence and on the 

Statistical Pattern Recognition paradigm (SPR), according to the nature of the available data (big or 

short data) is also introduced in this chapter to deal with the right detection based on statistical patterns 

of the proposed damage features. 
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 Chapter 4 describes in short, the application of the proposed methodology to 3 real-world 

bridges) plus a numerical model of a bridge generated as part of COST Action TU1402 [60]. These 

applications are fully and extensively described later on in chapter 5, which contains the three 

published journal papers and a conference paper.  

In the 3 real-world bridges, artificial and perfectly known damage was created such as: a post-

tensioned concrete bridge called S101 (Austria), an arch steel bridge (Japan) and the Z-24 bridge 

post-tensioned bridge (Switzerland). In all cases, vibration data both in undamaged and damaged 

conditions was available.   

 Chapter 5 contains the three published journal papers and one conference paper used as extended 

version of the results and conclusions of the applications shown in chapter 4. 

The list of the journal articles related with this document follows: 

[1]  Delgadillo, R. M., & Casas, J. R. Non-modal vibration-based methods for bridge 

damage identification. Structure and Infrastructure Engineering, vol. 16, no. 4, p. 676 

- 697, August 2019. DOI: 10.1080/15732479.2019.1650080. 

[2]  Delgadillo, R. M., Tenelema, F. J., & Casas, J. R. Marginal Hilbert Spectrum and 

instantaneous phase difference as total damage indicators in bridges under 

operational traffic loads. Structure and Infrastructure Engineering, p. 1 – 21. 

September 2021. DOI: 10.1080/15732479.2021.1982994. 

[3]  Delgadillo, R. M., & Casas, J. R. Bridge damage detection via Improved Completed 

Ensemble EMD with Adaptive Noise and machine learning algorithms. Structural 

Control and Health Monitoring, Accepted for publication, January 2022. 

The additional conference paper is referenced as: 

[1] Rick M. Delgadillo, Joan R. Casas, “A combined kernel-PCA with clustering analysis 

for bridge damage detection under changing environmental conditions”. In Life-Cycle 

Civil Engineering: Innovation, Theory and Practice. CRC Press, IALCCE 2021. pp. 

1362-1370. 

Finally, Chapter 6 describes the main conclusions. In addition, the challenges and future 

trends in the use of BHM are also included. 

 

 
 



 

  
 

14 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  
 

15 

 
 
 
 
 
 

   Chapter 2 – State of the art review 
 
 
 
 
This chapter is concerned with the presentation and critical analysis of the actual situation on the 

SHM approach. 
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  2.1.  Introduction 

Over the years, the civil structures both historical and modern, for instance: bridges, buildings, 

churches, dams, hospitals were the product of increasingly complex designs. The great rapidity of the 

increase in techniques and novel materials have helped the development and evolution of cities. In 

addition, the improvement of construction materials and their performance to resist many external 

stresses continues to be a challenge for engineering. However, the issue of sustainability and care of 

the environment is a matter of concern, since today, an attempt is made to reduce the cost and time 

of construction. For example, larger structures in the world are being built, that require greater 

maintenance, more sophisticated sensors, and a precise, robust and reliable monitoring system. At the 

same time, ancient and modern structures go through an aging process from the beginning of their 

construction and during their service life.  

In this sense, the applicability of the Structural Health Monitoring (SHM) field is reviewed in 

this chapter considering that the improvement in technologies serves to solve the aforementioned 

problems.  

    2.2. Structural Health Monitoring (SHM) 

The current condition of the structures is susceptible to the combined action of different factors 

that can progressively deteriorate them and accumulate damage during their useful life. For instance, 

these factors can be environmental conditions, collisions, extreme events, earthquakes, unanticipated 

service loads that can affect service capacity and safety [61] [62]. Besides, the natural disasters are 

still being harmful to bridges. For instance, 30% of Chinese bridge failures from 2009 to 2019 

occurred due to natural factors and 70% were due to problems related to design, maintenance, 

construction and supervision [63]. Likewise in North America and Europe, many bridges were built 

in 1950 and have more than 50 years of useful life, so they are reaching the end of their expected life 

[21] [64]. Therefore, the maintenance, inspection and structural health monitoring (SHM) of bridges 

must be carried out more quickly to avoid tragic events such as human and material losses. 

The SHM has been studied particularly in the fields of civil, mechanical and aerospace 

engineering with the main interest of detection, localization and quantification of damage [65]. SHM 

consists on the implementation of a strategy as shown in Figure 2.1, combining a variety of 

technologies and taking advantage of advances in data transmission and acquisition systems, 

transducers, signal processing techniques, and real-time data analysis. The ability and precision of 

bridge monitoring systems to identify damage at an early stage will help make better decisions and 

safeguard human lives. Likewise, they will keep these structures operational and safe. On the other 

hand, the cost of maintenance and repair will be much less than the cost of a new construction. In this 

sense, several countries are making great efforts to include structural health systems from the design 

stage. This is demonstrated in several real case studies to instrument important buildings, bridges and 
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dams with a continuous monitoring system. For example, Akashi Kaikyo (Japan), Gwangan Bridge 

(South Korea), Tsing Ma Bridge (China), Indian River Inlet bridge (USA), Pitt River Bridge (Canada) 

[66]. The author [67] considers several benefits of the implementation of SHM systems to bridges 

such as: discovers hidden structural reserves, discovers deficiencies timely and increases safety, 

reduces the uncertainty in structural performance, allows structural management, ensures long-term 

quality, increase knowledge and it can prevent economic losses and human lives ahead of time. In 

conclusion, various researchers worldwide are working on improving SHM systems and it is expected 

that for the next few years the SHM in bridges will be mandatory and will become a standard practice. 

 
 

Figure 2.1. The SHM simplified scheme. 

 

The general objective of an SHM system is the detection of damage, however, for example, the 

installation of reinforcing bars and the repair work of structural elements due to an earthquake also 

generate structural changes, but this does not mean that there is a structural damage but an 

improvement. For this reason, the four pillars of structural monitoring to identify damage were 

proposed by [68], and a few years later, [69] added a very important level to predict useful life. As 

can be shown: 

- Level 1: Damage detection, where the presence of damage is identified. 

- Level 2: Damage location, where the location of the damage is determined. 

- Level 3: Damage typification, where the nature of damage is determined. 

- Level 4: Damage extent, where the severity of damage is assessed. 

- Level 5: Prediction of the remaining service life of the structure. 
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The first four levels show a structural diagnosis and the higher the target evaluation level, the 

SHM system will provide more information on the current structural state. However, answering each 

of these levels represents a greater difficulty to obtain information, since it has to be evaluated 

sequentially. Conversely, the last level is in charge of predicting future behavior, so it is necessary to 

include deeper knowledge in material fatigue, fault propagation, etc. In this sense, during the last 

decades, numerous investigations have been carried out to identify structural damages that affect 

changes in physical properties (mass, stiffness and damping) [70]. For this purpose, the dynamic 

vibration responses of structures can be used (e.g., natural frequencies, modal shapes, modal curvature 

and damping) [71] [72] and static responses (e.g., displacements, rotations, forces, stresses) [73] [74]. 

In this context, the antecedents show the advantages and disadvantages of the different techniques 

developed in the damage identification field. Several authors conducted an extensive collection of 

research on BHM up to 2010 [75], 2017 [76], and 2019 [77]. According to [61], damage identification 

techniques using dynamic parameters can be direct and inverse (or optimization). Direct methods 

determine the frequency changes of structures and detect structural damage without the need for 

iterative calculations. On the other hand, the inverse approach is frequently called updating the model 

in which the structural damage is identified by optimizing the correlation between the frequencies 

and the modal forms for the theoretical and experimental case. Currently, there are modern techniques 

using Artificial Intelligence (AI) and Machine Learning (ML) that are developed in greater detail in 

the following sections. 

Finally, the authors [78] conducted an extensive literature review and raised seven Axioms or 

fundamental principles based on experimental studies that were corroborate for the SHM approach. 

Axiom II says: "Damage assessment requires a comparison between two systems or states." This 

means that some approaches "do not require a baseline", for example, routine pattern recognition 

requires a set of training. However, in the case of novel damage detection, a training set consists of 

representative characteristics of the normal condition of the structure. To make an optimal diagnosis 

of structural monitoring, the location and quantification of the damage level is necessary, in this way, 

the training data must represent all the different damage conditions and not only contain data under 

normal conditions. In this sense, it is important to use an outlier analysis, which can be compared 

with a supported criterion and allows to differentiate whether the outlier is statistically probable or 

unlikely. To sum up, all these aspects have been investigated but still some open issues remain when 

facing their application to real structures.  

In the available literature there are many structural vibration methods that are classified 

according to their approach, such as: mode shape changes, frequency changes, dynamically measured 

flexibility, matrix update methods, nonlinear methods, and Neural Networks-based methods. Besides, 

the application of these methods to real bridge structures has produced inconsistent comparative 

results and has highlighted a susceptibility to noise, therefore in the present thesis other methods 



 

  
 

20 

based on non-modal vibration that were previously studied [36] [37] are used. Conversely, the damage 

identification methods present certain peculiarities and can be divided into four main areas: time, 

frequency, time-frequency and modal domains. Table 2.1 depicts a detailed list of classifiers 

associated with these intrinsic features [79]. From this large number of methods, this thesis presents 

a more in-depth study about the Time-frequency characteristic considering the Hilbert-Huang 

Transform (HHT) in the SHM approach. 

Table 2.1 Overview of the vibration-based damage features. Adapted from [79]. 

Time Time - frequency Frequency Modal 
Time response / wave 
form Wavelet transform Fourier / power spectra Natural 

frequencies 
Statistical time series 
analysis Hilbert transform Frequency response 

function Mode shape 

 Hilbert – Huang 
transform 

Frequency response 
function curvature 

Mode shape 
curvatures 

  Mechanical impedance Modal damping 
  Transmissibility function Dynamic stiffness 
  Anti - resonances Dynamic stiffness 

  Higher harmonics 
(nonlinear) Updating methods 

  Modulation (nonlinear)  

 

    2.3. Challenges in Bridge Health Monitoring (BHM) 

In the last decade, new and innovative methodologies have emerged to face the main problems 

of SHM in order to become a tool used in the industry. As examples, the following approaches are 

studied as part of the challenges to damage detection in civil structures: 

• Nowadays, technological growth and the advancement of computers have proven to be 

a useful tool for SHM in general and the BHM in particular. Furthermore, these new 

methods serve to provide practical means of early warning against structural damage. In 

this sense, Machine Learning (ML), Artificial Intelligence (AI) and Deep Learning (DL) 

algorithms have become more feasible and are widely used in detecting structural 

damage with great precision. One of the most recent investigations describes and 

discusses the transition from traditional methods to vibration-based ML and DL methods 

for damage detection in civil engineering [14]. Some researchers used laboratory beams 

to test machine learning techniques such as artificial neural networks (ANN) and 

multilayer perceptron (MLP) respectively [80] [81]. The methods were experimentally 

tested with various induced damage at different locations and depths. The data was used 

to train a set ANN and MLP with a hidden layer to correlate the location of the damage 

and the damage severity with changes in natural frequencies. In both cases, the results 

show that the proposed techniques successfully predicted the minimum levels of 

damage. On the other hand, one of the most challenging points of BHM is how to extract 
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characteristics sensitive to damage from the structural response. In this regard, deep 

learning methods have attracted attention for their ability to effectively extract 

characteristics sensitive to damage [82]. One of the most important new generative 

models in unsupervised deep machine learning is the Variational Auto-encoder (VAE). 

This method is applied for damage identification in a task of bridge under moving 

vehicle and the results show that the proposed method can accurately identify structural 

damage [83]. 

• One of the biggest concerns in detecting damage to actual bridge structures is the 

presence of environmental and operational factors. For several years, researchers have 

been motivated that vibration-based methodologies use modal properties as indicators 

of damage, however it has been reported in several investigations that these properties 

are sensitive not only to structural damage but to environmental factors such as 

temperature variations [84]. For instance, the authors [85] [86] use several machine 

learning algorithms to develop models that evaluate the influence of operational and 

environmental variability on characteristics sensitive to damage. A new algorithm to 

identify damage in a structure under the presence of changes in temperature and noise 

was developed [87]. To this end, the authors presented a new methodology based on the 

integration of two pattern recognition methods such as Autoencoder and Couple Sparse 

Coding (CSC). Furthermore, principal component analysis (PCA) is used to reduce the 

data dimension of frequency response function and compress the data set to build 

differentiated patterns. For this study [87], a truss bridge and the experimental data of a 

real bridge were used, where the proposed methodology was verified with great success 

in the presence of temperature changes, measurement errors, noise and modeling. The 

detection of structural damage is based on the theory that the modulus of elasticity of 

materials depends on changes in temperature, while temperature is treated as an input 

parameter for the system. In conclusion, the authors recommend that temperature should 

be recorded at various locations in the structure because temperature gradients can 

potentially affect the accuracy of the results. Some researchers presented the 

Autoencoder-CSC set through an experimental data validation of an aluminum beam 

and it was also verified with a 3D FE model of a truss bridge [88]. In this laboratory test, 

several artificial damages were imposed on the beam as a single and double cut that 

reduced the stiffness of the cross section.  The identification of damage was carried out 

based on pattern recognition and for this, the frequency response function was studied. 

The excitations were originated by an impact hammer for damaged and undamaged 

conditions, and likewise, the Autoencoder and CSC classification algorithms served as 

unsupervised tools. The proposed methodology was highly effective in detecting 

structural damage in the presence of environmental variations and other uncertainties. 
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On the other hand, a deep learning method based on autoencoders was developed in 

order to detect structural damage, and this new method reduces dimensionality and 

considers the automatic learning of relationships in its mathematical formulation [89]. 

The modal and structural stiffness parameters are used to perform pattern recognition. 

Firstly, the dimensionality of the original input vector was reduced and then multiple 

hidden layers of a neural network served to preserve the necessary information. As a 

second step, the reduced characteristics and the stiffness reduction parameters were 

related using machine learning approach. The inputs to the machine learning model were 

natural frequencies and modal shapes, while the output was structural damage. The 

hidden layers in the automatic layer-by-layer encoders were used in the training process. 

This approach was verified in a numerical and experimental model considering steel 

frame structures and, according to the authors, this method obtains more efficient results 

compared with traditional ANN methods.  

• Another challenge in the BHM field for damage detection in civil structures is the signal 

processing, since in most real bridge structures, the signals obtained are non-linear and 

non-stationary. Therefore, the Hilbert-Huang transform in conjunction with modern 

empirical mode decomposition techniques are used for damage detection and structural 

health control. For example, a complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN) technique is investigated to identify the presence, location, 

and severity of damage on a steel truss bridge model [56]. A prototype bridge is built in 

the laboratory and subjected to white noise excitations. In addition, various indicators of 

damage extracted from intrinsic mode functions such as energy, instantaneous 

amplitude, non-enveloped phase, instantaneous frequency, kurtosis and entropy features 

with the energy and instantaneous amplitude features are studied for detection, 

localization and quantification of damages. The results demonstrated the robustness and 

greater sensitivity of the CEEMDAN method compared to the traditional empirical 

methods. On the other hand, another recent research considers a mixed approach 

between CEEMDAN-based HHT and an artificial neural network (ANN) as a very 

efficient damage detection methodology [90]. This methodology is applied to a steel 

truss bridge model subject to white noise and four damage parameters are studied such 

as energy, instantaneous amplitude (IA), unwrapped phase, and instantaneous frequency 

(IF). The authors conclude that the CEEMDAN-HT-ANN model is efficient in 

detecting, locating and quantifying structural damage, and that the energy-based damage 

index demonstrates a more efficient approach compared to the other parameters studied. 
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Chapter 3 – Proposed methodology and tools for BHM 
 
 
 
 
In the present chapter, the description of the methodology derived to achieve the proposed 

objectives is presented. The theoretical background and implementation of many algorithms to 

solve the proposed problems is analyzed in detail.
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3.1. Methodology for bridge damage detection, localization and 
quantification 

This section proposes a methodology for damage detection in real bridge structures, which is based 

on a combination of two approaches: signal processing and machine learning algorithms. The general 

methodology for damage detection, localization and quantification used in the present thesis is shown 

in Figure 3.1. As a first step, the different responses that are given in the bridges can be both dynamic 

and static signals depending on the objective that needs to be achieved in the monitoring studies and 

the type of sensors and excitation techniques used. These responses are captured by different types of 

sensors under real conditions such as operational, environmental, load tests, bridge reinforcement, 

induced artificial damage [91] – [95]. 

After data acquisition, the processing stage is carried out, which includes the feature extraction 

and which in turn estimates those that are more representative and sensitive to damage (damage 

features). In addition, it must be taken into account that the signals to be processed have different 

intrinsic characteristics depending on the source of the excitation and the stochastic process from where 

they come from. In fact, the damage detection methods can consider signals such as: linear, non-linear, 

stationary, non-stationary type or another particular characteristic. 

In the next step, the outliers are eliminated trying to preserve the main characteristics of the 

obtained signals, which allows reducing the dimensionality of the data, which in turn generates lower 

computational cost. In this case, several authors such as [12] [15] [24] [31] [73] [74] recommend that 

when large amounts of data are available, symbolic data should be used that represent the main 

behavior of structure and thus minimize computational level calculations. Once the outliers have been 

eliminated, algorithms that demonstrate great effectiveness should be used to characterize abnormal 

structural behaviors, bearing in mind that each case study is different and deserves a different treatment. 

As is well known in the field of continuous monitoring, a large amount of data is obtained every day 

that must be treated with special care and implemented various algorithms to achieve reliable and good 

performance methodologies. For this reason, one of the most recent fields for the processing of large 

amounts of data is "Big Data (BD)" or data mining that, based on machine learning (ML) and Statistical 

Pattern Recognition (SPR), allow to improve the detection of structural damage. The supervised and 

unsupervised algorithms are capable of automatically recognizing the internal structure of the data. For 

example, results with similar behavior are pooled and different damages are detected, which are usually 

isolated in small groups [10]. On the other hand, each algorithm has a different concept for clustering, 

which makes it difficult to use the same evaluation criteria for the different data collected on the 

bridges. For this reason, the methodology proposed in this research uses statistical tools and various 

classification algorithms that facilitate the structural damage detection, location and quantification in 

the case of bridge structures. 
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Between the statistical processing and the final stage of the flow diagram, the definition of 

detection thresholds is considered to make the decision whether what is actually being detected as an 

anomaly is actually the product of structural damage or it may be a false detection generated from other 

external sources such as environmental or operational conditions or sensor malfunction. In this sense, 

in order to evaluate the performance of the thresholds, a series of confidence limits must be taken into 

account with a high level of reliability on the detection index used. During the automatic structural 

evaluation, a methodology without a baseline is proposed and considering the recommendations of 

many authors, the detection of damage is achieved through a mobile time-windows procedure [96] - 

[99]. 

On the other hand, most of the methodologies implemented for damage detection require the 

judgment of an expert to analyze the data and make decisions during the continuous monitoring of real 

bridge structures. However, such a judgment is not always available. Therefore, it is proposed to find 

the correct combination of algorithms and an efficient methodology so that an analysis can be carried 

out automatically. Additionally, several case studies in damage detection share the limitation of 

requiring baseline data, measured while the structure is still in good condition. Such strategies can be 

effective when applied to newly constructed structures, however, they can fail when used in most 

constructions that have years of service. In this sense, the methodology proposed in this thesis will take 

into account all these considerations. 

Finally, the majority of damage detection and location investigations have been carried out in 

laboratory tests. However, when the data from real bridge structures is available and are monitored in 

real time, various external factors such as operational and environmental arise and they do not allow 

the structural damage to be clearly identified and located, and make the proposed methodologies 

limited. In addition, another factor to take into account as a disturbing factor for a correct damage 

detection in real structures is the presence of noise in the vibration signals acquired as well as the errors 

inherent in the calibration of the sensors. Therefore, in the present thesis, several real bridges are 

studied, each one with different particular conditions regarding the testing a structural configuration. 

 
Figure 3.1. Flowchart of the proposed methodology for damage detection, localization and 

quantification on bridges. 
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3.2. Vibration-based damage indicators 

A different approach to the traditional one is presented in this thesis, since in several 

investigations the modal-based damage features have proven to be difficult to apply to bridges under 

real conditions [36] [37]. For example, one of the drawbacks is the low extraction rate of modal 

properties under ambient excitation. Therefore, techniques based on raw vibration data and new 

damage characteristics and non-modal performance indicators have a high level of sensitivity to 

damage and can be easily applied to real bridge structures [49]. These new non-modal parameters are 

based on other vibration parameters as the vibration intensity measured as amplitudes and also on the 

specific energy density. Five vibration parameters are proposed and described below, which are 

extracted from acceleration responses in order to be tested as vibration-based damage features. The 

application of these parameters to damage detection in real bridge structures can be found in the first 

journal article published as part of this thesis [49]. 

1) Cumulative Absolute Velocity (CAV) 

This energy-based vibration index was proposed by Kramer [100] and the mean concept involves 

the summed integral of all absolute acceleration values of the vibration response history denoted as 

Equation 1. In this regard, CAV represents the area under the absolute accelerogram and this 

parameter shows a good correlation with structural damage potential. 

  (1) 

2) Cumulative Absolute Displacement (CAD) 

This CAD is an adaptation of the CAV vibration parameter, but unlike the other parameter, the 

acceleration signal is first transformed into displacement using integration and band-pass filtering to 

avoid drift, and can be expressed as: 

  (2) 

3) Distributed Vibration Intensity (DVI) 

This novel parameter has the concept of vibration intensity, which in simple harmonic motion 

context can be defined as (I=a2/f), where a is the acceleration amplitude and f is frequency. In the 

Equation 3, the Fourier transform is applied to the vibration data and the summation of the vibration 

intensity values is taken within a frequency range, denoted by (fi) within the limits m-n. To obtain 

good results, the frequency range must be selected to encompass the first few vibration modes of the 

structure, so, DVI can be able to capture the damage sensitivity associated with energy and modal 

frequency changes. 

0
(t)

t
CAV x dt= ò !!

0
(t)

t
CAD x dt= ò



 

  
 

29 

  (3) 

 For  (in Hz)   

   

The SI units of vibration intensity are mm2/s3 and its logarithmic power form is decibels (dB). 

4) Mean Cumulative Vibration Intensity (MCVI) 

MCVI is a novel parameter based on vibration intensity (energy / frequency), where the 

numerator, is the square of the aforementioned vibration parameter CAV, while the denominator is a 

weighted mean value of Fourier frequency within a specified frequency range. The Equation 4 shows 

the weighting applied to the discrete frequencies via their corresponding Fourier Amplitude values 

(FAi). The most important is that the frequency range selected encompasses the first few modes of 

vibration of the structure. 

  (4) 

                 For  (in Hz)  

5) Instantaneous Vibration Intensity (IVI) 

The vibration parameter IVI is also based on the concept of vibration intensity 

(energy/frequency) and it is designed for use on non-stationary and non-linear data [101].  IVI is 

represented by the relationship between instantaneous amplitude and frequency obtained via HHT as 

presented in equation (5) 

In addition, in order to guarantee that all obtained physically meaningful IMFs are utilized for 

damage localization, the sensor obtained IVIs can be combined to provide the Amalgamated 

Instantaneous Vibration Intensity (AIVI), which consists of mixing the most representative IVIs as 

presented in Equation (6). 

  (5) 

  (6) 
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The CAV, CAD, DVI, MCVI, IVI and AIVI parameters are meaningful depending on the 

characteristics of the analysed signal. In this sense, Table 3.1 shows the applicability of each defined 

vibration parameter that can influence the performance of damage identification [49]. 

Table 3.1 Vibration parameter application classification. 

Property Vibration parameters 
CAV CAD DVI MCVI IVI / AIVI 

Fourier-based parameter X X ✓ ✓ X 
Non-stationary signal applicability ✓ ✓ X X ✓ 
Long-duration signal applicability ✓ X ✓ ✓ X 
Suitability to ambient induced excitation ✓ X ✓ ✓ X 
Suitability to vehicle-induced excitation ✓ ✓ X X ✓ 

 

 3.3. Hilbert-Huang Transform in Bridge Health Monitoring (BHM) 

To achieve good and reliable results for damage identification on bridges using vibration data, 

one of the most important steps is to analyze and study the data obtained from monitoring, especially 

its intrinsic and particular characteristics in order to apply the correct signal analysis in each case. 

Furthermore, damage sensitive characteristics can be obtained and a statistical analysis must be 

developed to identify structural damage. In this sense, the majority of authors have used Fourier 

analysis to extract the main features of vibration measurements. This is theoretically correct if the 

monitored signal comes from a linear and stationary process. However, if the data contains non-

stationary and non-linear vibration signals, the Fourier transform cannot be applied, as explained in 

section 1.2. Therefore, other methods that take into account variations in amplitude and frequency 

over time should be used. One of these methods is the Hilbert-Huang Transform (HHT) developed to 

analyze non-stationary and transient signals, since these are often present in the real world and very 

often in fields such as mechanics, biomedical, geotechnics [102] - [105]. However, the application of 

HHT especially in complex and extended civil structures such as bridges is limited [93] [106] due to 

some problems appearing in the empirical mode decomposition (EMD) of the original signals before 

the application of the Hilbert transform. This is shown in the next subchapter also indicating the 

possible solutions to solve the main drawbacks. 

  3.3.1. Evolution of EMD-based techniques 

Despite the major case studies showing EMD as a powerful signal processing tool in the review 

of literature, it has a significant inherent defect called mode mixing in the IMF [107]. For this reason, 

a brief introduction will be carried out on the existing methods, EMD, EEMD, CEEMD, CEEMDAN 

and the proposed improved methods such as ICEEMDAN and VMD which were used in this thesis. 
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Empirical Mode Decomposition (EMD) 

The EMD signal processing method was first proposed by Huang et al. [108] [109], which 

decomposes a signal into several intrinsic mode functions (IMFs). The original signal can be 

reconstructed by summation of intrinsic modes, where x(t) is the original signal, Ii represent the Ith 

IMF and the residue rn(t) is generally a monotonic function or a constant: 

  (7) 

Although several authors have used the EMD method for the identification of damages and the 

continuous monitoring of different structures [110] – [114], the mode mixing problem can occur in 

EMD when the signal contains intermittent processes since the EMD make use of all the extrema to 

construct the envelopes in signals.  

First, the EMD method was designed as a process to extract simple oscillatory functions from 

one or more signals. However, this method has some drawbacks, such as the recurrent emergence of 

mode mixing due to signal intermittency and a unique intrinsic mode function (IMF) presenting 

signals of very different scales or signals of similar scale residing in different IMFs [107]. 

Ensemble Empirical Mode Decomposition (EEMD) 

According to previous studies [106] [115] [116], EMD has a main disadvantage in the results of 

IMFs due to mode mixing, which obtains widely disparate time scales or analogous time scales in 

separate IMFs. In many cases, this problem is due to signal intermittency that not only can lead to 

time-frequency alias but also makes IMFs physically meaningless. 

Figure 3.2 plots the IMFs and residuals (rows) for a series of experiments obtained from the 

EMD method (columns). The thin red circles indicate the mode mixing that occurs only in the first 

four IMFs, as they generally correspond to vibration modes within a frequency range of 25-155Hz. 

Furthermore, it can be seen that experiment 6 suffers from a high level of mode mixing compared to 

the other experiments.  
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Figure 3.2. Examples of mode mixing occurring in the IMFs. Adapted from [139] 

 

To solve the mode mixing problem explained above, Wu & Huang [107] [117] proposed 

Ensemble EMD (EEMD) method, which defines the IMF component as a mean of ensemble of trials, 

having white noise as well as signal. The statistical characteristics of white noise of finite amplitude 

to improve the scale separation problem is introduced. In reality, when the noise is added to the 

ensemble it produces a noisy IMFs for each trial. However, it helps all possible solutions to be 

examined in the ensemble. In fact, the effect of the included white noise is removed by utilizing 

ensemble mean. Mathematically it can be written as: 

            (8) 

And 

            (9) 
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Where xj(t) is the noisy signal of jth trial, x(t) is the original signal, ωj(t)!is the amplitude of the 

jth added white noise, Cij(t) is the ith IMF, n is the number of IMFs obtained from EMD method, and 

N is the number of trials. The residue of added white noise can be written as: 

  (10) 

Where φn is the final standard deviation, φ is the amplitude of the white noise and N is the number 

of trials. Nonetheless, the tolerance in residue noise of the reconstructed signal and the cleaning of 

the added white noise from the IMF are two problems which occur in EEMD. These disadvantages 

bring a high computational cost. Thereby, this method is not suitable to be used for continuous 

monitoring of civil structures [106]. 

Complementary Ensemble Empirical Mode Decomposition (CEEMD) 

In the CEEMD method proposed by Yeh & Shieh [118], the white noise residue present in the 

IMF is eliminated in a considerable way and its calculation efficiency increases. In the original data, 

the white noise is added with two opposite polarities: one positive and one negative to generate two 

sets of ensemble IMFs as shown in the following equation: 

  (11) 

Where S=x(t) is the original data, N=ωj(t) is the added white noise, M1 and M2 are the sum of the 

original data with positive and negative noise respectively. Although this proposal significantly 

alleviates the residual noise in the reconstructed signal, there is no guarantee that M1 and M2 will 

produce the same number of modes, making difficult the final averaging. Also, residual noise is 

present in the modes. 

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) 

Torres, et al. [119] proposed CEEMDAN method to solve the EEMDs’ faults, achieving a 

negligible reconstruction error and solving the problem of different number of modes for different 

realizations of signal plus noise. The general idea for this method is the following: (xj) are generated 

from (x) and the first mode !"! = !̅! is computed  exactly as in EEMD, !̅" is the nth mode of (x). 

Then, a unique first residue is obtained, independently from the noise realization: 

  (12) 

After that, the first EMD mode is computed from an ensemble of r1 plus different realizations of 

a particular noise. The second mode !"# is defined as the average of these modes. The next residue is:  
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%# = %! − !"#. This procedure continues until a stopping criterion is reached. However, CEEMDAN 

still has two problems to be solved: (i) the modes contain some residual noise; and (ii) the signal 

information appears “later” than in EEMD with some “spurious” modes in the early stages of the 

decomposition. These aspects are finally improved with the ICEEMDAN method as explained below. 

Improvements on Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise (ICEEMDAN) 

Taking into account the drawbacks of the different types of EMD explained above, a controlled 

noise should be added to the signal in order to create new extrema. Many authors had made an attempt 

to solve the problem of the appropriate selection for the addition of white noise to solve the mode 

mixing problem. However, many proposed techniques were not really successful and effective, 

especially for the signals obtained from real bridges. In this sense, a novel-based Improved 

CEEMDAN method developed by Colominas et al. [120] is studied in detail in the present thesis for 

civil structures like bridges. ICEEMDAN method considers two improvements such as residual noise 

in modes and the spurious modes, as it is explained herein. First, with respect to residual noise in 

modes, each mode is calculated sequentially, so the final modes are used by CEEMDAN for the 

computation of the next one. Furthermore, the local means of each realization of signal plus noise are 

estimated and the true mode is defined as the difference between the current residue and the average. 

The ICEEMDAN algorithm is described herein considering Ek(.) as an operator, which produces 

the k-th mode obtained by EMD, M(.), is also an operator which produces the local mean of the signal 

and w(i) = is a realization of zero mean unit variance white noise. Taking account, x(i)=x+w(i) being x 

the original signal and ≤ . > the action of averaging throughout the realizations, then the modes for 

the first EEMD and original CEEMDAN can be expressed as: 

  (13) 

In order to estimate only the local mean and subtract it from the original signal, the formula can 

be written as: 

  (14) 

Considering Equations 13 and 14, a reduction in the amount of noise present in the modes is 

obtained, because the estimation of modes was replaced by the local mean estimations, which 

demonstrated the best performance previously explained. With respect to spurious modes, 

analogously to the previous methods like EMD, EEMD obtained a strong overlapping in the scales 
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for the first two modes (first one extracted adding white noise and the second one adding E1(w(i))). 

Then, in order to reduce this overlapping, Colominas et al. [120] proposed to use Ek(w(i)) and not 

directly use the white noise to extract the kth mode. The sequence of this improved CEEMDAN 

method consists in: 

Step 1. Calculate by EMD the local means of I realizations x(i)=x+β0E1(w(i)), taking account that 

I is the number of realizations of Gaussian white noise added to the signal of interest (I is consider 

usually a few hundred [120]). Then the first residue can be expressed as  

  (15) 

Where β0 = ε0 std(x)/std(E1(w(i))); β0 is chosen such that ε0 is exactly the reciprocal of the desired 

signal-to-noise ratio (SNR) between the first added noise and the analyzed signal; the SNR is 

considered as a quotient of standard deviations. 

Step 2. At the first stage (k=1) calculate the first mode: 

           (16) 

Step 3. Estimate the second residue as the average of local means of the realizations r1+β1E2(w(i)) 

and define the second mode: 

           (17) 

Step 4. For k=3,…,N calculate the kth residue 

         (18) 

Step 5. Compute the kth mode 

           (19) 

Step 6. Go to step 4 for next k. 

Constants βk=εk std(rk) are chosen to obtain a desired signal-to-noise ratio (SNR) between the 

added noise and the residue to which the noise is added. 

Variational Mode Decomposition 

Apart from EMD and the following improvements, another potential method to decompose 

signals is called Variational Mode Decomposition (VMD), and was developed by Dragomiretskiy 
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and Zosso [57]. The VMD is an adaptive and non-recursive decomposition method that transforms a 

mode decomposition problem into a variational solution problem. Furthermore, several investigations 

have found that the VMD method overcomes certain drawbacks in the EEMD method since it is more 

robust to noise and avoids the modal aliasing of the EMD approach [121]. The multicomponent signal 

can be decomposed by VMD into an ensemble of quasi-orthogonal band-limited IMFs with specific 

sparsity properties in the spectral domain. The IMF are obtained via an optimization problem trying 

to minimize the objective function:  

            (20) 

Where, ' is the Dirac distribution,	)$ represents the partial differential equation of a system, 

where t is the time variable, *% = kth IMF and +% = center pulsation around which the kth IMF is 

mostly compact. f is the signal to be decomposed. The bandwidth of each mode is estimated by the 

squared H1 Gaussian norm of its shifted signal with only positive frequencies. Furthermore, an 

unconstrained optimization problem is fitted with a quadratic penalty and Lagrangian multipliers λ in 

order to transform the Equation 20. Then the modified Lagrangian is: 

            (21) 

The penalty factor ,- is named as balancing parameter of the data-fidelity constraint. The 

Equation 21 is solved by the alternative direction multipliers method called ADMM. In this way, the 

decomposed modes and the center frequency are obtained in each change operation. Thus, 

mathematically, each mode obtained from the solutions in the spectral domain can be expressed by 

the following formula: 

            (22) 

 In this thesis, a series of additional damage indices are developed based on the ICEEMDAN 

and VMD decomposition techniques as explained later. 

  3.3.2. Hilbert-Huang Transform (HHT) 

The Hilbert-Huang Transform (HHT) is an advanced method developed by Huang and 

colleagues [108] [109] and the main advantage is its precision to analyze non-linear and non-
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stationary signals. The HHT includes two steps. Firstly, several intrinsic mode functions (IMFs) can 

be obtained using a method to decompose into a finite set of intrinsic oscillatory components, as an 

example the more used is called empirical mode decomposition (EMD) method. However, nowadays, 

the efficiency of other new approaches is widely used (ICEEMDAN, VMD). Then, the instantaneous 

frequency. amplitude and phase can be obtained through the Hilbert transform (HT) and yield a time–

frequency representation (Hilbert spectrum) for each IMF analyzed. 

The results of the IMFs {/&(1)} are input into Hilbert Transform as follows: 

  (23) 

The analytic signal 4(5) in Equation 24 is formed by Hilbert Transform 6[/&(5)] in conjunction 

with {/&(1)}, where 9&(5) and :&(5) are the instantaneous amplitudes and phases shown in Equation 

25 and 26 respectively. 

  (24) 

  (25) 

  (26) 

The Equation 27 shows the instantaneous frequencies {+&(5)} of each IMFs, which are 

determined by differentiating the instantaneous phase function. 

  (27) 

Compared to other theoretical and experimental research, damage detection based on real studies 

using the HHT approach is quite limited. The authors [115] used the EMD to identify the locations 

of damage and the times of its occurrence in a benchmark built in a laboratory. The simulation results 

demonstrated that the appearance of spikes in EMD can be detected if the measured signal has very 

little signal contamination or is free from noise contamination The evaluation of the dynamic 

condition in a bridge in Texas using the HHT approach was performed by [122] [123]. In this case, 

three damage scenarios were applied such as: intact, moderate damage and severe damage to a 

concrete column substructure. The piles were excavated and broken to simulate flood and earthquake 

damage to a bridge substructure. The HHT method served to obtain a quantitative difference between 

the instantaneous frequencies of the damaged structures and the healthy state. 
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The authors [124] examined instantaneous phase, marginal Hilbert spectrum, and joint time-

frequency analysis for HHT data in an experimental bridge model subjected to three levels of damage. 

The results show that there is a phase difference between each level of damage for the sensor close to 

damage. Therefore, it seems that the phase difference is another important indicator for detecting and 

locating damage under transient vibration loads. Numerical and experimental cases of frame 

structures under environmental excitations were studied by [125], who used an improved HHT 

technique and developed a scheme for the detection of damage in real structures. [101] applied the 

HHT approach to identify and locate the progressive damage imposed on a real bridge structure. In 

this case, the HHT technique was used because the response to forced vibration was quite short, non-

linear and non-stationary. Finally, the authors used an instantaneous vibration intensity (IVI) and 

amalgamated instantaneous vibration intensity (AIVI) parameters to identify and locate the damage. 

Furthermore, the evolution of the EMD method during these last ten years and its application to civil 

structures is studied in detail.  

  3.3.3. Damage indices based on HHT 

By employing Improved Completed Ensemble Empirical Mode Decomposition with Adaptive 

Noise (ICEEMDAN) and Variational Mode Decomposition (VMD) and HHT to the derived IMF´s, 

in addition to the instantaneous frequency, amplitude and phase, two key features are extracted from 

the intrinsic mode functions and the application of the Hilbert transform. These parameters are 

marginal Hilbert spectrum (MHS) and the instantaneous phase difference (IPD), that includes the 

relationship between instantaneous amplitude and frequencies.  

1) Marginal Hilbert Spectrum (MHS) 

The Marginal Hilbert spectrum ℎ(+) is similar to the Fourier spectrum [124] [126] for stationary 

signals and measures the total amplitude contribution from each IMFs component value of determined 

signal during a time duration T. The MSH is obtained by integration over time of the Hilbert amplitude 

spectrum 6(<, 5) and it can be represented as: 

  (28) 

2) Instantaneous Phase Difference (IPD) 

Taking into account that the HHT method uses the individual IMFs to calculate the instantaneous 

frequency, instantaneous phase and amplitude, the Equation 29 can be computed using a total 

instantaneous phase obtained by the sum of the instantaneous phases for each IMF. In this sense, the 

total number of rotations of the measured signal x(t) in the complex plane can be written as Equation 

29. The total number of rotations in the complex plane for a unique time value t is multiplied by 2?, 

0
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because the :(5) is unwrapped with radian phases in time.  @&(5) is the i-th IMF, as defined previously 

in Equation 7. 

  (29) 

 A reference point (o) on the structure bridge can be chosen and the phase difference of a point 

p, relative to this reference point is simply performed as: 

  (30) 

Where, the “phase difference” considers the total phase at any point p on a bridge relative to a 

reference point 0 and A'(5) gives the relative phase relationship of a travelling structural wave for a 

given state of a bridge. In conclusion, bearing in mind the idea of damage detection, A'(5) is able to 

detect a change in the speed at which energy travels through the structure when a damage is present. 

As mentioned by several authors [124] [127] [128], and based on laboratory tests, the tracking of 

changes in the wave speed of response measurements considering Equation 30 can be an effective 

method for damage identification and localization and this will be further investigated here for the case 

of real bridges. 

Finally, nowadays, there is little research that uses a mixed approach between the Hilbert-Huang 

Transform (HHT) and machine learning (ML) algorithms to detect damage in real bridges [56] [90]. 

For instance, recently, the authors [90] developed a mixed methodology of HHT, CEEMDAN and 

Artificial Neural Network (ANN) in order to identify the damage and classify its severity in a 

laboratory-scale model of a steel truss bridge. They proposed several damage indicators (DI) that 

include instantaneous amplitude (IA), instantaneous frequency (IF), unwrapped phase and energy but 

using white noise excitations Therefore, one of the main objectives of this thesis is to check the joint 

effectiveness of the HHT, damage indices and the ML algorithms when applied to several real bridge 

structures. To this end, the concepts of ML and big data analysis are presented in the following chapter 

   3.4. Big Data and Statistical pattern recognition for BHM 

The current condition of the civil structures is susceptible to environmental actions, material 

deterioration, aging and multiple hazards that can occur in structures located in rural and urban areas. 

To avoid irreparable events, human losses and damage to structures, recent advances in sensor 

technology and modern techniques have made it possible to explore Big Data (BD) concepts to find 

appropriate solutions. The storage of the large volume of high-dimensional data obtained from SHM 

is a relatively new research topic known as Big Data [129]. The concept of BD has received remarkable 

attention when dealing within the civil engineering works like bridges [130] [131]. The different 
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investigations concerning to SHM and big data show that the strategies used in both fields have the 

same objectives and challenges. Table 3.2 compares the steps to follow in both big data and SHM. 

In addition, the challenges inherent to BD applied to real bridges include the damage detection 

and localization through the data processing obtained during several years of monitoring. Big data 

together with trends in artificial intelligence (AI), machine learning (ML) and statistical pattern 

recognition (SPR) [132] serve to "learn" the behavior of civil structures such as bridges and then help 

engineers to make decisions about the future maintenance and repair scenarios. 

Table 3.2 Pipelines for big data and forward approaches to SHM. Adapted from [130]. 

Big data Forward SHM 

Recording Acquisition 
Cleansing Normalization 

Aggregation Data fusion 
Modelling Prediction 

Interpretation Classification 

Taking account the Axioms of SHM [78], damage assessment requires a comparison between 

two states of the system and each SHM approach requires a baseline system (as mention in Axiom 

II). From this concept, the level of damage detection that is studied is dependent on the way in which 

the training data set is defined. In this sense, both the combination of normal and damaged conditions 

of a bridge as well as only the normal conditions are factors that can be studied considering the data 

set available. Therefore, in the present thesis, the SHM and BD approaches are posed in the context 

of a pattern recognition problem that is composed of four parts: operational evaluation, data 

acquisition, feature extraction and statistical modeling for feature classification, as illustrated in 

Figure 3.3. 

 
Figure 3.3. The SHM process based on the Statistical Pattern Recognition (SPR). 

 

1) Operational evaluation 

 

sensorsbridge 
structure

Operational Evaluation
Statistical modeling for 

feature classificationData acquisition Feature extraction

ü Operational and environmental
conditions.

ü Economic justifications to
implement SHM and life-safety.

ü Definition of damage to be
detected, located and quantified.

ü Data acquisition limitations.

ü Type and amount of
data to be collected.

ü Periodicity in data
acquisition.

ü Data normalization
procedures.

ü Sources of variability.

ü Identify the most important
features of the data for
damage detection and
localization.

ü Analize the statistical
distribution of the features.

ü Data condensation.

ü Patterns that serve to identify
damage.

ü Damage location, damage
quantification, damage type.

ü Remaining uselful life of the bridge.
ü Study in detail the false positives

and false negatives (incorrect
diagnosis of damage).
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The first step to implement an SHM system defines the most appropriate methodology and 

procedure for monitoring and identifying damage to be used, that is, taking into account its advantages 

and limitations. This first stage of the SHM process considers an operational evaluation and attempts 

to answer four essential questions [3]: 

• What is the main motivation for implement SHM? And how are the economic and 

human security conditions justified to implement the structure's monitoring system? 

• How is damage defined for the structural system and, for multiple damage scenarios, 

which cases are the most concern? 

• What are the operational and environmental conditions under which the structural 

system of interest operates? 

• What are the limitations on acquiring data in the operational environmental? 

Additionally, this first process begins to impose limitations on how to carry out this task and 

identify the main challenges such as: (i) bridges are considered structures of great economic cost, 

therefore, unlike other structural systems of less magnitude, it is more difficult to incorporate lessons 

learned to define anticipated damage. (ii) these civil structures suffer a slow degradation with normal 

use such as: corrosion, fatigue, damage due to sudden changes in temperature (freezing, thermal 

damage), loss of prestressing forces, degradation of connectivity induced by vibrations. (iii) the 

structural designs are carried out using events with a low probability of occurrence but high impact, 

such as: hurricanes, debris flow, earthquakes, floods. 

2) Data acquisition 

The second phase of the SHM process includes data acquisition, normalization and cleaning of 

data, this is a very important stage as it affects the correct identification of damage. Data acquisition 

includes: 

• Planning and selection of excitation methods (forced / environmental). 

• Data transmission (wired / wireless). 

• The type of sensing hardware (tension, acceleration, displacement, etc.). 

• Network (number and location of sensors). 

• Time intervals for each case study and acquisition hardware, data transfer speed and 

storage capacity. 

A very important aspect is that damage-induced changes in the data collected by the sensors can 

be distinguished from changes obtained by environmental and operational conditions, since these can 

mask structural damage. For this reason, the data that is collected must be normalized to make 

comparisons and not give false detections of damage. 
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In general, sources that affect response and that are other than damage cannot be completely 

eliminated, but they can be detected and minimized. Therefore, it is very important to make the 

appropriate measurements so that in later stages these sources can be statistically quantified and 

accurate thresholds for damage detection can be set. Finally, data cleansing is another stage that must 

be taken great care. For instance, during the feature selection process, the data rejected or taken into 

account are defined by an empirical procedure, that is, based on previous experience in data 

acquisition. Thus, nowadays, there are numerous data cleaning techniques such as signal processing, 

filtering and sampling [14]. 

3) Feature extraction 

This stage considers the study of many features sensitive to damage, which are intended to 

identify and differentiate between the damaged and undamaged structural condition of a structure 

(bridges). Among these characteristics sensitive to damage are modal parameters, quasi-static strains, 

local flexibilities and other vibration-based parameters as previously defined in the present thesis. In 

addition, a characteristic sensitive to damage will change to a greater or lesser extent when different 

levels of damage occur. Methods involving comparisons with analytical models use Finite Element 

(FE) approaches to introduce faults through computer simulation and the structure can then be 

analysed in its damaged state. This comparison is made to identify which parameters are most 

sensitive in distinguishing between damaged and undamaged systems. Actual damage tests such as 

fatigue, induced damage, corrosion and changes in temperature cause the structure to degrade and 

damage to accumulate, thus, these can be very useful to identify characteristics. 

The development of the innovative technologies used for SHM allows obtaining and storing 

large amounts of data (big data). In this sense, it is convenient that the data can be condensed to make 

comparisons of many sets of features, since the characteristics are related and assembled during the 

useful life of the structure. Likewise, data reduction techniques are increasingly innovative and robust 

to identify the sensitivity of features to structural changes in operational and environmental 

conditions. However, in the feature extraction phase of real SHM applications, care must be taken as 

both environmental and operational effects can mask damage-related changes in features, and hence 

the actual damage level cannot be determined. According to past research [11] [33], it is known that 

the more sensitive a feature is to damage, the more sensitive it is to changes in environmental and 

operational factors. In conclusion, more innovative and robust procedures should be developed for 

feature extraction that have the following properties as shown in Table 3.3. 

Table 3.3 Main properties of damage-sensitive features. Adapted from [11] [33] 

Sensitivity 
A feature only has to be sensitive to damage and not to other 
external factors. 

Computational 
requirements 

Embedded systems should facilitate minimal processor cycles 
and minimal assumptions. 
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Dimensionality 

The selected feature vector should not have a significant loss of 
information and should have the lowest dimension. If this is not 
fulfilled, high dimensionality shows undesirable complexity in 
statistical models and storage mechanisms. 

Consistency Feature’s magnitude should change monotonically with 
damage level. 

 

4) Statistical modeling for feature classification 

The last stage of SPR-based SHM includes statistical modelling of the extracted features to 

improve the damage detection process. At this stage, machine learning algorithms are implemented 

to normalize the monitoring data and study the distributions in order to determine the structural 

condition. In the literature review, several algorithms are considered, however the present thesis only 

refers to the most advanced ones (Section 3.5). ML algorithms are classified into: novelty detection, 

classification (outputs are discrete class labels) and regression (respects the prediction of continuous 

quantities). The first belongs to the group of unsupervised algorithms, while the last two belong to 

supervised learning. 

   3.5. Machine learning techniques for bridge damage analysis 

Machine learning (ML) is an application of artificial intelligence (AI) that aims to improve 

damage detection in BHM and give systems the ability to learn and improve automatically from 

experience. ML algorithms can self-learn the behavior of monitoring data and can then make 

predictions of possible future damage, without human intervention or assistance. Figure 3.4 shows 

the classification of machine learning algorithms [133] [134]. In the SPR-BHM approach, pattern 

recognition (SPR) is a field that uses various algorithms to label data as healthy or damaged 

Furthermore, the application of ML algorithms to cases of real structures is focused on improving 

damage detection in variable operating and environmental conditions under which the structural 

response is measured. In the BHM state-of-the-art several algorithms have been reported that have an 

output-only approach related to data normalization, extraction and damage identification. However, 

in the present thesis, only a methodology that uses the algorithms of PCA, KPCA, k-means is 

considered. They are exposed in the following sections. 
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Figure 3.4. Algorithms used in Machine Learning. Adapted from [133]. 

  3.5.1.  Supervised and unsupervised machine learning algorithms 

Machine learning algorithms find natural patterns in data that generate insight in order to make 

better decisions and predictions. As shown in Figure 3.4, machine learning algorithms are divided 

into 2 groups: supervised and unsupervised, and this depends on the type of data being analyzed. For 

instance, a supervised learning algorithm takes a known set of input data (the training set) and known 

responses to the data (output), and trains a model to generate reasonable predictions for the response 

to new input data [133]. Many applications in SHM use supervised machine learning and analyze 

existing data for the output that it is trying to predict. Supervised learning techniques are very useful 

when the prior knowledge about possible structural damage is available. In addition, all supervised 

learning techniques can be used as form of classification or regression to develop predictive models. 

The classification models predict discrete responses and classify input data into categories, for 

instance, a medical diagnosis of cancer serves as a classification task since the input to the system is 

classified into either ‘‘cancer” or ‘‘no cancer”; whether an email is genuine or spam, or whether a 

damage is structural or not in SHM [14]. The regression models predict continuous responses and the 

goal is to model the relationship between a numerical output and a number of inputs. For instance, 

changes in temperature or fluctuations in power demand or during the monitoring period in SHM, 

besides, the typical applications include electricity load forecasting and algorithmic trading. The only 

difference between regression and classification is the format of the output. Therefore, taking account 

the Axiom III [78], the supervised machine learning approach allows to characterize damage as type 

and severity up to the level 3 of damage identification. The Support Vector Machines (SVM), 

Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), Naive Bayes 

classifier (NB) and Decision Trees (DT) are the most commonly algorithms that belong to this 

category. 
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On the other hand, unsupervised learning algorithms require output-only data without any 

labeling and find hidden patterns or intrinsic structures in data. The principal objective is to 

investigate the distribution of the data in order to obtain useful information regarding its underlying 

structure. Taking into account Axiom III [78], with this approach it is possible to reach a maximum 

level 2 of damage identification (implies the location). In addition, the overall goal is to achieve 

damage detection, clustering and dimensionality reduction. In this sense, these unsupervised 

algorithms first establish a reference condition of the structure considering appropriate characteristics 

extracted from the data, for example, they can be measured or obtained from a numerical model. 

Then, a statistical pattern recognition (SPR) process is used and the most important characteristics 

extracted from the new data are compared with those observed in the reference condition (no damage). 

At this stage, damage detection thresholds can be defined, since if there are significant anomalies or 

deviations, the algorithm has correctly identified this novelty, which finally indicates that the structure 

presents an anomalous behavior that may be the product of the damage. Examples of unsupervised 

learning techniques are k-means clustering, Gaussian Mixture Models (GMM), Variational Auto-

encoder (VAE) and Generative Adversarial Networks (GAN).  

Finally, there are some algorithms that are flexible, that is, they can be used in both the 

supervised and unsupervised approach, for example, Artificial Neural Networks (ANN), Genetic 

algorithms (GA), Hidden Markov Models (HMM). Some of these algorithms are described in more 

detail in the following sections of the present thesis. 

1) Supervised machine learning algorithms 

Principal Component Analysis (PCA) 

PCA is one of the oldest multivariable statistical methods and well-known linear method for data 

analysis, which is used for mapping multidimensional data and as a dimensional reduction tool [135].  

This method was first coined in early 1900’s by Pearson [136] as an analogue of the principal axis 

theorem in mechanics and later developed in early 1930’s by Hotelling [137]. PCA performs a 

decomposition of eigenvalues in a sample covariance matrix. This process produces both eigenvalues 

and eigenvectors corresponding to each value (Figure 3.5). Furthermore, a large number of 

interrelated variables can be represented into low-dimensional uncorrelated variables by an 

orthogonal projection with minimal redundancy, in which the new reduced coordinates are known as 

principal components. 
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Figure 3.5. Axes in a Principal Component Analysis (PCA). Adapted from [11]. 

 Damage sensitivity features collected from bridge structures subjected to environmental 

conditions can be processed by PCA to extract the main factors driving the variances in the data set 

[138] [139]. In the present thesis, PCA is used to extract the differences and similarities in the original 

data set rather than reducing the dimensions of the original data set. These results are shown in two 

investigations where PCA is used to eliminate environmental factors (temperature), and then a 

methodology for damage identification in a numerical bridge was proposed [94] [95]. 

Mathematically, Z denotes a nxp data set of n damage sensitivity feature collected from p 

observations with n<p. In [94], one damage sensitive parameter such as instantaneous phase is chosen 

as the feature, this damage parameter is represented by n and p represents the amount of time the 

instantaneous phase is collected. It can be expressed as: 

  (31) 

PCA transforms the data set X into a new mxp data set Y with smaller dimensions which 

characterizes most of the variances in the original data set. In this regard, a transform matrix T is used 

to relate Y and Z, which has dimensions mxn as shown in Equation 32. 

  (32) 

Where Y is the score matrix and it represents a new set of data which combines the scores of 

each observation obtained for the factors affecting the original data set. The factors which represent 

the environmental effects are one of the principal components. The first principal component is 

represented by which present most of the variance in the original data set (normally environmental 

effects), and the second component accounts for the second most variance, and so on [138].  
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T is the loading matrix and its rows correspond to the eigenvectors of the covariance matrix of 

X. The singular value decomposition can be applied to obtain the eigenvectors of the covariance 

matrix of X. This relationship can be computed as: 

  (33) 

U = orthonormal matrix (UUT = I) whose columns represent the eigenvector of the covariance 

matrix of X (hence T = UT), and the summary is obtained by 

  (34) 

The singular values are represented by ∑ !C9D(E!, E#, … , E()!  and 

∑ !C9D(E()!, E()#, … , E")# . The ∑! and ∑# are organized in descending order  (E! ≥ E# ≥. . . ≥

E( ≥ E()! ≥. . . ≥ E" → 0). Finally, the damage detection can be obtained considering the analysis 

of the only first few rows of the score matrix (first few principal components in PCA method). 

Therefore, the number of principal components should be chosen carefully in order to avoid the false 

detections. 

Kernel Principal Component Analysis (KPCA) 

The KPCA algorithm is the nonlinear extension of the linear principal component analysis (PCA) 

developed by [140]. This KPCA algorithm is a statistical tool commonly used to fit a nonlinear model 

to the features sensible to damages in the undamaged state. Moreover, this algorithm can be used to 

compare the predictions of a model and the characteristics observed in the field of structural health 

monitoring on bridges [50].  

Nowadays, many parameters used as damage sensitivity features in real bridges are affected by 

environmental conditions (e.g. temperature, humidity, wind). Figueiredo et al. [141] proposed an 

approach to damage detection in a bridge known as Z24 taking into account that the bridge operates 

within its undamaged condition (baseline condition BC) under operational and environmental factors. 

As a first step, the unsupervised learning stage was carried out to infer the heterogeneity of the data 

in different operational and environmental conditions. Then, the next step was to establish a procedure 

to incorporate prior knowledge of the baseline data into the damage detection process. A daily 

Damage Index (DI) was implemented, corresponding to the minimum Mahalanobis Squared-Distance 

(MSD) coefficient of two models with a de-fined threshold for the 95% confidence region. Therefore, 

the performance of the classifier was observed taking into account the existence of known damaged 

structural responses. Reynders et al. [50] developed an improved output-only method based on the 

KPCA in order to eliminate nonlinear operational influences and environmental conditions on Z24 
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bridge. They have previously confirmed the non-linear relationship between natural frequencies and 

ambient temperature. The authors used two parameters automatically determined from the learned 

model based on Gaussian KPCA and the results demonstrated satisfactory improvements in data 

normalization for damage identification. The authors [142] adopted PCA and KPCA algorithms for 

data compression and the median values of principal components were defined for damage feature 

extraction in a six-bay truss bridge model. Afterwards, a fuzzy c-means (FCM) clustering algorithm 

is used to categorize these features for structural damage detection. This method could effectively 

identify the bridge damages simulated by loosening the bolted joints of the truss bridge structure.  

KPCA is formulated in the following way. Mathematically, a training data matrix K ∈~(+" is 

considered for normal condition data. Where n = feature vectors; m = environmental and operational 

factors when the bridge is undamaged. Moreover, M ∈~%+" represents a test data matrix, where k = 

number of feature vectors from the undamaged or/and damage states. The data normalization consists 

as follows: (i) the loadings matrix, U, is obtained from X; (ii) the test matrix Z is mapped onto the 

feature space ~% and reversed back to the original space ~O, where r = number of factors or principal 

components. Finally, (iii) the residual matrix E is obtained as the difference between the original and 

the reconstructed test matrix.  

For the feature classification, a feature vector f (f = 1, 2,…,l) is considered and its residual 

uncorrelated with environmental and operational conditions can be computed as: 

  (35) 

U1 = contains the r largest eigenvectors; U2 = comprises the (m - r) shortest eigenvectors and the 

compact form U = [U1 U2] represents the eigenvectors matrix partitioned. Furthermore, Ф(zf) 

represents a nonlinear mapping of the output sequence, zf, onto a possible very high-dimensional. In 

addition, the r principal components can be obtained by test the minimal percentage of the variance 

ℾ (0.99 can be adopted) to explain the variability in the matrix X [50]. Note that due high-dimensional 

in feature space of the KPCA, the ℾ and r may be larger than the values used in linear PCA. Then, an 

eigenvector matrix A can be used in order to determine Ф, as follows: 

  (36) 

  (37) 

All solutions are summarized in solve a standard eigenvalue problem as mention in Equation 37, 

where Λ = diagonal matrix containing the ranked eigenvalues λi and K = kernel matrix expressed by 

the formula 39. 
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  (38) 

  (39) 

A kernel function can be represented by the inner product of the form Ф(xi)T Ф(xj) and a Gaussian 

kernel or radial basis function (RBF) defines a single parameter by the equation 40. Where σ > 0 is 

the bandwidth of the RBF kernel and can be obtained using the Shannon’s information entropy in the 

inner product matrix K. 

  (40) 

2) Unsupervised machine learning algorithms 

Cluster technique is one of the most used unsupervised machine learning approach with the main 

objective to divide the input dataset into clusters with similar examples. In cluster analysis, data is 

partitioned into groups based on some measure of similarity or shared characteristic. Clusters are 

formed so that objects in the same cluster are very similar and objects in different clusters are very 

distinct. The clustering algorithms fall into two broad groups: hierarchical and nonhierarchical 

(Figure 3.6). The first approach produces nested sets of clusters by analyzing similarities between 

pairs of points and grouping objects into a binary, hierarchical tree. Some algorithms of this category 

are agglomerative and divisive. Several investigations using this method have been developed for 

damage identification on bridges [31] [73] [96], the authors describe clustering methods as well as 

the definition of the hierarchy and its use for damage detection are extensively described. 

The second group is made up of the following algorithms: k-means, k-Medoids, dynamic cloud 

and fuzzy C-means. These techniques have been used in recent years for damage detection, 

localization and quantification on bridges [97] – [99] [143]. Taking into account the literature review, 

Santos et al [74] implemented two approaches together: cluster algorithms and symbolic data to 

achieve a single-value novelty index (NI) to be able to detect structural changes in multi-sensor data-

sets. To achieve the capability of NI and to corroborate the proposed theory, data obtained from 

Samora Machel bridge was used. During structural monitoring, refurbishment works were performed, 

such as repairing/replacement of concrete, replacement of suspension cables, hangers and supports. 

The methodology was implemented to perform a real-time assessment using a single-value NI for 

multiple time windows (TW). A cluster analysis technique was proposed by Santos et al. [97] for 

damage identification in a real bridge, and they utilized a statistical process considering interquartile 

ranges as part of symbolic data analysis. The algorithms used are able to allocate data objects to any 

number of predefined clusters, irrespective of whether this amount has really been observed in the 

structural system. This strategy was applied to vibration data (frequencies, mode shapes and damping 
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ratio). A cable-stayed bridge was utilized as case of study for damage identification [12], the authors 

used a combination of two statistical learning methods such as neural networks and clustering 

methods in order to detect early damages. Diez et al. [10] proposed a clustering-based approach to 

join datasets with similar behaviors and then detect structural changes on the Sydney Harbour Bridge. 

The approach presented has a peculiarity of considering the vibration signals caused by passing 

vehicles to detect and locate damaged junctions using k-means clustering algorithm. The results 

showed correlations between joints, locating a damaged joint and another with a defective 

instrumented sensor. 

 
Figure 3.6. Nonhierarchical and hierarchical (dendrogram) clustering examples. Adapted 

from [133]. 

Clustering methods provide a variety of algorithms with desirable characteristics for the 

discovery of intrinsic properties contained in the data. As an un-supervised machine learning 

algorithm, clustering does not require the definition of reference/training data. Instead, they have the 

capability to “understand” the intrinsic features by trying to find the most compact and separated set 

of clusters [91]. In the present thesis, the most used and powerful unsupervised machine learning 

algorithm like k-means is used and therefore, its background is introduced in the following [55] [91]. 

K-means 

k-means clustering is a partitioning method that splits data into k mutually exclusive clusters, 

and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical 

clustering, k-means clustering operates on actual observations (rather than the larger set of 

dissimilarity measures), and creates a single level of clusters. The distinctions mean that k-means 

clustering is often more suitable than hierarchical clustering for large amounts of data.  

According [11], k-means algorithm minimizes within-cluster sum of squares and mathematically 

can be computed as Equation 41, where n data points are partitioned into k mutually exclusive clusters 

in which each data point belongs to the cluster with the nearest mean. The variance between groups 

has to be maximized while the total variance within the group is minimized, this means that the 

squared error function J in equation 40 must be minimized, where, n = number of data points, k = 

number of clusters and c = centroid of cluster j. 
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  (41) 

The sequence of this k-means method consists in: 

1. Cluster the data into k groups where k is predefined. 

2. Select k data points at random for the centroids. 

3. Assign objects to their closest centroid according to the Euclidean distance function. 

4. Calculate the centroid or mean of all data points in each cluster. 

5. Repeat steps 2), 3) and 4) until the same data points are assigned to each cluster in consecutive 

runs. 

The main objective of cluster analysis is to minimize the distance within the cluster that 

maximizes the distance between clusters, it is simply performed as: 

  (42) 

Where a given partition containing K clusters is considered, PK = {C1, …, CK}; c(i) = many-to-

one allocation rule that assigns object i to cluster k, based on a dissimilarity measure dij defined between 

each pair of data objects, i and j. 

Cluster validity 

Mathematically, the clustering procedures obtain a certain number of partitions in an arbitrary 

way, however, within the cluster analysis, high dissimilarity values and results that are not optimal can 

be obtained. In this sense, the optimal number of clusters must be studied in detail. Some authors [144] 

have suggested using a quantitative evaluation known as cluster validations to find the optimal value 

of clusters. One of the most widely used validity indices in SHM is called silhouette statistics (SIL). 

The construction of silhouette statistic consists in assigning a fixed number of clusters K to the ith 

observation, and can be expressed with the following formula: 

  (43) 

Where b(xi) = distance to nearest neighboring cluster's center, a(xi) = average distance between 

the ith object of cluster C and the remaining j objects. By finding the average of silhouette widths for 

all samples, the average silhouette width can be computed as: 

  (44) 
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Where K = clustering partitions and the value of silhouette coefficient varies from 0 to 1. 

Finally, a larger silhouette width indicates better clustered data. 
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     Chapter 4 – Application and results 
 
 
 
 
In the present chapter, the methods and tools described in the previous chapter are applied to check 

their accuracy and reliability in the damage detection. The idea is to check the performance of the 

new vibration-based damage features as well as to apply the most appropriate tools in each specific 

application, depending on the characteristics of the gathered data. Also, the application is carried 

out trying to follow the increasing level of complexity of the different tools applied. As the main 

objective of the thesis is that the proposed detection techniques could provide accurate results for 

real bridges, the application is carried out in response data from three real-world bridges where 

artificial and perfectly known damage was created, so the performance of the approaches can be 

perfectly checked.
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4.1. Application of new vibration-based parameters for bridge damage 
identification 

Currently, traditional methods for detecting structural damage use modal methods considering 

vibration frequencies, mode shapes, damping ratios as sensitive features to damage. Nevertheless, the 

present example shows an alternative novel approach for damage identification based on the non-modal 

based parameters defined in Chapter 3. Firstly, only ambient vibration (linear and stationary) is studied 

using several empirical parameters described in Section 3.2 (CAV, DVI, MCVI) and in the paper 

presented in chapter 5.1. These non-modal parameters are applied to measured vibration response data 

obtained from progressively damages in a real bridge named S101 located in Austria. After that, the 

application of these parameters and others as defined in Section 3.2 and in Chapter 5 (Section 5.1), is 

extended to the case of traffic generated vibrations (non-linear and non-stationary). To this end, 

previously to their application, the dynamic signals are decomposed by means of the HHT. The bridge 

selected for this second part is a steel arch bridge in Japan. 

The S101 bridge (Figure 4.1a) was a post-tensioned concrete bridge located near Vienna in Austria 

that had a main span of 32m, two 12m side spans, deck cross-section 7.2m wide and double-webbed t-

beam, whose webs had a width of 0.6 m [145] [146]. The columns, beams and the deck slab were built 

with concrete material of 2400 kg/m3 density and the Young's modulus of 24.8 GPa. In 2008, it was 

decided to replace the S101 bridge due to insufficient carrying capacity and deteriorating structural 

condition being identified from visual inspection data. However, before demolition, a progressive 

damage test under ambient excitation was conducted on this bridge (Figure 4.1b). 

 
Figure 4.1. (a) View of the S101 Bridge and bridge dimension (dimensions in centimeters); 
(b) Progressive damage of column and tendons on bridge S101. Adapted from [145] [146]. 
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A complete description of the progressive damage scenarios and monitoring as well of the results 

obtained from this example is available in Section 5.1 where the journal paper 1 is included. Here, only 

the main results and conclusions are described. 

The Euclidean Distance evolution of the CAV-based symbolic data objects throughout the 

duration of the progressive damage test is presented in Figure 4.2a. All damage scenarios were 

evaluated considering the Y-axis as a linear representation of time. It can be observed that an enhanced 

divergence from the undamaged state occurs at the sensors located at the damaged North Pier during 

the pier settlement test. After the pier is returned to its original positions, the Euclidean distance returns 

close to normal. This is to be expected, as the pre-stressed tendons should supply enough compression 

to close the majority of cracks caused by the pier settlement, effectively reversing the simulated 

damage. The Mahalanobis squared distance (MSD) evolution of the vibration parameter DVI 

throughout the duration of the progressive damage test is presented in Figure 4.2b. It can be observed 

that an enhanced divergence from the undamaged state occurs across the bridge during the pier 

settlement test, but particularly so at the sensors located at the damaged North Pier. The MSD evolution 

of the vibration parameter MCVI throughout the duration of the progressive damage test is presented 

in Figure 4.2c. It can be observed that an enhanced divergence from the undamaged state occurs on the 

North side of the bridge during the pier settlement test, with no exact location of damage identified. 

For the severed pre-stressed tendons, MCVI provides a strong indication of damage for the 3rd tendon 

cut, but no others. 

The results of the application to this real bridge demonstrate the robustness of the proposed 

damage features for damage identification using measurements of ambient excitations. Moreover, this 

investigation has demonstrated that the novel empirical vibration parameters assessed are suitable for 

damage detection, localization and quantification. 
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Figure 4.2. Evolution of damage parameters (a) CAV (b) DVI (c) MCVI. 
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Two methods of outlier detection were employed: MSD for the Gaussian distributed parameters 

DVI and MCVI, and Euclidian Distance of the symbolic data objects from the lognormal distribution 

of the energy-based CAV. Regarding the three assessed parameters, CAV portrayed the strongest 

indication of damage for the pier settlement test, while DVI was able to identify both types of damage, 

pier settlement and simulated stiffness loss. 

In the second application, several damage parameters such as CAV, CAD, IVI, AIVI were used 

to detect damage in a Japanese bridge. 

The Warren truss bridge was located in Japan and all the experimental study was carried out by 

Chang & Kim [147]. The structure consists of a single span 59.2m, 8.2 m maximum height, and 3.6 m 

width, designed for a single lane. Figure 4.3a depicts the real bridge that was constructed in 1959, 

besides, after 2012 it was demolished and replaced by a new one. A dynamic load test was carried out 

before the bridge was removed, using artificial damages (Figure 4.3d) and only a one van-type vehicle 

(Figure 4.3b) crossed along the bridge. The experimental setup consists of a sensor network to measure 

vertical accelerations as shown in Figure 4.3c. Further details of the bridge as well as the produced 

damage scenarios and tests carried out are presented in Section 5.1. 

 
Figure 4.3. Illustration of (a) the Warren truss bridge (b) recreation vehicle used in the 

test (c) location of the 8 accelerometers and artificial damages (d) experimental 
programme of the artificial damage. [Adapted from reference 147]. 

 

The non-modal vibration-based damage characteristics CAV, CAD, IVI and AIVI are detailed 

and selected for the evaluation of high energy and short duration non-stationary signals induced by the 

passage of the vehicles. That is, as a first step, signal decomposition methods are used because the 

signals recorded from this load test are non-linear and non-stationary in nature. Then, the Hilbert-

Huang Transform (HHT) and the parameters based on vibration intensity are applied. Additionally, 

new damage features such as instantaneous frequency, instantaneous amplitude and instantaneous 
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vibration intensity derived from the application of HHT are proposed and their performance in 

detecting and localizing damage investigated.  

Figure 4.4a presents the CAV values obtained at all sensor for the condition states (healthy and 

damaged states). All values are normalized to the largest undamaged value and the damage 3 (DMG3) 

condition yields a significant change in CAV at Sensor 4, which is the damage location. However 

other condition states are less separable by eye. Besides, Figure 4.4b is used to portray the percentage 

variation from baseline for sensors 1-5 for damage 2 (DMG2), recovery (RCV) and damage 3 

(DMG3). From here it is clearer that the spikes associated with DMG2 & DMG3 are located at the 

point of damage, while the percentage variation of the RCV state is less pronounced, indicating that 

the recovery process succeeded in realigning bridge behavior to near baseline. Figure 4.4c depicts the 

CAD values obtained at all 8 sensor locations and for all condition states, which are normalized to 

the largest undamaged value. Again, it is clear that DMG3 yields a significant change in CAD at 

Sensor 4, which is the location of damage. Figure 4.4d represents the percentage variation from 

baseline for sensors 1-5 for DMG2, RCV & DMG3, which shows clear damage at sensors 3 & 4 for 

damage states DMG2 & DMG3 respectively. Both sensors are located at the point of damage, 

indicating a successful damage location assessment. Moreover, the RCV state is close to baseline, 

which correctly indicates no damage present. Finally, the Figure 4.4e presents the AIVI values 

obtained at all sensor locations, where DMG3 is again the most obvious divergent. Furthermore, the 

percentage variation of sensors 1-5 is presented in Figure 4.4f. The damage detection behavior is 

similar to previous analyzed cases, where two principal damage locations are identified by AIVI. 

As a conclusion, all empirical vibration parameters assessed (CAV, CAD, IVI and AIVI) 

identified the required damage events, with CAD providing the greatest resolution regarding the 

damage location. The parameters based on vibration energy showed significant increase throughout 

the time range for all sensors close to damage. In contrast with a sensor away from undamaged state, 

where no appreciable change in vibration magnitudes were observed with increasing levels of 

damage. To evaluate the damage using the AIVI parameter, it is not only necessary to find the 

maximum peak points, but it is important to analyze the behavior of the intensity during the entire 

time of the forced load test. From the comparison with the damage identification based on modal-

based parameters carried out by [147], it is observed that all the vibration parameters assessed appear 

to outperform the modal frequency changes. In this regard, with AIVI’s percentage differences 

producing the best overall. 
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Figure 4.4. Comparison of values per sensor for all damage scenarios (a) Normalized CAV 

(b) CAV percentage variation from baseline (c) Normalized CAD (d) CAD percentage 
variation from baseline (e) Normalized AIVI (f) AIVI percentage variation from baseline. 

 

As a final conclusion of this first application, in both bridges the use of the non-modal based 

damage parameters allows a correct damage identification and localization by analyzing the results 

of each sensor. However, the possibility of robust damage quantification was not possible based on 

these parameters in the case of the forced vibrations. For this reason, new vibration-based damage 

features will be applied in Section 4.2 seeking for their ability to quantify the damage. Also, machine 

learning and artificial intelligence techniques must be implemented for automatic damage 

identification since in this first application, it is treated in a comparative way between healthy and 

damaged conditions (supervised detection).  In addition, there is no presence of environmental 

variability as temperature changes since both tests were carried out in a short time interval. Therefore, 

the next step is to propose unsupervised automatic detection algorithms (clustering) as well as 

methods to remove the influence of ambient temperature, which is developed in the next application 

presented in Section 4.3. 

4.2. Feasibility of Marginal Hilbert Spectrum and Instantaneous Phase 
Difference as total damage indicators 

At present, the trends and challenges in the development of signal processing tools are 

increasingly being used with an emphasis on real bridge structures. Therefore, it is important to study 

new damage parameters from vibration signals. This application focuses on the study of the non-

linear and non-stationary dynamic response of bridges under operating loads [92], but analyzing the 

performance of new vibration-based damage features that may be obtained as a result of the 

application of HHT, such as Marginal Hilbert Spectrum (MHS) and Instantaneous Phase Difference 
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(IPD) as defined in subsection 3.3.3. They are proposed as total damage indicators, in the sense, that 

by using them it is possible to detect, locate and also quantify damage These new damage parameters 

are applied and corroborated in two bridges: the Japanese bridge described in the previous section 

(see Figure 4.3) and a numerical model of a two-span steel bridge. The full results of the application 

are described in the journal paper presented in Section 5.2 and only the main parts are summarized 

herein. 

Taking into account the mathematical formulation of these new damage parameters explained in 

section 3.3.3, Figure 4.5a plots the results of the MHS for sensor 1 located far from the damage on the 

steel arch bridge. In the undamaged condition, it has a frequency of 3.0 Hz, and the maximum 

frequency decreases as the damage is more severe (2.82 Hz and 2.72 Hz for damage 1 and damage 2, 

respectively). Also, in the recovered state, the frequency increases slightly (2.92 Hz). However, 

damage 3 (DMG03) produces an increase in peak frequency (3.20 Hz), which does not physically 

indicate the presence of damage. Similarly, sensor 2 does not show a clear pattern in frequency changes 

that could be correlated with the presence of damage (Figure 4.5b). On the other hand, Figures 4.5c 

and 4.5d show a different behavior for sensors 3 and 4 respectively, where the damage was located in 

the exact position of these sensors. The frequency reduction in sensor 3 from the undamaged state 

(baseline) to damage levels 1, 2, and 3 are 6%, 10%, and 2% respectively. For sensor 4, from the 

baseline to damage 1, 2 and 3, the reduction is 5%, 9% and 17% respectively, which is also correlated 

with the extension and intensity (value of 5% for half of the cut compared to 9% for the cut) and the 

location of the damage (sensor 4 is located right where the damage 3 is present). Therefore, the results 

of the MHS damage parameter show that the sensors located in the damage are capable of identifying, 

locating and quantifying structural damage. 

 
Figure 4.5. Marginal Hilbert spectra using ICEEMDAN (a) sensor 1 (b) sensor 2 (c) sensor 

3 (d) sensor 4. 
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Additionally, the other damage parameter known as instantaneous phase difference (IPD) was 

studied. For example, the results of the IPD of sensors 2 and 5 are shown in Figures 4.6a and 4.6b 

respectively, where in both cases they do not show any clear trend with a damaged and recovered state 

present in the bridge, since they are far from the damage location. However, Figure 4.6c shows the 

evolution of the IPD for sensor 3, where the results in the bridge are significantly lower when damage 

is present compared to the healthy condition (baseline). Also, the recovered state (RCV) is close to the 

baseline, correctly indicating that no damage is present. Figure 4.6d corresponds to sensor 4 and shows 

a similar trend, since the values have a greater decay compared to the baseline when damage 3 occurs. 

In the recovered state (RCV), the behavior is clearly evident since the values follow the path of the 

baseline. Therefore, both sensors indicate a successful location of the damage. As reported in Section 

5.2 also this parameter provides a clear indication of the severity of the damage present (damage 

quantification). 

 
Figure 4.6. Mean phase difference values using ICEEMDAN (a) sensor 2 (b) sensor 5 (c) 

sensor 3 (d) sensor 4. 

As second case study, a numerical model bridge is studied. This numerical model represents the 

superstructure of a two-span continuous steel beam bridge subjected to changing operational and 

environmental conditions. Figure 4.7 plots a description of the FE model of the bridge which was 

developed by [60] and it is presented considering different damaged states. The bridge deck is 

represented by a two-dimensional finite element (FE) model as shown in Figure 4.7a. It consists of a 

two-span continuous beam with equal span lengths of 10m. The cross section is rectangular with 

constant thickness b = 0.1m and height h = 0.6m. It is assumed to be made from low carbon structural 

steel (Grade S235). For this numerical bridge, cracks on the beam surface are considered and they are 

modelled by reducing Young's modulus on certain finite elements. In particular, six damage scenarios 

grouped in two damage regions are imposed for damage detection as shown in the Figure 4.7b. The 

location of sensors is described in the Table 4.1. The vibration is due to the crossing of a single vehicle 

at a constant speed along the deck (forced vibration). 
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Figure 4.7. Numerical bridge (a) geometry of the two-span steel beam on elastic 

boundaries in the longitudinal and vertical directions (b) sensors (in green) & damage 
locations (in red) on steel beam. 

Table 4.1 Sensors located along the numerical bridge. 

Sensors Description Location along the neutral 
axis of the beam (y=0.3m) 

S-01 At 1/4L from the left-hand support x = 2.5m 
S-02 At the middle of the left-span x = 5.0m 
S-03 At 3/4L from the left-hand support x = 7.5m 
S-04 At 3/4L from the right-hand support x = 12.5m 
S-05 At the middle of the right span x = 15.0m 
S-06 At 1/4L from the right-hand support x = 17.5m 

 

 Figure 4.8 plots the MHS for the undamaged and damaged scenarios grouped in a single subplot 

for each sensor and considering the group of damage GPD1, where DMG1, DMG2 and DMG3 

damages are grouped in GPD1 as can be shown in Figure 4.7b. It can be seen that for the baseline (blue 

lines) the marginal spectrum shows a peak frequency ranged from 30 to 32 Hz. This frequency range 

is close to the natural frequency corresponding to the first asymmetrical mode of vibration (29 Hz). It 

is also noticeable that for all sensors, when damage occurs, the peak value of energy increases while 

the frequency corresponding to this peak reduces. This behavior indicates the presence of damage as 

noted by many authors [120] [127] [128]. 
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Figure 4.8. Marginal Hilbert Spectra for all sensors and for GPD1. 

Figure 4.9 depicts the instantaneous phase difference (IPD) for the undamaged and damaged 

scenarios of GPD1 at each sensor. It clearly shows a decrease of the phase difference in all sensors due 

to the presence of damage in the system. It can be also observed how the values reflect the severity of 
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damage inferred by different values of the percentage of stiffness loss as the graph for the most severe 

damage scenario DMG3, Stiffness reduction of 90% tends to be located below the other damage 

configurations.  The phase difference from different sensors can detect, locate and quantify (in terms 

of intensity) the damage. 

The conclusion of this case study is that results for damage detection obtained in both cases for 

the 2 proposed parameters are very satisfactory. On one hand, for all sensors, the peak frequencies 

extracted from the MHS are reduced when damage occurs due to stiffness loss. On the other hand, all 

sensors detect a reduction of the instantaneous phase difference when damage occurs due to the 

decrease in the wave speed of the response measurements. In addition, those sensors located closer to 

the zones where damage occurs show a more noticeable reduction than the sensors placed more far 

away. Both, in the numerical case study and in the real bridge, the results illustrate that the MHS is 

able not only to detect and localize the damage, but also to ascertain the extension and intensity of the 

damage. In the case of the IPD, this damage indicator correctly detected, localized and quantified the 

intensity of the damage, but not its extension. Therefore, the spectral peak frequency and the 

instantaneous phase difference have shown as useful features to identify, locate and quantify damage 

in bridges under operational loads. 

 

 
Figure 4.9. Instantaneous phase difference for each sensor and damage scenario 

corresponding to GPD1. 
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4.3. Application of un-supervised damage detection under changing 
environmental conditions 

New trends in damage identification applied to bridges bring with them new challenges such as 

considering environmental variability. In the two examples described before, no temperature changes 

were present due to the short duration of the tests and its influence in the performance of the damage 

indicators was not obtained. Therefore, in the present application it is foreseen the possibility of a 

robust methodology for damage detection considering environmental changes and ambient vibration 

(not traffic) and using unsupervised machine learning techniques such as clustering. The application is 

carried out in a real bridge. The Figure 4.10a shows the well-known bridge called Z24 (Switzerland) 

that was studied dynamically tested for a period of 1 year under temperature changes and ambient 

vibration and later on artificially damaged with new dynamic tests carried out. This is a post-tensioned 

concrete box girder bridge with a main span of 30 m and two side-spans of 14 m (Figure 4.10b-d). The 

Z24 bridge was monitored for approximately one year and a long-term continuous monitoring program 

between November 1997 and August 1998 was carried out. The bridge was monitored by a long-term 

continuous vibration system, where the data was acquired hourly through two kinds of measurements: 

ambient vibration response and environmental conditions. During the long-term monitoring test, 

several progressive damage scenarios were imposed to the structural system of the bridge before its 

demolition (Figure 4.10e). 

 
Figure 4.10. The Z-24 Bridge (a) side view and (b) longitudinal section. Acceleration 
sensor’s locations (c) cross-section and (d) location of the thermocouples (e) damage 

scenarios carried out in the Z-24 Bridge; left to right: pier settlement, failure of anchor 
heads, and tendon rupture. Adapted from [33]. 
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More detailed data on the monitoring system implemented, the damage scenarios and the results 

and conclusions of this case study can be obtained from the conference paper listed in Section 5.3 

Many researchers have pointed out the issues and limitations of PCA method, since it does not 

correctly consider the effects of environmental factors on the modal parameters because this 

relationship is in general nonlinear [50] [53] [148]. Hence, in pursuit of better damage detection the 

kernel principal component analysis (KPCA) as described in Sub section 3.5.1 has been used in this 

case. For this purpose, the data sets were divided in three groups: training data, monitoring data in 

undamaged state and monitoring data in damaged condition. The model was constructed using 3500 

data points for training phase and the rest of the data were used for monitoring in undamaged and 

damaged state. Figure 4.11a depicts the gradual development of the damage indicator (DI) and the red 

squares correspond to the artificial damages imposed to Z24 bridge during the last month of 

monitoring. Figure 4.11b gives a mobile window that contains samples in the two conditions of the 

bridge: undamaged and damaged. Figure 4.11c plots the damage indicators and all the mobile windows 

during the whole monitoring period. Then, the clustering unsupervised k-means algorithm generates 

the DC values for each mobile window, as shown in Figure 4.11d. In this case the values of DC 

demonstrate the real behavior of the bridge differentiating the loss of stiffness from the healthy 

condition. Besides, a confidence boundary (CB) was proposed as an indicator that warns with a pre-

defined confidence level about structural damage if crossed by the damage feature indicator. A 

complete description of the application of the clustering algorithm and the obtained results can be found 

in Section 5.3. In conclusion, the kernel PCA algorithm presented good performance and capability for 

output-only damage detection.  Its capability to identify the non-linear behavior of modal parameters 

due to changes in environmental conditions is fully proven. With regard to the statistical machine 

learning algorithms and clustering, this example shows a good capability for damage identification 

using the k-means algorithm (as described in Sub section 3.5.1). The proposed strategy demonstrates 

the success for detecting misfits without generating false detections in the case where the vibration 

data comes from a stationary process due to the ambient vibration in the bridge during the long time 

period of analysis. However, the next challenge is to see if the unsupervised machine learning 

algorithm will still work in the case of a forced vibration caused by the traffic in a real bridge. In this 

case, instead of environmental variability, the operational variability is the main issue. This is analyzed 

in the next application shown in Section 4.4. 
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Figure 4.11. Damage detection procedure (a) damage indicator from the 

undamaged/baseline and damaged condition (b) damage indicator in a time-window (c) 
sequence of mobile windows (d) DC values obtained from each window. 

 

4.4. Unsupervised damage detection under operational variability 

According to the research presented, the proposed unsupervised detection considering Machine 

learning algorithms (clustering such as k-means) gives good results when temperature affects the 

results but its influence is successfully removed by appropriate normalization techniques as KPCA. 

The unsupervised technique is here applied to the traffic induced vibration of the steel arch bridge 

described in Section 4.1 (Figure 4.3). As the amplitude and frequency of the recorded signal is changing 

with the vehicle crossing, in this case instead of the natural frequencies of the bridge (as in the case of 

bridge Z24), the instantaneous frequency obtained with the HHT is proposed as the damage feature. 

The machine learning method was used for automatically classifying the damages using a moving 

windows process sequentially applied to the structural response of the bridge Moreover, a confidence 

boundary is defined in order to allow unsupervised damage detection with a certain level of confidence 

(suppression of false alarms).  

The feature extraction is carried out using a symbolic data analysis. This analysis consists in the 

reduction of the data in more generic types and less voluminous information in contrast with classical 

data used in SHM applications. Symbolic data objects (SDO) use time intervals in statistical quantities 

such as interquartile intervals (IQR) or histograms. Interquartile intervals are used in this application. 

The full description of the strategy for damage detection and localization is available in the journal 

paper displayed in Section 5.4. The sequence of the damage detection procedure is depicted in Figure 

4.12 for sensor 3. In Section 5.4 similar figures for the rest of the sensors can be obtained. Figure 4.12a 

shows the instantaneous frequency obtained in sensor 3. An algorithm of time-window (TW) was used 
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to successively model, classify and identify the several damage scenarios, and the symbolic objects 

describing 40 seconds of normalized instantaneous frequency were considered along with time 

windows (5 SDO per TW) (Figure 4.12b). The sequential application of the k-means algorithm 

described in Section 3.5.1 is used to analyze each time window. The damage condition (DC) and 

confidence boundary (CB) obtained at each TW and for each analyzed set-in sensor 3 are depicted in 

Figure 4.12c. The figure clearly shows a damage detection (mismatch that exceeds the confidence 

boundary CB) when DMG2 occurs at a position close to sensor 3.  

 
Figure 4.12. Damage detection procedure (a) instantaneous frequency for sensor 3 

considering all damage states (b) sequence of mobile windows (c) Damage Condition (DC) 
values obtained from each window and the definition of confidence boundary (CB). 

 

From the analysis of the results obtained in all sensors, the following conclusions can be drawn. 

A clustering-based approach to group data of instantaneous frequencies with similar behavior on bridge 

was developed, and then used to detect and localize structural damages. The k-means clustering 

algorithm was capable to allocate data objects to any number of predefined clusters. Additionally, the 

symbolic data objects (SDO) based on interquartile intervals were able to accurately generalize the 

data-set of instantaneous frequencies. The SIL cluster validity index demonstrated its ability to suggest 

the number of distinct structural behaviors (clusters in the analyzed data set) monitored on the bridge. 

In conclusion, the results show that the proposed mixed method was effective and can endow better 

results in bridge health monitoring in order to damage identification, localization and quantification 

for bridge under operational status. 
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Abstract: Many methods of damage identification in bridge structures have focused on the use of 

either numerical models, modal parameters or non-destructive damage tests as a means of condition 

assessment. These techniques can often be very effective but can also suffer from specific pitfalls 

such as, numerical model calibration issues for nonlinear and inelastic behaviour, modal parameter 

sensitivity to environmental and operational conditions and bridge usage restrictions for non-

destructive testing. The present paper covers alternative approaches to damage identification of bridge 

structures using empirical parameters applied to measured vibration response data obtained from two 

field experiments of progressively damaged bridges subjected to ambient and vehicle induced 

excitation, respectively. Numerous non-modal vibration-based damage features are detailed and 

selected for the assessment of either the ambient or vehicle induced excitation data based on their 

inherent properties. The results of the application to 2 real bridges, one under ambient vibration and 

the other of forced vibration demonstrate the robustness of the proposed damage features for damage 

identification using measurements of ambient and vehicle excitations. Moreover, this investigation 

has demonstrated that the novel empirical vibration parameters assessed are suitable for damage 

detection, localization and quantification. 

 
Keywords: Structural health monitoring; bridges; damage identification; vibration parameters; 

Hilbert–Huang Transform; ambient excitation; forced vibration 
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1. Introduction 
 

Structural damage and degradation of bridges is dangerous and costly occurrence. Once 

identified, repair works should be carried out promptly, as maintenance costs dramatically increase 

when damage is left unattended; therefore, it is vital that bridge owners conduct necessary visual 

inspections and structural integrity testing on a regular basis. However, due to the large quantity of 

bridges in the network, this is impractical. Instead of directly inspecting every bridge, sensors can be 

used to indirectly infer the presence of damage using theoretical relationships, such as that of modal 

frequency and stiffness.  Numerous modal parameters have been proposed in this sense, some of 

which are presented and discussed in (Moughty & Casas, 2017). However, also other non-modal 

parameters have been considered. The majority of them are found and discussed in Kramer (1996), 

such as RMS acceleration, Arias Intensity, Cumulative Absolute Velocity (CAV) and others. In 

general, these parameters were defined to represent the frequency content, amplitude or duration of a 

ground motion, Nonetheless, nowadays they can be used to detect damages in real civil structures 

obtaining successful outcomes, as seen later in the present paper. 

In this context, Kim et al. (2013) utilized conventional dynamic properties as a damage-

sensitivity derived from linear system parameters of a time series model. They found MTS 

(Mahalanobis Taguchi System) is able to enhance the identification of structural changes due to 

damage. (Goi & Kim, 2017) proposed a novel damage indicator automatically derived from a set of 

multivariate autoregressive models on an actual steel truss bridge. This damage indicator 

demonstrated that the modal information included in a multivariate system could help to improve 

damage detection performance. (Zhou et al., 2015) carried out a real experiment on a free-free steel 

beam excited by a shaker (structural forced dynamic response data). Mahalanobis Square Distance 

(MSD) approach was developed in order to detect the damage levels. The authors claimed that the 

MSD is effective for damage detection using frequency-based raw data.  Additionally, this approach 

may function in operational conditions. (Nguyen et al., 2014b) improved Mahalanobis Square 

Distance method with a controlled data generation scheme based on Monte Carlo simulation 

methodology. The effectiveness was demonstrated using a benchmark structure data from a building 

model with several damage levels. 

The use of modal parameters as damage sensitive features have found that their performance 

may suffer from their sensitivity to environmental and operational conditions which can mask damage 

events. Additionally, the non-stationarity of some vibration signals creates a problem when using 

standard modal techniques based on Fourier transforms, as linear stationarity is assumed. Finally, 

Table 1 gives some advantages and disadvantages of the techniques applied to modal parameters in 

order to detect damages in real civil structures. 
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Table 1. Advantages and Disadvantages of damage detection methods based on modal parameters. 

Method Advantages Disadvantages Reference 

Mahalanobis Taguchi 
System (MTS) 

serve to emphasize change of the 
damage-sensitive feature due to 

damage 

An expert judgment is needed 
to select the initial parameters 

(Kim et al., 
2013) 

Mahalanobis Square 
Distance (MSD) 

Its simplicity and computational 
efficiency  

MSD fails when nonlinearities 
are present in observations 

(Zhou et al., 
2015) 

Autoregressive models Can be used to extract damage-
sensitive features 

The appropriate order 
estimation of an AR model is a 

complex issue 

(Laory et al., 
2013) (Goi & 
Kim, 2017) 

MSD with Minimum 
Covariance Determinate 

(MCD) 

Produces high resolution of 
structural condition variation and 

reduce uncertainty regarding 
external sources of excitation 

Do not present a 
computational efficiency since 

this process takes multiple 
iterations 

(Moughty & 
Casas, 2017) 

 

In applications not using modal parameters, and instead using displacement/strain measurements 

as features for damage identification, (Tondreau & Deraemaeker, 2014) proposed a damage sensitive 

feature in two experimental applications using ambient dynamic strain measurements. In this case, all 

the damage scenarios were correctly located without false alarms. (Sun et al., 2016) proposed a 

damage detection method by analysing dynamic displacement of bridge structures under moving 

vehicle, which is represented by the numerical simulation of a beam model. The results showed both 

reliability and efficacy of this method in damage detection of bridge structures. Also, according to 

statistical hypothesis testing criteria, (Ou et al., 2017) covered a problem focused on the damage 

detection via the use of statistical and modal damage detection methods for a small-scale wind turbine. 

In conclusion, the statistical-based methods outperform modal-based ones, succeeding in the 

detection of induced damage, and they can be very well integrated into maintenance processes. 

(Fassois and Kopsaftopoulos, 2013) outlined several statistical time series methods for vibration 

based structural health monitoring using a laboratory truss structure. The proposed methods achieved 

the detection, the location and the quantification of damages. However, they were limited by the 

specific type of model employed and for the adequate user experience. Moreover, (Kankanamge & 

Dhanapala, 2016) utilized the wavelet analysis for identification of modal properties and damage 

detection in two case studies: a single-span steel girder bridge in Holland, Michigan and a cable-

stayed bridge in mainland China. The results showed that Continuous Wavelet Transform (CWT) 

method is a very effective tool, which is able to provide reliable results both in modal parameters 

identification and damage detection. (Ding and Chen, 2013) analysed the multi-scale wavelet 

transform coefficients of curvatures of mode shapes in order to indicates the damage location in a 

simply supported beam bridge. The results showed that the peaks of the wavelet transform coefficients 

indicate the damage location. (Hester & Gonzalez, 2012) utilized the wavelet energy content to detect 

damage in a simply supported bridge beam model, which proved to be more sensitive to damage. 

The recent advances in Artificial Intelligence based damage identification methods are 

increasingly being used for their great performance. For instance, (Laory et al., 2013) proposed a 
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methodology for damage detection that combines moving principal component analysis (MPCA) with 

four regression-analysis methods applied in three case studies. The results indicate that the combined 

methods perform better than each individual method in terms of damage detectability and time to 

detection. (Nguyen et al., 2014a) used several variants of Principal Component Analysis (PCA) for 

detection and localization of damage on the Champangshiehl bridge and the precast panels. The 

results demonstrated that the damages were better distinguished in both cases.  

Some researchers have applied other innovative techniques for analysis of bridge vibration data 

and damage identification. For instance, (Santos et al., 2013) implemented a strategy to detect 

structural damage using a symbolic data analysis in order to reduce raw vibration data through a 

statistical process utilizing Interquartile Ranges. The researchers obtained good results from the 

baseline-free strategy proposed, and this allowed to detect the structural changes regardless the modal 

quantities used (modal parameters) in real-time (without resorting to the entire data set). 

This paper, which is an extended version of the paper by Moughty and Casas (2018b), presents 

a number of empirical vibration parameters designed to be suitably applicable as damage indicator 

features to the specific vibration signals that are typical from either long-duration, low-energy 

stationary ambient vibration or short-duration, high-energy non-stationary vehicle-induced signals. 

 

2. Empirical vibration parameters 
 

2.1. Vibration Parameters 
 

This section introduces the five vibration parameters that are extracted from acceleration 

responses that will be tested as vibration-based damage features: 

 

(1) Cumulative Absolute Velocity (CAV) 

It is an energy-based vibration parameter proposed by Kramer (1996). It is the summed integral 

of all absolute acceleration values of the vibration response history: 

  (1) 

In reality, this parameter represents the area under the absolute accelerogram and CAV presents 

a good correlation with structural damage potential. Figure s1(a) and s1(b) shows an acceleration 

record and the corresponding values of CAV as they evolve over time. 
 

0
(t)

t
CAV x dt= ò !!
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Figure 1. Illustration of the definitions of vibration parameters (a) acceleration time series (b) CAV (c) 

CAD. 

 

(2) Cumulative Absolute Displacement (CAD) 

It is an adaptation to the above CAV vibration parameter; however, in this case the acceleration 

signal is first transformed into displacements using integration and band- pass filtering to avoid drift. 

Figure 1(c) shows the CAD integral in the evaluated time: 

  (2) 

(3) Distributed Vibration Intensity (DVI) 

It is a novel vibration parameter that is based on the concept of vibration intensity, which in 

simple harmonic motion context can be defined as (I=a2/f), where a is acceleration amplitude and f is 

frequency. The SI units of vibration intensity are mm2/s3 and its logarithmic power form is decibels 

(dB). For the distributed variant employed herein, a Fourier transformation is applied to the vibration 

data and the summation of the vibration intensity values is taken within a frequency range, denoted 

by (fi) within the limits m-n in Equation (3). It is important that the frequency range selected 

encompasses the first few modes of vibration of the structure; in the present study, the frequency 

range is taken as (m-n = 1Hz – 20Hz). In this way, DVI may capture the damage sensitivity associated 

with energy and modal frequency changes. 
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For  (in Hz) 

 

(4) Mean Cumulative Vibration Intensity (MCVI) 

It is the second of three parameters based on the concept of vibration intensity (energy / 

frequency). In MCVI, the energy portion, i.e. the numerator, is the square of the aforementioned 

vibration parameter CAV, while the denominator is a weighted mean value of Fourier frequency 

within a specified frequency range. As per Equation (4), the weighting is applied to the discrete 

frequencies (fi) via their corresponding Fourier Amplitude values (FA). 

As highlighted for DVI, it is important that the frequency range selected encompasses the first 

few modes of vibration of the structure; in the present study, the frequency range is taken as (m-n = 

1Hz – 20Hz). 

  (4) 

For  (in Hz) 

(5) Mean Cumulative Vibration Intensity (MCVI) 

It is the last vibration parameter that is based on concept of vibration intensity (energy / 

frequency), however, in this case the vibration parameter is designed for use on non-stationary and 

non-linear data, such as the vehicle induced excitation case assessed in the present study. IVI is the 

product of two Hilbert-Huang Transform (HHT) (Huang et al., 1998) parameters; instantaneous 

amplitude and instantaneous frequency, which are commonly presented together in a Hilbert-Huang 

Spectrum. However, this method of representation is not easily quantifiable. A more objective 

representation of instantaneous amplitude and frequency can be obtained via IVI, whose calculation 

is summarized in following explanatory paragraphs. For a more in-depth explanation on IVI’s 

calculation and application, the reader is referred to (Moughty & Casas, 2018a). 

The first step is to decompose the raw non-stationary and non-linear vibrations signals into 

different Intrinsic Mode Functions (IMFs) using Empirical Mode Decomposition (EMD). In the 

present study, an advanced method of EMD is used to improve the acquisition performance of IMF, 

known as Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(ICEEMDAN) and proposed by (Colominas et al., 2014). The authors proposed substantial 
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improvements to obtain components with less noise and more physical meaning. The resulting IMFs 

are input into the Hilbert Transform: 

  (5) 

The resulting Hilbert Transform is grouped with to form an analytic signal 

(Equation 6) whose constituents and  (instantaneous amplitudes and  phases), can be 

expressed by Equation (7) & Equation (8) respectively. Instantaneous frequencies 	 of each 

IMF are determined by differentiating the instantaneous phase function in Equation (9). Equation (10) 

expresses how the vibration parameter IVI is obtained by combining the instantaneous amplitudes 

and frequencies.  

  (6) 

  (7) 

  (8) 

  (9) 

                                              (10) 

Finally, note that IVI can be obtained for each particular sensor. Therefore, in order to guarantee 

that all obtained physically meaningful IMFs are utilized for damage localization, the sensor obtained 

IVIs can be combined to provide the Amalgamated Instantaneous Vibration Intensity (AIVI), which 

is studied in more detail in the results section.  

 
2.2. Application Suitability of Vibration Parameters 

 
The variables of each bridge monitoring campaign, such as monitoring duration, excitation 

method, number and type of sensors can differ widely from project to project. This may be due to the 

influence of external conditions associated with each bridge, such as the traffic volume and type, 

socioeconomic factors and the financial budget available. The result being that the vibration data 
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obtained may attain different properties that may render some damage sensitive features, such as those 

presented here, unsuitable for application.  

For instance, long duration vibration data may not be suitable for the vibration parameter IVI, as 

the computation effort of the EMD process would be substantial. Furthermore, Fourier-based damage 

sensitive features, such as modal parameters are unsuitable for non-stationary vibration data that 

would be typical of vehicle induced excitation bridge testing. The proposed methods studied here 

were applied when the traffic was closed, that is, when there was no normal traffic excitation. In 

addition, these methods are useful when there is only environmental vibration and for a controlled 

load test. For this reason, Table 2 is provided to give a breakdown of the applicability of each of the 

selected vibration parameters to specific vibration properties that may influence their damage 

identification performance. 

Table 2. Vibration parameter application classification 

 Vib. Para. CAV CAD DVI MCVI IVI/AI
VI Property  

Fourier-Based            
Parameter Ð Ð P P Ð 

Non-Stationary Signal  
Applicability  P P Ð Ð P 

Long Duration  Signal 
Applicability P Ð P P Ð 

Suitability to Ambient 
Induced  Excitation P Ð P P Ð 

Suitability to Vehicle 
Induced Excitation P P Ð Ð P 

 

3. Damage identification method 
 

The damage identification methodology employed is dependent on the quantity of extracted 

vibration parameters and their origin. For instance, in an ambient condition test data, vibration 

parameters are continuously extracted every minute over the duration of the progressive damage test, 

while for a vehicle induced excitation test, vibration parameters are extracted for each vehicle crossing 

only. This provides two very differently sized datasets. In the vehicle induced excitation case, the 

method of damage detection is simple like-for-like comparison, while ambient excitation case 

requires the application of an outlier detection algorithm suited to the probability distribution of each 

vibration parameter. For Gaussian distributed vibration parameters, such as DVI and MCVI, the MSD 

multivariate outlier detection algorithm is employed. It uses mean and covariance data to train and 

assess dataset continuity. MSD is calculated as follows: 

  (11) { } { } [ ] { } { }( )1( )TD X X X XV VV

-= - å -
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Where is the potential outlier, is the mean of the training data and   is the 

covariance matrix of the training data. In addition to the MSD, the Minimum Covariance Determinate 

(MCD) estimator is also employed to enhance robustness and reduce uncertainty regarding sources 

of ambient excitation by identifying and removing outliers from the training data prior to MSD. The 

FAST MCD algorithm by (Rousseeuw & Van Driessen, 1999) is employed in this study. 

For non-Gaussian distributed vibration parameters such as the energy-based parameter CAV, its 

value can never be less than zero and has no theoretical maximum. As such, it distribution fit can be 

taken as Log-Normal, which is unsuitable for use with MSD. Instead, symbolic data objects are 

obtained from the Log-Normal distributions of overlapping windowed CAV datasets of 30min 

duration with 6 min overlap. Symbolic data objects are representative values of a larger data set that 

can be used in an SHM context, as demonstrated by Santos et al. (2013). In the present study, the 

overlapping Log-Normal distributions of CAV are reduced to their symbolic data objects of; Median 

and Interquartile Range. Using these two symbolic objects as a two-dimensional damage feature 

vector, changes to the CAV distribution can be calculated using pairwise Euclidean distance as 

follows: 

  (12) 

Where and   represent the first symbolic data object for the undamaged and damaged 

cases, respectively, and  and   represent the second symbolic data object for the undamaged 

and damaged cases, respectively. The damage identification method used in the case of the forced 

vibration is based on the Improved Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise (ICEEMDAN) as presented in Moughty and Casas 2018a. 

 

4. Case studies 
 

4.1. Ambient Excitation - S101 Bridge 
 

The S101 was a post-tensioned concrete bridge located near Vienna in Austria that had a main 

span of 32m and two 12m side spans. The deck cross-section was 7.2m wide double-webbed t-beam, 

whose webs had a width of 0.6 m. The height of the beam varied from 0.9 m in the mid-span to 1.7 

m over the piers, as can be seen in Figure 2. The columns, beams and the deck slab were built with 

concrete material of 2400 kg/m3 density and the Young's modulus of 24.8 GPa. In 2008, it was 

decided to replace the S101 Bridge due to insufficient carrying capacity and deteriorating structural 

condition being identified from visual inspection data. Before demolition, a progressive damage test 
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was conducted on the S101 Bridge across 3 days in 2008 though the completion of a number of 

sequential actions, which are presented in Table 3.  

Overall, the damage applied can be divided into two main stages; (1) simulated pier foundation 

settlement, (2) bridge deck stiffness loss through the severing of four pre-stressed tendons. During 

the test the bridge was closed to traffic, meaning that excitation was mainly ambient, although one 

traffic lane beneath the bridge was kept in use. As for environment sources of excitation, very little 

temperature variation was observed throughout the test duration as sub-zero temperatures were kept 

within a 3 to 4 degree range due to persistent heavy cloud cover (VCE, 2009). Vibration data was 

recorded by 13 accelerometers located on one side of the bridge deck, with a sample rate of 500 Hz. 

Vibration recordings from the sensors did not cease throughout the progressive damage test. For the 

present study, the measured data was discretized into 66 sec long segments of 33,000 samples. 

 

Figure 2. View of the S101 Bridge and bridge dimension (dimensions in centimeters) 

 

Table 3. Damage actions applied to the S101 Bridge 

Damage 
State Damage Actions 

1 Undamaged 
2 North-Western (NW) pier cut through 
3 NW pier lowered by 1cm 
4 NW pier lowered by 2cm 
5 NW pier lowered by 3cm 
6 Support plates inserted & pier returned to origin 
7 First pre-stressed tendon cut over NW pier 
8 Second pre-stressed tendon cut over NW pier 
9 Third pre-stressed tendon cut over NW pier 
10 Forth pre-stressed tendon cut over NW pier 
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4.2. Vehicle-Induced Excitation - Steel Truss Bridge 
 

          The data have been obtained from a progressive damage test conducted on a Japanese bridge that 

was subjected to a moving vehicle excitation (Kim et al., 2013). The bridge in question was a simply-

supported steel truss bridge that spanned 59.2m with a width of 3.6m and a max height of 8m. In the 

bridge, the truss members were built by beam elements and were assigned with steel material properties 

(density 7900 kg/m3 and Young’s modulus 200 GPa). Likewise, the deck was built of concrete material 

with the density 2400 kg/m3 and elasticity modulus of 21 GPa. It was scheduled to be replaced in 2012, 

before which a progressive damage test was carried out while the bridge was closed to the public. 

Dynamic response was recorded from 8 uniaxial accelerometers, positioned as per Figure 3(b) and 

measuring the vertical acceleration, with sample rates of 200Hz.  

           The induced damage scenarios consist of severing vertical members of the truss structure in the 

locations presented in Figure 3(b). The progression of the damage states is described in Table 4 and 

presented in Figure 4. The damage actions began with the partial intersection of the mid-span vertical 

member (DMG1), before its full intersection was completed (DMG2). After which, the damaged 

member was reconnected (RCV) with a welded flange. Finally, the vertical member at 5/8th span was 

completed severed (DMG3). 

 

Figure 3. Steel truss bridge (a); sensor & damage locations (b) 

 

Table 4. Damage actions conducted on the Steel Truss Bridge 

Damage 
State Description of Damage Actions 

1 Undamaged 
2 Half cut in vertical member at mid-span 
3 Full cut in vertical member at mid-span 
4 Mid-span member reconnected 
5 Full cut in vertical member at 5/8th span 
  

3600 
mm

8@7400 = 59200 mm

(a) (b)
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Figure 4. Steel truss bridge damage scenarios 

 

            For each damage scenario, a 21kN double-axle truck crossed the bridge 3 times at 

approximately 40km/h. The weight of the vehicle was enough to excite the bridge and to obtain the 

vibration parameters. In addition, each damage scenario could be carried out normally considering that 

the 21kN was not excessive. A sample time-history of acceleration response is presented in Figure 5 

with the section of forced vibration shaded in grey. The forced vibration response is quite short in 

duration and highly non-stationary, as such it is unsuitable for Fourier-based transformation, therefore, 

this section of the signal is taken as the input for the parameter IVI. 

 

Figure 5. Example of vehicle induced vibration response 
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5.1. Ambient Excitation - S101 Bridge 
 

The damage identification assessment results for the S101 Bridge under ambient excitation are 

presented herein for the three vibration parameters that were deemed suitably applicable to such 

conditions as per the criteria set out in Table 2. 

(1) CAV 

The Euclidean Distance evolution of the CAV-based symbolic data objects (Median & 

Interquartile Range) throughout the duration of the progressive damage test is presented in Figure 6. 

For this purpose, all the damage scenarios presented in Table 3 were evaluated considering the Y-

axis as a linear representation of time. It can be observed that an enhanced divergence from the 

undamaged state occurs at the sensors located at the damaged North Pier during the pier settlement 

test. After the pier is returned to its original positions, the Euclidean distance returns close to normal. 

This is to be expected, as the pre-stressed tendons should supply enough compression to close the 

majority of cracks caused by the pier settlement, effectively reversing the simulated damage. The 

succeeding damage events that entail the severing of 4 pre-stressed tendons generate little change in 

CAV distribution through time. Although this may seem like a missed damage event, it may also 

indicate that a sufficient level of compression is still present in the remaining pre-stressed tendons to 

maintain normal structural behaviour without severely cracked sections. 

 

 

Figure 6. Evolution of CAV through time at each sensor using the Euclidian Distance of the chosen 

symbolic data objects of median and interquartile range of overlapping windowed CAV Lognormal 

distributions. 

 

(2) DVI 

The MSD evolution of the vibration parameter DVI throughout the duration of the progressive 

damage test is presented in Figure 7. It can be observed that an enhanced divergence from the 
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undamaged state occurs across the bridge during the pier settlement test, but particularly so at the 

sensors located at the damaged North Pier. Similarly to CAV, the divergence of CAD reduces upon 

pier repositioning, however, as the pre-stressed tendons are severed, damage is once again highlighted 

at the North Pier. 

 

Figure 7. Evolution of DVI through time at each sensor using Mahalanobis Squared Distance. 

 

(3) MCVI 

The MSD evolution of the vibration parameter MCVI throughout the duration of the progressive 

damage test is presented in Figure 8. It can be observed that an enhanced divergence from the 

undamaged state occurs on the North side of the bridge during the pier settlement test, with no exact 

location of damage identified. For the severed pre-stressed tendons, MCVI provides a strong 

indication of damage for the 3rd tendon cut, but no others. 

 

Figure 8. Evolution of MCVI through time at each sensor using Mahalanobis Squared Distance. 
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5.2. Vehicle-Induced Excitation – Steel Truss Bridge 
 

In this section, an exhaustive analysis of Instantaneous Vibration Intensity parameter (IVI) is 

developed. IVI utilizes the time-frequency-energy representation of the well-known Hilbert Spectrum 

in a novel manner that provides more quantifiable measure of signal variations. In this study, the IVI’s 

obtained for each vehicle crossing are analysed across a 10s duration that captures the forced vibration 

response of the bridge under the vehicle load (see case study number 2). For the undamaged condition, 

Figure 9 shows an example of Hilbert-Huang Spectrum that is obtained for the first 3 IMFs of Sensor 

1 in the steel truss bridge described in the case of study. The time–frequency variation shows energy 

concentration around 3Hz, 6.8Hz and 13.3Hz, which represent the first, second and fifth vibrational 

mode as per Kim, et al. (2014). However, considering only this information is difficult to ascertain 

changes in structural behaviour. For this reason, a more quantitative representation known as IVI is 

presented in Figure 10. This relation obtained from Equation (10) considers both instantaneous 

frequencies and amplitudes. 

 

Figure 9. Hilbert-Huang Spectrum for first 3 IMFs 

 

Figure 10. Instantaneous Vibration Intensity from first 3 IMFs 
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Previous studies presented by (Moughty & Casas, 2017) and (Moughty & Casas, 2018a) show 

that some IMFs extracted from the acceleration data are physically meaningful. For this purpose, it 

must be taken into account that three of the IMFs extracted from the tests that will be used here, 

correspond to the three natural vibration frequencies of the bridge and, therefore they are related to 

the IVI parameter.  

 
5.2.1 Analysis based on individual IMF´s 

 
As in this case each analyzed IMF corresponds to a natural frequency of the bridge, the analysis 

starts with the results obtained for each IMF separately. In this sense, Figure 11 shows the changes of 

IVI at each sensor along the bridge for frequency 1 (IMF 3) and bearing in mind that the intensity 

increases as greater damage occurs since the IVI parameter is closely related to the amplitude and 

frequency. Figures 11 (a) to Figure 11 (e) display an interesting behavior for the first five sensors 

along the bridge, and it is clearly shown that the closer the sensor to the location where damage occurs, 

the better the sensor manages to capture the behavior of the bridge structure from an undamaged state, 

moderate damage (DMG 2), recovery (RCV) and severe damage (DMG 3). Furthermore, in location 

of critical sensors as 3 and 4, the Figure 11 (c) and Figure 11 (d) plot a greater increase of IVI and a 

shift to the left due damage 2 and damage 3 respectively. Additionally, the analysis of the maximum 

peaks shows a considerable increase of Δ1=0.08 and Δ2=0.13 between the un-damaged and damaged 

scenarios, which demonstrate the presence of damage close to them. On the other hand, sensors 7 and 

8 located on the other side of the cross section of the bridge show slight variation between un-damaged 

and damaged cases (Δ3=0.03 and Δ4=0.03), which means that they can not detect damage because 

the damage is not close to them, as can be shown in Figure 11 (g) and Figure 11 (h) respectively. In 

addition, the sensor 6 do not show different behavior between un-damaged and damaged cases (Figure 

11f). 
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Figure 11. Variation of Instantaneous Vibration Intensity parameter (IVI) for frequency 1 (IMF 3) at 

each sensor location along the bridge during all damage states: (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) 

sensor 4 (e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 
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amplified, which indicates that the damage 2 (DMG 2) occurs in this location as shown in Figure 3.  

In the second case, it is clearly evident how the intensities in sensor 4 are amplified exactly in the 

position where the damage 3 occurred (DMG 3). In conclusion, the instantaneous vibration intensity 

referred to the first vibration frequency is able to identify and locate the damage in the exact position 

where the sensor is located. 

 
Figure 12. Variation of Instantaneous Vibration Intensity (IVI) parameter for frequency 1 in two 

damage scenarios: (a) damage 2 (DMG 2) (b) damage 3 (DMG 3). 
 

In this part, the results obtained from the analysis carried out previously are verified, in which 

IVI parameter obtained good performance to detect and locate the damage in the bridge. Figure 13 

shows the analysis of instantaneous frequencies for the most critical sensors 3 and 4 where damage 2 
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Figure 13. Variation of Instantaneous frequencies 1 (IMF 3) at each damage stages (a) sensor 3 (b) 

sensor 4. 
 

Additionally, instantaneous amplitude analysis is performed for the most critical sensors 3 and 

4 where damage 2 and 3 occurred respectively, this can be shown in Figure 14. For sensor 3, Figure 

14 (a) shows that the instantaneous amplitude in the undamaged state (UND) has a maximum peak 

of 0.62. However, when damage 2 occurs (DMG 2) the maximum peak increases to 0.83 getting a 

maximum variation of Δ1 = 0.21. Then, the recovered state of the structure (RCV) occurs when the 

bridge has a behaviour of returning to its initial state (undamaged). Finally, in the third damage (DMG 

3) the maximum amplitude peak increases in value. In the same way, the analysis of the sensor 4 

(Figure 14b) shows a similar behaviour like presented in sensor 3, since the damage 3 occurs in 

location of sensor 4. In addition, in this state, the maximum peak reaches a value of 0.96, which 

produces a maximum variation of Δ2 = 0.32. 

 
Figure 14. Variation of Instantaneous amplitudes for IMF 3 at each damage stages (a) sensor 3 (b) 

sensor 4. 
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Furthermore, a clear signature of damage is not identified and this could be due to noise presented in 

frequencies and amplitudes. This is clearly understood since the IVI has a direct relationship with the 

instantaneous vibration frequencies and amplitudes (as shown in equation 10). 

 
Figure 15. Variation of Instantaneous Intensity parameter (IVI) for frequency 2 (IMF 2) at each sensor 

locations along the bridge during all damage states: (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4 

(e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 
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Figure 16 (a) and (b) provide the variation of the instantaneous frequency 2 (IMF 2) for the most 

critical sensors 3 and 4 respectively. In this regard, both sensors can not be used to identify the 

presence of structural damage over time. In the same way, this behaviour does not represent the 

physical condition of the four damage scenarios already studied. In conclusion, the second frequency 

of vibration (IMF 2) is not able to recognize the structural damage due to the presence of high noise 

level in the signals. 

 
Figure 16. Variation of Instantaneous frequencies 2 (IMF 2) at each damage stages (a) sensor 3 (b) 

sensor 4. 
 

The study of the instantaneous amplitude for the second vibration frequency is shown in Figures 

17 (a) and (b) for sensors 3 and 4 respectively. Taking as reference that the IVI parameter depends on 

the instantaneous amplitude, it is verified that this is not useful to identify and locate the damage 

because in both cases there is no maximum reference peak, furthermore, there is no trend that can be 

useful for evaluate the undamaged and damaged condition of the bridge. 

 
Figure 17. Variation of Instantaneous amplitudes for IMF 2 at each damage stages (a) sensor 3 (b) 

sensor 4. 
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does not present a well-established damage feature and presents a high variability. For this reason, 

the exact position of the damage can not be located. Bearing in mind the same analysis for IMF 2, 

Figure 19 and Figure 20 plot the instantaneous frequency and amplitude respectively. Thereby, the 

IVI parameter from IMF1 can not be used to identify the damage because the frequencies as well as 

amplitudes are highly variable. 

 
Figure 18. Variation of Instantaneous Intensity parameter (IVI) for frequency 5 (IMF 1) at each sensor 

locations along the bridge during all damage states: (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4 

(e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 
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Figure 19. Variation of Instantaneous frequencies 2 (IMF 1) at each damage stages (a) sensor 3 (b) 

sensor 4. 

 
Figure 20. Variation of Instantaneous amplitudes for IMF 1 at each damage stages (a) sensor 3 (b) 

sensor 4. 
 

As a conclusion of this analysis, only the case of IMF 3, corresponding to the first vibration 

mode, reported accurate results regarding detection and location of damage. 
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21 (e) and Figure 21 (f) respectively. However, taking into account the undamaged state of the bridge 

as reference, in Figure 20(c) the sensor 3 presents a slight variation (Δ1=0.03) caused by the total cut 

in a vertical member at 5/8th-span (DMG 2). Furthermore, the maximum damage was identified 

(DMG 3) for sensor 4 as shown Figure 21 (d) and this is presented in the large increase of AIVI 

parameter (Δ2=0.12) that clearly reflects the severity and intensity of the damage, and in this way, it 

can be measured and compared with the rest of the sensors. Moreover, Figure 20(g) and Figure 21 (h) 

display a slight increase of AIVI parameter in the location of the sensors 7 and 8 due to the damages 

2 and 3 respectively. For damage 2, the sensor 7 is able to capture a variation of Δ3=0.02 and sensor 

8 increases in intensity by a value of Δ4=0.04 because of damage 3. This slight variation can be 

explained since sensors 7 and 8 are located in front of sensors 3 and 4 taking as reference the cross 

section of the bridge (as shown in Figure 3). In this way the value of AIVI becomes only slightly 

modified because the damage is not close to them. 
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Figure 21. Vertical variation of Amalgamated Instantaneous Vibration Intensity (AIVI): (a) sensor 1 

(b) sensor 2 (c) sensor 3 (d) sensor 4 (e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 
 

Figure 22 (a) and Figure 22 (b) show the behavior of the most critical positions: sensor 3 and 4 

on one side and sensor 7 and 8 on the other side of the bridge. In this case, the evolution of the 

intensity over time indicates that the damage and the recovery can be detected automatically and AIVI 

vibration parameter improves the sensitivity to the detection of damage when compared to the results 
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obtained with IVI in the previous section.  Finally, all the sensors captured the recovery behaviour 

(RCV scenario) and this is shown when the AIVI values try to return to the undamaged state. 

 
Figure 22. Comparison of AIVI parameter between critical sensors located in the damages: (a) sensor 

3 and sensor 4 (b) sensor 7 and sensor 8. 
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sensors for initial undamaged condition (IP1=Initial Position). This state displays a maximum value 

aligned for all sensors in 8.6 seconds. Besides, in forced vibration time interval, a larger instantaneous 

intensities induced by the vehicle passage could be observed. The instantaneous values are 

significantly higher for damaged cases compared with the undamaged state (healthy) bridge structure. 

In the beginning (5-8.6 s approximately), the Figure 23 (b) plots the AIVI values for damage level 2 

which increase relatively (DMG 2) and these were moved to the left compared with undamaged state. 

All the sensors show that maximum intensity values are shifted to the left 1 second approximately, 

from the initial position (IP1) to the final position (FP1). This behaviour is observed after the vehicle 

has passed over the sensor 3 location, where the second damage occurred (DMG 2). Figure 23 (c) 

provides the recovery state (RCV).  The maximum peaks of instantaneous intensity try to move to the 

right from a final position (FP1) to another final position (FP2). From this behaviour, it can be 

understood that bridge structure attempts to return to its undamaged initial condition. Afterwards, as 

shown in Figure 23 (d), the tendency of the peaks is to move to the left. This is reasonable since in 

this scenario the greatest damage occurred (DMG 3) and the most critical sensor 4, unlike others, 

suffers significant changes of AIVI due to damage occurring in this position. The maximum peaks 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Am
al

ga
m

at
ed

 In
st

an
ta

ne
ou

s 
In

te
ns

ity
 (A

IV
I)

Time (Sec)

Sensor 3
Sensor 4

Δ1

Δ2

UNDAMAGED                                            DMG 2                                              RECOVERED DMG 3

 

(a) 

0.00

0.05

0.10

0.15

0.20

0.25

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Am
al

ga
m

at
ed

 In
st

an
ta

ne
ou

s 
In

te
ns

ity
 (A

IV
I)

Time (Sec)

Sensor 7
Sensor 8

Δ3
Δ4

UNDAMAGED                                            DMG 2                                              RECOVERED DMG 3

 
(b) 

 



Development of a machine learning based methodology for bridge health monitoring |  Rick Delgadillo 
 
 

  
 

100 

move to the left from a final position (FP2) to another final position (FP3) and the time shift is around 

0.5 seconds. 

As a final caveat, a maximum increase of 0.2 to 0.32 in AIVI parameter was obtained during 1 

second approximately, it could be recognized after all the damage scenarios imposed to bridge 

structure. All this behaviour of induced excitation in the bridge can be understood because for each 

damage scenario, the forced vibration data that the vehicle generated were taken as the average 

between the three passages at 40km/h approximately. 

 

 
Figure 23. Maximum peak variation in four damage scenarios over time of AIVI parameter (a) 

undamaged (UND) (b) damage 2 (DMG 2) (c) recovered (RCV) (d) damage 3 (DMG 3). 
 

For more detail, the present study also suggests to consider other damage feature parameters that 

can be extracted from Amalgamated Instantaneous Vibration Intensity. Figure 24 shows a second 

maximum point candidate to analyse structural damages. In this case, the pattern of the AIVI 

parameter is similar to the one presented in Figure 23. According to Figure 24 (a), the second 

maximum point is located at 9.9 seconds for undamaged condition. Then, second peaks follow a well-

known trend, these move from right to left (IP1 to FP1) due to first damage like can be seen in Figure 

24 (b). After that, the bridge structure recovers and attempts to return to its initial state of undamaged 

condition (Figure 24c). Furthermore, the final position (IP1) moves to another final position (FP2). 

Subsequently, the Figure 24(d) plots the extreme scenario for damage DMG 3 where the amalgamated 

instantaneous intensity goes to final position (FP3), and this final state shows clearly a higher 

variation that exists in the AIVI parameter captured by all the sensors. 
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Therefore, the horizontal and vertical changes experienced by Amalgamated Instantaneous 

Vibration Intensity parameter (AIVI) serve to identify and locate the damage in the bridge, and this 

trend improves when the maximum peaks are analysed in detail. It is shown that AIVI (all IMF´s 

together) is a better suited parameter for damage identification than IVI (IMF´s separately). The 

results obtained by (Chang & Kim, 2016), when analysing the same test but in the free vibration part 

of the acceleration signal, are similar to the ones obtained here. In fact, in their study the analysis 

based on a single frequency was as effective as when using multiple ones, because it was sensitive 

only to certain specific damage scenarios. Therefore, AIVI will be used in the next section to compare 

its performance with the other selected parameters in the case of forced vibration. 

 

 
Figure 24. Second peak variation of AIVI parameter in four damage scenarios over time (a) undamaged 

(UND) (b) damage 2 (DMG 2) (c) Recovery (RCV) (d) damage 3 (DMG 3). 

 
5.2.3 Comparison of vibration parameters from forced vibrations 

 
The damage identification assessment results for the Steel Truss Bridge under vehicle induced 

excitation are presented herein for the three vibration parameters that were deemed suitably applicable 

to such conditions as per the criteria set out in Table 2: CAV, CAD and AIVI. In addition, a damage 

indicator parameter is employed to quantify the changes per sensor per damage scenario. This is called 

Cumulative Difference Ratio (CDR) as presented in (Moughty & Casas, 2018a). CDR is presented in 

Equation (13), in the case of parameter AIVI, where  and  are the 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

5 6 7 8 9 10 11 12 13 14 15 16

Am
al

ga
m

at
ed

 In
st

an
ta

ne
ou

s 
In

te
ns

ity
 (A

IV
I)

Time (Sec)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8

IP1

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

5 6 7 8 9 10 11 12 13 14 15 16

Am
al

ga
m

at
ed

 In
st

an
ta

ne
ou

s 
In

te
ns

ity
 (A

IV
I)

Time (Sec)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8

IP1FP1

 

(a) (b) 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

5 6 7 8 9 10 11 12 13 14 15 16

Am
al

ga
m

at
ed

 In
st

an
ta

ne
ou

s 
In

te
ns

ity
 (A

IV
I)

Time (Sec)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8

FP1 FP2

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

5 6 7 8 9 10 11 12 13 14 15 16

Am
al

ga
m

at
ed

 In
st

an
ta

ne
ou

s 
In

te
ns

ity
 (A

IV
I)

Time (Sec)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8

FP2FP3

 
(c) (d) 

 

( )1

n
Damii

AIVI
=å ( )1

n
UDii

AIVI
=å



Development of a machine learning based methodology for bridge health monitoring |  Rick Delgadillo 
 
 

  
 

102 

cumulatively summed values of AIVI across time for the damaged state and undamaged state, 

respectively. A similar equation applies in the case of CAV and CAD. 

  (13) 

(1) CAV 

Figure 25 presents the CAV values obtained at all 8 sensor locations (as per Figure 3) for the 

condition states of; Undamaged, DMG2, RCV & DMG3. All values are normalized to the largest 

undamaged value. It is evident from Figure 24(d) that the DMG3 condition yields a significant change 

in CAV at Sensor 4, which is the damage location. However other condition states are less separable 

by eye. For this reason, Figure 26 is used to portray the percentage variation from baseline for sensors 

1-5 for DMG2, RCV & DMG3. From here it is clearer that the spikes associated with DMG2 & 

DMG3 are located at the point of damage, while the percentage variation of the RCV state is less 

pronounced, indicating that the recovery process succeeded in realigning bridge behaviour to near 

baseline. 

 
Figure 25. Normalized CAV values per sensor for damage scenarios; (a) Undamaged, (b) DMG2, (c) 

RCV & (d) DMG3. 
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Figure 26. CAV percentage variation from baseline at sensors 1-5 for damage scenarios; DGM2, RCV 

& DMG3. 

 

(2) CAD 

Figure 27 presents the CAD values obtained at all 8 sensor locations (as per Figure 4.) for the 

condition states of; Undamaged, DMG2, RCV & DMG3. All values are normalized to the largest 

undamaged value. Again, it is clear that DMG3 yields a significant change in CAD at Sensor 4, which 

is the location of damage. In Figure 28, the percentage variation from baseline for sensors 1-5 for 

DMG2, RCV & DMG3 is given, which shows clear damage at sensors 3 & 4 for damage states DMG2 

& DMG3, respectively. Both sensors are located at the point of damage, indicating a successful 

damage location assessment. Furthermore, the RCV state is close to baseline, which correctly 

indicates no damage present. 
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Figure 27. Normalized CAD values per sensor for damage scenarios; (a) Undamaged, (b) DMG2, (c) 

RCV & (d) DMG3. 

 
Figure 28. CAD percentage variation from baseline at sensors 1-5 for damage scenarios; DGM2, RCV 

& DMG3. 

 

(3) AIVI 

Figure 29 presents the AIVI values obtained at all 8 sensor locations (as per Figure 4.) for the 

condition states; Undamaged, DMG2, RCV & DMG3, of which, DMG3 is again the most obvious 

divergent. The percentage variation of sensors 1-5 is presented in Figure 30 for the condition states 

of; DMG2, RCV & DMG3. It is evident that the two damage locations are identified by AIVI, those 

being sensors 3 and 4 for condition states DMG2 & DMG3, respectively. 
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Figure 29. Normalized AIVI values per sensor for damage scenarios; (a) Undamaged, (b) DMG2, (c) 

RCV & (d) DMG3. 

 
Figure 30. AIVI percentage variation from baseline at sensors 1-5 for damage scenarios; DGM2, RCV 

& DMG3. 

 
 

5. Discussion 
 

Based on the results of the present study, some recommendations for practical cases and advice 
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presented in Figure 31 and discussed herein. 
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1. In the ambient induced excitation case study, two methods of outlier detection were employed; 

MSD for the Gaussian distributed parameters DVI & MCVI, and Euclidian Distance of the 

symbolic data objects from the LogNormal distribution of the energy based CAV. Of the three 

parameters assessed, CAV portrayed the strongest indication of damage for the pier settlement 

test, while DVI was able to identify both types of damage, pier settlement and simulated 

stiffness loss.  

2. In the vehicle induced excitation case study, all empirical vibration parameters assessed (CAV, 

CAD, IVI & AIVI) identified the required damage events, with CAD providing the greatest 

resolution regarding the damage location, as displayed by the singular spikes in Figure 27.  

3. The parameters based on vibration energy showed significant increase throughout the time 

range for all sensors close to damage. In contrast with a sensor away from undamaged state, 

where no appreciable change in vibration magnitudes were observed with increasing levels of 

damage. 

4. To evaluate the damage using the AIVI parameter, it is not only necessary to find the maximum 

peak points, but it is important to analyse the behaviour of the intensity during the entire time 

of the forced load test. According to the exhaustive evaluation of instantaneous intensity, the 

first fundamental frequency, unlike the second and fifth, is the one that obtained better and 

clear results to identify and locate the damage on the bridge.  

5. To evaluate the damage identification capability of the vibration parameters assessed under 

vehicle induced excitation, the percentage variation observed at the damage location for 

condition states; DMG2, RCV & DMG3 are given in Table 5 and can be compared against 

modal frequency changes for each damage scenario in Table 6, courtesy of Kim et al. (2014). 

From the comparison, all of the vibration parameters assessed appear to outperform the modal 

frequency changes in this regard, with AIVI’s percentage differences producing the best 

overall. 

 

 

Figure 31. Flowchart to choose the most appropriate method in the damage identification. 

 

 

 



Development of a machine learning based methodology for bridge health monitoring |  Rick Delgadillo 
 
 

  
 

107 

Table 5. Vibration parameter variation for total number of sensors and damage scenarios 

Vibration 
Parameter DMG2 RCV DMG3 

CAV +9.1% +0.1% +19.8% 
CAD +10.2% -0.1% +22.2% 
AIVI +12.3% -0.1% +35.8% 

 

Table 6. Modal frequency variation (Kim et al., 2014) 

Mode DMG2 RCV DMG3 
1st  B. Mode -2.67% -0.13% +0.31% 
2nd B. Mode +0.20% -0.25% -5.67% 
3rd  B. Mode -0.21% -0.87% -9.05% 
4th  B. Mode +0.22% -0.72% -6.87% 
5th  B. Mode +0.58% +0.19% -0.16% 

 
 

6. Conclusions 
 

The present paper describes a set of novel vibration parameters such as CAV, CAD, DVI, MCVI, 

IVI and AIVI and their feasibility as damage features to detect damage using ambient and forced 

vibrations in two real bridges. Bridge data can be obtained from ambient or forced vibration, that at 

the same time may present some particularities such as linearity and stationarity. For instance, in the 

first bridge analyzed, the signals are linear and stationary, however in the second case, the bridge is 

subjected to a forced vibration, which produces non-linear and non-stationary signals. The developed 

strategy consists of using non-modal vibration-based methods.  The results presented in this paper, 

have demonstrated that many of the novel empirical vibration parameters assessed are suitable for 

damage identification (detection, localization & quantification), provided that they are applied to a 

suitably applicable vibration signal type, as per the criteria set out in Table 1 and Figure 31, and 

provided that a suitable outlier detection method is chosen based on the distribution type of the 

extracted vibration parameter. Some practical recommendations for application of the proposed 

techniques are listed in the discussion section.  

However, it should be pointed out that in both bridge data analysed, operational and 

environmental effects are not considered in the present study.  To include those effects in the damage 

detection performance of the defined vibration parameters is the subject of further research. 
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Abstract: The challenges and future trends in the development of signal processing tools are being 

widely used for damage identification in bridges. Therefore, it is important to analyse the vibration 

signals in order to attain effective damage characterization. In this paper, the non-linear and non-

stationary dynamic response of bridges under operational loads is studied. First, the signals are 

decomposed into intrinsic mode functions (IMF) by a novel Improved Completed Ensemble EMD 

with Adaptive Noise technique (ICEEMDAN). Hilbert-Huang transform is used to obtain their 

corresponding Hilbert spectra. The marginal Hilbert spectrum (MHS) of each IMF and the 

instantaneous phase difference (IPD) are proposed as total damage indicators (DI), in the sense that 

they are able to detect, localize and quantify damage under transient vibration due to traffic. The 

methodology was tested in two case studies: (i) a numerical model of a two-span steel bridge (ii) a 

dynamic test conducted on a real steel arch bridge subjected to a series of artificial damages. The 

experimental and real case results from the damage indices based on the extracted features 

demonstrate the robustness and more sensitivity of the novel Improved Completed Ensemble EMD 

with Adaptive Noise technique (ICEEMDAN) in addressing the damage location.  
 

 
Keywords: Hilbert-Huang Transform (HHT), Empirical Mode Decomposition (EMD), damage 

identification, Marginal Hilbert spectrum (MHS), Phase Difference (PD), transient vibration, traffic 

loads. 
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1. Introduction 
 

Observations of many damages, such as material deterioration, inappropriate usage, 

environmental conditions and issues related to aging are being studied by structural health monitoring 

(SHM). For many decades, the civil engineering community has been deeply developing multiple 

SHM systems via vibration-based techniques for several structures such as bridges. Actually, recent 

advances in sensor and information technologies have improved the performance in big data 

(Entezami et al., 2020), monitoring (Spiridonakos et al., 2016), and damage identification (Delgadillo 

& Casas, 2020; Moughty & Casas, 2017) in bridges. The main dynamic signal processing techniques 

are fast Fourier transform (FFT) (Diez et al., 2016), wavelet transform (WT) (Li et al., 2019) and 

Hilbert-Huang transform (HHT) (Delgadillo & Casas, 2020; Chen et al., 2014). The Hilbert-Huang 

transform allows energy-time-frequency resolution for analysing data from non-stationary and 

nonlinear processes. The first mathematical formulation of this method was proposed by Huang et 

al., 1996. The main step in HHT technique consists in decompose the original signal in several 

intrinsic mode functions (IMF). However, over time, different improvements have been developed in 

the decomposition of signals starting with the EMD (Huang et al., 1996) technique and now an 

improved algorithm named ICEEMDAN is used (Colominas et al., 2014). Shi et al. 2005 proposed 

two methods from measured data containing damage events in a structure. Simulations results based 

on EMD together with Hilbert transform were proposed to determine the natural frequencies and 

damping ratios before and after damage. Wu et al. 2009 developed a new method based on HHT to 

monitor the health of large civil structures under unknown excitation. Both Hilbert-Huang spectrum 

and marginal spectrum analysis based on HHT are utilized for damage assessment. Roy et al. 2019 

considers the problem of long-term monitoring taking into account that a direct comparison of the 

vibration signals or modal properties at different periods of time may not be sufficient to identify the 

damages and their exact locations. In this sense, the extraction of the morphologies of the changes in 

the response signals is very important when analysing the vibration signals. In addition, the 

correlation between the vibration signals and the type, location, and intensity of structural damage 

should be thoroughly studied. For this purpose, the authors used EMD technique and HHT to calculate 

damage indices (DI) using experimental tests conducted on a cantilever steel beam prototype, and the 

results indicate that the proposed method is effective and feasible. Roveri & Carcaterra, 2012 

developed a novel HHT based method for damage detection of bridge structures with cracks under a 

traveling load. The technique demonstrated good capability to identify the presence and the location 

of the damage along the beam using a single point measurement. Some authors (Delgadillo & Casas, 

2019; Delgadillo & Casas, 2020) studied the performance of novel ICEEMDAN and HHT for damage 

identification and localization in real steel bridges under operational conditions. It was concluded that 

HHT and the improved EMD obtain accurately the instantaneous frequency and amplitude and the 

instantaneous vibration intensity (IVI) as damage indicators. 
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In addition, the HHT technique is conformable with response signals of the forced-vibration type 

that are commonly nonlinear and nonstationary in the case of bridge structures due to the vehicle-

bridge interaction. (Kunwar et al. 2013; Readdy & Krishna, 2015) proposed damage detection using 

the HHT technique on bridges structures. Kunwar et al. 2013 examined an instantaneous phase and 

marginal Hilbert spectrum of transient vibration loads to evaluate three damage cases and healthy 

condition of an experimental bridge model. The results showed the efficiency to detect and locate 

damage using the phase difference parameter. The research carried out by Kunwar, 2017 showed an 

improvement in the study of damage localization using acceleration response through vibration 

parameters. The present paper shows the feature extraction using an improved EMD technique 

(ICEEMDAN) and the performance of two damage features (marginal Hilbert spectrum (MHS) and 

instantaneous phase difference (IPD)) to identify, localize and quantify damage in bridges. 

 The method is applied to identify damage in a numerical bridge and in a real truss bridge under 

operational conditions. Nowadays, numerical structures are commonly used for performance 

evaluation in the context of SHM, since they help researchers to study and evaluate the effectiveness 

of several SHM methods. Besides, the scarcity or sometimes the absence of appropriate forced-

vibration experimental data on real damaged structures make numerical models the key for reliably 

reproducing the actual dynamic behaviour of the structure either under operational or ambient 

excitations. Consequently, in this paper, the TU1402 numerical bridge (Tatsis & Chatzi, 2019) has 

been selected as a case study. The utilization of this numerical model is based on the fact that no 

experimental data is available from an original and damaged bridge subjected to vehicular traffic 

when the damage appears in a continuous 2-span bridge, as opposed to the second case study, where 

a different configuration (arch bridge) is analysed. 

 

2. Proposed Approach 
 

A general method which requires two steps in analysing the dynamic response is proposed as 

follows. The first step is to pre-process the data by the novel EMD method called Improved 

Completed Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN). With this 

technique, the raw data is decomposed into a number of intrinsic mode functions (IMF). The second 

step is to, apply the Hilbert Huang transform to the decomposed IMFs and construct the energy-

frequency-time distribution (Hilbert spectrum). In addition to the instantaneous frequency and 

amplitude, the marginal Hilbert spectrum and instantaneous phase difference are also obtained, which 

are proposed and investigated as damage indicators (DI) (Figure 1).  



Development of a machine learning based methodology for bridge health monitoring |  Rick Delgadillo 
 
 

  
 

115 

 

Figure 1. Structure of the proposed method. 

 
2.1. Improvements on Complete Ensemble Empirical Mode Decomposition with Adaptive 
Noise (ICEEMDAN) 

 
The ICEEMDAN method developed by Colominas et al. 2014 was proposed in order to add 

controlled noise to create new extrema in the studied signals. This algorithm is forced to focus in 

some specific values of the scale-energy space, since the local mean is “forced” to stick to the original 

signal in some parts where new extrema are created with exception in the rest of the signal (where no 

creation of extrema occurred). First, with respect to residual noise in modes, each mode is calculated 

sequentially, so the final modes are used by ICEEMDAN for the computation of the next one. 

Furthermore, the local means of each realization of signal plus noise are estimated and the true mode 

as the difference between the current residue and the average should be defined. 

 
2.2. Hilbert Huang Transform 

 
The Hilbert Huang Transform (HHT) is an advanced algorithm, which is being used widely in 

SHM field in order to process nonstationary and nonlinear signals. The HHT method involves two 

steps: (i) decomposition of the original data into different simple intrinsic modes of oscillation and 

(ii) performing Hilbert transform to each simple mode (Hilbert spectrum analysis).  

In this article, two damage indices based on the Marginal Hilbert Spectrum (MHS) and 

unwrapped phase extracted by ICEEMDAN technique are used to detect, locate, and classify the 

severity of the damage. Their definition is presented below. 

The marginal Hilbert spectrum measures the total amplitude contribution from each IMF 

component value of the signal over the time duration T and is obtained by integration over time of 

the Hilbert amplitude spectrum ( ). As mentioned in Huang et al. 1998 and Kunwar et al., 

2013, in a similar way that Fourier spectrum is adequate to analyse linear and stationary time signals, 

the marginal Hilbert spectrum is well suited for non-linear and non-stationary signals. In both cases, 

a reduction in peak frequency may indicate damage. Mathematically, it is expressed as: 
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  (1) 

Apart from the calculation of the instantaneous frequency, HHT of individual IMFs gives the 

instantaneous phase and amplitude. A total instantaneous phase is obtained by the sum of the 

instantaneous phases for each IMF. Equation (2) gives the total number of rotations of the measured 

signal x(t) in the complex plane. The total number of rotations in the complex plane for a unique time 

value t is multiplied by 2π because the  is unwrapped with radian phases in time. 

  (2) 

In a bridge structure, represents the value of a phase function at a location p. Therefore, 

if a point on the bridge structure is chosen as a reference point, the phase function relative to the 

reference point can be expressed as 

  (3) 

Where  represents the relative phase relationship of a travelling structural wave for a given 

state of a bridge. The “phase difference” considers the total phase at any point p on a bridge relative 

to a reference point 0. Therefore, bearing in mind the idea of damage detection,  will alter the 

speed at which energy travels through the structure.  

As mentioned by several authors (Kunwar et al., 2013; Pines & Salvino 2002; Salvino et al., 

2003), and based on laboratory tests, the tracking of changes in the wave speed of response 

measurements considering Equation (3) can be an effective method for damage identification and 

localization and this is further investigated here for the case of a real bridge instead of a laboratory 

model. 

 

3. Case studies: Description 
 

3.1. Numerical model 
 

As part of COST Action TU1402 on Quantifying the Value of SHM, a numerical model 

described in Tatsis & Chatzi, 2019 was generated. The model represents the superstructure of a two-

span continuous steel beam bridge subjected to changing operational conditions. In this section, a 
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description of the FE model of the bridge is firstly presented considering different damaged states. 

Then, a modal analysis is carried out to identify the natural frequencies and vibration modes of the 

superstructure. Lastly, a time history analysis using Newmark integration method is carried out to 

obtain the displacement and acceleration time histories at six measurement points (called “sensors”) 

when a load moves on the deck. The acceleration records are used to check the performance of the 

method and the damage features proposed in this paper for damage detection. 

 
3.1.1 Geometry and material properties 

 
The bridge deck is represented by a two-dimensional finite element (FE) model as shown in 

Figure 2. It consists of a two-span continuous beam with equal span lengths of 10m. The cross section 

is rectangular with constant thickness b = 0.1m and height h = 0.6m. It is assumed to be made from 

low carbon structural steel (Grade S235). The material has a Young’s modulus E = 215GPa, Poisson’s 

ratio ν = 0.3 and density ρ = 7850 kg/m3 at ambient temperature of T = 20ºC. 

 

Figure 2. Geometry of the two-span steel beam on elastic boundaries in the longitudinal and vertical 

directions. 

 
3.1.2 Elastic supports 

 
In this case study, three identical and equally spaced elastic supports are considered. Two elastic 

supports are located at both ends in a width of 0.3m and another is located at the midpoint of the beam 

in a width of 0.4m. These supports are modelled as point supports with the following horizontal and 

vertical stiffness: kx = 107 kN/m in the x longitudinal direction, and ky = 1012 kN/m in the y vertical 

direction. 

 

3.1.3 Element type and Gauss quadrature rule 
 

The bridge superstructure is a thin member with a small z dimension (0.1m thick) compared to 

the in-plane x and y dimensions (20m and 0.6m, respectively). Besides, it is only subjected to in-

plane loading. Generally, structures that meet these two conditions are considered to be in a state of 

plane stress in which the normal stress σz and the shear stress γyz are assumed to be zero. Therefore, 

a two-dimensional FE model is constructed for the plane stress problem using isoparametric 

quadrilateral elements whose formulation is characterized by using the same shape functions to 

interpolate the displacement field and nodal coordinates (geometry), as explained by Oñate, 2013. 
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These elements have two degrees-of-freedom (DOFs) per node corresponding to vertical and 

horizontal displacements. Therefore, the model was discretized using four-node bilinear quadrilateral 

elements (QUAD4: 4-Node and 8-DOFs) and 2x2 Gauss quadrature rule, resulting in 200 and 6 

elements in x and y directions (1200 elements, 1407 nodes and 2814 DOFs in total). 

 

3.1.4 Damage scenarios and sensors 
 

Structural damage can be inferred as a reduction of bridge bending stiffness causing a change of 

the dynamic behaviour (Huang et al., 1996). For this case study, cracks on the beam surface are 

considered. Cracks are modelled by reducing Young's modulus on certain finite elements. In 

particular, six damage scenarios grouped in two damage regions are imposed for damage detection as 

shown in the Figure 3. 

 
Figure 3. Sensors (in green) & damage locations (in red) on steel beam. 

 
In each case, damage differs from each other in the number of the mesh elements affected, as 

shown in Figure 3, simulating the extent of damage. Damaged zone has a constant width of 0.1m and 

the height ranges from 0.1 to 0.3m. The description of the six damage scenarios is summarized in 

Table 1. 

Table 1. Description of damage states performed on the numerical steel beam. 

Damage states Number of damaged 
mesh element Damaged location 

Undamaged (UND) 0 - 
Damaged 1 (DMG1) 1 

At the bottommost edge of the mid-
left span section Damaged 2 (DMG2) 2 

Damaged 3 (DMG3) 3 
Damaged 4 (DMG4) 1 

At the uppermost edge of the mid-
support section Damaged 5 (DMG5) 2 

Damaged 6 (DMG6) 3 
 

Six measurement points called “sensors” are considered to provide information about the 

displacements and accelerations over time in both x and y directions. The location of these sensors is 

described in the Table 2 and shown in figure 3.  
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Table 2. Measurement points or sensors located along the beam. 

Sensors Description Location along the neutral axis 
of the beam (y=0.3m) 

S-01 At 1/4L from the left-hand support x = 2.5m 
S-02 At the middle of the left-span x = 5.0m 

S-03 At 3/4L from the left-hand support x = 7.5m 
S-04 At 3/4L from the right-hand support x = 12.5m 
S-05 At the middle of the right span x = 15.0m 
S-06 At 1/4L from the right-hand support x = 17.5m 

 
The six damage scenarios are classified in two groups of damage (GPD) in order to study the 

sensitivity of the method to localize and quantify the damage in terms of extension (number of 

elements damaged) and intensity (percentage of stiffness reduction (SR)). The corresponding groups 

of damage are described in Table 3. Group of damage 1 (GPD1) considers the effect of severity of 

damage for the maximum crack depth (DMG3) by simulating the damage severity with different 

stiffness reduction, from 50 to 90 %, while Group of damage 2 (GPD2) investigates the influence of 

the crack extension for a given percentage of stiffness reduction (SR=90%).  

Table 3. Groups of damage (GPD). 
Group of 
damage 

Damage 
scenarios 

Stiffness reduction  
SR (%) 

GPD 1 
(x=5m) 

UND - 
DMG3 50 
DMG3 70 
DMG3 90 

GPD 2 
(x=10m) 

UND - 
DMG4 90 
DMG5 90 
DMG6 90 

 
3.1.5 Modal analysis 

 
The effective modal mass is a good measure to evaluate this significance of each mode of 

vibration, as described by Wining & Klein, 1996. For this case study, the number of modes to be 

considered are those providing more than 90% of the cumulative Effective Mass Participation Factor 

(EMPF) The first 20 natural frequencies and the mass normalized mode shapes (Yan et al., 2014) of 

the undamaged structure, mobilizing a EMPF of 100% in the longitudinal and 90 % in the vertical 

directions are shown in Figure A.1 and Table A.1 of the appendix. The first 20 natural frequencies 

range from 18.6 to 654.3 Hz. The lowest natural frequency of 18.6 Hz corresponds to the first 

horizontal mode of vibration in which the motion is entirely longitudinal. The first vertical mode of 

vibration is symmetric at a frequency of 26.1 Hz (mode 2) and asymmetric at 28.9 Hz (mode 3). 

The next modal parameter to be determined in order to calculate the time-history for the 

travelling load is the damping ratio required to compute the damping matrix. The Rayleigh damping 
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formulation (Chopra, 2017) is assumed expressing the damping matrix C as a linear combination of 

the mass and stiffness matrices, M and K respectively, that is  

  (4) 

Where α and β are real scalars calculated with the technique proposed by (Chowdhury & 

Dasgupta, 2003) for systems with large number of degrees of freedom. The objective was to estimate 

a rational value of α and β establishing an increase of the damping ratio, ξ, with each of the subsequent 

modes as the assumption of constant damping ratio for all modes will not be realistic for particular 

systems where higher mode contribution is significant. Therefore, two reference modes of vibration 

are needed to calculate α and β. The EMPF is a crucial factor when calculating damping of a structure 

as modes contributing largely to dynamic responses are found on the basis of the EMPF. For our case 

study, the first dominant frequency in the y-direction takes place in mode 3 (f3 = 28.996Hz) with an 

EMPF, Fiy, of 70.16% expressed in percentage, while the second dominant frequency occurs in mode 

8 (f8 = 156.012Hz) with an approximated Fiy of 12.08%. These are the two reference modes selected 

to compute α and β in such a way so that the modal damping ratios ξ related to the third and eighth 

natural frequencies are ξ3 = 3% and ξ8 =10%, respectively. These damping ratios are very high for a 

standard steel bridge, but have been selected high in order to check that the proposed methodology is 

even able to detect damage in highly damped structures, where the signal to noise ratio (SNR) can be 

much lower. After using the technique proposed by (Chowdhury & Dasgupta, 2003), the Rayleigh 

coefficients are found: α = 4.59982 and β = 0.00019. 

 
3.1.6 Loading 

 
A deterministic moving load (LC1) is considered to derive a time-history analysis simulating 

traffic. A weight of a standard car truck (3 tons) travelling at constant velocity of v = 3m/s (10.8 km/h) 

is considered. A speed of 3m/s is quite satisfactory in order to identify noticeable changes in the 

dynamic behaviour of the structure, although it does correspond to a very low speed for real traffic 

situations. As shown in Figure 4, the vehicle weight is modelled as a concentrated vertical point load. 

This is a simplified model of a real vehicle interacting with a real bridge, but it will be appropriate 

for the verification of the method jointly with the complementary results obtained from the real bridge 

described in the section 3.2. 

 

Figure 4. Loading in the form of a moving concentrated vertical force (force: F=30kN, speed: v = 3m/s). 
 

C M Ka b= +
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It should be noted that the way the time-dependant point load was modelled and the 

corresponding forces introduced in the FEM mesh is the main reason for the forcing frequencies to 

be conditioned by the vehicle speed and the mesh element size in longitudinal direction. That is to 

say, considering a vehicle speed of v and a mesh element length of b causes the bridge superstructure 

model to face an input force with frequencies f = v/b, 2v/b, 3v/b, 4v/b and so on, having a greater 

influence in the dynamic response those frequencies close to natural frequencies. The highest possible 

frequency, n*v/b, where n is an integer, should be less than the half sampling frequency used for the 

time history analysis.  The ratio of the moving load speed and mesh element length (v/b) is a key 

factor to accurately determine the forcing frequencies. For instance, if b remains constant while 

varying v, a low speed may cause the appearance of closely spaced spectral modes, some of which 

may correspond to non-physical modes. In contrast, a high speed can cause no dynamic change when 

damage occurs as long as the damaged element is small. A similar interpretation could be done for 

the value of b. However, this value is obtained in advance after a mesh convergence analysis in order 

to provide accurate results. In our study case, an element length of b = 0.1m was set. Moreover, to 

take into account the influence of low and high frequencies the first and second bending modes were 

considered, thus covering a frequency range of 26-29Hz and 146-156Hz, respectively. Finally, a 

speed of v = 3m/s was found quite satisfactory to obtain a frequency band around 30Hz and 150Hz, 

thus reducing the number of non-physical modes. 

 
3.1.7 Time History Analysis 

 
The implicit Newmark integration schema (Newmark, 1959) is used to solve the differential 

equations of motion in modal coordinates. Then the mode superposition method (Rao, 2017) is used 

to estimate the final dynamic responses in terms of a few numbers of significant eigenmodes. The 

Newmark’s method using γ = 1/2 and β = 1/6, known as the Newark’s linear acceleration method is 

used here (Clough & Penzien, 1975). The Newmark’s linear acceleration method is stable as long as 

the time step to solve the differential equations of motion fulfils the following condition: 

  (5) 

 
Where ωmax is the maximum angular frequency to be considered. As a first approach, ωmax= 

2πfmax corresponds to the 20th mode of vibration with a natural frequency of 654.3Hz, approximately. 

Numerically, the Equation 5 can be expressed as Equation 6 and considering γ = 1/2 and β = 1/6: 
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Therefore, a time step of ∆tc = 0.0001 seconds is considered for independently solving each 

differential equations of motion in modal coordinates. On the other hand, one must also set an output 

time-step size, ∆tout, which should be small enough to provide sufficient resolution for time-history 

analysis. According to table A.1 in the appendix, the two first vertical modes represent a participation 

factor of 83 %, with a maximum frequency of 156 Hz. Therefore, to avoid aliasing and according to 

the Nyquist criterion, a sampling frequency of 400 Hz (equivalent to an output time step = 0.0025 s) 

was decided for the acceleration records. For both groups of damage, the total length of the 

acceleration records is set to 6.67 seconds corresponding to the time it takes the vehicle to travel the 

entire bridge (forced vibration). 

Figure 5 shows the y-axis acceleration-time history responses recorded form each sensor location 

(rows) and for each damage scenario (columns) of GPD1. They look as highly non-linear and non-

stationary. One also can see high accelerations right at the moment when the excitation force is 

applied to an area provided with elastic supports, especially at the beginning. However, accelerations 

in these areas are disregarded by only considering forced vibration responses over a study time 

interval time 1.3 and 2.1 seconds for all sensors. Hence, a time interval of 0.8 seconds represented by 

a black rectangle in Figure 5 is taken into account for damage identification.  
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Figure 5. Y-axis acceleration time-history responses at each sensor location for group of damage 1 
(GPD1) and time interval used for damage detection (black rectangle). 
 

Figure 6 shows the y-axis acceleration time-history responses at each sensor location (rows) and 

for each damage scenario (columns) of GPD2. It can be noticed that when damage occurs at the mid-

support section, no signal change is seen before 10 seconds just when the moving load crosses the 

mid-support section. In this Figure, an important increase in accelerations can be seen from 3.1 to 3.5 

seconds, hence, this time interval of 0.4 seconds is considered for damage identification. 
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Figure 6. Y-axis acceleration time-history responses at each sensor location for Group of damage 2 
(GPD2) and time interval used for damage detection (black rectangle). 
 

3.2. Steel Warren arch bridge 
 

3.2.1 Description of the bridge 
 

The simply supported bridge was a steel arch of the Warren truss type composed of a main span 

of 59.2 m, 3.6 m width and 8.2 m height, as shown in Figure 7a. The bridge, before complete 

demolition, was instrumented and subjected to a progressive damage test by (Kim et al. 2014). These 

data sets are unique in the sense that they consider the operational condition both in healthy and 

damaged condition in a real bridge. A two-axle recreation vehicle with 21kN of weight (Serena 

model; Nissan Motor Co. Ltd.) was used for experiments, as presented in Figure 7b, and during the 
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experiment, the bridge was excited by this vehicle. Eight uniaxial accelerometers captured the 

vibrations of the bridge, with sample rates of 200Hz and labelled as sensors A1, A2,…,A8  (Figure 

7c). Five of these sensors were located at the damaged side (A1-A5) and the other three at the opposite 

side (A6-A8). 

 

Figure 7. Warren truss bridge (a) longitudinal section (b) recreation vehicle (c) location of the 8 

accelerometers and artificial damages. 

 
3.2.2 Damage scenarios 

 
Five progressive damage tests were carried out in short time period before the demolition of the 

bridge, as summarized in Table 4 and sketched in Figure 8. The location of these artificial damages 

was depicted in Figure 7c. Firstly, when the structure is in healthy condition and with no artificial 

damages, is consider like intact (UND). Then, two damage scenarios were imposed to bridge 

consecutively (i) a partial intersection of the mid-span vertical element was applied using an 

oxyacetylene cutting torch, this state was named (DMG1) and it could represents a low stress 

redistribution in the bridge structure as shown in Figure 8b; (ii) the second damage imposed represents 

a high stress redistribution, which consists in a full intersection of the same member (DMG2) and it 

can be shown in Figure 8c. Physically speaking, the previous cuts were obtained to imitate patterns 

of typical damages in bridges like corrosion or overloading. After the first damages (DMG1 and 

DMG2), the full cut was recovered and it was denoted as the RCV state, as can be observed in Figure 

8d. This recovery state consists in weld steel plates and a jack was used to reduce the gap in the cut 

member. However, after that, the bridge was not guaranteed to be restored to its original undamaged 

state. Conversely, the RCV scenario simply served as a reference point to the following damage 

scenario. Finally, the Figure 8c show the DMG3 scenario, where a full cut was imposed in the vertical 

member located at the 5/8th-span (Figure 7c).  



Development of a machine learning based methodology for bridge health monitoring |  Rick Delgadillo 
 
 

  
 

126 

Table 4. Progressive damage test scenarios. 

Damage states Description of damage actions 
1 Undamaged (UND) 
2 Half cut in vertical member at mid-span (DMG1) 
3 Full cut in vertical member at mid-span (DMG2) 
4 Mid-span member reconnected (RCV) 
5 Full cut in vertical member at 5/8th span (DMG3) 

 

 
Figure 8. Damage scenarios carried out in the steel truss bridge (a) sketch (b) Half cut in vertical member 

(DMG1) (c) Full cut in vertical member (DMG2 and DMG3) (d) Mid-span member reconnected (RCV). 
 

During the experimental tests, the average speed in each damage scenario was calculated as 36-

41km/h. Nonetheless, the speed of around 40 km/h was considered because it was the most common 

in all the tests realized by (Chang and Kim, 2016). With respect to environmental conditions, the 

temperature was not recorded, because there were no temperature variations during the short duration 

of the tests. The distance over the bridge was covered in about 10 s. The vertical acceleration 

responses captured by the accelerometers placed in the bridge consists of two parts as shown in Figure 

9, (i) tanking account the first 10 seconds approximately, the feature of the signal is considered a 

forced vibration, which is quite short in duration and looks highly nonlinear and non-stationary; and 

(ii) after the 10 seconds, the bridge vibrated freely. 
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Figure 9. Time history of bridge acceleration response in sensor 1. 
 

4. Case studies: results and discussion 
 

4.1. Numerical bridge 
 

As mentioned previously (see Section 3.1 above), two groups of damage (GPD1 and GPD2) 

were investigated to show the influence of damage location, extension and intensity.  

 

4.1.1 IMFs using ICEEMDAN method 
 

The first step of HHT method is to decompose the acceleration time histories into a finite number 

of intrinsic mode functions (IMFs) which are sorted from high to low frequencies. In general, the first 

IMFs can be associated to a physical meaning by representing a simple oscillatory mode of the bridge. 

For both groups of damage and sensors, the ICEEMDAN method (Colominas et al., 2014) as 

described in section 2.1 was used with the following parameters: an ensemble of I = 500 realisations 

and a total of N = 5000 shifting operations. 

Figure 10 illustrates the forced vibration response and the first four IMFs obtained in sensor S-

02 and for GPD1. Each column represents a different damage configuration. The first row represents 

the original signal, while the following rows represent the signal decomposition into IMFs ordered 

from highest to lowest frequency. It can be seen that for all damage scenarios the first three IMFs 

carry the most oscillating components (from Figure 10e to 10p), while the rest of IMFs have a low 

contribution. On the other hand, for GPD2, the forced vibration signal and the first four IMFs obtained 

from ICEEMDAN method at sensor S-02 are shown in Figure 11. 
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Figure 10. Forced vibration acceleration and the first four IMFs obtained from ICEEMDAN method in 

sensor S-02 and GPD1. 
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Figure 11. Forced vibration signal and the first four IMFs obtained from ICEEMDAN method in sensor 

S-02 and GPD2. 

4.1.2 Analysis of instantaneous frequencies and amplitudes 
 

The instantaneous (time-dependant) frequencies and amplitudes are obtained from the physically 

meaningful IMFs using the Hilbert Transform. For GPD1, Figures 12 and 13 illustrate the 

instantaneous frequencies and amplitudes for all sensors respectively (each sensor per row and each 

scenario per column for all damage scenarios). Figure 12 shows high oscillations around the 

frequency of 150 Hz for IMF1 due to the mode-mixing problem, while a more constant instantaneous 

frequency around 30 Hz is shown in IMF2 and IMF3 for sensors S-01, S-02 and S-03 and only in 

IMF2 for sensors S-04, S-05 and S-06. Figure 13 depicts the fact that the instantaneous amplitude 

increases at t = 1.7s due to structural damage, significantly expanding as the level of damage grows, 

in particular, for IMF1 and IMF2. Similar results are shown in figures A.2 and A.3 in the appendix 

for the case of GPD2. 
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Figure 12. Instantaneous frequency for all sensors and Group of damage 1 (GPD1). 
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Figure 13. Instantaneous amplitude for all sensors and Group of damage 1 (GPD1). 

 
4.1.3 Marginal Hilbert Spectrum 

 
The marginal Hilbert spectrum gives an indication of the total energy that each frequency value 

contributes with. And, contrary to the Fourier spectrum representation, in the marginal spectrum a 

large amount of accumulated energy at a certain frequency (spectral peak frequency) implies that 

there is a higher probability for a wave to have appeared locally over the entire time span. As shown 

in Equation (1), the Hilbert spectrum measures in a probabilistic sense the contribution of the 

frequencies presents in the whole interval of analysis to the total amplitude (Salvino et al., 2003). In 
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practice, (Kim et al. 2014) observed that the point where the marginal Hilbert spectrum has a 

maximum depends on the changes in the stiffness of the bridge, therefore, the presence of damages 

is related with a reduction in peak frequency. Furthermore, the lowest peak frequency corresponding 

to the first peak value of magnitude is worth to be analyzed for damage detection as proposed by 

Kunwar et al., 2013. 

Figure 14 plots the marginal Hilbert spectrum for the undamaged and damaged scenarios 

grouped in a single subplot for each sensor and considering the group of damage GPD1. It can be 

seen that for the baseline (blue lines) the marginal spectrum shows a peak frequency ranged from 30 

to 32 Hz. This frequency range is close to the natural frequency corresponding to the first 

asymmetrical mode of vibration (29 Hz). It is also noticeable that for all sensors, when damage occurs, 

the peak value of energy increases while the frequency corresponding to this peak reduces. This 

behavior indicates the presence of damage as noted by many authors (Kunwar et al., 2013; Salvino et 

al., 2003; Pines & Salvino, 2002; Salvino et al., 2014). 

 

 

 

 

f1 = 30.6 Hz f3 = 29.9 Hz 

f4 = 29.4 Hz 

f2 = 30.2 Hz 

f1 = 30.2 Hz 
f3 = 29.2 Hz 

f4 = 29.1 Hz 

f2 = 29.5 Hz 
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Figure 14. Marginal Hilbert Spectra for all sensors and for GPD1. 

 
The values of frequency corresponding to the peak and the percentage of frequency reduction 

obtained for each damage scenario and sensor are presented in Table 5. All values shown in Table 5 

decrease when damage occurs. The peak frequency steadily decreases as the severity of damage 

increases in all sensors.  Therefore, all sensors can detect and quantify the intensity of damage. 

It is also noticeable that when the stiffness reduction (SR) is more than 50%, the largest 

difference in frequencies occurs in sensor S-02 placed in the exact damage location. Therefore, 

according to the values from Table 5, one can conclude for GPD1 that damage is closer to sensor S-

02, which is where the greatest differences in frequency reduction are found. From this perspective, 

the marginal Hilbert spectrum aids also to locate the damage. In summary, this damage feature is able 

to detect, locate and quantify the severity of damage. 

 

Table 5. Peak frequencies values using ICEEMDAN for all sensors and GPD1. 
Sensors  UND DMG3, SR50% DMG3, SR70% DMG3, SR90% 

 
Peak 

Frequency 
[Hz] 

Peak 
Frequency 

[Hz] 

Frequency 
Reduction 

[%] 

Peak 
Frequency 

[Hz] 

Frequency 
Reduction 

[%] 

Peak 
Frequency 

[Hz] 

Frequency 
Reduction 

[%] 
S-01 30.6 30.5 0.37 30.1 1.64 29.5 3.67 
S-02 31.9 31.2 2.21 30.4 4.68 30.3 5.18 
S-03 30.6 30.2 1.25 29.9 2.44 29.4 3.94 
S-04 30.2 29.5 2.18 29.2 3.38 29.1 3.77 
S-05 30.5 30.2 1.26 29.8 2.52 29.2 4.44 
S-06 30.3 30.2 0.41 29.9 1.28 29.0 4.38 

 
 

Figure 15 plots the marginal Hilbert spectrum for the undamaged and damaged scenarios 

grouped in a single subplot for each sensor and considering the group of damage GPD2. The peak 

frequencies values and the percentage of frequency reduction obtained for each damage scenario and 

 

f1 = 30.5 Hz 
f3 = 29.8 Hz 

f4 = 29.2 Hz 

f2 = 30.2 Hz 

f1 = 30.3 Hz 
f3 = 29.9 Hz 

f4 = 29.0 Hz 

f2 = 30.2 Hz 
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sensor are presented in Table 6. All values shown in this table decrease when damage occurs. Again, 

the peak frequency steadily decreases as the damage depth increases in all sensors. Therefore, all 

sensors can detect the extension of damage. 

It is also noticeable that, the largest decreases in frequencies occurs in sensor S-03 and S-04 

which are the closest to where damage occurs. In this case, the method is able to detect, locate and 

quantify (in terms of extension) the damage. In conclusion, according to the results from MHS, 

damage can be identified, located and quantified both in extension and intensity. 

 

 

 

f1 = 30.3 Hz 

f3 = 28.3 Hz 

f4 = 26.2 Hz 

f2 = 29.5 Hz 

f1 = 29.4 Hz 

f3 = 27.3 Hz 

f4 = 23.3 Hz 

f2 = 28.1 Hz 

 

f1 = 29.6 Hz 

f3 = 25.3 Hz 

f4 = 23.0 Hz 

f2 = 27.3 Hz 

f1 = 29.3 Hz 

f3 = 25.7 Hz 

f4 = 23.1 Hz 

f2 = 27.1 Hz 
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Figure 15. Marginal Hilbert Spectra for all sensors and for GPD2. 

Table 6. Peak frequencies values using ICEEMDAN for all sensors and GPD2. 
Sensors  UND DMG4, SR90% DMG5, SR90% DMG6, SR90% 

 
Peak 

Frequency 
[Hz] 

Peak 
Frequency 

[Hz] 

Frequency 
Reduction 

[%] 

Peak 
Frequency 

[Hz] 

Frequency 
Reduction 

[%] 

Peak 
Frequency 

[Hz] 

Frequency 
Reduction 

[%] 
S-01 30.3 29.5 2.61 28.3 6.92 26.2 15.66 
S-02 29.4 28.1 4.81 27.3 7.79 23.5 25.02 
S-03 29.6 27.3 8.13 25.3 16.94 23.0 28.49 
S-04 29.3 27.1 8.09 25.7 13.77 23.1 26.46 
S-05 28.8 27.5 4.82 26.9 7.05 23.9 20.68 
S-06 28.3 27.3 3.69 26.8 5.74 23.5 20.57 

 
4.1.4 Instantaneous phase difference 

 
As explained in section 2.2, the sum of the instantaneous phase angle for each meaningful IMF 

represents the total number of rotations of the acceleration signal in the complex plane. Then, the 

instantaneous phase angle is unwrapped with radian phases to obtain a monotonously increasing 

phase for all time t, θ(t), representing the phase of the travelling structural waves of the acceleration 

signals (Salvino et al., 2014). On the other hand, the instantaneous phase difference is the 

instantaneous phase relative to a reference point, ϕp(t) representing the changes in wave speed through 

each individual structural element (Salvino et al., 2014). Therefore, when damage occurs the 

amplitude increases, the wave speed reduces and hence the phase difference decreases. In addition, 

according to the references (Kunwar et al., 2013; Salvino et al., 2003; Pines & Salvino, 2002), the 

values of the instantaneous phase difference change as the damage are produced and this in turn 

modifies the speed and the path that the energy travels through the structure. In addition, this 

parameter is very convenient because does not include vibration amplitude for damage detection 

(Kunwar et al., 2013). Hence, time-dependant phase difference is used as a damage sensitive feature. 

 

f1 = 28.8 Hz 

f3 = 26.9 Hz 

f4 = 23.9 Hz 

f2 = 27.5 Hz 

f1 = 28.3 Hz 

f3 = 26.8 Hz 

f4 = 23.5 Hz 

f2 = 27.3 Hz 
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Sensor S-06 is chosen as the reference point as it is located far away from the damage zone leading 

to larger visibly phase difference values at all times. 

Figure 16 depicts the instantaneous phase difference, ϕp(t), for the undamaged and damaged 

scenarios of GPD1 at each sensor. It clearly shows a decrease of the phase difference in all sensors 

due to the presence of damage in the system. It can be also observed how the values reflect the severity 

of damage inferred by different values of the percentage of stiffness loss as the graph for the most 

severe damage scenario DMG3, SR90% tends to be located below the other damage configurations. 

This is more evident at 1.7 seconds for sensors S-01, S-02 and S-03, just at the exact time when the 

vehicle passes over the damaged zone. In addition, at this point in time, the IP difference suddenly 

increases, what gives an indication on where the damage is located. The shapes of the IP difference 

corresponding to sensors S-01, S-02 and S-03 differ from the ones in sensors S-03, S-04, S-05 due to 

the number and shape of the IMFs selected for the application of the HHT-damage detection method, 

as seen in Figure 12. In summary, the phase difference from different sensors can detect, locate and 

quantify (in terms of intensity) the damage. 

 

 
 Figure 16. Instantaneous phase difference for each sensor and damage scenario corresponding to GPD1. 
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Figure 17 plots the instantaneous phase difference for the undamaged and damaged scenarios of 

GPD2 at each sensor. Again, it clearly shows a decrease of the phase difference for damaged states 

compared with the healthy condition, in all sensors. However, none of them is able to detect the effect 

of damage depth (damage extension) as there is not a clear trend of one curve above or below the 

other. Also, there is not a clear change in the curves after 3.4 seconds, when the moving load passes 

through the damage zone at the intermediate support. Therefore, in this case, all sensors indicate a 

successful damage detection, but none of them detects damage location and reflects how the damage 

extension grows.  

 

 

Figure 17. Instantaneous phase difference for each sensor and damage scenario corresponding to 
GPD2. 
 

4.2 Steel arch bridge 
 

After the promising results for damage detection, location and quantification (both in extension 

and severity) obtained for the numerical model, the next step is to check this performance in the case 

of a real bridge. In this sense, Figure 18 shows the superposition of vertical vibration data of three 
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runs recorded by all the sensors (A1,…,A8) for each damage scenario. Sensors 3 and 4 are exactly on 

the position where the severe and critical damages occurred, and, sensor 1 is further away from all 

damages.  Figure 18 shows data for 15 runs over 670-s time and the data analysis was obtained for 

each run separately, that is, time starts and ends at zero during forty seconds for each run respectively, 

as shown in Figure 9. However, only the first 10 seconds of each run corresponding to the forced 

vibration part when the vehicle is within the bridge is considered in the analysis. 

 

Figure 18. Steel truss bridge vertical acceleration data for 15 runs (a) sensor 1 (b) sensor 2 (c) sensor 3 

(d) sensor 4 (e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 

 
4.2.1 Hilbert spectral analysis 

 
(Moughty & Casas, 2018; Delgadillo & Casas, 2021) obtained the Hilbert Spectrum for this 

bridge in a previous study. However, as explained there, it was difficult to ascertain changes in 

structural behaviour from such representation in the case of this bridge and only those sensors closer 

to the damage showed a noticeable change between the original and damaged conditions. The time-

frequency analysis presented in the previous studies (Kunwar et al., 2013; Moughty & Casas, 2018; 

Delgadillo & Casas, 2021) just gives an initial indication for damage identification. A more 

quantitative representation, so-called Instantaneous Vibration Intensity (IVI), obtained from the 

instantaneous frequencies and amplitudes, was proposed as a damage signature and its applicability 

in the detection of damage through the definition of the so-called Cumulative Difference Ratio (CDR) 

was demonstrated in the investigation (Moughty & Casas, 2018). Preliminary results were also shown 

in Delgadillo & Casas, 2021 about the feasibility of new damage indicators as the marginal Hilbert 

spectrum and the phase difference. This new damage features are further and fully investigated in this 

paper with the information gathered in all sensors. 
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4.2.2 Marginal Hilbert spectrum 
 

Kim et al. 2014, developed an investigation concerning the first several mode shapes and natural 

frequencies of the bridge, identifying the first fundamental frequency as 2.98 Hz. In this regard, the 

Hilbert marginal spectra is used and studied herein like a potential damage parameter and the first 

frequency peak obtained is around 3.0 Hz for all sensors and artificial damage levels. The Hilbert 

marginal spectral (log-log scale) for sensors 1 to 8 are shown in Figures 19 to 21. Table 7 summarizes 

all first peak frequencies around 3 Hz obtained from those figures.  

For sensor 1 located away from damages, the Hilbert marginal spectra show a very narrow and 

constant frequency peak at 3.0 Hz in the undamaged condition (Figure 19 a). This first measured peak 

frequency is close to the natural frequency of the bridge determined by several authors (Delgadillo & 

Casas, 2020; Chang et al., 2016; Moughty & Casas, 2018). Also Figure 19 a depicts the damages 

consequently applied in the member located at mid-span, and the peak frequency decreases as the 

damage is more severe (2.82 Hz and 2.72 Hz for damage 1 and damage 2 respectively). Furthermore, 

in the recovered state the frequency increases slightly (2.92 Hz). However, damage 3 (DMG03) 

produces an increase in the peak frequency (3.20 Hz), which physically does not indicate the presence 

of damage. Similarly, sensor 2 does not show a clear pattern in the frequency changes that could be 

correlated to the presence of damage (Figure 19 b). 

 

Table 7.  Peak frequency values spectrum using ICEEMDAN for sensors 1 to 8. ____________________________________________________________________________________ 
Damage           Frequency (Hz)     Frequency  
states           reduction (%)       ______________________________________________________________   
      sensor1  sensor2   sensor3   sensor4   sensor5   sensor6   sensor7   sensor8     sensor3   sensor4 ____________________________________________________________________________________ 
Baseline        3.00        3.10         3.00        3.00       3.04         2.75        2.88         3.00                 
Damage 01   2.82        2.90         2.82        2.84       2.89         2.72        2.97         3.40          6   5    
Damage 02   2.72        2.92         2.70        2.72       2.81         2.62        2.81         3.10          10   9    
Recovered    2.92        2.84         2.90        2.95       2.88         3.02        2.81         3.40          3   2    
Damage 03   3.20        2.85         2.94        2.50       2.95         2.91        2.98         2.92          2   17    ____________________________________________________________________________________ 
 

 

Figure 19. Marginal Hilbert spectra using ICEEMDAN (a) sensor 1 (b) sensor 2. 
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A completely different behaviour is observed for sensors 3 and 4 (see Figure 20 and table 7).  

The percentage reduction for frequencies in sensor 3 from baseline to damage levels 1, 2 and 3 are 6 

%, 10 % and 2 % respectively. The percentage variation considering the baseline and recovered state 

(RCV) is very small. The results in this sensor are fully correlated with the damages. In fact, DMG01 

and DMG02 are provoked in the member where sensor 3 is located. However, DMG03, being of the 

same order as DMG02 shows a lower frequency reduction due to the distance between the damaged 

member and the sensor location. Also, as seen in the case of the numerical model, the reduction in 

frequency is related to the severity of the damage (compare the value of 6% and 10 % reduction with 

the fact that the first value corresponds to half-cut of the member, and the second to the full cut). For 

sensor 4, from baseline to damage 1, 2 and 3 the reduction is 5%, 9% and 17% respectively, which is 

also fully correlated with the extent, intensity (5 % value for half-cut compared to 9 % for full cut) 

and location of damage (sensor 4 is located just where damage 3 is present). 

 

 

Figure 20. Marginal Hilbert spectra using ICEEMDAN (a) sensor 3 (b) sensor 4. 
 

Regarding the rest of the sensors (figure 21 and Table 7) the peak frequency values for baseline 

and the artificial damages range from 2.0 to 4.0 Hz and the frequency reduction does not present a 

clear and significant trend. The conclusion is that these sensors are not able to detect the damages as 

they occurred away and in the opposite side of their position. In conclusion, as was the case for the 

numerical model, the peak frequency values obtained from the MHS, are a good damage indicators, 

not only to detect the damage but also to find its location and to guess its intensity.  
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Figure 21. Marginal Hilbert spectra using ICEEMDAN (a) sensor 5 (b) sensor 6 (c) sensor 7 (d) 

sensor 8. 

 
4.2.3 Instantaneous phase difference 

 
A sensor in the bridge (sensor 1) is selected as reference, and the phase difference at all locations 

(sensors 1 to 8) with respect to the reference point are calculated using the Equation (3) (Figures 22 

and 23). The phase difference is obtained as the mean of 3 different runs for each damage scenario.  

  Figure 22 (a) shows the results for sensor 3. The phase difference values on the bridge are 

significantly lower when damage is present in comparison with the healthy condition (baseline). In 

the beginning (0-1.0 s approximately), the phase difference values for damage 1 and 2 decrease 

rapidly in comparison with the baseline. DMG2 gives larger reduction earlier in time and the phase 

difference is always higher than for DMG1, as it should be, confirming, as in the case of the numerical 

case study, that this damage indicator is also sensible to the intensity of damage.  At around 5 s, when 

the vehicle passes over the exact location of sensor 3 (close to damage 2), the phase difference values 

suffer the largest reduction. In addition, the recovered state (RCV) is close to baseline, which correctly 

indicates no damage present. DMG3 is almost not noticeable at this sensor because of its location far 

from where damage occurs. 

Figure 22 (b) corresponds to sensor 4. The results show a similar trend.  For example, when 

damage 3 occurs, the values have a greater decay in comparison with the baseline. In the recovered 

state (RCV), the behaviour is clearly evident since the values follow the path of the baseline. The 

maximum difference for damage 3 occurs at the time around 7 s, just when the vehicle is close to the 

sensor 4. Therefore, both sensors indicate a successful damage location.  Again, here more intensity 

of damage (DMG01 and DMG02) derives on larger phase differences. 
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Figure 22. Mean phase difference values using ICEEMDAN (a) sensor 3 (b) sensor 4. 
 

The rest of the sensors (Figure 23) unlike sensors 3 and 4, they do not show any clear trend with 

damaged and recovered state present in the bridge as they are located far from the damaged area. In 

conclusion, also in this case, the phase difference shows a good performance in detecting, localizing 

and quantifying the damage in terms of intensity. Regarding the quantification of the extension, 

unfortunately the damage scenarios do not provide this possibility as they are all produced in only a 

cross-section. 

 

 

 

Figure 23. Mean phase difference values using ICEEMDAN (a) sensor 2 (b) sensor 5 (c) sensor 6 (d) 

sensor 7 (e) sensor 8. 

 

5. Conclusions 
 

Two parameters obtained from the HHT, the marginal Hilbert spectrum (MHS) and the 

instantaneous phase difference (IPD) are proposed as damage indicators for bridges under traffic 

loads, where recorded data is characterized by high non-linearity and non-stationarity. To derive 

accurate results using HHT, the paper proposes signal analysis and feature extraction through an 
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improved EMD named Improved Completed Ensemble Empirical Mode Decomposition with 

Adaptive Noise (ICEEMDAN). This method has two major advantages in the decomposition of 

signals: the avoidance of the spurious modes and the reduction in the amount of noise contained in 

the modes 

To verify the efficiency of the ICEEMDAN-HHT method and the feasibility of the marginal 

Hilbert spectrum (MHS) and instantaneous phase difference (IPD) as damage indicators, a numerical 

model of a bridge and a real steel arch bridge subjected to traffic loading were used to analyse different 

damaged states.  Results for damage detection obtained in both cases are very satisfactory. On one 

hand, for all sensors, the peak frequencies extracted from the Hilbert marginal spectrum are reduced 

when damage occurs due to stiffness loss. On the other hand, all sensors detect a reduction of the 

instantaneous phase difference when damage occurs due to the decrease in the wave speed of the 

response measurements. In addition, those sensors located closer to the zones where damage occurs 

show a more noticeable reduction than the sensors placed more far away.   Both, in the numerical 

case study and in the real bridge, the results show that the MHS is able not only to detect and localize 

the damage, but also to ascertain the extension and intensity of the damage. In the case of the IPD, 

this damage indicator correctly detected, localized and quantified the intensity of the damage, but not 

its extension. Therefore, the spectral peak frequency and the instantaneous phase difference have 

shown as useful features to identify, locate and quantify damage in bridges under operational loads. 

The main advantages of the two proposed damage features are an algorithm easy to program and 

intuitive as well as the possibility to be obtained from load tests in the bridge since they are well 

suited for transient signals. As disadvantages, in the case of the MHS, in certain cases, it could be 

difficult to set a clear peak frequency. This fact could negatively affect the calculation of the 

percentage of frequency reduction leading to a wrong comparison of the results obtained for different 

damage scenarios. In the case of IPD, the results may depend on the number of Intrinsic Modes 

Functions (IMFs) selected and their importance in the overall dynamic response of the bridge. 

Therefore, it is relevant to always consider the most significant and representative IMFs produced by 

applying the HHT. 
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6. Appendix 
 

Table A.1. The first 20 natural frequencies with their corresponding effective modal mas 
participation factors (expressed in %). 

Mode 
Natural 

frequency,  
f [Hz] 

Mode Shape Description Participation Factor Effective Modal Mass 
Participation Factor 

Lix (kg) Liy (kg) Fix (%) Fiy (%) 

1 18.6 1st asymmetric longitudinal 
translation -97.057 0.000 ~ 100 4.013E-22 

2 26.1 1st symmetric vertical bending -0.095 0.000 9.506E-05 1.418E-19 
3 28.9 1st asymmetric vertical bending 0.000 81.559 2.507E-22 70.61 
4 74.1 2nd symmetric vertical bending 0.100 0.000 1.066E-04 2.216E-29 
5 80.5 2nd asymmetric vertical bending 0.000 -2.758 8.864E-21 0.0807 
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6 132.5 1st symmetric longitudinal 
translation 0.000 0.607 2.816E-29 3.912E-03 

7 146.1 3rd symmetric vertical bending 0.009 0.000 7.779E-07 1.090E-32 
8 156.0 3rd asymmetric vertical bending 0.000 33.739 1.541E-28 12.08 
9 239.1 4th symmetric vertical bending 0.020 0.000 4.424E-06 1.768E-30 
10 251.7 4th asymmetric vertical bending 0.000 -2.523 5.106E-27 0.0676 

11 262.9 2nd asymmetric longitudinal 
translation 0.016 0.000 2.884E-06 7.642E-26 

12 349.5 5th symmetric vertical bending -0.002 0.000 5.931E-08 3.546E-20 
13 363.8 5th asymmetric vertical bending 0.000 20.924 1.104E-28 4.65 

14 392.9 2nd symmetric longitudinal 
translation 0.000 0.325 3.969E-29 1.118E-03 

15 473.9 6th symmetric vertical bending 0.008 0.000 6.145E-07 2.118E-28 
16 489.0 6th asymmetric vertical bending 0.000 -2.293 9.258E-24 0.0558 

17 523.8 3rd asymmetric longitudinal 
translation 0.018 0.000 3.350E-06 1.474E-22 

18 609.4 7th symmetric vertical bending -0.001 0.000 1.097E-08 7.214E-31 
19 623.9 7th asymmetric vertical bending 0.000 -15.397 1.811E-27 2.52 

20 654.3 3rd symmetric longitudinal 
translation 0.000 0.745 3.370E-27 5.893E-03 

Sum     ~ 100.00 % ~ 90.08% 
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Figure A.1. The first 20 natural frequencies and mass-normalized mode shapes using a scaling factor of 

50 to represent the magnitude of the total displacement vector, U (mm). 
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Figure A.2. Instantaneous frequency for all sensors and for Group of damage 2 (GPD2). 
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Figure A.3. Instantaneous amplitude for all sensors and for Group of damage 2 (GPD2). 
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Abstract: Damage caused in bridges can be hidden by the service conditions mainly due to 

environment effects as temperature and traffic loading. The literature review indicates that the 

majority of investigations are limited since they do not consider these effects or they are applied under 

laboratory conditions and not to real bridges. The temperature effects on the natural frequencies of 

bridges have shown to be non-linear. In this context, this article presents a damage detection strategy 

considering a more robust kernel-based method (KPCA) which is the nonlinear extension of the 

principal component analysis (PCA) to take into account the environmental conditions of the bridge 

such as the non-linearity of the temperature effects in the natural frequencies. This method is 

combined with a clustering analysis in order to group the data with similar features both for 

undamaged and damaged conditions, and in this way the structural damages can be identified. The 

main contribution is a novel damage detection methodology based on advance statistical and machine 

learning algorithms to account for the non-linear environmental effects. The method is checked using 

measurements from the Z24 bridge, which was subjected to progressive structural damages while 

monitored for almost a year. The results show good performance of the proposed algorithm and highly 

reducing the computational cost. 

 
Keywords: Kernel, symbolic data analysis, damage detection, environmental conditions, 

operational conditions. 
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1. Introduction 
 

Bridge structures are present in all countries, regardless of culture, economic and geographical 

conditions. Almost 40 percent of the bridges in the world are at least a half century old and a lot 

vehicles cross structurally deficient bridges every day (Cardno 2016). In addition, they are in constant 

degradation due to operational and environmental changes. For this reason, a robust structural health 

monitoring (SHM) should be dedicated to maintaining and improving bridges and extending their 

service life.  

During the past decades, several researchers have developed different techniques for damage 

detection using numerical and experimental model structures. However, difficulties have arisen in 

implementing them for structural health monitoring on real bridges. Delgadillo & Casas (2019) 

proposed novel empirical parameters for damage identification on two real bridges under different 

real conditions. Furthermore, the majority of vibration properties used as damage sensitivity features 

are affected by the changes due to the environmental factors (e.g. humidity, ambient temperature, 

wind), (Sohn 2006). According to (Farrar et al., 1997; Alampalli 1998; Peeters & Roeck 2001), the 

temperature plays an important role in the variation of vibration properties for bridge structures. It is 

shown that temperature can cause up to 5% - 10% variation in the natural frequencies of highway 

bridges, that can be confused by the changes produced by structural damages (Ko & Ni 2005). 

Many researchers have developed algorithms increasingly sophisticated and with great 

performance for damage detection on bridges. For instance, (Figueiredo et al., 2012) proposed an 

approach to damage detection in two bridges considering the vibration response data like damage 

sensitive parameters (Output-only method). Firstly, several progressive damage tests carried out 

during one-year in a post-tensioned concrete box girder bridge called Z24 (Peeters & Roeck 2001), 

were analyzed. It was assumed that the bridge operates within its undamaged condition (baseline 

condition) under operational and environmental conditions. As a first step, the unsupervised learning 

stage was carried out to infer the heterogeneity of the data in different operational and environmental 

conditions. Then, the next step was to establish a procedure to incorporate prior knowledge of the 

baseline data into the damage detection process. A daily Damage Index (DI) was implemented, 

corresponding to the minimum Mahalanobis Squared-Distance (MSD) coefficient of two models with 

a defined threshold for the 95% confidence region. Therefore, the performance of the classifier was 

observed taking into account the existence of known damaged structural responses. Secondly, a 

supposed undamaged bridge called Tamar was evaluated. Since the real structural condition of the 

bridge was not known a priori, 50% of the observations were used to find the number of normal 

components. As a result, the multi-normal distribution indicated that the structure changes very little 

during the time and a good result of DI was obtained, that considering the four MSD together models 

with a confidence threshold of 95 %. (Yan et al., 2005) developed a comparison analysis between 

linear PCA and local PCA for damage identification in the Z24 bridge.  This study considers the non-
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linear cases, which can be encountered in the majority of real and complex structures. The comparison 

of the results obtained by linear PCA with those obtained by using local PCA shows two 

enhancements. (i) The anomaly present in a monitoring period disappears as the non-linearity is taken 

into account by the local PCA-based method. (ii) The novel index values increase slightly for damage 

states with respect to those in the reference state; it means that the local PCA-based method is more 

sensitive to the damage. (Reynders et al., 2014) developed an improved output-only method based on 

the KPCA in order to eliminate nonlinear operational influences and environmental conditions on 

Z24 bridge. For this reason, the authors used two parameters automatically determined from the 

learned model based on Gaussian KPCA. The results demonstrated satisfactory improvements in data 

normalization for damage identification. (Moughty & Casas 2017) assessed the performance of some 

outlier detection algorithms such as Principal Component Analysis (PCA) from a progressive damage 

in an Austrian bridge subject to ambient excitation. Moreover, the incorporation of an estimator called 

Minimum Covariance Determinate (MCD) improved the PCA performance significantly to identify 

and remove erroneous data from the training sets, and it reduces uncertainties caused by external 

sources of excitation. 

Nowadays, Data mining have been employed in SHM field due to their powerful computational 

ability to detect damage in structural systems like bridges. It can be categorized as cluster analysis, 

group classification, prediction and association. Clustering is a set of multi-variable statistical analysis 

techniques and the most common unsupervised machine learning approach that finds hidden patterns 

or intrinsic structures in data. The purpose of clustering is to classify and identify the variables or 

objects into groups with related behavior (Bishop 2006), which is used in pattern recognition, image 

analysis and bioinformatics. There are basically two types of clustering techniques: hierarchical and 

non-hierarchical.  Hierarchical clustering has two types: divisive (top-down) and agglomerative 

(bottom-up). For the second type, K-means, Principal Component Analysis (PCA), Gaussian Mixture 

Models (GMM), Support Vector Clustering (SVC) and Self-Organizing Maps (SOM) algorithms are 

the most representative examples for statistical modeling and feature classification in SHM (Santos 

et al., 2015a). (Figueiredo & Cross, 2013) developed algorithms based on PCA, Gaussian mixture 

models (GMMs) and MSD to model the main clusters that correspond to the normal or undamaged 

state conditions in the measured vibration data sets of Z24 bridge. Nonetheless, the PCA and MSD 

linear algorithms might not be appropriate for long-term monitoring as they are not able to model the 

nonlinear patterns from the baseline condition data during the training process, which leads to 

relatively high number of false alarms. Yu et al. (2013) adopted PCA and KPCA algorithms for data 

compression and the median values of principal components were defined for damage feature 

extraction in a six-bay truss bridge model. Afterwards, a fuzzy c-means (FCM) clustering algorithm 

is used to categorize these features for structural damage detection. This method could effectively 

identify the bridge damages simulated by loosening the bolted joints of the truss bridge structure. 

(Santos et al., 2013) implemented a new strategy to detect structural damage from vibration-data. The 
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authors proposed a cluster analysis to achieve baseline independence using the concept of symbolic 

data analysis to reduce raw vibration data through a statistical process able to detect damage in real-

time. (Santos et al., 2015b) developed cluster algorithms with symbolic data to achieve a single-value 

novelty index (NI) able to detect structural changes in multi-sensor data-sets from a real bridge. 

The present paper aims for damage detecting by an exhaustive analysis of the natural frequencies, 

estimated from acceleration time series. In order to achieve this objective, a promising strategy for 

SHM in changing environmental conditions like temperature variation is proposed. For this study, an 

improved machine learning algorithm named kernel principal component analysis (KPCA) was 

implemented. Likewise, a statistical clustering algorithm named k-means in conjunction with a 

cluster-based damage detection strategy is proposed. 

 

2. Mathematical formulation 
 

2.1. Covariance driven stochastic subspace identification 
 

The covariance-driven stochastic subspace identification (SSI-COV), is one of the most robust 

methods applied in real civil structures for dynamic structural identification (Kvåle et al., 2015; 

Magalhaes et al., 2009). The basic idea was proposed by (Juang 1994), and is used to identify the 

modal parameters assuming the excitation as a white noise. Mathematically it can be written in its 

discrete form as: 

 (1) 

 (2) 

 
Where xn = discrete-time state vector at instant n; yn = vector with the sampled outputs; A = 

discrete state matrix; C = discrete output matrix; and wn = process noise; and vn = measurement noise. 

The starting point for the analysis of the SSI-COV method is the block-Hankel matrix Hi, where 

the sub-matrices represent the correlation between varying time shifts and all the measurement 

channels, as follows: 

 (3) 

 
In this matrix, 2i represents the maximum number of time lags; and i = number of block rows. 

The following formula define the correlation matrices: 
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Where N = number of points of the time series.; Finally, the modal parameters are easily obtained 

from matrices A and C. (Magalhaes et al., 2009). 

 

2.2. Kernel principal component analysis (KPCA) 
 

The KPCA algorithm is the nonlinear extension of the linear principal component analysis (PCA) 

developed by (Schölkopf et al., 1998). This KPCA algorithm is a statistical tool commonly used to 

fit a nonlinear model to the features sensible to damages in the undamaged state.  Besides, the model 

predictions and the observed features in a bridge structure are compared (Reynders et al., 2014). 

Note that a training data matrix  is considered for normal condition data. Where n = 

feature vectors; m = environmental and operational factors when the bridge is undamaged. Moreover, 

represents a test data matrix, where k = number of feature vectors from the undamaged 

or/and damage states. The data normalization consists as follows: (i) the loadings matrix, U, is 

obtained from X; (ii) the test matrix Z is mapped onto the feature space  and reversed back to the 

original space , where r = number of factors or principal components. Finally, (iii) the residual 

matrix E is obtained as the difference between the original and the reconstructed test matrix. 

For the feature classification, a feature vector f (f = 1, 2,…,l) is considered and its residual 

uncorrelated with environmental and operational conditions can be expressed as: 

 (5) 

Where U1 = contains the r largest eigenvectors; U2 = comprises the (m - r) shortest eigenvectors 

and the compact form U = [U1 U2] represents the eigenvectors matrix partitioned. Furthermore, Ф(zf) 

represents a nonlinear mapping of the output sequence, zf, onto a possible very high-dimensional. 

Additionally, the r principal components can be obtained by test the minimal percentage of the 

variance ℾ (0.99 can be adopted) to explain the variability in the matrix X (Reynders et al., 2014). 

Note that due high-dimensional in feature space of the KPCA, the ℾ and r may be larger than the 

values used in linear PCA. Then, an eigenvector matrix A can be used in order to determine Ф. 

 (6) 

 (7) 

 

In general, all solutions are summarized in solve a standard eigenvalue problem as mentioned in 

equation 8, where Λ = diagonal matrix containing the ranked eigenvalues λi and K = kernel matrix 

expressed as equation 9. 

 (8) 
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 (9) 
 

 A kernel function can be represented by the inner product of the form Ф(xi)T Ф(xj) and a 

Gaussian kernel or radial basis function (RBF) defines a single parameter by the equation 10. Where 

σ > 0 is the bandwidth of the RBF kernel and can be obtained using the Shannon’s information 

entropy in the inner product matrix K. 

 (10) 

Finally, as mentioned in (Reynders et al., 2012), the dk parameter can be used as a damage 

indicator: 

 (11) 

 

2.3. Statistical classification and clustering method 
 

Clustering is an unsupervised statistical data analysis method, which nowadays is widely used 

in several fields such as bioinformatics, data mining and pattern recognition. The basic idea involved 

in the clustering methods is their capability of classifying data objects into separated similar subsets 

(or clusters) (Bishop 2006). Unlike supervised machine learning algorithms, clustering techniques do 

not require the previously definition of training or reference data. They can understand the behavior 

of a data set and then try to obtain the most separated and compact set of clusters (Rendón et al., 

2011). Whereby, mathematically it can be written by equation 12. Where a given partition containing 

K clusters is considered, PK = {C1, …, CK}; c(i) = many-to-one allocation rule that assigns object i to 

cluster k, based on a dissimilarity measure dij defined between each pair of data objects, i and j. 

 (12) 

One of the most descriptive partitioning clustering algorithms is the k-means (Forgy 1965), 

which is used herein with a cluster-based damage detection developed by (Santos et al., 2016). The 

k-means is capable of automatically distinguish between undamaged and damaged bridge structural 

conditions. For this purpose, the equation 13 shows a damage parameter DC based on computing the 

average dissimilarity between clusters: 

 (13) 
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Where K = number of clusters defined with the highest global silhouette index (SIL) (Rousseeuw 

1987); c and k are two of the K clusters; dck = Gowda-Diday dissimilarity parameter measured between 

their centroids (Gowda & Diday 1991). Furthermore, when the clusters are generated in undamaged 

condition, the k-mean algorithm can identify these groups clearly and will generate small values of 

DC. Conversely, if damages are presented, the k-means method generates separate clusters and 

therefore will generate large values of DC. 

 

3. Case  s tudy  –  Z24  Br idge  
 

The methodology proposed in this article will be demonstrated in the benchmark bridge called 

Z24 (Switzerland), shown in Figure 1(a). It was a post-tensioned concrete box girder bridge with a 

main span of 30 m and two side-spans of 14 m (Figure 1b). The Z24 bridge was demolished in 1998, 

but instead a railway near to the highroad was built. This bridge was monitored for approximately 

one year and a long-term continuous monitoring program between November 1997 and August 1998 

was carried out. The bridge was monitored by a long-term continuous vibration system, where the 

data was acquired hourly through two kinds of measurements: ambient vibration response and 

environmental conditions. For this purpose, 16 acceleration sensors were used to measure the ambient 

vibration responses located in different points and directions, three of them were collocated on one 

of the piers and the rest in the deck, as shown in Figure 2(a). All accelerometers were programmed to 

collect the data in a sequence of 65,536 samples by hour. Additionally, 49 sensors to measure 

environmental conditions were installed, such as humidity, air temperature, wind characteristics, 

bridge expansion soil temperatures at the boundaries and bridge concrete temperatures (Peeters & 

Roeck 2001). Likewise, the measurements of the environmental variables were obtained each hour. 

The Figure 2(b) shows the temperature sensor in the deck. The foundation temperatures were 

measured near one of the piers. 

 

Figure 1. The Z-24 Bridge (a) side view and (b) longitudinal section (Adapted from Peeters & Roeck 

2001). 

(b)

(a)
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Figure 2. Acceleration sensors locations (a); cross-section and location of the thermocouples (b) 

(Adapted from Peeters & Roeck 2001). 
 

During the long-term monitoring test, several progressive damage scenarios were imposed to the 

structural system of the bridge before its demolition (Peeters & Roeck 2001; Reynders & Roeck 

2009). The damage scenarios imposed to Z24 bridge are classified as: (i) losses of stiffness both in 

the structure and in its boundary conditions; (ii) controlled displacements. These damage scenarios 

represented several types of possibilities present in a vulnerability analysis, which are easy to find in 

a typical operational evaluation on bridges. As a summary, Table 1 depicts all damages. 

 

Table 1.  Types of artificial damaged induced on Bridge Z24. _________________________________________________ 
Number  Date (1998)   Damage type _________________________________________________ 
1  4 August Undamaged state (1st reference) 
2  9 August Second reference measurement 
3  10 August Lowering of pier, 20 mm 
4  12 August Lowering of pier, 40 mm 
5  17 August Lowering of pier, 80 mm 
6  18 August Lowering of pier, 95 mm 
7  19 August Lifting of pier, tilt of foundation 
8  20 August Third reference measurement 
9  25 August Spalling of concrete, 24 m2 

10  26 August Spalling of concrete, 12 m2 
11  27 August Landslide of 1 m at abutment 
12  31 August Failure of concrete hinge 
13  2 September Failure of 2 anchor heads 
14  3 September Failure of 4 anchor heads 
15  7 September Rupture of 2 out of 16 tendons 
16  8 September Rupture of 4 out of 16 tendons 
17  9 September Rupture of 6 out of 16 tendons _________________________________________________ . 
 

4. Ana lys i s  o f  the  resu l t s  
 

4.1. Determination of modal parameters 
 

(a)

(b)
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The vibration frequencies analyzed herein are related to the first three mode shapes and were 

automatically obtained from the stabilization diagrams generated by the covariance driven stochastic 

subspace identification method (SSI-COV). Figure 3 provides the variations of the first three natural 

frequencies with time over the whole monitoring period, which are identical to those obtained by 

(Reynders et al., 2014). These frequencies represent the mode shapes such as vertical bending mode 

around 4 Hz, a lateral bending mode (5 Hz), and one mode combining vertical bending and torsion 

(10 Hz). The dashed vertical line divides the undamaged state period (10th of November 1997 to the 

9th of august 1998) and the period in which structural artificial damages were imposed (9th of august 

1998 to the 10th of September 1998). Moreover, the figure plots some short periods of time without 

data, due to fail of the monitoring system.  

Figure 3 shows that the frequencies decrease as artificial damages appear. Nevertheless, during 

normal operating conditions (undamaged state) and due to environmental effects, the variation of 

these sensible features in comparison with damaged state is much higher. Just analyzing the change 

in frequencies is not enough for damage detection, since it could produce false alerts. 

 

 

Figure 3. Modal frequencies obtained from the Z24 bridge: first, second and third natural frequency. 
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Figure 4. Correlation between modal frequencies and temperature (a) first frequency (b) second 

frequency (c) third frequency. 
 

Note that even though several environmental factors were measured, not all were used because 

only the temperature showed an important influence on the modal frequencies (as can be shown in 

Figure 4). The correlation between the three modal frequencies and the temperature measured in the 

surface asphalt layer reveals a high influence of the temperature on the dynamic properties. In 

addition, the non-linear relationship becomes evident in figure 4, The red squares show the monitoring 

data in the damaged state, which has an additional influence on frequencies. As mentioned (Reynders 

et al., 2014), the interpretation to this behavior can be explained by the variation of Young’s modulus 

of the material with temperature. This is presumably due to extremely temperatures recorded (below 

0 ºC and above 40 ºC) during the monitoring period of the Z24 bridge. 

 

4.2 Output-only monitoring using KPCA 
 

Many researchers have pointed out the issues and limitations of PCA method, since it does not 

correctly consider the effects of environmental factors because this relationship is in general nonlinear 

(Peeters et al., 2001; Moser & Moaveni 2011; Reynders et al., 2014). Hence, in pursuit of better 

damage detection the kernel principal component analysis (KPCA) has been used in the present study. 

For this purpose, the data sets were divided in three groups: training data, monitoring data in 

undamaged state and monitoring data in damaged condition. The model was constructed using 3500 

data points for training phase and the rest of the data were used for monitoring in undamaged and 
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damaged state. In fact, the amount of data points represent an average compared to what other 

researchers have found and, it was chosen considering the good results obtained by (Reynders et al., 

2012) and (Reynders et al., 2014).  

 Figure 5 shows the gradual development of the damage indicator (equation 11). The red squares 

correspond to the artificial damages imposed to Z24 bridge during the last month of monitoring (9th 

of august 1998 to the 10th of September 1998), shown through the misfit depicted in Figure 5. 

 The proposed method is able to predict the behavior of the dynamic parameter variations under 

undamaged and damaged conditions underhanging environmental conditions. In addition, the misfit 

both for the validation data in undamaged condition as for the training data are lower. This is because 

the 3500 training data points entered in the model cover a wider range under normal environmental 

factors. Therefore, the normal variability of modal parameters is better predicted using the kernel-

PCA and also increases the damage detection capability of the model. Likewise, when a new artificial 

damage is imposed to the bridge, the prediction error grows very significantly, in this way, these 

undesirable effects can be clearly and easily detected, either visually or with a novelty detection 

algorithm. In this study, a novelty detection technique based on machine learning algorithms was 

utilized as presented in the next section. 

 

Figure 5. Damage indicator from the undamaged/baseline and damaged condition using the nonlinear 

kernel-based algorithm in the Z24 bridge. 

 

4.3. Statistical classification 
 

The strategy in statistical classification and clustering consists on modeling and classifying the 

structural response of the bridge taking into account the existence of artificial damages. For this 

purpose, a time-series of DC values (equation 13) were obtained considering mobile time windows, 

using the algorithms described in 2.3. Figure 6 plots the damage detection procedure before artificial 
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damages occurs. Firstly, the Figure 6(a) depicts a mobile window that contains the samples of 

undamaged condition only, although highly affected by environmental effects. The results in the 

figure confirm that all the samples are in healthy condition (undamaged), because there is not the 

presence of any misfit, despite for this period of time an important change in the frequencies was 

obtained because of the temperature effects, as shown in figure 3. This confirms the efficiency of the 

proposed KPCA in eliminating the temperature effects from the data set. All the damage indicators 

along time can be seen in Figure 6(b), where the vertical dashed line indicates the instant in which 

the damage appears due to the stiffness reduction. Furthermore, the figure shows the first mobile 

windows considered during the monitoring period in the undamaged state where the cluster analysis 

is applied. For each of these windows, the sequential application of the k-means algorithm 

automatically generates the DC values shown in Figure 6(c), which were obtained for a scenario of 

healthy condition (undamaged). In this case, all DC values are informative by themselves, about the 

undamaged condition.  

 

 

Figure 6. Damage detection procedure before the damages occurs (a) damage indicator (b) sequence 

of mobile windows (c) DC values obtained from each window. 
 

In addition, Figure 7 provides the damage detection procedure after artificial damage. Figure 

7(a) gives a mobile window that contains samples in the two conditions of the bridge: undamaged 

and damaged. The vertical dashed line indicates the instant in which the artificial damages occurs, 

since it separates the healthy and unhealthy conditions and on the right of this line, several misfits can 
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be found visually.  Figure 7(b) plots the damage indicators and all the mobile windows during the 

whole monitoring period. Then, the clustering k-means algorithm generates the DC values for each 

mobile window, as shown in Figure 7(c). In this case the values of DC demonstrate the real behavior 

of the bridge differentiating the loss of stiffness from the healthy condition. Furthermore, the proposed 

strategy involves an additional step to detect the existence of damage. It consists on defining a 

confidence boundary (CB), which is an indicator that warns about structural damage if crossed by the 

damage feature indicator. This CB is obtained by statistically testing the DC distribution of the mobile 

windows, which is generally associated with the use of the Normal distribution. For example, in this 

study the t-student distribution was used taking as reference the good results obtained by (Santos et 

al., 2016). Thus, Figure 7(c) plots the values of CB to show the atypical values of DC. As seen there, 

four values exceed the threshold line, indicating the presence of structural damages. In conclusion, 

the cluster analysis is considered a powerful tool capable of automatically distinguish between 

structural conditions on bridges. 

 

Figure 7. Damage detection procedure after the damages occurs (a) damage indicator (b) sequence of 

mobile windows (c) DC values obtained from each window. 

 

5. Conc lus ions  
 

The present paper presents the online automatic identification of the modal parameters of bridge 

Z24 using the SSI-COV method. This method showed a good efficiency in the identification of the 

bridge first three natural frequencies. The results show the evolution along time of the natural 
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frequencies, which allows a better understanding of the influence of environmental factors 

(temperature) on the bridge dynamics.  

The application of the proposed methodology includes the identification of the modal parameters 

as outputs in a global system model. The kernel PCA algorithm presented good performance and 

capability for output-only damage detection.  Its capability to identify the non-linear behavior of 

modal parameters due to changes in environmental conditions is fully proven. Therefore, KPCA-

based method provides promising results when applied to real-world data sets from existing bridges. 

With regard to the statistical machine learning algorithms and clustering, this paper obtained a 

good capability for damage identification using the k-means algorithm to the monitored data. The 

proposed strategy demonstrates the success for detecting misfits without generating false detections. 

Finally, this methodology presented good performance in terms of computation effort, robustness and 

prediction accuracy. 
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Abstract: Structural health monitoring field is growing in the use of more modern techniques and 

tools in order to identify damages in civil structures. The improvements in signal processing 

techniques and data mining have, recently, been employed due to their powerful computational ability 

to detect damage in bridges. Despite the majority of researchers have been studying laboratory-scale 

implementations and theoretical developments, the limited data to identify structural faults in real 

bridges is still a problem. The current study presents a novel approach for damage identification by 

using two improved methods such as decomposition techniques and machine learning algorithms. 

Since the data obtained from the traffic vibration in real bridges is non-linear and time varying, the 

Hilbert-Huang transform is used to process the vibration data.  Additionally, a phenomenon of mode 

mixing is presented in the current decomposition methods, such as empirical mode decomposition 

(EMD). Therefore, a novel Improved Completed Ensemble EMD with Adaptive Noise 

(ICEEMDAN) was adopted. After the signal decomposition and identification of the damage 

parameter, a symbolic data analysis and clustering-based approach were developed. Additionally, an 

unsupervised machine learning algorithm was used to group substructures with similar behavior and 

then detect damages. This learning method was used for automatically classifying the damages using 

a moving windows process sequentially applied to the structural response of the bridge. The validity 

of the approach is demonstrated using real data collected from a truss bridge. The results show that 

the proposed mixed method was effective and can endow better results in bridge health monitoring. 

 

Keywords: Hilbert-Huang Transform; Empirical Mode Decomposition; ICEEMDAN; 

instantaneous frequency; damage detection; symbolic data analysis; unsupervised machine 

learning; cluster analysis. 
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1. In troduct ion  
 

Road transportation plays an important role in the world both as passenger and freight 

transportation.  Bridges are the most critical structural component in transport infrastructures, due to 

their importance both in life-safety as in the economy of the countries. The design, construction and 

management of bridges are factors that must be taken care of. However, failures can appear due to 

inappropriate design, material degradation and poor maintenance. In this context, bridge health 

monitoring-based approaches have been increasingly developed during the last decades.1 For 

instance, the most efficient and sophisticated monitoring systems, various techniques to collect data 

and analysis methods are being implemented2,3. 

To achieve good results in the damage identification, experimental data obtained must be 

transformed to meaningful information and then from damage-sensitive features a statistical analysis 

should be developed to identify the actual structural condition. In this context, there are currently 

several methods for signal decomposition to identify the modal sensitive parameters in bridges, such 

as Fourier transform and Wavelet transform (WT). Nonetheless, during the preceding decade, the use 

of empirical mode decomposition (EMD) has received considerable attention4, because it is an 

adaptive signal decomposition technique and also due to its ability to decompose and analyze the non-

stationary and non-linear signals.5-7 Considering the real-world applications, most of the signals are 

not only non-linear but also non-stationary, thus new methods in signal processing are required. 

However, EMD method presents some shortcomings like the recurrent emergence of mode mixing 

due to signal intermittence and a single intrinsic mode function (IMF)7. Huang et al.8 developed a 

new method called Hilbert Huang Transformation (HHT) to analyze non-stationary and non-linear 

signals and is considered a pioneer in this field. This method consists in two parts, that is, Hilbert 

Transform (HT) and Empirical Mode Decomposition (EMD). The principal idea of the EMD is to 

decompose the mean signal into Intrinsic Mode Functions (IMF) since the EMD is based on the local 

characteristic time scale of the original data, so this decomposition method is easily applied and highly 

efficient. The HHT method has been employed in many researches and in practical engineering 

analyzing cases of study in different fields, such as biomedical, structural engineering and now the 

application of HHT especially define SHM has attracted increasingly attention.9 However, there is 

little information in the study of HHT applied to real bridges. Therefore, this investigation aims to 

demonstrate the feasibility of this method applied to real bridges. 

 Yan and Miyamoto10 developed a comparative investigation between the improved HHT and 

WT in order to identify the modal parameters. They used ambient vibration data from the Z24-bridge 

benchmark. The results showed that both methods identified the modes correctly when the time-

frequency resolutions are clear. Qu & Lian11 developed an approach based on HHT to damage 

detection in a transmission tower and EMD is used to decompose response signals. In this case, a 

shape factor is used to analyze the response signal of the structural IMFs and it could detect the 
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damage on the structure intuitively. A modal identification procedure for the Tsing Ma Bridge was 

performed using the HHT, and the modal damping ratios and natural frequencies were clearly 

identified from both stationary and non-stationary records12. Huang et al.13 carried out several damage 

detection applications using laboratory experiments and numerical simulations and they proposed an 

HHT-based bridge structural health-monitoring method. The dynamic condition assessment in a 

bridge was carried out utilizing HHT approach and three damaged scenarios (intact, minor and severe) 

in one concrete pile substructure were evaluated. Piles were excavated and broken to simulate flood 

and earthquake damage to a bridge substructure. As a result, the HHT method revealed the 

quantitative difference in instantaneous frequency of sound and the damaged components14. 

 There are still many challenges and difficulties concerning the HHT based damage detection. 

To this end, many improvements of EMD were developed over time. A new method named Ensemble 

EMD (EEMD) based on the studies of white noise was developed by Wu & Huang7. This new 

approach determines the IMF component like a mean of an ensemble of traces having signal and 

white noise of finite amplitude. However, Wu & Huang15 showed some drawbacks in EEMD method 

like the creation of extra modes and the phenomenon of mode mixing. For this reason, the calculation 

capability and the ensemble average results could be importantly reduced. Yeh et al.16 proposed the 

Complimentary EEMD (CEEMD) in order to reduce the residual noise. Nevertheless, the number of 

added white noise and the selection of amplitude remain unresolved, and most of the times the IMF 

obtained by CEEMD does not fulfil the IMF criterion. In addition, the advantage of this method is 

that it improves the calculation efficiency. Lin17 define ICEEMD to select an ensemble number as 

100 for the EEMD method, although, this gave inconsistent results since the important information 

was ignored. Zheng et al.18 presented the Partly EEMD by introducing the permutation entropy (PE), 

but the PE threshold such as size selection and number of added white noise were not defined. The 

issues of spurious high frequency modes were studied by Torres et al.19, who presented a method 

named Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). The 

ability of the CEEMDAN was demonstrated in building energy consumption, biomedical engineering 

and seismology. Furthermore, a decomposition improved method ICEEMDAN, was used in a real 

bridge structure20. Colominas et al.21 developed an Improved CEEMDAN implementing two major 

improvements: (i) the avoidance of the spurious modes and (ii) the physical meaning of the results is 

achieved with the reduction in the amount of noise included in the modes. Considering the 

applications of this method in SHM, some authors22,23 verified its efficiency for damage identification 

in a real steel bridge. 

 On the other hand, nowadays, generated models based on machine learning analysis, statistical 

pattern recognition and data mining are being widely used to identify structural damage. The data 

mining approach uses the information of the different structural health conditions from the database 

(e.g. undamaged or healthy and damaged) and then, the relationship between intrinsic properties in 

the form of patterns are studied. Effective damage detection methods and applications based in 
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clustering and unsupervised learning approaches can be found in24. Besides, the data sets obtained 

from SHM of bridge monitoring systems are named “big data” due to complexity, diversity and sheer 

volume25. The most common algorithms of clustering-based approaches for statistical modeling and 

feature classification are Gaussian Mixture Models (GMM), Support Vector Clustering (SVC), K-

means and Self-Organizing Maps (SOM). For example, a clustering approach named fuzzy c-means 

(FCM) was used by Yu et al.26 for structural damage detection, besides, the authors utilized data 

projection algorithms such as principal component analysis (PCA) and its nonlinear version like 

kernel principal component analysis (KPCA) in order to extract the significant features. Several 

dimensionality reduction methods such as PCA, Curvilinear Component Analysis and Random 

Projection were used by Toivola et al.27 in order to reduce high-dimensional vibration measurements 

in conjunction with nearest neighbor algorithm. They implemented this novelty detection in a real-

life data from a wooden bridge model, which was subjected to simulated damages with small added 

weights. Cho et al.28 used a hierarchical parameter clustering technique to group acceleration data 

from the Jindo cable-stayed bridge in South Korea. 

 A cluster analysis technique was proposed by Santos et al.29 for damage identification in a real 

bridge, and they utilized a statistical process considering interquartile ranges as part of symbolic data 

analysis. The algorithms used are able to allocate data objects to any number of predefined clusters, 

irrespective of whether this amount has really been observed in the structural system. This strategy 

was applied to vibration data (frequencies, mode shapes and damping ratio). Besides, Santos et al.30 

implemented two approaches together: cluster algorithms and symbolic data to achieve a single-value 

novelty index (NI) to be able to detect structural changes in multi-sensor data-sets. To achieve the 

capability of NI and to corroborate the proposed theory, data obtained from Samora Machel bridge 

was used. During structural monitoring, refurbishment works were performed, such as 

repairing/replacement of concrete, replacement of suspension cables, hangers and supports. The 

methodology was implemented to perform a real-time assessment using a single-value NI for multiple 

time windows. A cable-stayed bridge was utilized as case of study for damage identification31, the 

authors used a combination of two statistical learning methods such as neural networks and clustering 

methods in order to detect early damages. Diez et al32 proposed a clustering-based approach to join 

datasets with similar behaviors and then detect structural changes on the Sydney Harbour Bridge. The 

approach presented has a peculiarity of considering the vibration signals caused by passing vehicles 

to detect and locate damaged junctions using K-means clustering algorithm. The results showed 

correlations between joints, locating a damaged joint and another with a defective instrumented 

sensor. 

The current investigation aims to evaluate the performance and possibilities of the combination 

of ICEEMDAN-Hilbert Huang Transform with an unsupervised machine learning algorithm 

(clustering, K-means), to detect and locate damage in the case of bridges under operational traffic, 

where recorded signals are non-linear and non-stationary.  
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ICEEMDAN and clustering-based methods have been used separately in SHM for vibration 

analysis and damage detection in other scientific disciplines. In particular, the clustering techniques 

used in the present paper were already applied to bridges in other works. However, their validation 

was limited to the case of ambient data (the input action was the temperature change) and of the static 

type (in the sense that no vibration data was examined). Also, the data came from a numerical model 

of the bridge, due to the difficulties in real bridges to find experimental results for original and 

damaged scenarios. As a novelty, in the present paper the clustering techniques are used to detect 

damage in the case of vibration data that does not come from an ambient excitation, but from a forced 

vibration due to traffic, what justifies the adoption of HHT improved with ICEEMDAN technique. 

In addition, the vibration data is coming from a dynamic test on a real bridge with a real vehicle, and 

is not numerically simulated. This is also a main novelty of this research that shows the feasibility of 

the proposed approach not only in simulated scenarios, but in real world applications. 

In summary, the novelties presented in the paper are: 

• The new methodology presents a mixed of two approaches such as Hilbert-Huang Transform 

and machine learning algorithms, that is able to detect and localize damages in a real bridge by using 

non-linear and non-stationary data coming from the forced-vibration data recorded under traffic. 

• The proposed methodology is checked with data from a real bridge under undamaged and 

damaged conditions and not from the simulation on a numerical model 

• ICEEMDAN, a technique that was initially developed in biomedical signals, is applied for the 

first time to the civil engineering field, demonstrating its performance in the case of the acceleration 

signals from a real bridge. 

The main steps of the methodology are graphically explained in detail in Figure 1. The vibration 

responses of the bridge excited by a passing vehicle, are measured and recorded in several points 

within the bridge using accelerometers. For every event, raw acceleration data are transformed into 

an unique damage feature in the frequency domain. 

The content of the paper is the following. Section 2.1 explains the improved methodology to 

decompose the complex traffic-induced signals to obtain the instantaneous frequency (IF), used as 

damage feature. In section 2.2 are presented the symbolic data analysis and cluster algorithms that 

allow to obtain a single-value damage parameter (DC) in order to detect and localize damage. Chapter 

3 describes the real steel bridge where the proposed methodology is checked, the monitoring 

programme, the damage scenarios and the acquired data. In chapter 4 the proposed strategy is applied 

and the main results discussed.  Finally, the main conclusions from the detailed analysis are drawn in 

chapter 5. 
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Figure 1. Schematic view of proposed method 

 

2. Theore t i ca l  background  
 
2.1 Novel improved ICEEMDAN method 

 
2.1.1 Empirical Mode Decomposition (EMD) 

 
In 1996, EMD was proposed by Huang et al.5 as a time-series decomposition method for non-

linear and non-stationary data. The original signal can be reconstructed by summation of intrinsic 

mode functions (IMF), where x(t) = original signal, Ii represent the ith IMF and the residue rn(t) is 

generally a monotonic function or a constant. Therefore:  

  (1) 

This method is adaptive and offers physical representation and no harmonics. EMD uses all the 

extrema to construct the envelopes and the problem arises when the signal contains intermittent 

processes, since the phenomenon of mode mixing can occur. The ability of this method to overcome 

the mode mixing problem in the SHM field has been surpassed by other modern decomposition 

methods33. 

The evolution of methods that emerged from EMD describe a successive improvement. For 

example, the Ensemble EMD (EEMD) method defines the IMF component as a mean of ensemble of 
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trails, having white noise as well as signal. The statistical characteristics of white noise of finite 

amplitude to improve the scale separation problem is introduced. It helps all possible solutions to be 

examined in the ensemble and the effect of the included white noise is removed by utilizing ensemble 

mean. In CEEMD method, the white noise residue present in the IMF is eliminated in a considerable 

way and its calculation efficiency increases. The other method called CEEMDAN solves the EEMDs’ 

faults, achieving a negligible reconstruction error and solving the problem of different number of 

modes for different realizations of signal plus noise. Finally, in the present investigation the improved 

method that currently exists ICEEMDAN21 is used, which is explained in detail in Section 2.1.2. 

 

2.1.2 Improvements on Complete Ensemble Empirical Mode Decomposition with Adaptive 
Noise (ICEEMDAN) 

 
Many authors have made an attempt to solve the problem of the appropriate selection for the 

addition of white noise to solve the mode mixing problem. However, many proposed techniques were 

not really successful and effective, especially for the signals obtained from real bridges. Hence, in 

pursuit of better performance of this technique applied to real bridges, a novel-based Improved 

CEEMDAN method developed by Colominas et al.21 was proposed. 

Taking into account the weaknesses of the variations of EMD explained above, a controlled noise 

should be added to the original signal in order to create new extrema. In this regard, the ICEEMDAN 

method considers two improvements such as residual noise in modes and the spurious modes, as it is 

explained herein. The next mathematical formulation details the algorithms used in ICEEMDAN 

method. Ek(.) is an operator which produces the k-th mode obtained by EMD, M(.), is also an operator 

which produces the local mean of the signal and w(i) = is a realization of zero mean unit variance 

white noise. 

Considering, x(i)=x+w(i) being x the original signal and  the action of averaging throughout the 

realizations, then the modes for the first EEMD7 and original CEEMDAN21 can be written as: 

  (2) 

In order to estimate only the local mean and subtract it from the original signal, the formula can 

be expressed as: 

  (3) 

Taking into account Equations 2 and 3, a reduction in the amount of noise present in the modes 

is obtained, because the estimation of modes was replaced by the local mean estimations, which 

.
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demonstrated the best performance previously explained. With respect to spurious modes, 

analogously to the previous methods like EMD, EEMD obtained a strong overlapping in the scales 

for the first two modes (first one extracted adding white noise and the second one adding E1(w(i))). 

Then, in order to reduce this overlapping, Colominas et al.21 proposed to use Ek(w(i)) and not directly 

use the white noise to extract the kth mode. The sequence of this improved CEEMDAN method 

consists in: 

Step 1. Calculate by EMD the local means of I realizations x(i)=x+β0E1(w(i)), taking account that 

I is the number of realizations of Gaussian white noise added to the signal of interest (I is consider 

usually a few hundred21). Then the first residue can be expressed as  

  (4) 

Fig Where β0 = ε0 std(x)/std(E1(w(i))); β0 is chosen such that ε0 is exactly the reciprocal of the 

desired signal-to-noise ratio (SNR) between the first added noise and the analyzed signal; the SNR is 

considered as a quotient of standard deviations. 

Step 2. At the first stage (k=1) calculate the first mode: 

  (5) 

Step 3. Estimate the second residue as the average of local means of the realizations r1+β1E2(w(i)) 

and define the second mode: 

  (6) 

Step 4. For k=3,…,N calculate the kth residue 

  (7) 

Step 5. Compute the kth mode 

  (8) 

Step 6. Go to step 4 for next k. 

Constants βk=εk std(rk) are chosen to obtain a desired SNR between the added noise and the 

residue to which the noise is added. 

(i)
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2.1.3 Hilbert-Huang Transform 
 

The Hilbert Huang Transform (HHT) of a signal x(t) is defined by Huang et al.,5 and it has been 

used for linear and nonlinear vibration systems identification for a long time. However, HHT is being 

developed and recently applied in the field of SHM during last years34-37. The main feature of Hilbert–

Huang Transform (HHT) is its capability to deal with nonlinear and non-stationary vibrations. The 

HHT method involves two distinct steps: Firstly, the decomposition of signals into intrinsic mode 

functions (IMF), where its components are obtained from the original signal through an empirical 

procedure. Secondly, the HHT approach is implemented applying the Hilbert Transform (HT) to each 

IMF component. Then, relevant parameters such as the instantaneous amplitude, instantaneous 

frequency and instantaneous phase can be determined. In this study, HHT utilizes ICEEMDAN to 

extract IMFs from the original signals and the Hilbert transform is applied on IMFs to find 

instantaneous frequencies, which are later on used to define a damage feature. 

The resulting IMFs  obtained as explained in 2.1.2 are introduced into the Hilbert 

Transform (Equation 9). The resulting Hilbert Transform  is grouped with to form 

an analytic signal (Equation 10) whose constituents and  (instantaneous amplitudes 

and  phases), can be expressed by Equation (11) & Equation (12) respectively. Instantaneous 

frequencies 	 of each IMF are determined by differentiating the instantaneous phase function 

in Equation (13). 

  (9) 

  (10) 

  (11) 
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2.2 Feature extraction and clustering-based approach 
 

2.2.1 Symbolic feature extraction 
 

In this paper, the feature extraction is carried out using a symbolic data analysis. This analysis 

consists in the reduction of the data in more generic types and less voluminous information in contrast 

with classical data used in SHM applications38. Symbolic data objects (SDO) use time intervals in 

statistical quantities such as interquartile intervals (IQR) or histograms30. According to Diday and 

Noirhomme-Fraiture39 the IQR intervals manage a greater degree of data fusion than histograms. 

Therefore, interquartile intervals are used in this investigation. 

Mathematically, the SDO described by p interquartile intervals of multiple sensors can be written 

as 

  (14) 

Where p = number of modal quantities describing the symbolic object (for instance, modal 

parameters, static variables, etc.). The parameter studied in the present investigation is the 

instantaneous frequency. Furthermore, for the case of an interquartile type object, each sensor 

measurement is transformed into an interquartile pair (P&",
(.)
, P012

(.)
). Assuming that the data associated 

with the r-th sensor are ordered in ascending order, the value P&",
(.) corresponds to the data that has 

25% below it. Similarly, P012
(.)  corresponds to the value that has 75% of the data below it. For this 

reason, this type of object is called interquartile, since the representation excludes the data located in 

the lower and upper quartiles, while the interval (P&",
(.)
, P012

(.)
) contains within it the 50% of all data. In 

addition, the symbolic data in conjunction with statistical learning methods can be applied to reveal 

the structural changes on bridges29,30. The SDO uses the distance between pairs of concepts and 

considers their intrinsic features, since when the values are lower, the objects can be more similar. 

Hence, the Normalized Euclidean Ichino-Yaguchi distance40 is used in this study and is defined as 

  (15) 

Where Ti and Tj = two symbolic objects obtained from a data set of s = 1,…, N objects, N is the 

number of symbolic objects defined for the analyzed data-set; r=interquartile intervals like 

 and obtained from r=1,…,p instantaneous frequency,  is the Ichino-

Yaguchi dissimilarity measure given by 
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  (16) 

The symbols  and , as well as the norm , are defined by 

  (17) 

  (18) 

  (19) 

The factor γ is generally taken as 0.5 and the normalizing factor  is defined as: 

  (20) 

2.2.2 Cluster analysis 
 

Symbolic data analysis can serve to catch several structural behaviors in a big data-set. 

Nonetheless, the strategy for SHM used herein requires the use of machine learning algorithms, which 

arise as an effective tool to aid in the data analytic. Therefore, a powerful tool of unsupervised 

machine learning like cluster analysis is addressed herein. Clustering is a technique to divide a dataset 

into separated similar clusters according to common feature patterns30. 

Clustering methods provide a variety of algorithms with desirable characteristics for the 

discovery of intrinsic properties contained in the data. As an un-supervised machine learning 

algorithm, clustering does not require the definition of reference/training data. Instead, they have the 

capability to “understand” the intrinsic features by trying to find the most compact and separated set 

of clusters41. In this study, the K-means clustering is used to characterize the structural behavior of 

the bridge. According to Arthur & Vassilvitskii42, K-means algorithm minimizes within-cluster sum 

of squares and mathematically can be written as: 

  (21) 

Where n = number of clusters; x1, x2,… = observations, S={Si:i=1,…,n} is set of clusters, 

μi,i=1,…,n are cluster centers and d(*,*) is Euclidean metric obtained from Equation 15. When the 
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K-means algorithm is used, it does not necessarily mean to obtain optimal results, since a kind of 

heuristic is incorporated in order to find the solution. Furthermore, each time the algorithm is 

executed, a slightly different solution can be obtained. The reason is the randomness of the initial 

selection of the grouping centers. 

As mentioned, the objective proposed in the clustering analysis is to minimize the within-cluster 

distance, which, consequently, maximizes the between-cluster distance. This can be expressed as: 

 

    (22) 

 
Where a given partition containing K clusters is considered, PK = {C1, …, CK}; C(i) = many-to-one 

allocation rule that assigns object i to cluster k, based on a dissimilarity measure dij defined between 

each pair of data objects, i and j. This dij is obtained using Equation 15. 

 
2.2.3 Cluster validity 

 
Clustering procedures define a certain number of partitions in data irrespective of whether this 

number of clusters really exists. In this way, high values of within cluster dissimilarity and solutions 

that are not optimal can be obtained. Therefore, it is necessary to estimate the optimal number of 

clusters in the studied data. For this reason, a quantitative evaluation known as cluster validity is 

employed to find the appropriate number of clusters. In the present work, a validity index called 

silhouette statistic (SIL) was employed43. The construction of silhouette statistic consists in assigning 

a fixed number of clusters K to the ith observation, with the following value: 

  (23) 

Where b(xi) = distance to nearest neighbouring cluster's centre and a(xi) is the average distance 

between the ith object of cluster C and the remaining j objects. The silhouette index of clusters and 

the average of silhouette widths for all samples are respectively given by Equation 24 and 25. Where 

(1 ≤ S% ≤ T), N = set of objects, K = clustering partitions and the value of silhouette coefficient 

varies from 0 to 1. A larger silhouette width indicates better clustered data. 
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  (25) 

2.3 Strategy for damage identification and localization 
 

As shown in Section 2.2.2 and in the references29-31, clustering methods can be applied for 

structural assessment considering the changes of the measured structural behaviours (classifying in 

clusters). The majority of researches need expert judgment to detect structural damage in SHM, 

especially in bridges. Nonetheless, expert judgment is not always available, therefore a robust strategy 

that includes the evaluation of SHM in real time should be implemented. For instance, many 

investigations of this type were developed on bridges.29-31,44. In the present study, a novelty index that 

has been widely studied by Santos29-31,44 is used because it demonstrated a good performance and 

efficiency in many complex bridge structures under ambient vibration. The damage parameter DC 

based on computing the average dissimilarity between clusters can be expressed as: 

  (26) 

Where K = number of clusters defined with the highest global silhouette index (SIL)42; c and k 

are two of the K clusters; Gck = Gowda-Diday dissimilarity parameter measured between their 

centroids45. The Gowda-Diday dissimilarity measure, U3% = U(P3 , P%), defined between the pair of 

objects Tc and Tk, is obtained by the following equations: 
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. 

When the clusters are generated in undamaged condition, the K-means algorithm can identify 

these groups clearly and will generate small values of DC. Conversely, if damages are present, the K-

means method generates separate clusters and therefore will generate large values of DC. In addition, 

the proposed strategy evaluated herein used a successive time-windows (TW) technique in order to 

identify and localize the structural damages. 

 The value of DC by itself is not considered informative since the structural changes cannot be 

detected with a pre-defined confidence level. For this reason, the methodology considers an additional 

step in order to test a statistical procedure to evaluate the DC values obtained in each time window.  

A confidence boundary (CB) was implemented in the statistical test of each set of DC values. It means 

that if the structural system presents changes, then this CB will allow to identify those changes as 

damages. Using a statistical testing for the DC distribution at each time window, the CB is obtained 

under the premise that residual errors in undamaged conditions are only influenced by random effects. 

This premise generally uses the Normal statistical distribution as shown in many investigations of 

SHM29-31,44. Nonetheless, if the number of DC values is small, then the t-student distribution will be 

more adequate for describing small samples extracted from Gaussian populations31. The paper31 

suggests the confidence boundaries (CB) for each time window as below: 

 

     (30) 

 
Where tS-1,1/2+β/2 = 1/2+β/2 percentile of a t-student distribution with S-1 degrees of freedom and 

β is the confidence level (99.9%); E[DC] = the expected value of the DC sample contained within 

each time window and E[DC-E[DC]] = variability estimates of each DC. The statistical parameters 

such as mean and standard deviation are used to obtain E[DC] and E[DC-E[DC]] in the baseline 

reference data because this state does not contain outliers related to damage. These statistical 

indicators were used due to their accuracy to estimate the samples with an outlier incidence up to 

25%, as a reference46 suggests. 

 

3. Case  s tudy  –  Warren  t russ  br idge  
 
3.1 Description of the bridge and vehicle 

 
The Warren truss bridge was located in Japan and all the experimental study was carried out by 

Chang & Kim47. The structure consists of a single span 59.2m, 8.2 m maximum height, and 3.6 m 

width, designed for a single lane. Figure 2 (a) depicts the real bridge that was constructed in 1959, 

besides, after 2012 it was demolished and replaced by a new one. A dynamic load test was carried 
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out before the bridge was removed, using artificial damages, and during the experiment, all the traffic 

was prohibited and only a one van-type vehicle crossed along the bridge. Figure 2 (b) illustrates the 

recreation vehicle used for the experiment, which is a two-axle vehicle (Serena; Nissan Motor Co. 

Ltd.) with total weight of about 21 kN. 

 

3.2. Experimental programme and damage scenarios 
 

The experimental setup consists of a sensor network to measure vertical accelerations.  

Acceleration data are collected using eight uniaxial accelerometers, labelled sensors A1, A2,…A8 

which, respectively, are mounted to the joint in left, middle, right and the exact positions where 

damages occur, as shown in Figure 2 (c). The three sensors located at the opposite side (A6-A8) serve 

to offer a clue to the judgment of torsion modes. The sampling rate was set as 200 Hz for all sensors. 

Acceleration data are collected during and after the van-type recreation vehicle drive over the deck 

where the sensors are located. Figure 3 plots the sequence of the five artificial damages imposed to 

the bridge, and it is briefly presented in Table 1. Firstly, the undamaged scenario denoted by UND 

show the healthy state. Secondly, two damage scenarios were applied sequentially such as: (i) Figure 

3 (b) shows a half cut in a vertical member at the midspan of the bridge using an oxyacetylene cutting 

torch, it is considered like the first damage (DMG1); (ii) Figure 3 (c) depicts a full cut applied to the 

same vertical member that represented the second damage (DMG2). The previously damages 

explained herein can represent the corrosion and the overloading. After the DMG1 and DMG2, the 

full cut was recovered welding some steel plates, this damage scenario was denoted as the RCV state 

(as shown in Figure 3 (d)). Furthermore, despite the fact that the bridge has been not restored to its 

original state, the RCV state only served as a reference to the last damage scenario. Finally, a full cut 

was applied in the vertical member located at the 5/8th-span and was labelled as DMG3, as shown in 

Figure 3 (a). 

 

 

Figure 2. Illustration of (a) the Warren truss bridge (b) recreation vehicle used in the test (c) location of 

the 8 accelerometers and artificial damages. Adapted from reference47. 
 

3600 
mm

8@7400 = 59200 mm

(c)(b)
Figure 2. Illustrationof (a) theWarren truss bridge (b) recreation vehicle used in the test (c) location of the 8 accelerometers and artificial damages.

(a)
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Figure 3. Experimental programme of the artificial damage (a) sequence of the damages (b) half cut (c) 

full cut (d) recovery. Adapted from reference47. 

 

Table 1.  Damage actions conducted on the Steel Truss Bridge ______________________________________________________ 
Damage states  Description of damage actions ______________________________________________________ 
1   Undamaged 
2   Half cut in vertical member at mid-span 
3   Full cut in vertical member at mid-span 
4   Mid-span member reconnected 
5   Full cut in vertical member at 5/8th span 
 

4. Results and discussion 
 

4.1. Signal decomposition 
 

In order to validate the effectiveness of the proposed method, all vertical accelerometers were 

utilized and analyzed. Figure 4 presents the time series of sensor 1 (A1) before and after severing the 

member for each damage scenarios, such as UND, DMG1, DMG2, RCV, DMG3 acquired from the 

experiment. This sensor was located at the bridge left part, representing a sensor away from artificial 

damages (Figure 2c). According to the nature of the excitation (forced vibration due to a crossing 

vehicle within the bridge), the dashed rectangle in Fig. 4 shows the part of the total acceleration record 

that is non-linear and non-stationary. If the frequency components change in time, the analyzed signal 

can be considered like non-linear5. The non-stationarity comes from the fact that the average 

amplitude of the signal also changes with time depending on the closeness of the vehicle to the 

location of measurement. These signals can be divided into two parts: (i) bridge forced signals that 

includes ten seconds from 5 s to 15 s; (ii) free vibration signals that includes from 15 s onwards. The 

first part of the signal, corresponding to the vehicle in the bridge is used in this paper. 

(a) (c)(b) (d)
Figure 3. Experimental programme of the artificial damage (a) sequence of the damages (b) half cut (c) full cut (d) recovery.

UND DMG1 DMG2
DMG3

RCV
(a)
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Figure 4. The forced and the free vibration of the bridge for sensor 1 in each damage scenario (a) 

undamaged (UND) (b) damage 1 (DMG1) (c) damage 2 (DMG2) (d) recovery (RCV) (e) damage 3 

(DMG3). 
 

One of the most challenging steps of the methodology is the frequency extraction. Although the 

forced and the free vibration are both time domain signals, they represent different processes: the 

forced vibration is a non-stationary process, while free vibration is a stationary process. To extract 

the instantaneous frequency of the forced signals, a proper time-frequency method is required. To this 

end, firstly, the non-stationary signals should be decomposed into a set of mono-component signals 

extracting the corresponding Intrinsic Mode Functions (IMF). Different methods have been described 

in Section 2.1 to extract the IMF, however the more advanced and improved EMD method named 

ICEEMDAN was used herein. Furthermore, the latest research claims that this improved empirical 

decomposition method is very robust for damage identification in bridges20,23,48,49. The original signal 
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was decomposed into three IMF considering only those that have physical meaning as shown in 

Figure 5. These three IMF are clearly identified in terms of its frequency content. 

 

Figure 5. Decomposition results from ICEEMDAN (a) original signal (b) IMF1 (c) IMF2 (d) IMF3. 
 

After the decomposition, Hilbert-Huang transform (HHT) has been applied to obtain the 

instantaneous frequency, using the mathematical formulation explained in Section 2.1.3. This analysis 

was carried out for each damage scenario and for all sensors. Figure 6 shows the three instantaneous 

frequencies estimates obtained by MATLAB for sensor 1 in undamaged state (UND). These three 

extracted frequencies are very stable, more pronounced and its trend is more regular and compact. In 

addition, the frequencies obtained are close to the theoretical natural frequencies of the bridge, which 

represent the bending modes obtained by Kim et al50 who found that the first fundamental frequency 

is 3.0 Hz, second is 6.8 Hz and fifth is 13.3 Hz. 

 

Figure 6. Instantaneous frequencies obtained by Sensor 1 in undamaged condition: first (IMF3), second 

(IMF2) and fifth (IMF1). 
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In order to verify the performance of the method, the bridge fundamental instantaneous 

frequency (corresponding to IMF3) is calculated along time for all the eight sensors as per Figure 7. 

Figure 7 (a) depicts the instantaneous frequency variation of sensor 1, located away from the three 

damages, and this situation is very clear since in undamaged condition (UND) the average frequency 

is approximately 3.0 Hz. Whereas when the damage 2 (DMG2) occurs, this average decrease slightly 

from 3.0Hz to 2.90 Hz. Then, this instantaneous frequency increases a little bit from 2.90 Hz to 2.97 

Hz, what shows the exact behavior when the bridge changes from damaged to recovered state (RCV). 

Finally, considering the damage 3 (DMG3), the instantaneous frequency shows a slight decrease from 

2.97 Hz to 2.94 Hz. In the case of sensor 2, the average of the instantaneous frequency for all damage 

states is depicted in Figure 7 (b). Firstly, the average frequency in an undamaged condition presents 

2.99 Hz, which is considered close to the numerical values obtained by Kim et al50. Besides, the 

damages 2, 3 (DMG2 and DMG3) and the recovered state (RCV) show a similar behavior to that 

obtained in sensor 1.  When the damages occur the instantaneous frequency decrease slightly (from 

2.99 Hz to 2.90 Hz for DMG2 and from 2.97 Hz to 2.93 Hz for DMG3) and when the structure 

recovers (RCV) then the frequency increase a little bit (from 2.90 Hz to 2.97 Hz). 

The Figure 7 (c) plots a particular behavior captured by sensor 3, the average of the frequency 

begins with 3.00 Hz for an undamaged state, nonetheless when the first damage 2 occurs (DMG2), 

this value decreases to a more significant value of 2.85 Hz. Therefore, this indicates that the structure 

has suffered a considerable damage, since sensor 3 was located in the same position where damage 2 

occurs. After the DMG2 occurs, the recovered state was carried out and the average of instantaneous 

frequency increase from 2.85 Hz to 2.95 Hz. Furthermore, other interesting behavior was presented 

when the damage 3 occurred (DMG3).  The frequency dropped to a not very far value (from 2.95 Hz 

to 2.90 Hz). Sensor 4 is deployed in a particular location as sensor 3. This behavior is exemplified in 

Figure 7 (d). In a first undamaged condition, the average frequency is 3.00 Hz. However, the damage 

3, the most severe, caused an important drop of the average frequency down to 2.86 Hz. It can be 

explained because sensor 4 was located in the exact position of damage 3 (See Figure 2c).  According 

to these results, the instantaneous frequencies decrease to a smaller value in sensors 3 and 4 when 

damages 2 and 3 are considered. For this reason, these sensors are able to locate the damage on the 

bridge. 

On the other hand, the average instantaneous frequencies of sensors 5, 6, 7 and 8 are presented 

in Figures 7 (e) – (h) respectively. These results show a similar behavior to sensors 1 and 2. As a 

summary, Table 2 gives the average instantaneous frequency values obtained in all sensors. In 

conclusion, all the sensors are capable of capturing structural changes, however sensors 3 and 4 

managed to better capture the structural changes, due to their deployment in the exact places where 

the damage occurred. Furthermore, the analysis of this first vibration pattern, reported accurate results 

regarding detection and localization of structural damages in the bridge. Therefore, a more detailed 

analysis of sensors 3 and 4 is carried out throughout the article. 
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Table 2. Average of the first instantaneous frequency (IMF3) considering all damages and sensors. _________________________________________________ 
Damage   Frequency (Hz)      ________________________________________  
states        sen1   sen2   sen3  sen4   sen5  sen6   sen7   sen8 _________________________________________________ 
Undamaged  3.00   2.99   3.00   2.98   3.00   2.96   2.98   3.00  
Damage 02   2.90   2.90   2.85   2.91   2.90   2.89   2.89   2.89  
Recovered    2.97   2.97   2.95   2.97   2.97   2.97   2.98   2.98  
Damage 03   2.94   2.93   2.90   2.86   2.93   2.92   2.93   2.93  _________________________________________________ 
 

 

Figure 7. Variation of the first instantaneous frequencies (IMF3) at each damage state (a) sensor 1 (b) 

sensor 2 (c) sensor 3 (d) sensor 4 (e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 
 

The variation of the instantaneous frequency 2 (corresponding to IMF2) was analysed for all 

sensors too. Results are shown in Figure 8. The average instantaneous frequency was calculated 

(Table 3). 
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Table 3. Average of the second instantaneous frequency (IMF2) considering all damages and sensors. _________________________________________________ 
Damage   Frequency (Hz)      ________________________________________  
states        sen1   sen2   sen3  sen4   sen5  sen6   sen7   sen8 _________________________________________________ 
Undamaged  6.80   7.00   6.63   7.09   6.88   7.07   7.10   6.90  
Damage 02   6.88   6.87   7.13   7.56   6.88   6.87   6.65   6.88  
Recovered    7.04   7.12   6.50   8.08   7.02   6.94   8.01   6.81  
Damage 03   7.49   7.49   6.47   6.42   7.01   5.41   8.46   8.54  _________________________________________________ 
 

 

Figure 8. Variation of the second instantaneous frequencies (IMF2) at each damage state (a) sensor 1 

(b) sensor 2 (c) sensor 3 (d) sensor 4 (e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 

 

Additionally, Figure 9 depicts the variation of the instantaneous frequency 5 (corresponding to 

IMF1) for all sensors. In the same way, Table 4 shows the average instantaneous frequency. For IMF2 

and IMF1, the changes in the average instantaneous frequency do not help to clearly identify the 

artificial damage on the bridge. Therefore, these IMF´s are not further used to identify and locate 

structural damage in the bridge and only IMF 3 is further analysed. 
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Table 4. Average of the fifth instantaneous frequency (IMF1) considering all damages and sensors. __________________________________________________ 
Damage   Frequency (Hz)        ________________________________________  
states        sen1   sen2   sen3  sen4   sen5   sen6   sen7  sen8 __________________________________________________ 
Undamaged 13.30 14.00 13.80 13.90 13.50 13.00 14.10 14.50  
Damage 02  13.29 14.34 14.49 12.89 13.98 14.06 14.54 14.57  
Recovered   14.58 14.17 16.03 13.94 15.73 14.61 13.84 15.89  
Damage 03  13.57 14.71 14.56 13.30 14.07 14.89 13.80 15.10  __________________________________________________ 
 

 

Figure 9. Variation of the second instantaneous frequencies (IMF1) at each damage state (a) sensor 1 

(b) sensor 2 (c) sensor 3 (d) sensor 4 (e) sensor 5 (f) sensor 6 (g) sensor 7 (h) sensor 8. 
 

In addition, the first instantaneous frequencies (IMF3) obtained from sensors 1, 2, 5, 6, 7 and 8 

do not represent substantial changes allowing to detect or to locate the damage. Therefore, in the 
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does not detect damage when damage is far from the sensor, and the other two, to show how the 

method is able not only to detect but also to locate damage. 

 

4.2 Feature extraction 
 

In Section 2.2.1 the symbolic data analysis was explained in detail with the objective to reduce 

the big data into more generic types of information and less voluminous. For this reason, in this work, 

the feature extraction is addressed using symbolic data analysis (interquartile intervals). The first 

instantaneous frequency (corresponding to IMF3) considering the 40 seconds of data by adding the 

10 seconds window of forced vibration from undamaged and damaged scenarios was studied. With 

this analysis, the trend and distribution of the data groups for each damage scenario are clearly 

identified. The original data was converted in symbolic objects like interquartile intervals considering 

that the four damage scenarios (UND, DMG2, RCV and DMG3) are plotted for a time of 40 s. The 

sampling frequency was 200 Hz and the number of points is 8240 as shown in Figure 10.  A window 

length of 206 points was considered and the respective boxplots were plotted for each instantaneous 

frequency of all sensors. Figure 10a and b give the symbolic data objects for sensor 3 and sensor 4 

respectively. In this case, this type of data does not present a substantial loss of information related 

to structural changes.  

 

 

Figure 10. Time-series of IQR intervals for instantaneous frequency (a) sensor 3 (b) sensor 4. 

 

4.3 Cluster analysis and damage novelty index 
 

The sequence of the damage detection procedure is shown in Figures 11 and 12.  Figure 11 (a) 

plots the instantaneous frequency obtained in sensor 3. Secondly, an algorithm of time-window (TW) 

described in Section 2.3 was used to successively model, classify and identify the several damage 

scenarios, as shown in Figure 11 (b). The sequential application of the K-means algorithm described 

in Section 2.2.2 is used to analyze each time window. Symbolic objects describing 40 seconds of 

normalized instantaneous frequency were considered along with time windows (5 SDO per 

TW30,31,44). Then, these time windows were used to obtain the DC values through Equation 26. The 
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use of the DC greatly reduces false detections with a high degree of reliability as Santos31 indicates. 

All data analyzed in undamaged and artificial states for each time window is shown in Figure 11 (c). 

The vertical dashed lines indicate the division between all damage states along time present on the 

bridge. From zero to 2060 points, the results confirm that all the samples are in healthy condition 

(undamaged), because there is not the presence of any misfit. After point 2060, the figure shows a 

misfit that indicates a change in the structural response due to the presence of damage (DMG2).  This 

behavior is more evident since damage 2 occurred at the same location of sensor 3 (Figure 2 (c)). 

Then, all DC values obtained show a constant trend up to the point 4532 where there is the presence 

of a slight misfit, that shows that the structure stabilizes at its recovered condition. The method shows 

a high sensitivity for damage detection and localization, as previously noted by other authors29-31,44,51. 

Furthermore, the analysis obtained of the DC values from point 6529 to 8240 (during the damage 3) 

showed a smooth trend with no major changes or any mismatch. This shows that damage 3 (DMG3) 

cannot be clearly detected by sensor 3 as this damage occurred in a location not so close to sensor 3. 

 

 

Figure 11. Damage detection procedure (a) instantaneous frequency for sensor 3 considering all damage 

states (b) sequence of mobile windows (c) DC values obtained from each window. 
 

Figure 12 provides a similar damage detection procedure in sensor 4. Figure 12 (a) shows the 

first identified instantaneous frequency as a result of signal decomposition procedure (ICEEMDAN) 

and Hilbert-Transform. Figure 12 (b) gives the symbolic data analysis of the frequency and mobile 
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window technique that evaluates the obtained samples during the damage and healthy states of the 

bridge. Considering the sequential application of the K-means algorithm for each mobile window, 

both algorithms together managed to obtain the DC values in Figure 12 (c). Opposite to what is 

obtained in sensor 3, for sensor 4 the biggest mismatch occurs at point 6592, where DMG3 appears, 

whereas a small change is observed in relation to DMG2 (point 2472). This clearly shows the ability 

of the method not only to detect but also to locate damage, as sensor 4 is deployed where DMG3 is 

created. 

Finally, for both sensor 3 and sensor 4 the algorithm K-means partitions data into k=2 mutually 

exclusive clusters, and returns the index of the cluster to which it has assigned each observation. On 

the other hand, the cluster analysis using the K-means algorithm for the other sensors shows SIL 

indices different than 2, thus revealing that the clusters are randomly assigned over time. This 

allocation suggests that no change in the bridge occurred during the analyzed period in the location 

of these sensors. In this regard, no damage was monitored by these sensors. Therefore, these results 

conclude the ability of K-means to distinguish structural conditions (undamaged and damaged state) 

without requiring any reference input. This can be seen in Section 4.4. 

 

Figure 12. Damage detection procedure (a) instantaneous frequency for sensor 4 considering all damage 

states (b) sequence of mobile windows (c) DC values obtained from each window. 

 

4.4 Cluster validity 
 

 
(a) 

 
(b) 

 
(c) 
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In order to obtain an objective evaluation of the number of structural changes on the truss bridge, 

the global silhouette index (SIL) was obtained for the partitions considered in Section 4.3. In this 

case, this index was used to evaluate the two damage states: UND and DMG2 for sensor 3 and RCV 

and DMG3 for sensor 4. The SIL index was obtained for 10 possible partitions (number of clusters) 

as shown in Figure 13 (a) and (b) for sensor 3 and 4 respectively. Time windows are defined with 

fixed time length equal to DL, where L is the time between each data sample (1/200 s) and D is the 

number of samples in the window. For all cases, time windows comprising D = 824 samples are used, 

resulting in time windows of 4.12 s. 5 symbolic objects have been considered for each time window. 

The validity index (SIL) was calculated for each time window and for each sensor at the 

intersection of the undamaged and damaged state. The time windows analyzed are the same as those 

used in Figures 11 and 12 for sensors 3 and 4 respectively. That is, the 20 symbolic objects comprising 

the undamaged state (UND) and damage 2 (DMG2) for sensor 3, and the 20 ones comprising the 

recovered state (RCV) and damage 3 (DMG3) for the sensor 4. The Figure 13 shows a maximum 

value of SIL such as 0.65 and 0.63 for sensor 3 and sensor 4 respectively, corresponding to the case 

of 2 clusters. In fact, each of these indices suggests that two structural behaviors (clusters) can be 

clearly observed in the data acquired, taking into account the analysis of undamaged and damaged 

scenarios. In conclusion, during the monitoring period, the structural changes have been well analyzed 

and identified, since this index was able to “understand” the structural behavior intrinsically present 

in the real bridge data29-31,44. For the rest of the sensors, the values of SIL were between 0.4 and 0.5 

for any number of clusters. 

 

Figure 13. Cluster validity index (SIL) in undamaged and damage scenarios (a) sensor 3 (b) sensor 4. 
 

Considering the advance in the machine-learning algorithms and its diversity in many 

techniques, the symbolic dissimilarities and distances have assumed especial attention because they 

are able to distinguish large data-sets. The dissimilarity matrices have been obtained and shown in 

 
(a) 

 
(b) 
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Figure 14 for the 20 symbolic objects comprising the undamaged and damaged state (figures 11b and 

12b) for each sensor. In Figure 14, "data points" stands for the samples drawn from the time series 

depicted in Figures 11b and 12b for sensor 3 and 4 respectively. 100 points were considered in the 

change from the undamaged state (50 points from UND) to damage 2 (50 points from DMG2) for 

sensor 3, and from the recovered state (50 points from RCV) to damage 3 (50 points from DMG3) 

for sensor 4. The dissimilarity matrices contain the pair-wise dissimilarities between all 100 data 

points between the undamaged (UND) and damaged state, and constitute the input for cluster analysis. 

They present a clear difference between the undamaged and damage states (DMG2 and DMG3) for 

sensor 3 and 4 respectively. This information is very useful, since the structural damages can be 

represented by changes in the colors. In both cases, the matrices are able to distinct two groups of 

data. Bearing in mind that darker colors represent the discrepant pairs of symbolic modal features 

while brighter colors outline the similar ones, the existence of two groups well defined suggests the 

existence of two scenarios (healthy and unhealthy state), which are dissimilar among themselves. As 

a final caveat, the Ichino-Yaguchi dissimilarity obtained a good sensitivity and performance in the 

damage identification. 

 

Figure 14. Distance matrix obtained from damaged structure in (a) dissimilarity matrix of sensor 3 (b) 

dissimilarity matrix of sensor 4. 

 

4.5 Strategy for damage identification and localization 
 

The DC and confidence boundary (CB) values as defined in Equation 30 obtained at each TW 

and for each analyzed set in sensor 3 are shown in Figure 15. The figure clearly shows a damage 

detection (mismatch that exceeds the confidence boundary CB) when DMG2 occurs at a position 

close to sensor 3. However, no damage is detected by this sensor when DMG3 takes action. Figure 

15b depicts the values of DC and CB obtained at each time window for sensor 4. In this plot, the 

value of the DC exceeds its corresponding CB only in the intersection between phases 3 and 4 (DC 

values outlined with red circle). This misfit demonstrates that there is evidence of structural damage, 

since the damage 3 (DMG3) occurred in the exact location of sensor 4. However, in this case, the 

sensor is not able to detect the damage corresponding to DMG2. 

  
(a) (b) 
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Figure 15. DC series from the sets of windows and the definition of confidence boundary (CB) within 

each window for: (a) sensor 3 (b) sensor 4. 
 

Additionally, a damage localization analysis was carried out for the sensor 1 to corroborate the 

effectiveness of the proposed method in locating damage. Sensor 1 is located away from the artificial 

damages (see Figure 2c). In the Figure 16a, the DC values and confidence boundary (CB) are obtained 

for this sensor. As seen, DC values do not exceed the CB during the four phases (UND, DMG2, RCV 

and DMG3), which shows that this sensor is not capable of locating structural damage in the bridge. 

Similar results were obtained for sensors 2,5,6,7 and 8 (see figures 16b, 16c, 16d, 16e, 16f 

respectively). 
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Figure 16. DC series from the sets of windows and the definition of confidence boundary (CB) within 

each window for: (a) sensor 1 (b) sensor 2 (c) sensor 5 (d) sensor 6 (e) sensor 7 (f) sensor 8. 
 

In conclusion, these results suggest that the proposed novel strategy does not have limitations to 

choose the sensible damage parameters and confirms its performance to detect and localize structural 

damages immediately after their occurrence when using force-induced non-stationary vibration data 

coming from existing traffic in a bridge. 

5. Conc lus ions  
 

In this article, a promising new strategy that combines algorithms for signal processing and 

machine learning is proposed to conduct damage detection and localization in bridges by using the 

traffic-induced vibration data. Its effectiveness was assessed on the transient vibration monitoring 

data acquired on a Warren steel bridge crossed by a vehicle. Due to the characteristics of the acquired 

acceleration data in terms of non-linearity and non-stationarity, the proposed damage feature used is 

the instantaneous frequency obtained by HHT on previous decomposed signals obtained by the 

Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN).  

HHT yields improved frequency extraction based on ICEEMDAN, since dispersion in frequencies is 

considerably reduced. In addition, the phenomenon of mode mixing that exist in the previously 

studied methods specially for experimental and numerical cases has been very effectively eliminated 

by a suitable addition of white noise considering a good performance of the decomposition of Intrinsic 

Mode Function (IMF). The improvements in EMD provided by ICEEMDAN gave good results and 

can be considered as a reference method for the noise-assisted variation of empirical mode 

decomposition. 

In this analysis, a clustering-based approach to group data of frequencies with similar behavior 

on bridge was developed, and then used to detect and localize structural damages. The K-means 

clustering algorithm was capable to allocate data objects to any number of predefined clusters. 

Additionally, the symbolic data objects (SDO) based on interquartile intervals were able to accurately 

generalize the data-set of instantaneous frequencies. The Ichino-Yaguchi distance like a judge 

clustering visually, was found to be sensitive to hidden structural changes in symbolic data-sets. The 

SIL cluster validity index demonstrated its ability to suggest the number of distinct structural 

behaviors (clusters in the analyzed data set) monitored on the bridge.  

Finally, the clustering algorithms were employed to classify the structural conditions in the 

bridge and the mobile windows techniques with a confidence boundary (CB) were able to identify 

and localize the damages from the data-set, which shows that they are very effective and reliable in 

the field of bridge structural health monitoring by using traffic-induced acceleration data. 

In this work, the impact of variations in operational and environmental conditions on the 

performance of the algorithm was not taken into account. This is due to the lack of experimental data 
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comprising several vehicles crossing bridges in un-damaged and damaged scenarios and with 

changing environmental conditions, in contrast with the case of ambient vibrations. 
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   Chapter 6 – Conclusions and future research lines 
 
 
 
In this chapter, the main conclusions of this thesis related to the results achieved and limitations 

encountered are presented. It also discusses future research topics for which the methods proposed in 

this study can be the fundamental basis or integrating parts. In general, several conclusions can be 

drawn from this thesis, highlighting the advantages from the application of proposed methods. 
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6.1. Conclusions 

In this doctoral thesis it was proposed to develop and assess the performance of a methodology 

for damage detection, location and quantification that can be applied to vibration data coming from 

real bridges, taking into account the influence of environmental and operational effects on the 

experimentally recorded signals. The proposed methodology has to be suitable for any kind of 

external excitation, from ambient to forced vibration. To this end, new vibration-based parameters 

were defined as damage features, and advanced tools for signal decomposition and analysis as well 

as machine learning algorithms were developed and their reliability in the damage detection, location 

and quantification in 3 real bridges was demonstrated. The following conclusions are based on the 

main findings in the work. 

1. Nowadays, bridges that present a structural health monitoring system during in-service stage 

present a great challenge in SHM technology to separate changes in characteristics caused by 

structural damage from those caused by normal variability (operational and environmental). In 

addition, according to various investigations, the changes caused by normal variability can be even 

greater than those caused by damage. In this sense, if a correct extraction of characteristics and 

data normalization is not carried out, the changes in the characteristics sensitive to the structural 

response caused by both operational and environmental influences can result in false detections of 

damage and consequently a taking of wrong decisions. According to the literature review, output-

only methods are a highly accurate approach to solving this problem. 

2. Nonlinear and non-stationary data, which are nowadays available in modern SHM systems of 

bridge and civil engineering structures, should be thoroughly studied. For this reason, the 

fundamental objective of this thesis was to utilize HHT method to analyze the nonlinear and 

nonstationary response signals of several real bridges. The advanced EMD procedure like 

Improved on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(ICEEMDAN) and Variational Mode Decomposition (VMD) have shown a good performance in 

the decomposition of nonlinear and non-stationary vibration data to be further applied in the Hilbert 

Transform.   

3. A set of novel vibration parameters such as CAV, CAD, DVI, MCVI, IVI and AIVI were proposed 

and their feasibility as damage features to detect damage using ambient and forced vibrations in 

two real bridges was analyzed. In the first bridge analyzed, the signals are linear and stationary, 

however in the second case, the bridge is subjected to a forced vibration, which produces non-

linear and non-stationary signals. The developed strategy on using non-modal vibration-based 

methods and the results demonstrated that these novel empirical vibration parameters are suitable 

for damage identification (detection, localization & quantification in the case of ambient vibration). 

4. Additionally, two parameters such as the marginal Hilbert spectrum (MHS) and the instantaneous 

phase difference (IPD) are proposed as damage indicators for bridges under traffic loads, where 

recorded data is characterized by high non-linearity and non-stationarity. These parameters were 
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obtained from the Hilbert Huang Transform (HHT). The efficiency of the ICEEMDAN-HHT 

method and the feasibility of MHS and IPD as damage indicators are demonstrated in the case of 

a numerical model of a bridge and a real steel arch bridge subjected to traffic loading. Results for 

damage detection obtained in both cases are very satisfactory. On one hand, for all sensors, the 

peak frequencies extracted from the Hilbert marginal spectrum are reduced when damage occurs 

due to stiffness loss. On the other hand, all sensors detect a reduction of the instantaneous phase 

difference when damage occurs due to the decrease in the wave speed of the response 

measurements. Both damage features present an excellent performance in detecting, localizing and 

quantifying damage in bridges under operational loads. 

5. A promising new strategy that combines algorithms for signal processing (ICEEMDAN and HHT) 

and machine learning (k-means) is proposed to conduct unsupervised damage detection and 

localization in bridges by using the traffic-induced vibration data. Its effectiveness was assessed 

on the transient vibration monitoring data acquired on a Warren steel bridge crossed by a vehicle 

taking account the instantaneous frequencies as damage parameter. In this analysis, a clustering-

based approach to group data of instantaneous frequencies with similar behavior on the bridge was 

developed. The K-means clustering algorithm was capable to allocate data objects to any number 

of predefined clusters. Besides, the symbolic data objects (SDO) based on interquartile intervals 

were able to accurately generalize the data-set of instantaneous frequencies. The clustering 

algorithms were employed to classify the structural conditions in the bridge and the mobile 

windows techniques with a confidence boundary (CB) were able to identify and localize the 

damages from the data-set in an unsupervised way, which shows that they are very effective and 

reliable in the field of bridge structural health monitoring by using traffic-induced acceleration 

data. The possibility of false detections is greatly reduced by the proposed approach 

6. The evolution along time of the natural frequencies were studied for the well-known Z24 bridge, 

which allowed a better understanding of the influence of environmental factors (temperature) on 

the bridge dynamics. The application of the proposed methodology includes the identification of 

the modal parameters as outputs in a global system model. The kernel PCA algorithm was used for 

output-only damage detection and gave a good performance and capability when applied to real-

world data sets from an existing bridge. Its capability to identify the non-linear behavior of modal 

parameters due to changes in environmental conditions (temperature) is fully proven. 

 

6.2 .    Future Developments 
 

The author suggests further research work following the results and conclusions derived in this 

thesis. Considering the observed limitations and aspects of improvement, those identified as more 

relevant are presented here.  
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1.  While the successful outcome of the proposed method for damage detection has been here 

demonstrated, the author does admit that at this point the empirical mode decomposition and its 

improvements, as used in this thesis, are not the most powerful kind of non-stationary signals 

decomposition methods presently available. With the advancement in signal processing, the 

potential use of more advanced mode decomposition is an interesting venue to explore, especially 

in a context of Bridge Health Monitoring (BHM) since very little work o nothing exists. It will 

then be possible to compare between different kinds of mode decomposition techniques in terms 

of their advantages and disadvantages to a certain end. 

2.  More robust unsupervised damage detection methodology should be implemented, capable of 

automatically extracting compact and meaningful information related to the condition of the 

bridge evaluated, since the majority of damage detection techniques reviewed under machine 

learning (ML) applications are based on supervised ML algorithms, which require labeled data 

for training. However, the data-sets for pre-damage and post-damage cases are rarely available in 

real civil structures as bridges, therefore, researchers should come up with more sophisticated 

methodologies and algorithms. 

3.  Actually, the advancement in Deep Learning is drawing the attention of researchers, therefore, 

comparisons should be made between clustering-based methods with other un-supervised learning 

methods as Variational Autoencoder (VA) and Generative Adversarial Networks (GAN). The results 

of the present thesis recommend that these comparisons will be made using many real bridge cases. 

Variational Auto-encoder (VAE) should be studied with major detail, because the last investigations 

have demonstrated more robustness and good applicability to structural damage detection on bridges 

4.   In cases where the real data on damaged bridges are missing, a numerical finite element (FE) model 

can be a good option to generate artificial data in large quantities (big data). In addition, a numerical 

model can generate damages of different magnitudes, in different locations of the structure, and in 

different types, which allows a more extensive investigation. For this case, neural networks are 

causing great attention in the research world for their high performance in damage identification. 

5.  Development of an output-only approach that combines both operational and environmental 

variability to detect, localize and quantify structural damage is of interest. The motivation is that all 

real bridges are subject to these changes during their useful life and these factors can mask the 

structural damage, therefore, these problems should be studied in major detail not just in a separate 

way but in combination and robust and accurate methodologies should be proposed. 
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