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When mapping life expectancy, and investigating its local variation in time, there is a 
conflict between using large areas and/or mortality data from long periods of time to have 
low variance life expectancy estimates, and using small areas and single-year mortality 
data to explore the space–time variation of life expectancy in detail, without bias. Here 
a Bayesian model is proposed to smooth annual small-area life expectancy estimates and 
help deal with that trade-off. The specific area effect on life expectancy, together with its 
spatial and temporal dependencies are modeled through random effects, while the effect 
of covariates is modeled through a fixed effect component. By smoothing life expectancy 
estimates directly, instead of smoothing age-specific mortality rates first the way done 
in the literature, the model used is easier to implement and interpret. The approach is 
illustrated, by using it to explore how life expectancy at birth of males and of females, and 
their gap, varied in space and in time in the city of Barcelona between 2007 and 2018, and 
their relationship with covariates. It is found that, on average, life expectancy has been 
growing by 0.23 years per year for males and 0.15 years per year for females. The female 
life expectancy is becoming more spatially homogeneous than the male one, while the rate 
of life expectancy growth for males turns out to be more homogeneous than for females.

Introduction

Life expectancy is the age that a person in a cohort exposed from birth to death to the mortality 
rates observed at a given time is expected to live until. Life expectancy can be estimated for a 
population as a whole, or for subgroups of a population like persons of different sexes, different 
races, or different ages. Life expectancy is used in many areas, including pension planning, life 
insurance pricing, and health assessment.

When life expectancy can be estimated at a small-area level, it is very useful to assess health 
and quality of life inequalities within a region, often through life expectancy maps. The construc-
tion of life expectancy maps based on small-area life expectancy estimates is becoming routine, 
as any cursory search of the internet shows.

Correspondence: Josep Ginebra, Departament of Statistics and O.R., Universitat Politècnica de Catalunya, 
Avgda. Diagonal 647, 6a Planta, 08028 Barcelona, Spain 
e-mail: josep.ginebra@upc.edu 

Submitted: 26 November 2020; Revised version accepted: 14 June 2021

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0001-6525-0498
mailto:﻿
mailto:josep.ginebra@upc.edu


Geographical Analysis

2

To estimate the life expectancy for the population in a given area and a given period, one 
needs the age-specific death rates of the population members, which are usually estimated 
through the mortality rates actually observed at each age among the population in that area 
during that period. To obtain stable enough life expectancy estimates, one needs to resort to age-
specific mortality rates of fairly large populations, and sometimes one also needs to aggregate 
the mortality data of several years.

When constructing life expectancy maps, one faces the usual bias versus variance trade-off. 
Unless areas are large enough to have a large enough population, and/or focuses on long enough 
periods of time, the variability in life expectancy estimates render the maps useless, because they 
become a patchwork of colors where the largest and the smallest life expectancies correspond 
to the least populated areas. As a consequence, there is a conflict between using large enough 
areas and/or mortality data from long enough periods of time to have reliable life expectancy 
estimates, and using small enough areas and single-year mortality data to be able to explore the 
space–time variation of life expectancy in detail.

Bayesian models have been proposed to address the problem of mapping disease rates by 
smoothing small-area disease rate estimates (see, e.g., Clayton and Kaldor 1987; Besag, York, 
and Mollie 1991; Clayton and Bernardinelli 1992; Mollie 1996). They do that by shrinking 
small-area rate estimates both toward the global mean as well as toward the local mean estimated 
through the rates of neighboring areas. The shrinkage toward the local mean accounts for spatial 
patterns of disease rates that might be explained because of their dependency on unknown risk 
factors that vary in space. When some of these risk factors are known and can be measured at 
the small-area level, one can further improve disease mapping by using these specific factors as 
covariates to further smooth disease rates.

In this paper, we adapt these ideas to build Bayesian models that smooth annual small-area 
life expectancy estimates for several years, and can be used to map life expectancy and to check 
the evolution of maps over time. The smoothing is carried out at four different levels, because 
the shrinking involved acts globally toward the grand mean for each given year, spatially toward 
the local mean for each year, temporally using past and future values for each given area, as well 
with the help of covariates associated with life expectancy and measured at the small-area level. 
The specific area effect, together with the spatial and temporal effects are modeled through a hi-
erarchical (random effects) structure that allows data to dictate the amount of shrinking required 
at the global, spatial and temporal levels. The effect of covariates is modeled through a fixed 
effect component.

The approach taken here assumes that one starts with initial annual small-area life expec-
tancy estimates, and the purpose is to smooth them through Bayesian hierarchical models to 
reduce their variability. That is different from what is proposed in most of the life expectancy 
mapping literature, that starts by smoothing age-specific mortality rates, and then uses these 
smoothed estimates to obtain small-area life expectancy estimates, as described in Congdon 
(2009, 2014a, b), Kulkarni et al. (2011), Jonker et al. (2012, 2013), Stephens et al. (2013), Wang 
et al. (2013), Bennett et al. (2015), or Alexander, Zagheni, and Barbieri (2017).

When one does not have the small-area age-specific mortality rates for all the areas to start 
with, maybe because of confidentiality issues, and one only has initial small-area life expec-
tancy estimates, only the approach presented here will be feasible. When small-area age-specific 
mortality rates are available, which will most often be the case, then one can choose between 
smoothing them first, as in the mainstream literature, or smoothing life expectancy estimates 
obtained from non-smoothed age-specific mortality rates, as proposed here. One might also mix 
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both approaches, and use the models proposed here to further smooth life expectancy estimates 
obtained from smoothed age-specific mortality rates.

By smoothing small-area life expectancy estimates directly, on top of a series of annual 
smoothed maps one also obtains small-area life expectancy trend estimates, which are important 
components of the analysis that are not directly obtainable from models that smooth small-area 
age-specific mortality rates first. Another strength of modeling directly life expectancy estimates 
instead of age-specific mortality rates, is that the models are simpler to implement, because they 
have a smaller number of parameters, and that they are also easier to interpret. By treating the 
effect of space, time, heterogeneity, and covariates separately, on top of smoothing small-area 
life expectancy estimates, one also learns about the relative effect of these components on life 
expectancy.

The use of our method is illustrated by exploring how life expectancy at birth for males and 
females, and their gap, varied in space and time in the city of Barcelona between 2007 and 2018. 
The relative effect of covariates, space, heterogeneity, and time on life expectancy in Barcelona 
is explored. In particular, the evolution of life expectancy inequality among neighborhoods and 
the gap between female and male life expectancies is also described. This case study is intended 
as an illustration on ways to present graphically the findings of this type of analysis.

The paper is organized as follows. Section “Initial small-area life expectancy estimates” 
presents the Barcelona case study, and how the initial small-area life expectancy estimates were 
obtained. Section “Description of the spatiotemporal model” describes the Bayesian spatiotem-
poral model proposed, and Section “Life expectancy in Barcelona between 2007 and 2018” 
uses that model to build annual life expectancy maps and estimate life expectancy trends to help 
explore the space time evolution of life expectancy in Barcelona. Section “Discussion” discusses 
extensions of the model.

Initial small-area life expectancy estimates

To illustrate our approach, we use it to construct a time series of annual maps of life expectancy 
at birth for males and for females in the city of Barcelona between 2007 and 2018, based on 
nonsmoothed annual life expectancy estimates from its neighborhoods. Here we present how the 
initial small-area life expectancy estimates were calculated.

The city of Barcelona, with a registered population of 1,616,694 in 2012, is organized in 73 
neighborhoods, which are very heterogeneous in size, with the two smallest neighborhoods hav-
ing only 456 and 1,046 inhabitants in 2012, and the two largest ones having 56,204 and 57,760 
inhabitants. The distribution of the population in these neighborhoods is well spread in its range, 
with the quartiles and the median of this distribution being 10,709, 19,952, and 30,256 on June 
30, 2012.

Fig. 1 presents the relationship between the number of males and of females in these neigh-
borhoods. The outlying behavior of neighborhoods 1, 2, and 70, with significantly more males 
than females, is due to these areas having a significantly larger number of immigrants. The large 
spread in population sizes leads to neighborhood initial life expectancy estimates having very 
different variabilities. The fact that about a quarter of all these areas have less than 5,000 males 
and 5,000 females, means that many of the nonsmoothed small-area life expectancy estimates 
will have variabilities so large that they will render these estimates useless for mapping purposes.

To obtain the 73 × 12 × 2 initial life expectancy estimates in these 73 neighborhoods, for 
each one of the 12 years, and for men and women, we rely on the methodology described in 
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Chiang (1968). It uses the annual number of deaths at one-year intervals of age, starting from 
0 years all the way up to 89, and it aggregates all deaths at 90 or older into a given category. 
In a bit over one percent of the instances, involving the smallest areas, we have had to resort to 
one last category of 85 or older instead, to avoid zero death counts. For an assessment of this 
life expectancy estimation method, see Toson and Baker (2003), Eayres and Williams (2004), 
Schervob and Ediev (2011), Jonker et al. (2014b), and Tsimbos, Kalogirou, and Verropoulou 
(2014). There seems to be an agreement that populations with a minimum of 5,000 people are 
required to obtain reliable annual life expectancy estimates with this method.

Some of the neighborhoods in Barcelona have such small populations, that it is difficult to 
obtain life expectancy estimates for them through this method. In particular, there were a few in-
stances of age groups with more annual deaths than their June 30 population. In cases like these, 
one typically treats life expectancy estimates as missing, and these areas appear as blanks in the 
map. Instead of that, we proceeded as follows.

For the two smallest neighborhoods, neighborhood 42 with only 220 males and 236 females 
in 2012 and neighborhood 12 with only 540 males and 506 females, we estimated their life 
expectancies by merging their annual deaths with the ones for their adjacent neighbors, neigh-
borhoods 41 and 13, respectively, having very similar household income. The neighborhoods 54 
and 56, which are adjacent and were the third and fifth smallest ones in 2012, with only 1,110 and 
652 males and only 1,068 and 677 females, respectively, were also considered to be a single area 
for the purpose of estimating their initial life expectancies. Note though that when mapping life 
expectancies later on, all 73 neighborhoods are considered separate. Hence, the amalgamation of 
these six neighborhoods into three areas, is made only for the purpose of estimating their initial 
life expectancies, and not when one smooths these estimates. We preferred this, to treating the 

Figure 1. Plot of the number of males and of females in the 73 neighborhoods of Barcelona in 
June 30, 2012. Neighborhoods 1, 2, and 70 have significantly more immigrants registered than 
the rest.
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estimates of these smallest areas as missing to start with and let the smoothing model introduced 
next fill in the gaps.

Table 1 presents part of the initial annual small-area life expectancy estimates for males and 
for females obtained for each one of the 12 years under consideration. Fig. 2 presents the maps 
obtained with these un-smoothed life expectancy estimates in 2007, 2012 and 2018, categorized 

Table 1. Part of the Two 73 × 12 Tables with the Initial Annual Small-Area Life Expectancy 
Estimates for Men and Women in the 73 Neighborhoods of Barcelona Between 2007 and 2018

Neighb. 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Males
1 73.8 75.9 75.7 75.7 77.1 76.8 78.7 77.5 77.3 79.9 78.3 80.0
2 74.2 75.1 76.8 76.4 79.5 79.2 75.7 75.8 77.4 79.1 76.3 79.7
… … … … … … … … … … … … …

73 79.5 79.4 79.8 79.9 81.1 80.5 79.2 80.4 80.3 81.4 80.5 82.0
Females
1 84.6 84.3 82.1 84.9 86.1 84.4 85.9 85.8 86.5 86.1 84.3 86.4
2 84.9 84.9 83.8 82.9 82.6 88.7 84.3 88.8 82.9 89.0 86.7 86.1
… … … … … … … … … … … … …

73 85.8 84.3 87.1 84.0 86.7 85.6 87.0 88.4 86.7 86.1 85.8 87.0

Figure 2. Maps of the initial annual small-area life expectancy estimates, categorized into five 
classes through their time specific quintiles.
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through their quintiles. In the Appendix, you can find the maps for all the 12 years under study. 
Note the patchwork appearance of these maps, due to the large variability of most of these annual 
initial small-area estimates, and the large discontinuities in the values taken by the estimates for 
a given area in consecutive years.

Many covariates can be used to predict life expectancy, and help smooth initial life expec-
tancy estimates. As covariates relating to the socio-economic level in the area, which has a very 
well-documented relationship with life expectancy, (see, e.g., Wilkinson 1992; Rogot, Sorlie, 
and Johnson 1992; Woods et al. 2005; Kulkarni et al. 2011; Chetty et al. 2016; Arias et al. 2018), 
we have considered the unemployment rate, a household income index, and the educational level 
measured through the proportion of individuals having a university and/or a high school degree.

Among other covariates not directly related with the socio-economic status, we selected the 
proportion of people older than 65 living alone, and population density, which in Barcelona turn 
out to be associated with life expectancy.

The link between living alone and an increase in mortality, and hence with a decrease in 
life expectancy, is explored, for example, in Koskinen et al. (2007), Pantell et al. (2013) and Ng 
et al. (2020).

The rationale behind the association between life expectancy and density is less clear cut, but 
the fact that one investigates life expectancy in a purely urban setting like the city of Barcelona 
discards it being related to the degree of urbanicity as in Kyte and Wells (2010). In our context, 
density is capturing the effect of variables not included in the model which are related both 
with density as well as with life expectancy, like contamination levels, household overcrowding, 
racial composition or amount of people living in retirement homes.

Figure 3. Maps of the value taken by the five covariates considered and of the population in the 
73 neighborhoods of Barcelona in 2012.
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Fig. 3 maps the value that the five covariates chosen to start with took in 2012 in these neigh-
borhoods of Barcelona, together with the population in them.

Description of the spatiotemporal model

For each area composing the map, i, for i = 1,…, n, and each year under study, t, for t = 1,…,T , 
one starts with an initial annual small-area life expectancy estimate, denoted by yit. Our notation 
will not distinguish between male and female life expectancies, and yit will stand for the initial 
life expectancy estimate of any subgroup of the population.

For each area, one also has the value taken by p covariates, xji, for j = 1,…, p, evaluated 
on a baseline year. One could more generally consider models with covariates evaluated every 
year, but we decided against that because the covariates used do not vary significantly during the 
periods considered, and their effect on life expectancy has long delays.

Annual initial life expectancy estimates of males (females) of the ith area on the tth year, 
yit, will be assumed to be normally distributed, which is a sensible assumption given that they 
are weighted averages of the annual number of deaths at each age, and hence the central limit 
theorem is in place. That also leads one to assume that the variance of yit is proportional to the 
inverse of the number of males (females) in the corresponding area at the given time, Pit, which 
is a fact that can also be corroborated empirically.

The expected value of initial life expectancy estimates, yit, will be split into a constant global 
fixed effect, �0, and four additive components capturing three different types of dependency, 
relating to covariates, space, and time, and a fourth component modeling the specific i-th area 
effect not captured by any of the three dependencies considered.

The first component of the expected value of yit, will be a fixed effect capturing the life 
expectancy dependence on a set of p covariates, 

∑

p

j =1
� jxji.

The second component, � i, will be a random effect capturing the spatial dependency of life 
expectancy. As in conditional autoregressive models used, for example, in Besag, York, and 
Mollie (1991) and Mollie (1996), � i will be assumed to be normally distributed, with expected 
value:

and variance:

where v(i) is the set of areas that are neighboring with the ith area, �v(i) is the set of all �k with 
k ∈ v(i), and mi is the number of areas in v(i).

The third component of the expected value of yit, (�0 + �i)t, will be capturing the effect of 
time on life expectancy. The slope, (�0 + �i), will be the sum of a fixed effect, �0, modeling the 
expected value of the slopes for all areas, and a random effect, �i, modeling the i-th area effect 
on the rate of change in life expectancy. This random slope term, �i, will be assumed to have a 
Normal (0, �2

�
) distribution. This linear effect of time provides good fits in developed countries in 

(1)E(� i��v(i))=

∑

k∈v(i)�k

mi

,

(2)V(� i|�
2
�
)=

�2
�

mi

,
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recent decades, but a nonlinear component might be needed when the model is intended to cover 
long periods, or for long term forecasting.

The fourth component of the expected value of yit, �i, will be a random effect modelling 
the specific contribution of the i-th area on its life expectancy. This term will be capturing the 
global unstructured heterogeneity in life expectancy, typically induced by a large set of un-
observed covariates, that can neither be captured by the covariates in the model, nor by the 
spatial dependency term. This heterogeneity component, �i, will be assumed to have a Normal  
(0, �2

�
) distribution.

Hence, initial life expectancy estimate of males (females) of the i-th area on the tth year will 
be assumed to be normally distributed with expected value: 

where � = (�0, �1,…, �p), and with variance 

for i = 1,…, n and t = 1,…,T , where Pit is the number of males (females) of the i-th area on 
the tth year.

Depending on which ones of the four components of this full model are active and which 
ones are not, one obtains a set of 16 submodels, ranging from the baseline model with: 

in place when none of the four components are present in the model, and therefore, there is 
no difference in life expectancy between areas, and the full model, (3.3). Often, only the eight 
submodels with the heterogeneity term, �i, present will be of interest.

We adopt a Bayesian inference approach, requiring one to choose a prior distribution on the 
parameters of the model to start with, and to compute (or simulate from) the posterior distribu-
tion by incorporating the information in the data. The parameters requiring a prior distribution 
are �, �0, �

2
�
, �2

�
, �2

�
, and �2.

As a prior distribution for �1,…, �p, we choose independent normal distributions with a 
prior mean of 0 and a prior variance of 100, which is large because the covariates are standard-
ized and one does not expect the coefficients to be that large. As a prior for �0 and for �0 we also 
choose independent normal distributions with a prior mean of 80 and 0, respectively, and with a 
prior variance of 100. The prior mean for �0 is chosen to be close to the life expectancy in Europe 
in 2007.

As a prior distribution for �2
�
, �2

�
, �2

�
, and �2, it will be assumed that their inverses are Gamma 

distributed with a prior mean of 1 and a prior variance of 100.
In our example, this model is updated based on the initial life expectancy estimates pre-

sented in Section 2, using the WinBugs MCMC implementation to simulate from the corre-
sponding posterior distribution (see Lunn et al. 2000). Chain convergence is assessed through 
visual inspection of the sample traces and by monitoring diagnostic measures, like their sample 
autocorrelations, described in Gelman and Rubin (1992). Four chains were ran until conver-
gence, discarding the first 10,000 iterations of each chain and keeping one out of ten iterations 
afterwards. The final analysis is therefore based on 50,000 realization, 12,500 from each chain.

(3)E(yit|�, � i , �0, �i , �i)=�0+
∑p

j=1
� jxji+� i+ (�0+�i)t+�i ,

Var(yit |� ,� i ,�0 ,�i ,�i ,�
2 ) =

�2

Pit

(4)E(yit|�0, �0)=�0+�0t,
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The posterior expected value of E(yit |�, � i , �0, �i , �i) under the full model, or under the 
model chosen among the fifteen sub-models, is the smoothed estimate of the life expectancy for 
the i-th area on the tth year, to be used to map life expectancies for the tth year.

Life expectancy in Barcelona between 2007 and 2018

Choice of smoothing sub-model
Here we use the models described above to build the series of life expectancy maps for males 
and for females in Barcelona between 2007 and 2018, based on the annual initial life expectancy 
estimates in its neighborhoods partially presented in Table 1. The data used for this study is 
available upon request from the corresponding author.

The three covariates considered that directly relate to socio-economic status have correla-
tions larger than 0.8, and when all are in the models, educational level becomes the only relevant 
term of the three. As a consequence, we dropped unemployment and income from the final mod-
els, and the covariates are the centered and standardized versions of educational level, proportion 
of individuals older that 65 living alone, and density.

Table 2 presents the value of the DIC, a model selection criteria proposed by Spiegelhalter 
et al. (2002), when one uses the initial life expectancy estimates to update the 16 models obtained 
by including any combination of the four components in the full model, that is, the covariates 
fixed effect, 

∑ p

j=1
� jxji, and the random effects for space, � i, for time, �i t, and for the heteroge-

neity not captured by the other components, �i. Table 2 also provides pD, the effective number 
of parameters, which measures the complexity of hierarchical models through the difference 

Table 2.  DIC and Effective Number of Parameters, pD, When the Models in Section 3 are 
Updated with Life Expectancy Estimates in Table 1

Covariates Spatial, � i Heterog., �i Temporal, �i t Male DIC pD Female DIC pD

No No No No 3,999.8 3.0 3,427.4 3.0
Yes No No No 3,511.4 6.0 3,303.4 6.0
No Yes No No 3,404.2 68.2 3,248.4 56.1
No No Yes No 3,403.5 68.9 3,251.5 58.2
No No No Yes 3,656.4 64.5 3,295.0 54.6
Yes Yes No No 3,408.4 52.0 3,244.8 45.2
Yes No Yes No 3,407.4 54.3 3,242.7 46.6
Yes No No Yes 3,446.8 50.4 3,241.7 49.1
No Yes Yes No 3,405.2 69.0 3,249.6 57.4
No Yes No Yes 3,403.5 86.4 3,245.7 73.2
No No Yes Yes 3,403.1 86.0 3,249.2 74.9
Yes Yes Yes No 3,409.0 54.0 3,243.8 47.1
Yes Yes No Yes 3,409.9 66.9 3,240.1 55.1
Yes No Yes Yes 3,407.0 68.7 3,236.0 58.3
No Yes Yes Yes 3,404.1 86.9 3,245.8 74.4
Yes Yes Yes Yes 3,408.6 68.7 3,236.2 59.8

The covariates are the educational level, proportion of individuals older than 65 living 
alone, and density. In boldface, the model selected to build male and female life expectancy 
maps.



Geographical Analysis

10

between the posterior mean of the deviance, and the deviance of the posterior mean of the pa-
rameters of interest.

The first model in Table 1, with all four components lacking, is the baseline model (3.5), and 
the last model in the table, with all four components present, is the full model (3.3). The baseline 
model has a much larger DIC value than any other model and, in particular, much larger than the 
four models with a single component, indicating that all four components are meaningful and 
useful.

The four models that are clearly worse for males, and the three models that are worse for 
females, are all lacking at once both the spatial as well as the heterogeneity component. Note also 
that the best two models with a single component are always the third and fourth models, having 
either the spatial or the heterogeneity component. Hence, either the heterogeneity component or 
the spatial component should be in the model, but given that they capture a similar type of vari-
ability, one might not need to have both of them in there.

For female life expectancy, the model with the smallest DIC is the one with all components 
present except the spatial one, and it is the model that we will use for mapping. For females, the 
full model with all components present is the second close best.

For male life expectancy, the smallest DIC is attained by the model without covariates and 
without the spatial effect, almost tied with simpler models like the ones with only the heteroge-
neity or only the spatial component. But since the DIC for the model chosen for females is also 
small, that will be the model used to map life expectancy for males as well.

The submodel picked here, with all components except the spatial one, is a safe pick as a 
default model when mapping life expectancy. Alternatively one might also use as default models 
the one with all components except heterogeneity, and the full model with all components pres-
ent. When implementing this approach in simpler settings though, it might be worth repeating the 
exercise of updating all sixteen submodels and picking up a simpler model, if the DIC indicates 
that to be the best option in that case.

Results of the analysis in Barcelona
To illustrate how the selected model smooths initial life expectancy estimates of an area by 
shrinking them toward a global/local mean, Fig. 4 compares the initial and the model smoothed 
estimates for two specific neighborhoods. We use neighborhood 11, with 20,416 males and 
20,964 females in 2012, to represent large neighborhoods, and neighborhood 49, with only 3,425 
males and 3,719 females, to represent small ones. As one expects, the less populated the area, 
the larger the variability of initial estimates, and the stronger the shrinking effect. To appreciate 
any spatial or temporal feature in life expectancy time plots or maps, one needs to resort to the 
smoothed estimates, because the initial ones are far too variable even for the larger areas in this 
study.

The correlations between male and female initial life expectancy estimates in 2007, 2012, 
and 2018, which are 0.09, 0.56, and 0.22, are a lot smaller than the correlations between male and 
female corresponding smoothed life expectancy estimates, 0.94, 0.90, and 0.82. That is another 
indication that the model improves small-area life expectancy estimates.

Fig. 5 presents the male and female life expectancy maps for 2007, 2012, and 2018 using 
the estimates smoothed through the model with all components except the spatial one. For the 
set of maps for all 12 years, see the Appendix. Different from Fig. 2, mapping initial estimates, 
in Fig. 5 one clearly appreciates the relationship between life expectancy and location. In partic-
ular, by comparing Figs. 3 and 5 one checks that there is an association between a neighborhood 
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having large life expectancy on the one hand, and having large income and education level and 
small unemployment on the other hand; that is specially so for males.

In Fig. 5, life expectancies are categorized based on time specific quintiles, because the 
focus is the relative changes of neighborhood life expectancy across time. In the case of male 
life expectancy very few neighborhoods switch class, and the spatial structure of these five life 
expectancy classes is very persistent over time. That is in accordance with area linked temporal 
trend effects, �i, for males being of little relevance.

In the case of female life expectancy, the 2007 map shows an almost identical spatial struc-
ture as the maps for males, but that spatial dependency associated with income and education 
washes away with time. The correlation between female life expectancy and education decreases 
every year starting from 0.72 in 2007 down to 0.52 in 2018, and its correlation with income de-
creases from 0.57 in 2007 down to 0.40 in 2018. Female life expectancy is becoming a lot less 
associated with socio-economical level than the male one.

If the focus was the absolute change in life expectancy over time instead of the relative 
change in different areas, one would use the same class breaks for life expectancy of all years. If 
one did that in Fig. 5, one would miss the spatial distribution of life expectancy, due to its rapid 
growth. Note that by checking how class breaks increase from period to period in Fig. 5, one also 
gets an idea on the overall change over time of life expectancy.

In Fig. 5 one can also appreciate that the variability in male life expectancy across different 
neighborhoods is a lot larger than the variability in female life expectancy. The difference be-
tween the highest and the lowest male life expectancy in a neighborhood was 8.2 years in 2007, 
and 9.4 years in 2018, with the interquartile ranges being 1.88 years both in 2007 and in 2018. 

Figure 4. Initial male and female life expectancy estimates, and model smoothed life expectancy 
estimates for neighborhoods 11 and 49.
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Instead, the largest differences in female life expectancies were only 3.5 years in 2007 and 4.6 
years in 2018, with an interquartile range of 0.97 years in 2007 and 1.10 years in 2018.

The maps of the estimated gap between female and male life expectancies in 2007, 2012, 
and 2018, in Fig. 5, show again a spatial dependency pattern similar to the one for life expectan-
cies. That gap tends to be smaller for areas with higher socio-economic status, and it is system-
atically decreasing along this twelve years period, with a median gap of 6.54 years in 2007, 6.04 
years in 2012, and 5.59 years in 2018.

Fig. 6 presents the posterior expected value and the 90% posterior credible interval for the 
time slopes, �0 + �i, estimating the rate at which male and female life expectancies have been 
growing in the i-th neighborhood. These time slopes are positive for all 73 neighborhoods, and 
tend to be larger for males than for females, consistent with the fact that the gap between female 
and male is getting smaller. Fig. 6 indicates that the posterior distribution of the time slopes of 
all neighborhoods for male life expectancy are very similar, in line with temporal random effects 
not being that relevant for males. As a consequence, mapping the posterior expected value of 
�0 + �i would not be that useful in our setting, but it will be useful in cases where temporal ran-
dom effects are more important.

The posterior distribution of �0 is E(�0 |y) = 0.23 years of life expectancy per year for males, 
and E(�0 |y) = 0.15 years of life expectancy per year for females. This means that between 2007 
and 2008 the overall life expectancies at birth for males and for females have been growing on 

Figure 5. Maps of male and of female life expectancies, and of their gap, estimated with the 
model that has all terms except the spatial one, categorized in five classes through their time 
specific quintiles.
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average at these rates. The smallest estimate of the trend for males, E(�0 + �i |y), is of 0.18 years 
per year in neighborhoods 32 and 33, and for females it is of 0.02 years per year in neighborhood 
33. The largest trend estimate for males is of 0.31 years per year in neighborhood 10, and for 
females it is of 0.24 years per year in neighborhood 57.

To further explore the effect of time on life expectancy, and how that time effect varies from 
area to area, the left panel in Fig. 7 presents how the smoothed estimates of male and female 
life expectancies in the neighborhoods change with time. On the right panel, one can see that 
the life expectancy estimate for 2007 is barely related with the temporal rate of growth of life 
expectancy; It does not hold that the this rate of growth is larger in neighborhoods where life 
expectancy in 2007 was smaller. In that right panel, one can also observe again that the male life 
expectancy is more variable than the female one, but the small-area male life expectancy trends 
are less variable than the female ones.

Figure 6.  Posterior expected value and 90% credible intervals of �0 + �i, the rate at which 
life expectancies have been growing in each neighborhood. [Correction added on July 21, 
2021, after first online publication: Figure 6 was corrected.] 

males

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

females

Figure 7. Smoothed estimates of male and female life expectancies as a function of time in the 73 
neighborhoods, and plot of the smoothed life expectancy estimate for 2007 against the posterior 
expected value of �0 + �i, which estimates the rate of growth in each neighborhood in years per year.
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The relevance of the role played by the covariates is backed by the fact that the posterior 
distributions of their coefficients, � j, in Fig. 8, all have a mean that is more than two standard 
deviations away from zero. With everything else being the same, the larger the educational level 
and the density in the neighborhood, and the smaller the proportion of individuals older than 65 
living alone, the larger the life expectancies in that area.

Educational level captures the effect of individuals with higher socio-economic status living 
longer, which is a feature always found in these studies. The fact that living alone seems to be 
associated with smaller life expectancy is also documented in the literature.

When the role of density has been explored in regions involving both rural as well as urban 
areas, one often finds a negative association with life expectancy, due to individuals in rural areas 
living longer. The case study here involves only urban areas, and hence the positive association 
found with density is bound to capture the combined effect of factors, other than the degree of ur-
banicity, that are not in the model but are related both with density and life expectancy. Fig. 3 indi-
cates that density is smallest in areas on the periphery of Barcelona. Factors that might help explain 
this positive association with density might be the contamination level, the degree of household 
overcrowding, the racial mix or the percentage of people living in retirement homes in each area.

Discussion

A Bayesian model that smooths annual small-area life expectancy estimates to build life expec-
tancy maps and estimate life expectancy trends has been proposed. Even though it has been used 
to map life expectancy at birth for males and for females, it can be used to map life expectancy 

Figure 8. Marginal posterior distributions of the coefficients, � j, of the covariates and of �0 under 
the model with all terms except the spatial one.
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at any age and for other subsets of a population. Some of the advantages of the model presented 
are its simplicity, its interpretably thanks to its modularity, and the ease with which it can be 
extended to match specific requirements.

It is estimated that between 2007 and 2018 life expectancy in Barcelona has been growing 
between 0.18 and 0.31 years per year for males, and between 0.02 and 0.24 years per year for 
females, depending on the neighborhood. The median gap between female and male life ex-
pectancy estimates in neighborhoods has decreased 0.95 years during these eleven years. And 
in terms of life expectancy inequality between neighborhoods, life expectancy ranges barely 
changed, with male range being about twice as large as female range.

The spatial distribution of male and female life expectancies in 2007, together with their 
gap, is strongly associated with socio-economic status, but female life expectancy is quickly 
becoming more spatially homogeneous than the male one. In terms of trends, the male ones are 
more spatially homogeneous than the female ones, that are a lot more variable.

Different settings will allow for different covariates, and the role played by covariates like 
density will be very different when the model is used to map life expectancy in regions broader 
than Barcelona, because it will capture differences between rural and urban life expectancies. 
Also, in our case study two areas were considered either neighbors or not neighbors, but one can 
use more sophisticated spatial structures incorporating different levels of neighborhoodness de-
pending on the separation between the areas. One could also incorporate a hierarchical structure 
in the heterogeneity term to account for the fact that areas might be nested into larger units; In 
Barcelona, for example, one might have used the fact that the 73 neighborhoods are nested into 
10 districts.

There is a literature focusing on long term forecasting of life expectancy, (see, e.g., Lee and 
Carter 1992; Raftery et al. 2013; Kontis et al. 2017). Since they usually deal with large areas that 
have low variance life expectancy estimates, they do not resort to spatial or covariate smoothing, 
and focus on modeling the temporal evolution. The appropriateness of the assumption of a linear 
effect of time on life expectancy is well documented in the literature, (see, e.g., White 2002), but 
if one intends to explore the evolution of life expectancy maps along longer periods of time, one 
will need to add a nonlinear temporal component in the model, and maybe let life expectancy 
variability, �2, change with time. The existence of a war, a pandemic or some other large ca-
tastrophe during the period of study would also require departing from this linearity assumption.

In life expectancy mapping practice, it is often the case that the initial life expectancy es-
timates for the smaller areas are missing, because mortality data for them is too sparse to yield 
reliable estimates. That is the case for example in Arias et al. (2018), where life expectancy is 
estimated only for areas with more than 5,000 individuals. In our example, we obtained initial 
life expectancy estimates for all the areas, including some very small ones, at the cost of using 
some amalgamation at the initial estimation stage. Bijak and Bryant (2016) argues that one ad-
vantage of using Bayesian models is that they can be easily adapted to estimate missing values, 
and hence our approach can help avoid life expectancy maps with blind spots where initial life 
expectancy estimates are missing.

When the starting point is the set of small-area age-specific annual mortality rates for each 
area, (instead of initial life expectancy estimates), one can choose between smoothing mortality 
rates first, and then averaging them to compute small-area life expectancy estimates, as in the 
mainstream literature, or averaging non-smoothed mortality rates first, to compute initial life 
expectancy estimates, and then smoothing these estimates, the way considered here. It is open 
for investigation under which circumstances each one of these two approaches will lead to better 
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maps. Advantages of smoothing initial life expectancy estimates the way advocated for here are 
the simplicity and interpretability of the models used, and the fact that the models provide small-
area life expectancy trend estimates.
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Figure A1.  Maps of male initial life expectancy estimates, categorized through their annual 
specific quintiles.
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Figure A2. Maps of female initial life expectancy estimates, categorized through their annual 
specific quintiles.
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Figure A3. Maps of male life expectancy estimates smoothed using the model with all terms 
except the spatial one, categorized through their annual specific quintiles.
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Figure A4. Maps of female life expectancy estimates smoothed using the model with all terms 
except the spatial one, categorized through their annual specific quintiles.


