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Abstract— An analysis of the existing hand-eye calibration
methods reveals that most of them are far from trivial. And,
what is worse, their intrinsic complexity makes it difficult to
elucidate under which circumstances they fail to provide an
accurate solution. Thus, although it might seem that hand-eye
calibration problem is uninspiring because it is assumed to be
well-solved, we show in this paper that there was still room
for improvement, both in terms of simplicity and robustness.
After reviewing the most representative methods, we analyze the
situations in which they fail, and we introduce a simpler closed-
form alternative that accurately solves the problem in all the
identified critical circumstances. Its performance is evaluated
using simulated and real experimental data.

Index Terms— Hand-eye calibration, 3D rigid displacements,
axis-angle representation, orthonormalization.

I. INTRODUCTION

Many applications require attaching a sensor, in particular

a camera, to the end effector of a robot. A typical such system

is depicted in Fig. 1, where a robot points a camera to a

calibration pattern. According to the spatial displacements

represented in this figure, we have that

Z = KiXCi, (1)

where Z, Ki, X, and Ci for i = 0, . . . , n are rigid

transformations. Although different formalisms can be used

to represent such transformations, we can initially assume

that they are homogeneous 4×4 matrices of the form
(
R t

0 1

)
, (2)

where R ∈ SO(3) is a 3×3 rotation matrix (i.e., a

proper orthogonal matrix) and t ∈ R
3, a translation vector.

While Ki can be obtained from the forward kinematics of

the robot, Ci can be calculated using a camera calibration

method [1]. The transformations X and Z, are called the

hand-eye and the robot-world transformations, respectively.

The estimation of these transformations from experimental

data corresponds to the hand-eye and robot-world calibration

problems. Although both calibration problems have been

solved simultaneously at least in [2]–[6], we focus here only

on the hand-eye calibration part, noting that, once X is

estimated, the computation of Z directly follows from (1).
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Fig. 1. Rigid transformations in a serial robot with a camera attached
to its end effector. Four reference frames are involved: the robot reference
frame (in blue), the end-effector reference frame (in black), the camera
reference frame (in green), and the world reference frame (in red). The
hand-eye calibration problem consists in computing X from the equations
Z = KiXCi for i = 0 . . . n. Ki and Ci are given, but Z is assumed to
be unknown, otherwise the problem becomes trivial.

Without loss of generality, we can use the robot and sensor

poses at i = 0 as a reference. Then, we can write

AiX = XBi, (3)

where Ai = K
−1

i K0 and Bi = CiC
−1

0 for i = 1, . . . , n
are, respectively, the end-effector motion and the sensor

motion transformations. It has been proved that, to generate

a system with a well-defined solution, one needs to move the

robot to, at least, three different configurations to generate

two independent equations of the form of (3) [7], [8].

Moreover, while usually Ai can be accurately obtained from

the robot forward kinematics, it is sometimes difficult to

obtain accurate values for Bi, depending on the quality of

the sensor and its calibration procedure. Thus, to mitigate

the effects of noise, more than two equations are typically

used to define an over-constrained system whose solution

minimizes a certain least squares error.

The matrix equation of the form given in (3) was first

studied in [9]. It can be seen as a particular case of the

Sylvester equation AX +XB = C, which often occurs in

system theory [10]. The study of this equation for matrices of

the Euclidean group, in the context of hand-eye calibration,

dates back to the 1980s when Shiu and Ahmad proposed
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the first solution method [7], [8]. After all this time, the

topic still remains of interest due to its relevance in many

applications [11]–[16]. As a consequence, a vast amount of

literature connected to this problem is available.

In this paper, we review the most popular hand-eye calibra-

tion methods, and we propose a simple method whose main

aim is to attain robustness without compromising on either

accuracy or computational efficiency. This method is based

on a variation of the axis-angle representation of rotations

which leads to a closed-form formula involving only the four

elementary arithmetic operations. Therefore, it is particularly

useful for implementation in embedded microcontrollers with

limited computational resources. Moreover, it should be re-

minded that closed-form formulas are always preferable over

iterative procedures, for two main reasons: (1) they permit

the analytical analysis of the influence of each variable on the

result; and (2) the computational cost, in terms of arithmetic

operations, is constant.

This paper is structured as follows. Section II reviews

existing approaches classified in terms of the representation

used for spatial displacements. On a first reading this section

can be omitted without loss of continuity. The new method

is described in Section III whose performance is analyzed in

Section IV by comparing it against the methods reviewed in

Section II. This analysis employs simulated and experimental

datasets. The conclusions are drawn in Section V.

II. A BRIEF REVIEW OF THE EXISTING METHODS

Representing the spatial displacements in (3) in terms of

4×4 homogeneous matrices is a highly redundant representa-

tion because it uses twelve parameters to encode six degrees

of freedom. As a consequence, a simple but meaningful

classification of the existing hand-eye calibration methods

can be achieved attending to the alternative representations

used for the spatial displacements. Contrarily to the usual

practice, we will start by reviewing the methods that rely

on the most sophisticated representations to end up with the

simplest ones because this leads to a smooth introduction of

our method.

A. Dual quaternions

Screw parameters permit encapsulating both translations

and rotations just with six independent parameters. Such

parameters can be seen as the elements of a dual quaternion.

Thus, the methods using this kind of representation are said

to be based on dual quaternions, even though the algebra of

dual quaternions is not strictly used in the resolution of the

problem.

Chen was the first to use screw parameters to solve

the hand-eye calibration problem in [17]. Later, Lu and

Chou introduced an eight-space quaternion space to solve

the problem [18]. The idea was to represent the translation

component also using quaternions, but their formulation is

similar to that resulting from using dual quaternions. Other

methods using the same representation subsequently appear

in the works of Kim [19], Daniilidis [20], and Zhao [21].

B. Double quaternions

A 3D displacement can be approximated by a 4D rota-

tion [22], which can be represented as a double quaternion.

Although the result is an approximation, very recently this

idea has been successfully used by Wu et al. to solve the

hand-eye calibration problem [23]. The numerical stability

of this method was later improved in [24].

C. A rotation matrix and a translation vector

The two approaches mentioned above are usually classified

as one-stage methods because they simultaneously recover

the rotation and the translation components of the hand-

eye displacement. Despite their theoretical appeal, mixing

translations and rotations in a single optimization is seldom

a good idea because a weight factor scaling one with respect

to the other is necessarily introduced (in an explicit [23] or

explicit [17] way). As a result, the error in the estimated

rotation and translation components depend on each other.

As an alternative, the translation and the rotation components

can be separated by rewriting (3) as
(
RAi

tAi

0 1

)(
RX tX

0 1

)
=

(
RX tX

0 1

)(
RBi

tBi

0 1

)
.

That is,(
RAi

RX RAi
tX + tAi

0 1

)
=

(
RXRBi

RXtBi
+ tX

0 1

)
,

and, therefore,

RAi
RX = RXRBi

, (4)

(RAi
− I3×3) tX = RXtBi

− tAi
, (5)

which are the equation of rotation and the equation of

translation, respectively. Using these two equations, the

original problem can be solved in two stages: first, the least-

squares solution, say R̂X , of the overconstrained system

formed by n equations in the form of (4) is taken as an

estimation of RX and then the least-squares solution, say t̂X ,

of the overconstrained system of n equations of the form

of (5) is taken as an estimation of tX .

It is usually argued that, although two-stage methods may

be optimal in each stage, the final result may not be globally

optimal due to the coupling of the rotation and translation

equations. However, as we will see in Section IV, the effects

of such coupling may be worse in one-stage methods in some

cases.

Assuming that RX is known, (5) is rewritten for n

constraints as a linear overconstrained system

C tX = D, (6)

with

C =



RA1

− I3×3

...

RAn
− I3×3


 (7)

and

D =



RXtB1

− tA1

...

RXtBn
− tAn


 . (8)



The least-squares solution of (6) is

t̂X = C
+
D, (9)

where C
+ =

(
C
⊤
C
)−1

C
⊤ is the left Moore-Penrose

pseudoinverse of C. Since t̂X is easy to obtain, the problem

is essentially reduced to obtain R̂X from (4).

Liang and Mao in [25] directly reformulated (4) using 3×3
rotation matrices in terms of Kronecker products, or tensor

products, and the vectorization operator vec1, as


RA1

⊗ I3×3 − I3×3 ⊗R
⊤

B1

...

RAn
⊗ I3×3 − I3×3 ⊗R

⊤

Bn


 vecRX = 09n×1. (10)

Then, R̂X is obtained by computing two singular value

decompositions (SVDs), one to solve (10) depending on

the number of robot and camera poses and another of

constant size to orthonormalize the result. As we will see in

Section IV, this method leads to excellent results, the only

disadvantage being its high computational cost, especially

when n is large. To reduce this computational complexity,

other authors explored the use of alternative representations

for the rotations.

D. Axis-angle representation of the rotations

According to Euler’s rotation theorem, any composition of

rotations in three-dimensional space, say RAi
, is equivalent

to a pure rotation of size αi about an axis, āi, called the

equivalent axis of rotation [26]. RAi
, αi, and ai are related

through the expression:

āi =
1

2 sinαi

ai, (11)

where

ai =



RAi

(3, 2)−RAi
(2, 3)

RAi
(1, 3)−RAi

(3, 1)
RAi

(2, 1)−RAi
(1, 2)


 (12)

is the vector of Euler parameters which involves all the ele-

ments out of the diagonal of RAi
since RAi

(i, j) refers to the

entry in the i-th row and j-th column of RAi
. Equation (11)

does not work if sinαi = 0. That is, if αi=kπ, for k ∈ Z.

When k is odd, ai can still be computed by considering the

elements in the diagonal of RAi
, otherwise āi is undefined.

In particular, it is undefined when the rotation is the identity

and it is numerically ill-conditioned for small rotations. The

same happens for b̄i, defined from RBi
in the same way

as āi is defined from RAi
. Despite this drawback, this

representation of rotations has dominated the resolution of

the hand-eye calibration problem since the seminal work of

Shiu and Ahmad [7], [8]. One additional disadvantage of

their method is the large size of the generated system of

equations because they treat the sines and cosines of the

rotated angles as independent terms. Almost simultaneously,

Tsai and Lenz [27] solved the problem using a more efficient

1The vectorization of a matrix is a linear transformation which converts
the matrix into a column vector by stacking the columns of the matrix on
top of one another.

approach where the number of unknowns stays the same no

matter how many measurements are considered. The axis

angle representation is also used in [28] and [29] which, as

we will see in Section IV are more robust than the previous

methods in some situations.

A simple way to circumvent the issue caused by small

rotations consists directly using ai and bi instead on āi

and b̄i. This is an essential point in the new method presented

in the next section.

Since Euler parameters can be arranged as the elements

of a quaternion, the methods using this representation are

usually called quaternion-based methods, despite the algebra

of quaternions is not needed. Chou and Kamel are credited to

be the first to present an algorithm based on quaternions [30].

In their approach, a system of nonlinear equations is it-

eratively solved using a Newton-Raphson procedure. They

later improved their method by transforming the rotational

component into a system of linear equations, which was

solved using a SVD [31]. Although quaternions were also

used later by Zhuang and Roth in [32] to come up with

a non-iterative approach, the results were presented without

referring to quaternions, resulting in an algorithm that is easy

to understand and implement. This work was later extended

in [33] to simultaneously solve the hand-eye and the robot-

world calibration problems.

III. THE PROPOSED METHOD

The proposed method arises from rewriting (4) as

RAi
= RXRBi

R
−1

X , (13)

which emphasizes that RX can be interpreted as a reference

change: the rotation RAi
can be obtained by first applying

the reference change given by RX , then applying the rota-

tion RBi
and, finally undoing the reference change. Thus, the

equivalent axes of rotations corresponding to RAi
and RBi

are related through RX by the equation

ai = RXbi. (14)

For a formal proof of this fact, see Theorem 3 and Lemma 4

in [7].

In contrast to previous approaches, which solve (14) by

expressing the rotation described by RX with a minimal

set of parameters, we generate enough equations in the

form of (14) to directly identify all the entries of RX . The

advantage of this approach is that the constraints remain

linear and, thus, they can be solved using standard linear

algebra tools. Next, we describe this approach for the case of

two constraints, which, as already mentioned, is the minimal

set of constraints that permits determining R̂X . Then, we

will generalize the result to deal with n > 2 constraints.

For two constraints, we have that

(a1, a2) = RX (b1, b2) . (15)

Since if a1=RXb1 and a2=RXb2, then we have that

a1×a2=RX(b1×b2) and, hence,

(a1, a2, a1×a2) = RX (b1, b2, b1×b2) . (16)



If b1 and b2 are not collinear, (b1,b2,b1×b2) is a full

rank 3×3 matrix. Therefore, the solution of (16) is

R̃X = (a1, a2, a1×a2) (b1, b2, b1×b2)
−1

. (17)

For the general case, that in which n > 2, we can define

the overconstrained linear system

A = RX B, (18)

where

A = (a1, · · · an,a1,1, · · · ai,j , · · · an,n) , (19)

and

B = (b1, · · ·bn,b1,1, · · ·bi,j , · · ·bn,n) , (20)

with ai,j=ai×aj and bi,j=bi×bj , i, j ∈ {1, . . . , n}, i < j.

Now, the least-squares solution of (18) is

R̃X = AB
+, (21)

where B
+ = B

⊤
(
BB

⊤
)−1

denotes the right Moore-Penrose

pseudoinverse of B. Observe that B
+ = B

−1 if B is a

3×3 full rank matrix. Thus, (21) generalizes (17). However,

as we will see in Section IV, for large values of n, the

incorporation in the formulation of all the possible cross

products may result in marginal accuracy gains, but in a

noticeable computational cost increment. Thus, a trade-off

arises with respect to these two factors. Nevertheless, if BB
⊤

has a low condition number without considering the cross

products, clearly there is no reason to include them.

Due to noisy measurements, R̃X is not necessarily proper

orthogonal, i.e., its determinant is not exactly equal to 1, and

its rows, or columns, are not exactly orthogonal to each other.

Several methods can be used to restore the orthogonality of

noisy rotation matrices [34]. For instance, the nearest rotation

matrix, in Frobenius norm, to R̃X can be approximated by

iteratively applying the following updating rule

R̃X ← R̃X

(
3 I3×3 + R̃

⊤

XR̃X

)(
I3×3 + 3 R̃⊤

XR̃X

)−1

.

(22)

This iterative procedure was introduced in [35]. Although

other updating rules exist, (22) is advantageous due to its

cubic convergence to the solution [36]. As we will see in

the next section, for most practical applications, only two

iterations of (22) are enough to obtain estimated rotation

matrices with negligible orthogonality errors. This permits

expressing the proposed method as a closed-form formula.

Finally, we can summarize the proposed method in the

following four simple steps:

1) Apply (12) to the elements in the input sets {Ai} and

{Bi} to obtain the corresponding ai and bi vectors.

These vectors, and possibly their cross products, form

the columns of two matrices, A and B, respectively.

2) Use (21) to determine R̃X , which can be seen as a

noisy rotation matrix.

3) Use two iterations of (22) to orthonormalize R̃X

thus obtaining R̂X , the solution to the equation of

rotation (4).

4) Finally, complete the hand-eye transform X using (9)

to find the solution of the equation of translation (5).

IV. PERFORMANCE ANALYSIS

The methods appearing in the first column of Table I

have been implemented and evaluated using simulated and

experimental data. For each method, the first letter denotes

the type of representation used according to the subsections

of Section II. Thus, methods A1 and A2 rely on dual

quaternions, B1 on double quaternions, C1 use rotation

matrices and translation vectors, and D1 to D7 the axis-angle

representation. A1, A2, and B1 are single-stage methods and

the rest are two-stage methods. D7 is the method proposed in

Section III. This paper has supplementary multimedia mate-

rial consisting of a set of MATLAB functions implementing

these methods and the scripts used to obtain the results

presented in this section. The reported results have been

obtained on a desktop computer with a 3.7 GHz Intel Core i7

processor using double-precision floating-point format.

A. Performance analysis using simulated data

First of all, we have to verify that all methods recover

the original displacement for noiseless data. To this end, we

apply the following procedure:

1) Randomly generate X, and Bi, for i = 1, . . . , 10.

In both cases, the rotational component is obtained

by computing uniformly distributed points on S3⊂R4

and the translation component by computing points

uniformly distributed in [−5, 5]3 ⊂ R
3.

2) Compute Ai = XBiX
−1.

3) Taking {Ai} and {Bi} as inputs, obtain R̂X and t̂X

with each of the tested methods, and compute:

a) The rotation error, ER, as the Frobenius norm of

R̂X−RX , which has the geometric interpretation

given in [34].

b) The orthogonality error, EO, as

∣∣∣det(R̂X)−1
∣∣∣.

c) The translational error, ET , as

∥∥∥t̂X−tX
∥∥∥.

The second column of Table I summarizes the results

averaged over 1000 repetitions of this procedure. According

to these results, the errors of method B1 are the largest ones.

This is because this method obtains an approximate result.

In contrast, the level of error for the rest of the methods,

including the one proposed here, can be considered as

negligible in practice. Thus, despite its undeniable theoretical

interest, B1 should not be the method of choice, in general.

Now, if the same experiment is repeated with the only

difference that one of the elements of the set {Bi}, say Bn,

is equal to the identity, the results in third column of Table I

are obtained. Methods D1, D2, D3, D4, and D5 fail because

the computation of the equivalent axis of rotation is ill-

defined for small rotations. If, instead, Bn is equal to a

rotation of π radians about the x−axis, the results in the

fourth column of Table I are obtained. In this case, methods

A1 and A2 also fail and D1 to D5 fail again. Although the

lack of robustness of these methods can be remedied by

discarding the measurements whose rotational components

are close to the identified singularities, the situation is more

complicated because some singularities depend on the spatial



TABLE I

PERFORMANCE COMPARISON OF THE DIFFERENT METHODS WITH NOISELESS DATA AND n = 10.

Method Random set {Bi} Bn = I Bn = Rx(π) RX = I RX = Rx(π)

ER EO ET ER EO ET ER EO ET ER EO ET ER EO ET

A1, Lu-Chou, 1995 [18] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

A2, Daniilidis, 1999 [20] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

B1, Wu et al., 2021 [23], [24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C1, Liang-Mao, 2008 [25] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D1, Tsai-Lenz, 1989 [27] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

D2, Shiu-Ahmad, 1989 [8] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

D3, Park-Martin, 1989 [29] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

D4, Wang, 1992 [37] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

D5, Horaud-Dornaika, 1995 [28] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

D6, Chou-Kamel, 1991 [31] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D7, This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: E < 10−8 ✓: E ∈ [10−8, 10−4] ✗: E > 10−4 or Failure
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Fig. 2. Errors of methods A2, B1, C1, D6, and D7 with translational (top row) and rotational noise (bottom row) in the elements of {Ai}. Left column:
mean rotational error of the estimated rotation matrix. Middle column: mean orthogonality error. Right column: mean translation error.

displacement to be estimated. For example, if the same

experiment is repeated for RX equal to the identity, the

results in the fifth column of Table I are obtained. In this case,

D3, D4, and D5 generate accurate results, but D1 and D2

still fail. If RX is made equal to a rotation of π radians

about the x−axis, the results in the last column of Table I

are obtained. Now, A1, D1, and D4 fail.

Considering the results with noiseless input data, the

most robust methods for each type of representation, i.e.,

methods with less fails and with lower error in all the tested

situations, are A2, B1, C1, D6 and the proposed method, D7.

To evaluate the performance of these methods under the

presence of noise, we can perturb the ten elements in {Ai}

as follows:

Ai ← Ai δT, (23)

where

δT =



Rx(δθx)Ry(δθy)Rz(δθz)

δx
δy
δz

0 0 0 1


 . (24)

If we perturb the translation component of Ai, then

δx, δy , and δz are treated as uncorrelated uniformly dis-

tributed random variables in the internal [−σtrans, σtrans], and

δθx=δθy=δθz=0. The plots obtained for σtrans ∈ [0, 1]
appear in Fig. 2(top row).



0 50 100 150 200 250 300 350 400 450
10

-1

10
0

10
1

10
2

Fig. 3. Evolution of the execution time in milliseconds for methods A2,
B1, C1, D6, D7× and D7 as a function of the number of considered
measurements (n).

If we perturb the rotational component of Ai, then δθx,

δθy , and δθz are treated as uncorrelated uniformly dis-

tributed random variables in the internal [−σrot, σrot], and

δx=δy=δz=0. The plots obtained for σrot ∈ [0, 0.1] radians

appear in Fig. 2(bottom row).

From these plots, we conclude that method B1 leads to

higher levels of error in some cases (which is not surprising

because it is an approximate method), and method A2

couples rotations and translations in such a way that errors in

translation have a strong influence on the rotation estimation.

This is an expected effect for all one-stage methods, but the

particular bad behavior of method A2 under the presence

of noise makes it less interesting for practical applications.

In contrast, two-stage methods lead to negligible levels of

error in all cases. The only relevant effect is the increment

in EO for method D7 for large values of σrot. This error can

be canceled by applying the update rule in (22) more times.

However, the error is small enough in all cases for practical

purposes and this refinement would result in larger execution

times. Figure 3 shows the average execution time with n

varying from 10 to 500 for methods A1, B1, C1, D6, and D7.

Concerning method D7, we give the results with and without

incorporating the cross products denoted, respectively, as

D7× and D7. The computational cost of B1 is dominated by

the computation of the cofactors of a constant-size matrix.

This operation is not included in the original proposal [23],

but it is necessary to avoid some singularities. Despite this

fact, this method is more efficient than methods A2, C1,

and D6 for large numbers of measurements. Concerning

methods D7× and D7, Figure 3 reflects that the incorporation

of cross products obviously results in a computational time

increment. Nevertheless, D7× is only worse than alternative

methods for more than 150 measurements, a number rarely

attained in practical applications. Without the incorporation

of cross products, the proposed method is faster than all other

methods even for a number of measurements as high as 500.

The consideration of the methods A1 and D1 to D5 do

not modify the conclusions drawn from Figs. 2 and 3. This

can be verified with the code accompanying this paper.

Fig. 4. Experimental setting used to evaluate the proposed approach.

B. Performance analysis using experimental data

The experimental setup to validate the proposed method

appears in Fig. 4. It consists of a 7-DOF Panda serial

robot manipulator from Franka Emika [38] equipped with a

Microsoft Kinect v2 camera [39] mounted on its end effector

using a custom 3D printed flange.

The robot has been moved to 13 different configurations

taken at random, but pointing to a checkered pattern, as

shown in Fig. 5. The poses of the camera with respect to

this pattern have been obtained using the Matlab camera

calibration toolbox, which implements the method described

in [1]. We obtained an average reprojection error of 0.22 pix-

els (with a maximum of 0.35 pixels).

Using these 13 configurations, up to n = 12 independent

constraints in the form of (3) can be defined. However, we

first evaluate the methods identified as robust (i.e., methods

A2, B1, C2, D6, and D7) using the 66 possible subsets of two

constraints. This illustrates the performance of such methods

when using the minimum information from which the hand-

eye calibration problem can be solved. Table II summarizes

the results averaged over the 66 combinations. Since we do

not have the ground truth, the errors have to be computed

with respect to the input data. Thus, we compute the rotation

error as

ÊR =
1

n

n∑

i=1

∥∥∥RAi
R̂X − R̂XRBi

∥∥∥ , (25)

the orthogonality error as

ÊO =
∣∣∣det

(
R̂X

)
− 1

∣∣∣ , (26)

and the translation error as

ÊT =
1

n

n∑

i=1

∥∥∥(RAi
− I3×3) t̂X − R̂XtBi

+ tAi

∥∥∥ . (27)

The results show that, in this case, two-stage methods

provide more accurate estimations in translation than one-

stage methods. Thus, at least in this case, the rotational

error does not negatively affect the translational error, which

is an argument often used to criticize two-stage methods.

Although error for all the tested methods are low enough for

most practical cases, the different two-stage methods deliver
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Fig. 5. To evaluate the proposed method, the pose of the camera with respect to a fixed external pattern has been obtained for 13 different randomly
selected robot configurations using the experimental setup in Fig 1. Left: Poses of the camera with respect to the pattern. The displacements are given in
millimeters. Right: Images of the pattern obtained in the different poses.

TABLE II

AVERAGE PERFORMANCE OF THE COMPARED METHODS ON

EXPERIMENTAL DATA CONSIDERING TWO CONSTRAINTS AT A TIME.

Method ÊR ÊO ÊT [mm]

A2 7.68·10−2 2.01·10−16 11.44

B1 0.85·10−2 1.26·10−10 4.24

C1 0.85·10−2 6.19·10−16 3.14

D6 0.85·10−2 2.50·10−16 3.14

D7× 1.05·10−2 1.76·10−12 2.86

different compromise solutions with respect to the rotational

and translational errors. When considering all the possible

constraints simultaneously, this compromise still remains, as

shown in Table III. In this latter case, the condition number

of BB
⊤ in (21) is as low as 5.76. Thus, the equivalent

axes of rotation derived from the input data already provide

enough information for calibration and, consequently, the

incorporation of cross products have a minor influence: a

moderate rotational error decrease and a slightly translational

error increment.

It is interesting to observe that, when considering all the

constraints, method B1 is the one with larger orthogonal and

translational errors. This is because it is an approximated

method. Method A2 is the one with the lower translational

error, but we have seen that this is not the case when the

number of used constraints is low. In contrast, the one-

stage methods (C1, D6, and D7) have good performance

independently of the number of measurements. Nevertheless,

TABLE III

PERFORMANCE OF THE COMPARED METHODS ON EXPERIMENTAL DATA

CONSIDERING ALL THE POSSIBLE CONSTRAINTS SIMULTANEOUSLY.

Method ÊR ÊO ÊT [mm]

A2 1.44·10−2 2.22·10−16 1.98

B1 1.00·10−2 1.05·10−10 4.29

C1 1.00·10−2 0 3.36

D6 1.00·10−2 0 3.36

D7× 1.01·10−2 4.44·10−16 3.14

D7 1.18·10−2 8.54·10−15 2.44

while D7 does not rely on any iterative numerical method, C1

requires the computation of the SVD of a 9n×9 and a 3×3
matrix, and D6, the SVD of a 4n×4 matrix, which explains

their higher execution times.

V. CONCLUSION

It is usually argued that the two-stage methods for the

hand-eye calibration problem (those that first estimate the

orientation and then the translation) have the important draw-

back that the orientation estimation error propagate to the

translation estimation. To provide a remedy to this problem,

some authors have proposed one-stage methods based on

dual quaternions (e.g., methods A1 and A2), or on double

quaternions (e.g., method B1). Nevertheless, the experiments

reported in this paper do not support their superiority in all

cases. Moreover, using a closed-form method, such as the

one proposed in this paper, one can always derive expressions



for both the rotation and the translation directly in terms of

the input data, effectively preventing the error propagation

from rotations to translations.

The method proposed in this paper relies on two obser-

vations on the hand-eye calibration problem: (a) only the

equivalent axes of rotations of the pose measurements are

relevant as the rotated angles about such axes play no role;

and (b) only under the presence of noise, the estimated

rotation matrix using a pseudoinverse departs from being

proper orthogonal. The result of exploiting these two facts

is a closed-form solution method which can be implemented

in few lines of code. We have shown that it outperforms the

analyzed previously-proposed methods in terms of compu-

tational cost without introducing any significant degradation

in the quality of the results.
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