
Exploring Alternatives to Policy Search

Author: Carlos Güemes Palau

Thesis Supervisor: Albert Cabellos Aparicio - UPC

Tutor: Cecilio Angulo Bahón - UPC

MASTER IN ARTIFICIAL INTELLIGENCE
January 2022

FACULTAT DE MATEMÀTIQUES I INFORMÀTICA
UNIVERSITAT DE BARCELONA (UB)

FACULTAT D’INFORMATICA DE BARCELONA (FIB)
UNIVERSITAT POLITECNICA DE CATALUNYA (UPC) – BarcelonaTech

ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA (ETSE)
UNIVERSITAT ROVIRA I VIRGILI (URV)

Exploring Alternatives to Policy Search

Contents

List of Figures 4

List of Tables 4

1 Introduction 7

2 Background and State of the Art 9
2.1 Deep Reinforcement Learning (DRL) . 9
2.2 Evolution Strategies . 11
2.3 Graph Neural Networks . 12

3 Thesis Objectives and Goals 15

4 Proposed solution 17
4.1 Evolution Strategies and RL . 17
4.2 Modifications to the parallelized solution 21

4.2.1 Reward regularization and fitness shaping 21
4.2.2 Mirror sampling . 21
4.2.3 Adding noise to the action probabilities 22
4.2.4 Precomputed noise . 22
4.2.5 Distribution of perturbations among workers 22

4.3 Design of our proposed solution . 23

5 Use case: Computer Network Resource Allocation 26

6 Evaluation 28
6.1 Evaluation settings . 28
6.2 Analysis of ES hyperparameters . 29
6.3 Performance of ES versus PPO . 33
6.4 Analyzing ES scalability over the number of workers 38
6.5 Summary of results . 39

7 Conclusions 42

References 44

3

Exploring Alternatives to Policy Search

List of Algorithms
1 Natural Evolution Strategies [17] . 17
2 Parallelized Natural Evolution Strategies [17] 18
3 Improved Parallelized Natural Evolution Strategies 23

List of Figures

1 Interactions between the agent and the environment in RL 9
2 Effect on choosing an adequate noise level for generating perturbations. . . 19
3 Diagram detailing the interactions between the agent and the environment

in the network routing problem [22] . 27
4 Representation of the graph used in the MPNN [22] 27
5 Effect on the number of perturbations . 30
6 Effect of the standard deviation for the mutations 31
7 Effect of the standard deviation for the noise to be added to the obtained

action probabilities . 32
8 Effect of using ES with varying number of workers over the NSFNET topology 34
9 Effect of using ES with varying number of workers over the GÉANT2 topology 35
10 Effect of using ES with varying number of workers over both topologies

simultaneously . 37
11 Effect on the number of workers over the time spent per epoch performing

episodes . 38
12 Effect on the number of workers over the relative time spent per epoch

performing episodes . 39
13 Training speed-up achieved when switching from PPO to ES across different

number of workers and topologies . 40

List of Tables

1 Summary of the configurations for the evaluation 29

4

Exploring Alternatives to Policy Search

Abstract

The field of Reinforcement Learning (RL) has been receiving much attention during the
last few years as a new paradigm to solve complex problems. However, one of the main
issues with the current state of the art is their computational cost. Compared with other
paradigms such as Supervised learning, RL requires constant interaction with the envi-
ronment, which is both expensive and hard to parallelize. In this work we explore a more
scalable alternative to conventional RL through the use of Evolution Strategies (ES).
This consists in iteratively modifying the current solution by adding Gaussian noise to
it, evaluating these modifications, and use their score to guide the improvement of the
solution. The advantage of ES lies on that creating and evaluating these modifications
can be parallelized. After introducing the network routing scenario, we used it to com-
pare how ES performed against PPO, a RL policy gradient method. Ultimately ES took
advantage of increasing its number of workers to eventually overtake PPO, training faster
while also generating better results overall. However, it was also clear that for this to
occur ES must have access to a considerable amount of hardware resources, hence being
viable only within high perfomance computing environments.

5

Exploring Alternatives to Policy Search

Acknowledgements

I wish to thank my supervisor Alberto Cabellos and my tutor Cecilio Angulo. I also wish to
thank Paul Almasan, author to the original proposal of applying DRL for network routing
and which I expand upon on this thesis. I also wish to thank my research group colleagues
at the Barcelona Neural Networking Center including, but not limited to, Albert Lopez,
Jordi Paillissé, Guillermo Bernárdez and Spyros Garyfallos.

6

Exploring Alternatives to Policy Search

1 Introduction

Reinforcement learning is a paradigm within Machine Learning that has seen increased
attention over the last decades. Originally its techniques like Q-learning were limited to
toy problems, due to their inability to generalize knowledge across similar states or relying
in memory taxing lookup tables [3]. While progress was done to amend this by encoding
states and replacing lookup tables by linear functions, eventually a big resurgence came
with the first applications of neural networks with reinforcement learning [4, 5].

The main advantage between RL algorithms over the other forms of learning like Super-
vised and Unsupervised learning, was the ability to learn from actively interacting with
environment. This allowed RL to be more appropriate for tasks related to control, that is,
where the model takes actions to control the environment’s state. In research this usually
consists in playing games, from toy examples like pole balancing, to more complex games
like playing soccer or even videogames like StarCraft II [11, 10]. However, in real world
applications this usually means control over machinery or even entire installations. For
example, in 2016 Google used a DQN model to oversee energy consumption, which lead
to “15% reduction in overall energy overhead” [12]. A more recent application is the idea
of using a RL model to control traffic demands within a computer network to increase
throughput and reduce the saturation of links [22].

However, while powerful, RL’s biggest strength is also is biggest drawback: unlike in the
other types of learning where samples are already available, with RL the agent needs to
constantly interact with the environment to continue learning, which in turn takes time.
Overall, this is the biggest factor affecting the speed of RL training. For example, the
solution discussed earlier about network routing found itself limited by the training time,
making it impractical to train for larger network topologies [22]. Another issue is that
the actions of updating the parameters and further interacting with the environment are
interweaved and must be done concurrently. This means that while it is interesting to
perform several interactions with the environment in parallel there are some issues to
resolve, like how is the learned experienced re-unified or how to avoid overlap of learned
knowledge between different copies. That does not mean that it has not been tried, as
approaches like A3C saw success until being overshadowed by better, single-threaded al-
gorithms [8].

Evolutionary Strategies comes into play as a black-box optimization algorithm, part of the
field of evolutionary computing [13, 14]. Evolutionary methods are based on Darwinian
theory of natural selection. In a nutshell, these algorithms consist in iteratively improving
the current solution by randomly generating small modifications to it and keeping those
that improve the score given by a given fitness function to optimize. ES specifically uses
these modifications, called perturbations, to make a sampling of alternative solutions,
called mutations, which are then evaluated and used as a basis for applying changes to
the current solution.

7

Exploring Alternatives to Policy Search

After looking at the issue of scalability and parallelization within RL, and the potential
of ES, OpenAI released a paper which proposes training RL agents using ES instead of
traditional RL algorithms [17]. The main benefit of this approach is that, unlike RL, here
the interactions with the environment can be safely parallelized with marginal overhead.
As a result, we wished to adapt and test this solution in uses cases like the network rout-
ing it was introduced earlier, and see if this way of training agents would allow for larger
network topologies to be trained by taking advantage of high performance computing
environments.

In section 2, Background and State of the Art, we will provide the theoretical background
behind RL, ES and Graphical Neural Networks, the network model used in our use case,
necessary to understand the rest of the paper. Next, in section 3, Thesis Objectives and
Goals, we will go more into detail about the limitations behind scaling RL, as well as
formalizing the goals of the report. In section 4, Proposed solution, we will explain the
solution proposed by the OpenAI paper, as well as their optional modifications and some
of our own. Ultimately, we will conclude with the final version of the algorithm to be
evaluated, as well as justifying our reasoning behind including or dropping some of fea-
tures discussed earlier. Afterwards, in section 5, Use case: Computer Network Resource
Allocation, we will introduce the use case of network routing, and how it is represented
as a Reinforcement learning problem, as well as understanding how the GNN is designed
and applied within this context. In Section 6, Evaluation, we start by presenting how the
algorithm is going to evaluated, followed by detailing the obtained results. The report
ends with section 7, Conclusions, in which we discuss the results obtained and if they
satisfy, or not, the objectives of the thesis. In it we will also propose ways in which our
work can be further expanded.

8

Exploring Alternatives to Policy Search

2 Background and State of the Art

2.1 Deep Reinforcement Learning (DRL)

The field of Machine Learning can be split broadly into three paradigms: Supervised, Un-
supervised and Reinforcement learning. Supervised learning may be thought as the more
intuitive of the three: problems consist on a set of samples, each with an assigned output
(also referred as labels), and the task is to build a system that is able to learn from this
set of samples to then be able to predict the labels of new unseen ones. Hence, supervised
models are mostly used for solving problems of classification or regression. Unsupervised
learning differs slightly as the samples no longer have assigned outputs. Instead, unsuper-
vised models try to find patterns within the data, in an attempt to summarize and better
understand it (for example, through clustering).

State si
Reward ri

Enviroment

 Action ai

Agent

Figure 1: Interactions
between the agent and the

environment in RL

In Reinforcement learning, on the other hand, instead
of having a problem represented through a set of sam-
ples, the problem is framed as the interactions be-
tween the environment and agent, as shown in Fig-
ure 1. The environment starts with an initial state s0,
which the agent will observe. From the current en-
vironment, the agent will take an action a0 within
the environment. As a result, the environment will
give feedback to the agent, also known as the re-
ward r0, and the state of the environment will be
modified from s0 to s1. This will continue endlessly
or until the environment reaches an end-state. We re-
fer as an episode to the sequence of state, actions
and rewards from the initial state until an end-state is
reached.

We refer as ‘the policy’ the way the agent chooses its actions
from the observed state from the environment. Formally, we can define it as a mathemat-
ical function that maps states to actions. Hence, Reinforcement learning algorithms try
to find the policy that maximizes the reward obtained.

One of the first known RL algorithms is Q-learning [2]. The algorithm consists in learning
the Q-values Q(a, s) for each state, action pair, which indicates the expected long-term
reward from performing action a on state s. During training, the expected long-term re-
ward is updated by allowing the agent to interact with the environment, record which
states it visited and which actions it took in response. Then, the Q-values are updated
through Bellman’s equation, which takes into account the immediate reward obtained by
taking action a on state s, as well as the expected-long term reward from other states s′

currently available from the current one. Once trained, the optimal policy is trivial: given
the current state choose the action which maximizes the current Q-value.

9

Exploring Alternatives to Policy Search

While originally the Q-values were stored in a lookup table, this made it inherently limited
to toy problems with minuscule amount of possible states. Shortly after Q-learning was
adapted so it can be applied as a function through linear approximation, where the state
was encoded as a tile system or with a radial basis function [3]. Eventually, it was figured
out how to represent Q-values through a neural network, in what was known as Neural
Fitted Q-Iteration (NFQ), which later evolved into deeper networks hence creating Deep
Q-learning and the field of Deep Reinforcement Learning as a whole [4, 5].

When the usage of neural networks in RL was introduced, some issues had to be ad-
dressed due to the nature of neural networks. One of them was the fact that Q-learning
was an incremental algorithm: every time the agent interacted with the environment, the
interaction is fed into the algorithm to update its policy. This proved to be problematic
when applied to neural networks and gradient descent, as it broke the assumption data is
independent and identically distributed (i.i.d) when applying gradient descent.

As a result, NFQ modified Q-learning for it to be done in batch learning rather than
incremental. In order to do so, the algorithm was modified to include the addition of a
previously proposed augmentation known as the experience replay buffer [7]. By storing
the interactions, also called experiences, within a buffer, it allowed the algorithm to sam-
ple a batch of samples from it to perform training everytime it wanted to. While the
original benefit of the buffer was to habilitate experiences to be used more than once
during training, using experience replay also allowed for sampling to be done in such a
way the i.i.d assumption was maintained during training.

As of today the most adequate RL algorithm will depend on the characteristics of the
environment: if it follows the rules of a Markov Decision Process or not, if there is total
or partial observability, if the rules of the environment are dynamic and changing, if there
are multiple agents involved... However, one of the most popular general-purpose algo-
rithms is Proximal Policy Optimization (PPO) [1].PPO is a policy search model, meaning
that, unlike Q-learning where the model attempts to estimate the long-term reward of
performing certain actions, the policy is directly represented as a parametrized mathemat-
ical function which takes states as input and returns probability distributions for choosing
the next action. Since the policy is now represented by a parametrized function it is then
possible to define a function that calculates its loss, and later optimize it through gradient
descent. This is also referred as policy descent.

One of the original policy gradient methods was the actor-critic model, known by sepa-
rating into two networks the act of evaluating the benefit of using each action (the critic)
and then the final probability distributions for choosing each one (the actor). This helped
reduce bias during training, and during evaluation only the actor model is kept [6]. Ulti-
mately PPO is the accumulation of years of improvements upon the original actor-critic
model.

10

Exploring Alternatives to Policy Search

2.2 Evolution Strategies

Evolution Strategies (ES) are a family of black-box optimization algorithms, first coined
by Ingo Rechenburg and later expanded by Hans-Paul Schwefel [13, 14]. It is referred as
such since it can be used to optimize a function without necessarily requiring to know its
gradient or have any other underlying assumption.

As the name suggests, it is one of the branches of evolutionary algorithms. Evolutionary
algorithms are conceptually based on the Darwinian theory of natural selection in biology:
the algorithm starts with a set of initial solutions, each referred as an ‘individual’ and the
set as a whole as a ‘population’. At each iteration, the individuals are evaluated according
to a function to optimize, known as as the fitness function. Then, using the evaluation
as a reference, part of the population is removed and replaced by new individuals. The
new individuals are obtained by modifying one of the existing individuals (mutation) or
by combining two or more individuals (recombination).

The long term consequences is that the worse performing individuals are systematically re-
placed by new ones derived from the best performing ones. Eventually, long-term progress
is guaranteed: bad performing new individuals are quickly replaced, while those that per-
form best replace their parents. This strategy is what allows evolutionary algorithms to
stand out as extremely effective optimization algorithms where gradient descent-based
methods are not available. Even when applied to optimize problems that can be dealt by
gradient descent, while slower, they also tend to be more resilient to local minima.

ES differentiates itself from other evolutionary algorithms in three major ways. The first
is that is meant for arrays of natural numbers. The second is that, compared with other
evolutionary algorithms, the population is almost replaced between iterations and the
replacement is done almost exclusively through mutation. The third is that ES can adapt
its own parameters: in order to generate a mutation from an individual you must draw
noise from a probability distribution (usually Gaussian). Since these distributions can be
parameterized, we can use the optimization mechanism ES uses to also adapt this param-
eters.

The most basic form of ES is the original ES, also known as Simple Gaussian Evolution
Strategies. To begin with we need a defined fitness function F to optimize, a defined
number of mutations µ to generate and later a refined number of mutations λ to choose
from (such as µ > λ), an initial solution θ and an initial standard deviation σ. At each
iteration we perform the following

1. We sample a population made out of µ mutations. Mutations are generated by sam-
pling values from a Gaussian distribution with mean θ and with standard deviation
σ.

11

Exploring Alternatives to Policy Search

2. We evaluate each mutation θ′ through the use of the fitness function F . For each
mutation we will obtain a score F (θ′). From here, we obtain a refined population
by keeping the λ mutations with the highest fitness score (assuming we want to
maximize the fitness function; otherwise we would keep the λ smallest instead).

3. Using the refined population we can update our current solution and standard de-
viation:

• The updated solution will be the average of the mutations within the refined
population.

• The updated standard deviation will be standard deviation of the mutations
within the refined population.

The underlying idea behind this algorithm is simple: we consider our current solution as
a point within the space of potential solutions. While in the original proposal this space
was uni-dimensional, we can assume any number of dimensions as required. Whenever we
obtain mutations, what we are doing is exploring the solution space in the neighborhood
near the current solution. From the neighbourhood we draw a better solution, hence mov-
ing closer to the optimum. However, since exploration is done through noise, no gradients
are involved.

From here more advanced versions of ES sprout from this original idea. This can include,
but is not limited to:

• Keeping some perturbations from one iteration to the rest, making learning more
stable by guaranteeing perturbations will be at least as good as last iteration.

• In multidimensional solutions, draw noise from learned covariance matrices. By
learning the correlations between dimensions the exploration can be done more
efficiently [16]. Currently the most advanced example of this approach is the Co-
variance Matrix Adaptation Evolution Strategy algorithm (CMA-ES), although due
to its complexity it is not recommended to be applied in problems with high-
dimensionality. [38].

• Use of natural gradient ascent to better improve our current solution from the ob-
tained mutations. This is one approach chosen by the subfamily of Natural Evolution
Strategies algorithms [15].

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a type of neural network modified to deal with data
which can be represented through a graph. Originally introduced in a paper by Franco
Scarselli and others, the motivation behind this type of network is for it to take advantage
of the graph’s structure to offer better performance with a lower number of parameters
[20]. This idea is similar in how a Convolutional Neural Network takes advantage of an
image’s properties.

12

Exploring Alternatives to Policy Search

Since its inception several modifications to the original GNN have emerged, although the
underlying concept is the same. First, data is introduced encoded by a graph, with a set
of nodes and edges. Each node will have an internal state, which will be updated from
neighboring nodes through some sort of neighborhood function. Once the states of the
node of the graph have been updated, they will be aggregated and parsed through a final
output function that returns the desired result. The first function is meant to share and
process information based on locality (taking advantage of the graph structure), while the
second function is meant to draw a conclusion from a global view of the graph.

In this project we will focus on Message Passing Neural Networks (MPNNs), as it is a type
of network that has proven effective to tackle several graph-related problems. Originally
it was used to predict properties from organic chemical compounds from their chemical
structure [21]. It was also the model behind the solution for network routing problem we
will focus later on. One strong advantage of MPNNs is that when its components are
correctly defined, the resulting model is invariant to graph isomorphism. Formally, the
MPNN is defined as follows:

1. As any other GNN, the data is received in form of a graph G = (N , E), where N is
the set of nodes and E is the set of edges.

• Each node v ∈ N will have an internal state hv, represented as a vector of real
numbers, and a neighborhood N(v) formed by the nodes which share an edge
with.

• While the original formulation considers undirected edges, it can be generalized
to directed edges as well.

2. The message-passing phase occurs, where information is exchanged for a fixed num-
ber of iterations. For each node v at iteration t, we perform the following steps:

(a) v will receive a message from all its neighbors w ∈ N(v). The message is defined
by a message function M which generates the message using the state of the
receiver, the sender, and the edge connecting both evw ∈ E :

M(ht
v, h

t
w, evw)

The message function M can be defined through any differentiable function
(such the function defined by a neural network) and produces an output with
the same dimension as the internal states of the nodes.

(b) All the messages received by the node v from its its neighbors are aggregated.
This can be done so through any commutative operation (as messages are sent
all at once and they are received out of order), although by default this is done
through element-wise addition:

mt+1
v =

∑
w∈N(v)

M(ht
v, h

t
w, evw)

13

Exploring Alternatives to Policy Search

(c) The aggregated messages are then used to update the internal state of node v
through an update function U . This function takes as input the current internal
state ht

v and the aggregated messages mt+1
v , and produces the updated state

ht+1
v . This function can also be defined through any differentiable function,

and is also suitable to be represented through a model with internal state (e.g.
Recurrent Neural Networks).

ht+1
v = U(ht

v,m
t+1
v)

3. The global state of the graph is obtained by combining the internal states of its
nodes. This combination must be done in a way that does not implicitly order the
nodes in any way, as to preserve invariance to graph isomorphism. By default, this
is done by concatenating the states from each node into a single flattened vector.

4. Finally, the global state of the graph is fed to a readout function R, which takes
the global state of the graph to produce the desired product. This function can be
defined through any differentiable function.

14

Exploring Alternatives to Policy Search

3 Thesis Objectives and Goals

On one hand, we have established the usefulness of Reinforcement learning, specifically
DRL, as a framework to be applied in problems related to control and continuous interac-
tions between an agent and an environment. However, it has also proven extremely hard
to scale upward. One hand, RL algorithms that internally uses neural networks ultimately
will use gradient descent with backpropagation, which can be parellelized and even be run
in a hardware accelerators, such as a GPU. However, the fact that RL work with expe-
riences, and these must be sampled constantly throughout training poses an additional
burden that is not present in Supervised and Unsupervised learning algorithms.

As a consequence, while training most of it is spent in interacting with the environment
and drawing experiences to learn from. Consequently, logically the best way to accelerate
training would consist in speeding up this process, for example through parallelization.
However, this posses several coordination problems, such as how are experience shared
between the different workers, how and where gradient descent is performed, and how it is
guaranteed that all workers share the updated set of parameters at all times. As a result,
this paradigm is costly and requires complex communication.

A more refined approach would be that one proposed in the paper “Asynchronous meth-
ods for Deep Reinforcement Learning” [8]. The idea of this paradigm is to have a main
process along with a set of worker processes, all sharing a copy of the same network. Each
worker interacts with the environment and learns independently. After a period of time
each worker will send a partial gradient descent step to the main process, which combines
updates from everyone else. The worker processes also periodically requests the updated
parameters from the main process to stay up to date. While this paradigm was applied to
several RL algorithms, it work best when combined with an actor-critic model, creating
the method known as the Asynchronous Advantage Actor-Critic (A3C).

The main advantage of this method is that it allows the algorithm to scale to more than
one process. Since A3C is asynchronous, workers do not have to update at the same time
either, easing coordination. Another advantage is that it removes the need for a replay
buffer: since samples from different workers are uncorrelated, sampling from the expe-
rience replay buffer is no longer necessary to preserve the i.i.d assumption of gradient
descent.

However, A3C is not without its drawbacks. First, a fairly high number of workers are
required to make sure samples are not too correlated during training. Furthermore, as RL
research has continued it started to fall behind more current algorithms. For example,
the synchronous version of A3C, known as Advantage Actor-Critic (A2C), was shortly
introduced afterwards, with its main difference being in which all workers coordinate to
perform the gradient descent at once, which proved to have better performance than the
asynchronous version. Subsequently, both A3C and A2C were later dethroned by PPO,
which proved to have a stronger performance even if done sequentially [1].

15

Exploring Alternatives to Policy Search

As a result, we aim to find a new method for training agents, specifically those represented
by neural networks, that can compete with the state of the art algorithms, such as PPO,
while also being scalable and suitable in high performance computing environments. We
measure scalabity in three of ways: by measuring how performance is increased through
increased hardware resources, how is decreased through increased number of worker pro-
cesses, and how is decreased through increased problem size.

First, for the method to be scalable across hardware it should utilize all of the avail-
able resources at hand. To do so the method must be parallelizable and hence be run
on multiple threads and/or processes, in different computers if it has to. The memory
usage should also remain low enough so it does not become the limiting factor in the
number of workers that can be launched at once in the same machine, and instead being
the number of available cores in the CPU. Also, while not a requisite, it would be best
if the algorithm also took advantage of any additional accelerator available, such as GPUs.

The second aspect of scalability refers to the amount of computational overhead generated
by the number of workers launched. To accomplish a scalable method in this sense, the
algorithm should aim to minimize the communication costs between workers, and even
the amount of messages sent all together. The last aspect of scalability refers on how the
computational cost of the algorithm increases depending on the problem size. In other
words, the method should be invariant (or as close as it can be) to the the scale of the
problem, which in this case would be measured through the network’s size.

Ultimately, the objectives of this thesis are the following:

• Explore an appropriate parallelizable alternative to RL, and design an efficient im-
plementation adequate for our use case.

• Evaluate the speed-up obtained by the algorithm when increasing the number of
workers.

• Determine how the overhead increases as the number of workers increase, how many
workers the algorithm can support at once, and which are the limiting factors.

• Ascertain how does the size of the network impacts the training time of the algo-
rithm.

• Benchmark the performance of our implementation against a classical DRL algo-
rithm.

16

Exploring Alternatives to Policy Search

4 Proposed solution

4.1 Evolution Strategies and RL

Recently OpenAI released a paper titled “Evolution Strategies as a Scalable Alternative
to Reinforcement Learning” that dealt in how to apply ES to train RL agents [17]. In it,
they specified how they adapted Natural Evolution Strategies, a variant of ES, and how
it could be parallelized.

Unlike ES, NES updates the solution by using natural gradient ascent, rather than directly
using the average of the perturbations [15]. This consists in obtaining an approximate of
the gradient by computing the average of the product between the perturbations and their
corresponding fitness function returns. Note that perturbations and mutations do not re-
fer to the same concept: we refer as perturbations the normalized Gaussian noise before
being multiplied by the standard deviation and added to the original sample to generate
the mutation. Once the gradient is obtained, then the current solution is updated as if
it were normal gradient descent. The pseudocode detailing the algorithm can be seen in
Algorithm 1.

Algorithm 1 Natural Evolution Strategies [17]

Require: Learning rate α, noise standard deviation σ, initial policy parameters θ0, num-
ber of mutations n, fitness function F

1: for t = 0, 1, 2, ... do
2: Sample perturbations ϵ1, ϵ2, ..., ϵn ∼ N (0, I)
3: Compute returns Fi = F (θt + σϵi) for i = 1, ..., n
4: Update policy parameters θt+1 ← θt + α 1

nσ

∑n
i=1 Fiϵi

For it to be applied in the context of RL, the main change to be done is how to define
the fitness function to evaluate each mutation. Here, both the solutions and mutations
represent a model as a one dimensional vector. In the context of neural networks, includ-
ing GNNs, each solution will represent all the parameters of the network being flattened
into a single vector. Then, the fitness score is extracted by obtaining the accumulated
reward by the mutation across en entire episode within the environment. Consequently,
the algorithm must perform gradient ascent, as we wish benefit those perturbations which
maximize the obtained reward.

The main advantage of using ES is how it can be trivially parallelized. What the paper
proposes is to initialize a number of workers n, each with an environment instance of its
own. When working together, each worker can evaluate only a part of the perturbations,
and then send its results to each other so everyone can update the parameters indepen-
dently. As long as each worker share the same perturbations and fitness results across
execution, all workers will converge to the same solution. The algorithm’s pseudocode can
be seen in Algorithm 2.

17

Exploring Alternatives to Policy Search

Algorithm 2 Parallelized Natural Evolution Strategies [17]

Require: Learning rate α, noise standard deviation σ, initial policy parameters θ0, fitness
function F

Ensure: n workers with known random seeds and initial parameters θ0
1: for t = 0, 1, 2, ... do
2: for each worker i = 1, ..., n do
3: Sample perturbation ϵi ∼ N (0, I)
4: Compute returns Fi = F (θt + σϵi)

5: Send all scalar returns Fi from each worker to every other workers
6: for each worker i = 1, ..., n do
7: Reconstruct all perturbations ϵj for j = 1, ..., n using known random seeds
8: Update policy parameters θt+1 ← θt + α 1

nσ

∑n
j=1 Fjϵj

Not only the resulting version splits its workload across multiple threads and/or processes,
but also does so at a minimal overhead. Through clever use of predetermined seeds for
the noise generators, the communication cost can be kept to a minimum by generating
each other’s perturbations without needing to send anything. Hence, the only communi-
cation costs come from sending the fitness function returns to other workers, meaning the
asymptotic cost of communication will be of O(nki), where n is the number of workers,
k the total number of perturbations and i the number of iterations, and the expected
number of messages sent being i · (n− 1)2.

Overall, this algorithm takes advantage of NES’s properties to offer a more scalable al-
ternative in form of a fully distributed solution compared to traditional RL algorithms.
Additionally, it does so while requiring fewer hyperparameters. While algorithms like PPO
requires making decisions about the replay buffer’s characteristics (size, sampling rate),
discount factor and exploration policy among others, NES only requires the user to decide
the values of two hyperparameters:

• The number of perturbations n: The higher the number of perturbations, the more
information the algorithm will have at each epoch to approximate the gradient
correctly, making learning more stable. However, more perturbations to evaluate
results in more time is spent interacting with the environment.

• Standard deviation σ for generating mutations: it controls how different the muta-
tions will be compared with the current solution. The effect of this hyperparameter
is similar to the learning rate in gradient descent, where the value will depend on
how irregular is the “solution space”. That is, it will depend on how much the
quality of the solution will change over small changes in its value. This impact is
illustrated in Figure 2 representing a simplified example where the solutions have
only one parameter:

– Point A shows the current solution θ.

18

Exploring Alternatives to Policy Search

Solution Space

Average
Reward

A B
C

D

Figure 2: Effect on choosing an adequate noise level for generating perturbations.

– Point B shows a mutation being being generated from a sub-optimally small
value of σ. By being too close to the solution it captures small irregularities
that could lead to the solution to be more easily stuck in a local minimum.

– Point D shows a mutation being generated from an sub-optimally large value
of σ. By being too far away from the current solution it no longer represents
the neighborhood near it, and hence it will worsen the gradient approximation.

– Point C shows a perturbation generated from an ideal value of σ. It captures
correctly the solution space near the current solution without capturing the
irregularities that do not have a significant impact over the solution.

However, unlike the learning rate, the value of σ will not translate into larger gradi-
ent steps. This is because in the end the gradient is updated using the raw pertur-
bations, which are drawn from the normalized Gaussian distribution, and standard
deviation is only applied to then create the mutations.

ES also offers the advantage of not being affected by certain limitations of traditional RL
algorithms [17]. The first one is that ES does not have to consider future discounting,
a measure of how much future rewards are worth relative to immediate rewards. Since
learning occurs at the level of individual interactions, a balance must be struck between
maximizing the reward obtained with the next action and the expected long term reward
that you can obtain afterwards. If this balance is not achieved agents may end up be-
ing myopic, choosing actions that maximize their short term rewards but at the cost of
rewards later on. However, not applying any discount will avoid agents from converging,
as those environments with potentially infinite episodes could have theoretically infinite
expected rewards.

On the other hand, in ES each perturbation is evaluated by the accumulated reward
across the entire episode. Since the evaluation is done at the episode level, the notion of
taking into account expected long term reward from taking actions in individual states is
no longer relevant for training the agent.

19

Exploring Alternatives to Policy Search

Another advantage of training agents through ES over traditional RL is also not being af-
fected by environments with sparse rewards. In traditional RL, both Q-learning and policy
approximation, learning is only triggered once the agent reaches states that award some
reward. Otherwise, due to the definition of the loss functions used to train the agents, the
obtained loss would be equal to 0 and so the network will not learn anything. This issue
is not relevant in ES due to the same reason as before: since ES evaluate perturbations
by evaluating entire episodes as a whole, it does not care how spread out the reward is
within the episode itself.

Furthermore, due to the benefits of ES being a black-box optimization algorithm, it does
not make any assumptions of the environment itself either, including if it can be defined
as a Markovian Decision Process or not, assumption held by many traditional RL algo-
rithms. Therefore, using ES may prove even more beneficial in these kinds of environments.

Before we move on, we must also clarify the disadvantages that ES has over traditional
RL algorithms. The first one is that, as we clarified at our introduction to ES, evolu-
tionary algorithms tend to perform slower than gradient based methods, and in this case
we do not expect things to be different. Unlike DRL algorithms, ES tries to optimize all
parameters at once and without using backpropagation, a major speed up in updating a
network’s parameters. This is exacerbated by the fact the current implementation of ES
is not accelerated by being run in an accelerator such as a GPU.

Additionally, ES is a substantially more ‘bruteforce’ way of optimizing the gradient. In
ES we depend on randomly generated perturbations for finding a better solution, while
traditional RL algorithms like PPO have made massive improvements in how to sample
interactions more effectively (e.g. through prioritized experience replay [9]). While using
entire episodes to evaluate perturbations has significant benefits as we just discussed, it
also means that ES takes many more interactions with the environment before it can
adapt its current solution compared to traditional RL algorithms. Overall, we expect that
the single-threaded performance for ES to be significantly slower than traditional RL al-
gorithms like PPO.

Another important limitation to consider is that ES theoretically cannot run in envi-
ronments with infinite episodes. Since ES uses entire completed episodes to evaluate the
perturbations, it will always enforce a finite horizon on its episodes. In practice limiting
the episodes length may not be a deal-breaker, but it will mean the obtained solution will
not longer be reliable after the cut off mark in the episode. Also, allowing episodes to run
for too long will affect the time taken to train the agent, as running the episodes is the
current bottleneck in the agent’s training.

20

Exploring Alternatives to Policy Search

4.2 Modifications to the parallelized solution

While the algorithm shown in Algorithm 2 is the proposed solution by the OpenAI paper,
in the same paper they also discuss other modifications that could be done to improve
algorithm, by either improving the training time or increasing the stability of learning.

4.2.1 Reward regularization and fitness shaping

Fitness shaping is a technique described in the paper introducing NES, although the idea is
common place in evolutionary computing [15]. The idea is to evaluate the perturbations
using a ranking according to their fitness return, rather than using the value directly.
Once the ranking replaces their fitness values, then it is scaled so scores are assigned
in the range of [−0.5, 0.5]. Using the rank instead of the values allows learning to be
more stable. On one hand, it makes sure that the magnitude of change of the solution
between iterations is more bounded by limiting the values of the returns, especially useful
in environments where the obtained reward can drastically change [17]. This effect is
more pronounced at the beginning of training, where the differences in reward between
different mutations is more pronounced. This effect also helps avoiding learning to stall
when reaching convergence, as it will amplify the differences in obtained reward between
mutations if it becomes too small.

4.2.2 Mirror sampling

Mirrored sampling is a technique introduced to increase stability of ES algorithms by im-
proving how perturbations are generated [19]. The idea is simple: for every perturbation
ϵi we generate, we will also consider its inverse −ϵi. This change improves stability by
ensuring we are correctly exploring the solution space near our current solution, as for
every perturbations we evaluate we will also take into account exploring the complete
opposite direction.

Applying this change is also computationally inexpensive, barely increasing the cost of
obtaining the gradient. First, it reduces the cost of generating the perturbations to half,
as the other will be the mirrored version. Additionally, by taking advantage of how the
gradient is obtained, we can reshuffle the operators to further minimize the computational
cost of doing so. This is done as such: let us have n generated perturbations, and for each
perturbation ϵi we have its mirrored version −ϵi. We have also obtained the fitness returns
for ϵi and −ϵi as Fi and F ′

i respectively. Hence, the gradient would be obtained as:

1

2nσ

(n∑
j=1

Fjϵj +
n∑

j=1

F ′
j(−ϵj)

)
=

1

2nσ

(n∑
j=1

(
Fjϵj − F ′

jϵj
))

=
1

2nσ

(n∑
j=1

(
Fj − F ′

j)ϵj

)

As such, by subtracting the obtained mirrored rewards from the original perturbations’s
returns, we can reduce by half the amount of dot products operations later on to obtain
the gradient, making this change inexpensive computationally.

21

Exploring Alternatives to Policy Search

4.2.3 Adding noise to the action probabilities

Unlike traditional RL algorithms, exploration strategies are no longer necessary when
running episodes to train the network. That is because the exploration is already done
when generating the perturbations, as with them we are exploring the solution space.
Instead, episodes are run to evaluate the perturbations, thus they must be run as if it
were evaluation episodes in traditional RL methods, always choosing the action preferred
by the model.

The paper exploring the use of ES in RL explores this argument from a more formal
angle [17]. Specifically, they state that trying to apply gradient descent directly over the
solution space is risky since it is not known how smooth the solution space really is.
Therefore, as to add smoothness to the gradients Gaussian noise is added. In DRL this
is done when exploration policies are considered and/or Gaussian noise is added to the
action probability distributions drawn by the models. In ES, the noise added are the
perturbations in the solution space.

Ultimately, they argue that in those scenarios where stronger smoothing is required for
gradient descent to occur successfully, noise can be added to both the solution and actions.
That is, whenever episodes are run in ES to evaluate a perturbation, noise should also be
added to action distributions drawn by the model before committing to a specific action.

4.2.4 Precomputed noise

Another of OpenAI’s proposals is to, rather than generating new noise vectors every epoch,
to have a certain amount of pre-computed noise from a normalized Gaussian distribution
and sample from it instead [17]. The argument is that sampling from the matrix is quicker
than generating the noise, trading memory for a computational speed up. The main issue
with this is that the drawn perturbations must be i.i.d, while sampling from the same
precomputed set of noise vectors is not. As a result, bias is introduced into the search and
hurting its performance, unless a significant amount of noise is pre-generated.

4.2.5 Distribution of perturbations among workers

One aspect that the original pseudocode glosses over is how is perturbations are divided
among the workers . As it is written in Algorithm 2 it implies that there are many
workers as perturbations, which in reality this is impractical as each worker requires its
own overhead. In reality, workers are expected to sample several perturbations.

The most simple solution would mean to split the perturbations evenly across workers.
However, since episodes could have varying length this does not guarantee that the work-
load is evenly divided. As a result, the proposal recommends a system in which all workers
will train for a fixed number of interactions, and will send the results of the episodes it
is able to complete in the process. This minimizes even further downtime from waiting
threads [17].

22

Exploring Alternatives to Policy Search

4.3 Design of our proposed solution

Given the original parallelized algorithm we will explore the version of the algorithm we
will use in this report after introducing some of the modifications introduced in the same
paper, as well as some of our own. By combining all of these changes together, the final
version of the algorithm to be used can be seen in Algorithm 3.

Algorithm 3 Improved Parallelized Natural Evolution Strategies

Require: Learning rate α, noise standard deviation for mutations σ, noise standard
deviation for actions φ, initial policy parameters θ0, fitness function F , number of
mutations k

Ensure: n workers with known random seeds and initial parameters θ0, one of them
being designed as the coordinator

1: for each worker i = 1, ..., n do
2: Obtain assigned number of mutations ki ← AssignMutations(k)
3: if worker i is coordinator then ▷ Coordinator thread
4: for t = 0, 1, 2, ... do
5: Sample global perturbations E ← [ϵ1, ϵ2, ..., ϵk], ϵj ∼ N (0, I)
6: Retrieve local perturbations Ei ← E[ki, ki+1 − 1]
7: Compute returns F original

i ← F (θt + σϵi;φ)
8: Compute mirrored returns Fmirrored

i ← F (θt − σϵi;φ)
9: Receive returns other workers: F original

10: Receive mirrored returns from other workers: Fmirrored

11: Combine returns and mirrored returns F combined ← F original − Fmirrored

12: Obtained ranked returns F ranked ← ObtainRanking(F combined)
13: ▷ Other forms of gradient descent can be used, regularization can be added
14: Obtain solution update ∆θ ← α 1

nσ

∑n
j=1 F

ranked
j ϵj

15: Send ∆θ to all worker threads
16: Update solution θt+1 ← θt +∆θ

17: else ▷ Worker thread
18: for t = 0, 1, 2, ... do
19: Sample local perturbations E ← [ϵ1, ϵ2, ..., ϵki], ϵj ∼ N (0, I)

20: Compute returns F original
i ← F (θt + σϵi;φ)

21: Compute mirrored returns Fmirrored
i ← F (θt − σϵi;φ)

22: Send F original
i and Fmirrored

i to coordinator thread
23: Receive ∆θ from coordinator thread
24: Update solution θt+1 ← θt +∆θ

Out of the five improvements above, we have decided to include fitness shaping, mirror
sampling and adding noise to the action probabilities. Including fitness shaping and mir-
ror sampling was an easy decision, due to their many benefits and no downsides. Having
to add noise to the action probabilities will be more exceptional, but its code complexity
is not high and it can be added without affecting the behaviour whenever no noise is added.

23

Exploring Alternatives to Policy Search

Contrary to the original paper, we decided to not pre-compute noise as the benefit it
brought was not worth its cost in memory. On one hand, later executions of our code
saw that the cost of generating Gaussian noise was insignificant in respect to the cost of
executing the environments themselves. On the other hand, the amount of pre-genereted
noise that was needed to avoid introducing too much bias in the generation of perturba-
tions, combined by the fact that this noise had to be replicated in all execution threads,
increased memory costs to a point it was limiting in the amount of workers a machine
could run.

The other difference we have respect the original paper is how perturbations are dis-
tributed. Ultimately, we did not observe the predicted situation where some episodes
would be significantly longer than others, as the authors worried. Even if some episodes
were marginally longer than others, ultimately all workers had to evaluate several episodes,
which further evens out their workload. Additionally, this method also requires the per-
turbations themselves to be sent, which significantly increases the communication costs,
and therefore the overhead, of the algorithm. Instead, we opted with a fixed assigned
number of perturbations per worker.

Another aspect we decided to modify is the decentralized nature of the algorithm. While
decentralization may be attractive in some applications, we do not believe it was the case
here. Distributed solutions that benefit from decentralization are those that want to avoid
a single point of failure. However, due to the synchronous behaviour of our algorithm, it
would fail if anything interrupted any of the workers involved.

Additionally, decentralization increased significantly the memory cost of the algorithm.
For the environment to be purely decentralized every worker must be able to update their
solutions independently and in order to do so it must store the perturbations of the others.
As a result, each perturbation will be replicated in each worker, resulting in the memory
needed for storing every copy increasing up to a total of n · k · p 32-bit floating point
numbers, where n is the number of workers, k is the number of perturbations, and p the
size of the perturbations, the same as the size of the solution θ.

A counter proposal would be instead to develop a centralized version of the algorithm,
where one coordinator is the only one responsible for performing gradient descent. As
a result, the workers only have to worry about their own perturbations, and only the
coordinator will have a copy of other’s. By limiting to storing each perturbation twice
(the worker’s original and the coordinator’s copy), rather than having n copies, it reduces
the cost of storing them down to 2 · n · k 32-bit floating point numbers, independently of
the number of workers. The biggest issue with centralization is the increased downtime
by the threads/processes, as the coordinator must wait for the workers to finish before
continuing and vice-versa.

24

Exploring Alternatives to Policy Search

Centralization also has an impact in communication overhead. On one hand, since the
rewards for perturbations have to be sent to a single coordinator rather to several work-
ers, the amount of messages sent is reduced. On the other hand, the updated parameters
now must be sent from the coordinator to the workers every time they are updated (once
per iteration). Consequently, the resulting asymptotic cost of communication therefore
changes to O(ip), where i the number of iterations and p the size of the perturbations,
compared to the previous O(ikn) where k the total number of perturbations and n is
the number of workers. Usually the size of the solution θ is larger than the number of
perturbations, but is hard to say if it is always larger than k ·n. What is known to decrease
is the number of messages, from i · (n− 1)2 to i · 2(n− 1) messages sent.

Overall, the benefits outweigh the drawbacks. While not commented in the paper, this is
the approach chosen in the official code implementation of the algorithm [18]. However,
unlike the official implementation, we made our coordinator to also assume the role of a
worker. This both virtually eliminates the downtime of the coordinator, and also slightly
reduces the communication costs, as the coordinator does not have to send information
to itself.

One final note to discuss is how gradient ascent is applied. This is not covered by the
paper’s pseudocode, but it reflected later on both in its evaluation section and in the pub-
lished code [18]. Since gradient ascent is applied, even if not through backpropagation,
that means that we can use other forms of gradient descent such as gradient descent with
momentum, or even the Adam optimizer. It is also possible to add regularization to the
gradient approximation. For example the authors in their implementation opted for Ridge
regression [18].

25

Exploring Alternatives to Policy Search

5 Use case: Computer Network Resource Allocation

The use case we wish to cover with our method is the network routing scenario. As the
name suggests, scenarios of this problem consists of a computer network, in which com-
puters are connected through links with a given specified bandwidth, and a set of traffic
demands that must go through the network, defined by a source, destination and the
bandwidth they occupy. The task consists in determining the path each demand must
take as to satisfy as many of them as possible. This scenario is an interesting problem,
due to both its utility and difficulty. Correctly assigning bandwidth demands is key to
minimize throttle and avoid bottlenecks. However, it was proven that finding the optimal
configuration is a NP-hard problem [25].

This dichotomy is even more pronounced by the fact that many real applications of net-
work routing wishes for on-line methods, meant to allocate demands in real time in a
working network, and therefore any time deliberating on the routing is further delay
added to each demand. Current solutions work with heuristics in order to balance opti-
mally and quickness. For example, using the shortest available path between two nodes
returns good results with minimal cost, while more complex optimizers such as DEFO are
much more expensive [26, 28].

Among the proposals used to tackle this problem, one of them focuses in the use of DRL
and GNNs to do so [22]. In this case, the environment will be represented by the network
represented as a graph, initially empty. Then the agent must allocate the received de-
mands in the network, and is rewarded according to how many demands it can allocate.
In terms of RL, in each interaction the environment sends its current state by sending the
current state of the network, the newest traffic demand to be allocated and the reward
from the previously allocated demand, while the agent acts by choosing the path the
newest demand must go through. The episode starts with an empty network, and ends
when one of the links ends up saturated, that is, there is more allocated bandwidth than
the available one. These interactions are illustrated in Figure 3.

In the proposal, the agent used a GNN, specifically a MPNN, to take advantage of the
fact the problem takes place in a graph [22]. Specifically, the graph within the MPNN
represents the links of the network, and edges connect links that share nodes in the
network. This representation is shown in Figure 4. The internal state of the nodes within
the graph represents three features of each edge:

• The original, maximum capacity of the edge.

• The betweenness of the link: a feature from graph theory that measures how many
possible paths exist in the network that goes through that link [22].

• The amount of bandwidth allocated within that link. Since the units dealt with here
are atomic, this value is represented through one-hot encoding. This also means that
most states will also have zero-padding to accommodate for the link with the largest
bandwidth.

26

Exploring Alternatives to Policy Search

Figure 3: Diagram detailing the interactions between the agent and the environment in
the network routing problem [22]

Figure 4: Representation of the graph used in the MPNN [22]

Hence, the MPNN must return a probability distribution indicating which action should
be taken. As a remainder, each action represents a potential routing of the current de-
mand on the network. Therefore, when an action was introduced in the network it had
to be modelled as graph. This consisted on obtaining the current state of the network
plus the reflection of performing the given routing on it. When introduced, the MPNN
produced a score reflecting the desirability of taking that action.

This process was then repeated with all the possible routings between the source and
destination of the demand. Although clever implementation eased computational cost, for
example by evaluating all routings at once, the cost of the model increased heavily with
the number of possible actions, which themselves increase exponentially with the graph’s
size. As a result, the authors limited the model so it only considered the 4 shortest paths
between the each pair of nodes in the network. The agent was originally trained through
DQN, and later on through PPO as training was quicker, more stable and obtained better
results [22].

27

Exploring Alternatives to Policy Search

6 Evaluation

6.1 Evaluation settings

For the evaluation of the algorithm we had it run in two hardware environments:

• Local server: uses a 16-core AMD Ryzen 9 3950X CPU, although it supports exe-
cution of up to 32 concurrent threads, and 64 GB of RAM.

• Remote server: a remote server run in AmazonWeb Services. Specifically, an c5a.16xlarge
instance was used, which includes AMD EPYC 2nd generation processors with 64
cores and 128 GiB of RAM.

Since the use case runs on top a computer network, we must also choose its topology to test
our algorithm. As such we considered two topologies released to the public: the topology of
the National Science Foundation Network (NSFNET) and the topology of the GÉANT2
network, by the GÉANT project [23, 24]. The NSFNET network is made up of 14 nodes
and 42 edges, while the GÉANT2 network is made of 26 nodes and 74 edges. We kept the
nodes and links from the topologies, but changed the link’s maximum bandwidth for it to
be constant across all links. We then decided on testing three configurations, consisting
in a combination of topologies, MPNN configurations and ES hyperparameters:

• A smaller MPNN trained with the NSFNET topology.

• A bigger MPNN trained with the GÉANT2 topology. The hyperparameters of the
ES method are adapted to accommodate the larger network.

• The same as before, but now is trained using both the NSFNET and GÉANT2
topologies. This is achieved by using two environments, one for each, that are used
interchangeably during training. During evaluation both environments are used.

Across all configurations the demands to be allocated in the graph will have one of three
predetermined sizes, and all will share roughly the same MPNN architecture, as it is
the one borrowed from the paper which introduces the use case [22]. The details of each
configuration can be seen at Table 1, while the details of the MPNN are as follow:

• The states in the MPNN’s graph (the edges in the original network), are represented
through a vector with a size specified by the configuration.

• The message function is represented as a single dense layer, with the same number
of dimensions as the internal states of the nodes.

• The update function is represented through a Recursive Neural Network, specifically
a GRU RNN. The internal dimension of the network is the same as the dimension
of the internal state in the graph.

• The readout function is represented as a dense neural network made out of three
layers. The two hidden layers have the same dimension, which depends on the con-
figuration. The output layer is made up by a single neuron, as it draws the score for
the action introduced as an input to the network.

28

Exploring Alternatives to Policy Search

Topologies NSFNET GÉANT2

NSFNET
and

GÉANT2

GNN
Parameters

Number of message passing
iterations

5

Dimension of the graph’s
internal state

20 35 35

Number of hidden layers in
the readout function

2

Dimension of readout
function’s hidden layers

20 35 35

ES
Parameters

Number of iterations 300 300 320
Number of perturbations per

iteration* 128 640 640

Noise standard deviation for
perturbations

0.05

Noise standard deviation for
actions

0 0.05 0.05

Optimizer’s Parameters (Adam) α = 0.005, β1 = 0.9, β2 = 0.999, ϵ = 10−8

L2 Regularization Coefficient 0.005
* Does not take into account perturbations generated by mirrored sampling; the true

number of perturbations is double.

Table 1: Summary of the configurations for the evaluation

The code was written in Python with the aid of several libraries. Mathematical com-
putation and representation of vectors was done through the NumPy library [29]. The
MPNN was modelled through the Keras library with a Tensorflow backend, although the
actual gradient descent was done through our own implementation of the Adam opti-
mizer [31, 30, 34]. Communication between workers was achieved through the use of MPI.
Specifically, the operating system used the OpenMPI library, and within the code we used
the mpi4py interface [32, 33]. The RL environment was created using through OpenAI’s
Gym library [35]. Other noteworthy libraries include NetworkX for working with graphs,
and Kspath for efficiently finding the k-shortest paths between every two nodes in the
topology [36, 37].

6.2 Analysis of ES hyperparameters

Before proceeding with the evaluation of our method’s performance, we first wish to run
several experiments to understand the impact of ES’s hyperparameters, which are once
again the number of perturbations, the standard deviation used for generating mutations,
and the standard deviation of noise introduced into the action probability distribution.
These executions consists on running the NSFNET configuration with changes to one of
the hyperparameters. All these executions were run in the local server with 16 workers.

29

Exploring Alternatives to Policy Search

0 100 200 300 400 500
Time (s)

16

18

20

22

24

26

28

M
ea

n
Re

wa
rd

16 Perturbations 128 Perturbations 1024 Perturbations 5120 Perturbations

Figure 5: Effect on the number of perturbations

Figure 5 shows the effect on changing the number of perturbations we generate per iter-
ation. This graph shows the state of the model at different points of its training. Each
point in the line plot represents one epoch, the x-axis represents the amount of training
time taken to reach that point, and the y-axis represents the mean accumulated reward
per episode obtained across 60 episodes.

Overall, we can an observe that the more perturbations there are, the slower the training
goes. This is reflected by the smaller spacing between each point in the curve as the num-
ber of perturbations increase, as well as the speed at which the mean reward increases
over time. Out of the different configurations tested only the one with 16 perturbations
end in the time frame shown in the graph, in spite running for the same number of epochs
in all four scenarios.

On the other hand we see the higher the number of perturbations, the more stable train-
ing becomes. For example, the configuration with 16 perturbations is so unstable that is
unable to learn, as its mean reward does not increase over its entire execution. With 128
perturbations the learning is still unstable, indicated by how the mean reward tends to
fluctuate between epochs, but the model is able to learn overall. Finally, the two configu-
rations with the highest number of perturbations show lower variance in the mean reward
per epoch and the more sustained increase of the mean reward.

This experiments confirms our intuition about the number of perturbations. More pertur-
bations are necessary to increase the stability of learning, but doing so will increase the
cost of the algorithm, as it will also mean an increase in the number of interactions with
the environment. Overall, a sweet spot must be achieved between speed and stability so
as to minimize the training time of the algorithm. For example, while 128 perturbations
is more unstable than 1024, the speed up it benefits from is more than enough to make
up for it and ends up reducing training time overall.

30

Exploring Alternatives to Policy Search

There are also two other facts to point out. The first is that the number of perturbations
will need to increase when dealing with larger networks, as the number of parameters, and
therefore the size of the solution and the solution space, will increase and more pertur-
bations will be needed to correctly cover the larger solution space. Second, increasing the
number of perturbations will not lead to larger gradient descent steps. If we examine the
gradient formula back in Algorithm 3 the gradient uses the average of the perturbation,
so the number of perturbations will not affect its size.

0 200 400 600 800 1000 1200 1400 1600
Time (s)

10

15

20

25

M
ea

n
Re

wa
rd

0.005 Standard Deviation noise
0.05 Standard Deviation noise

0.5 Standard Deviation noise
1 Standard Deviation noise

Figure 6: Effect of the standard deviation for the mutations

Figure 6 shows the impact of different values for the standard deviation for the mutations.
As a remainder, this standard deviation is the one used for converting perturbations into
mutations, also known as σ back in Algorithm 3. From the results, it is clear that using
a value of 0.05 is the optimal choice, as it converges in the highest mean reward overall,
a value of 26. One one hand, if the value of σ is increased any more the training becomes
too unstable and is unable to learn, represented by the fact that the executions where
σ = 0.5 and σ = 1 the mean reward did not increase by the end of training. On the other,
if the value of σ decreases we end up converging in a worse solution, at around a mean
reward of 22 with σ = 0.005.

This graph shows reinforces the ideas we presented back in section 4.1 about the impact
of σ. Large values will make that the generated mutations are no longer representative of
the solution space near the current solution, and therefore are inadequate for computing
its gradient. Small values will make mutations similar to the current solution, which in-
creases the chances of capturing small irregularities and getting stuck in a local maximum.
Therefore, the procedure for choosing the value of σ would be to perform a grid search
to find the optimal value. Is important to note that this hyperparameter showed no signs
of affecting the training speed of the algorithm, as both curves followed a very similar
trajectory.

31

Exploring Alternatives to Policy Search

0 200 400 600 800 1000 1200 1400 1600
Time (s)

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n
Re

wa
rd

No noise 0.05 Standard Deviation noise 0.5 Standard Deviation noise

Figure 7: Effect of the standard deviation for the noise to be added to the obtained
action probabilities

Figure 7 shows the impact of different values for the noise to be added to the obtained
action probabilities. This is also referred as φ back in Algorithm 3. On one hand we ob-
serve that the effect of this parameter is very subtle. When moving from adding no noise
to a minimal amount of noise, with φ = 0.05, we see that it did not have an impact over
the results, with both curves moving in an identical trajectory. However, by increasing
the amount of noise to φ = 0.5 the mean reward is negatively affected, reducing the point
where it converges from a mean reward of 26 to roughly 20.

Ultimately, the addition of noise to the action distribution is not always necessary and it
is more reasonable to consider it on a case by case basis. Small amounts of noise should be
included in a grid search for finding the correct hyperparameter values of the algorithm,
but only with the understanding that most likely no noise should be added.

Another observation to point out from the graph is how adding more noise increased the
training speed of the algorithm. As a reminder, all three configurations tested had the same
number of epochs, however the configuration with φ = 0.5 finished after 1100 seconds,
while the other two curves took longer than 1500. However, we believe this occurs because
when the algorithm performs worse its episodes are shorter: since it performs poorly, the
graph is saturated in fewer allocations of demand, hence episodes end sooner. A similar
situation can be found in Figure 6 with the curves from configurations with values of
σ = 0.5 and σ = 1, whose mean reward did not increase over training and they also ended
significantly sooner.

32

Exploring Alternatives to Policy Search

6.3 Performance of ES versus PPO

In the following section we will focus in analyzing the performance of ES against PPO as
our reference RL algorithm. In order to make this comparison we will run our implemen-
tation of ES across the three configurations with a varying number of workers: one, two,
four, eight, 16 and 32 in the local server, and 16, 32 and 64 in the remote AWS server.
We will also run PPO, using the implementation offered by the authors of DRL solution
for network routing, in both the local and remote server, to act as a baseline [22].

The first set of figures will show the raw results of our experiments. The plots will be
similar to those from our previous section: each curve represents one configuration run
with either PPO or ES with a specific number of workers. Each point in the line plot
represents one epoch, the x-axis represents the amount of training time taken to reach
that point, and the y-axis represents the mean accumulated reward per episode obtained
across 60 episodes (in the case where we use both topologies we will obtain 60 episodes
from each). We will begin with Figure 8, which shows the results of the experiments run
with the NSFNET topology and configuration (revise Table 1 for details). Figures 8a and
8b show the results of the experiments run on the local server, where the latter represents
a zoomed-in version of the former. Figure 8c shows the results of of the experiments run
on the remote AWS server.

The first clear observation that, overall, the more workers we assign, the greater is the
speed up the training receives. As all ES experiments use the same number of iterations,
we can compare how long they took by simply seeing where the curve ends. Looking back
at Figure 8a running ES with one and two workers only are clearly the slowest options,
with a great margin from the third slowest being four workers. If we continue by looking
into in Figure 8b we see this trend of increasing number of workers resulting in decreasing
training times continues. Only when we reach 32 workers this speed up is halted, but it
also coincides with the point where all 16 cores of the CPU are occupied, hence this is
not due to the limitation of algorithm but of the machine. When moving to the remote
server in Figure 8c we can confirm that the trend continues even further.

If we compare our results with PPO we can notice two interesting trends. The first one is
that by looking at the shape of the curve PPO tends to converge faster than ES with any
number of workers, even with 32 and 64 of them in Figures 8c: the fastest ES run, the
one with 64 workers, converges at roughly 800 seconds, while PPO roughly at 500. How-
ever, across all ES executions we seen that it obtains significantly better solutions than
PPO, converging at a mean reward of over 26 instead of PPO’s 16. This is unexpected,
as we were not anticipating any method to obtain inherently better policies. However,
the properties of evolutionary algorithms being more resistant to local minima may give
the edge to ES when obtaining a better policy of this specific scenario. What we were
expecting, however, is that the number of workers do not affect the mean reward at which
ES converges. Looking at graphs eventually all ES executions reach a mean reward of 26,
confirming that its performance does not degrade when parallelized.

33

Exploring Alternatives to Policy Search

0 20000 40000 60000 80000 100000
Time (s)

10

15

20

25

30

M
ea

n
Re

wa
rd

PPO (baseline)
1 Worker

2 Workers
4 Workers

8 Workers 16 Workers 32 Workers

(a) Results of running 1 to 32 workers in the local server

0 500 1000 1500 2000 2500
Time (s)

10

15

20

25

30

M
ea

n
Re

wa
rd

PPO (baseline)
1 Worker

2 Workers
4 Workers

8 Workers 16 Workers 32 Workers

(b) Results of running 1 to 32 workers in the local server (zoomed in)

0 1000 2000 3000 4000 5000
Time (s)

10

15

20

25

30

M
ea

n
Re

wa
rd

PPO (baseline) 16 Workers 32 Workers 64 Workers

(c) Results of running 16 to 64 workers in the remote server

Figure 8: Effect of using ES with varying number of workers over the NSFNET topology

34

Exploring Alternatives to Policy Search

0 50000 100000 150000 200000 250000 300000 350000
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n
Re

wa
rd

PPO (baseline)
1 Worker

2 Workers
4 Workers

8 Workers 16 Workers 32 Workers

(a) Results of running 1 to 32 workers in the local server

0 500 1000 1500 2000 2500
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n
Re

wa
rd

PPO (baseline)
1 Worker

2 Workers
4 Workers

8 Workers 16 Workers 32 Workers

(b) Results of running 1 to 32 workers in the local server (zoomed in)

0 5000 10000 15000 20000 25000 30000
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n
Re

wa
rd

PPO (baseline) 16 Workers 32 Workers 64 Workers

(c) Results of running 16 to 64 workers in the remote server

Figure 9: Effect of using ES with varying number of workers over the GÉANT2 topology

35

Exploring Alternatives to Policy Search

Figure 9 shows the results when run with the GÉANT2 topology and its respective con-
figuration. Just as before, Figures 8a and 8b show the results of the local server, while
Figure 8c of the remote server. From it results we can draw similar conclusions to the
ones drawn by the results over NSFNET. First, increasing the number of workers speed
ups training time without affecting the value at which the algorithm converges, with the
exception of increasing from 16 to 32 workers in the local server (Figure 9b), just as before.
ES also converges to a higher value than PPO: the former converges at a mean reward of
around 26 while the latter at around 22, as seen clearly in Figure 9c.

However, unlike before we see that this time around the shape of the training curve of
PPO and ES ends up being much closer to each other. In Figure 9c we can see that
the slope of the curve of ES when using 16, 32 and 64 workers is more pronounced than
PPO’s curve during the first 5000 seconds. This confirms that ES was increasing its mean
reward faster than PPO during this period, thus meaning it was learning faster. This con-
trast to the results in NSFNET, where the main advantage came from ES outperforming
PPO’s score by a significant margin. Besides this, the only remaining difference between
the results in both topologies is that overall the GÉANT2 topology took longer longer to
train both in ES and PPO, but that was due to the larger environment and MPNN model.

The final set of graphs, shown in Figure 10, show the results when running the model to
optimize both topologies simultaneously. The idea with this configuration was not only
to test the scalability of ES but also how it performed when training from more that one
environment. To do is important to enrich the model by learning from more than one
topology at once. This aspect is crucial when we consider the fact that the underlying
model is a MPNN, which is invariant to graph isomorphism, meaning that any degra-
dation in performance is more likely to come from the optimization algorithm that the
model itself. However, by looking at the results in Figure 10 it is clear that ES works ap-
propriately when trained with both graph topologies simultaneously, as its results mirror
those from previous results, specifically those when trained with the GÉANT2 topology
alone.

The only notable difference is by comparing the performance of ES with 16 workers
against PPO in the remote server. By comparing Figures 9c and 10c we can see than
when training only in the GÉANT2 topology and using ES with 16 workers converges
slightly faster than PPO. However, when training in both topologies PPO seems to be
slightly quicker instead. This may suggest that ES performs slightly worse with multiple
topologies relative to PPO, however this result is marginal. A alternative explanation
could be the innate instabilities of both methods (as they use randomness in some way or
another) caused PPO to be more “lucky” when training in both topologies. Nevertheless
the main conclusions related to ES converging at a higher score and being accelerated
through additional workers still hold.

36

Exploring Alternatives to Policy Search

0 50000 100000 150000 200000 250000 300000 350000
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n
Re

wa
rd

PPO (baseline)
1 Worker

2 Workers
4 Workers

8 Workers 16 Workers 32 Workers

(a) Results of running 1 to 32 workers in the local server

0 500 1000 1500 2000 2500
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n
Re

wa
rd

PPO (baseline)
1 Worker

2 Workers
4 Workers

8 Workers 16 Workers 32 Workers

(b) Results of running 1 to 32 workers in the local server (zoomed in)

0 5000 10000 15000 20000 25000 30000
Time (s)

10

15

20

25

M
ea

n
Re

wa
rd

PPO (baseline) 16 Workers 32 Workers 64 Workers

(c) Results of running 16 to 64 workers in the remote server

Figure 10: Effect of using ES with varying number of workers over both topologies
simultaneously

37

Exploring Alternatives to Policy Search

6.4 Analyzing ES scalability over the number of workers

With the figures showing the raw data out of the way, let us now examine more in detail
the scalability of ES in respect to the number of workers. Figure 11 shows the effect of
the number of workers in the time spent interacting with the environment. Each curve
represents one of the configurations, the x-axis denotes the number of workers and the
y-axis the time dedicated in each iteration to interact with the environment.

1 2 4 8 16 32 64
Number of workers

8

32

128

512

Ti
m

e
sp

en
t p

er
fo

m
in

g
ep

iso
de

s
 p

er
 e

po
ch

 (s
)

Local Server AWS

NSFNET GÉANT2 NSFNET + GEÁNT2 (estimate)

Figure 11: Effect on the number of workers over the time spent per epoch performing
episodes

By looking at the downward slope it is clear that increasing the number of workers de-
creases the time spent by ES interacting with environment across all three configurations.
Note that this does not mean that the number of mutations is reduced, but that more
mutations are done simultaneously, as the workload is further spread out. We can also see
that this relationship is linear as expected: doubling the number of workers will cut in half
the time spent (for example, in GÉANT2 from 118 to 62 seconds when increasing from
four to eight workers, in NSFNET being from 18 to nine seconds). In the remote server
this effect continues, as the difference between 32 and 64 threads the time is reduced
from 41 to 21 seconds for the GÉANT2 topology and from seven to four seconds for the
NSFNET topology.

Unsurprisingly, overall NSFNET spends the least time interacting with the environment
and GÉANT2 the most. In the first place the latter works with a larger network topology,
which can take more demands before saturating and thus its episodes last longer. The
GÉANT2 configuration also works with a larger model, so it will also take longer for it
to compute its action probabilities distribution. Finally, referring back at Table 1, the
GÉANT2 configuration generates six times as many perturbations as those in NSFNET,
which means it performs six times the number of episodes per iteration.

38

Exploring Alternatives to Policy Search

1 2 4 8 16 32 64
Number of workers

98.4%

98.6%

98.8%

99%

99.2%

99.4%

99.6%

99.8%

100%

Pe
rc

en
ta

ge
 (%

) t
ra

in
in

g
tim

e
sp

en
t

in
te

ra
ct

in
g

wi
th

 th
e

En
vi

ro
nm

en
t

Local Server AWS

NSFNET GÉANT2 NSFNET + GEÁNT2 (estimate)

Figure 12: Effect on the number of workers over the relative time spent per epoch
performing episodes

To these results we have to add those of Figure 12, which shows the percentage of training
time dedicated to performing episodes according to the number of workers. This figure
is the same as before, but the y-axis shows the time invested in interacting with the
environment as a percentage of total training time. While increasing the number of workers
reduces this value, as the raw amount time taken is reduced and the overhead due to
communication costs is increased, across all configurations it is clear that interacting
with the environment is the most time-consuming part of the training. Even with the
configuration with the fastest episodes, NSFNET, and with the highest number of workers
tested, it still spends over 98.2% of training interacting with the environment. This comes
to show that we still have plenty of margin to increase the number of workers and further
decrease the time taken to interact with the environment, solidifying the scalability of ES
over the number of workers.

6.5 Summary of results

The final aspect to consider is evaluating how each configuration performs relative to
PPO depending on the number of workers available. While we know from the previous
figures that the algorithm does scale, the question now is if that is enough to justify its
use over PPO. To do so, from the experiments run and presented in Figures 8, 9 and 10
the following steps were completed:

1. We recorded the score at which PPO converged, and established it as the “bench-
mark”.

2. From the results, we extracted the time taken for both PPO and ES (with varying
number of workers) to reach that benchmark.

3. We extracted the ratio between ES’s time and PPO’s time. This is repeated across
the three configurations and the different number of workers for ES used.

39

Exploring Alternatives to Policy Search

The resulting graph is the one shown in Figure 13. The y-axis shows how fast ES training
time was as a multiple of PPO’s training time. For example, a value of “×2” meant that ES
was twice as fast to reach the benchmark, or that it took half the time. A value of “×1/2”
conversely means that ES took twice as long as PPO to reach the benchmark, or that
it was twice as slow. Overall, the higher the y-value, the faster was ES relative to PPO.
The horizontal dotted line at “×1” represents the break-even point where both techniques
train just as fast. The first thing it can be seen is the confirmation of what it was already
shown by Figures 11 and 12: an increase in workers resulted in a linear decrease in train-
ing time. However, the degree of the speed-up depended heavily on the configuration used.

1 2 4 8 16 32 64
Number of workers

×1/16

×1/4

×1

×4

×16

×64

×256

Tr
ai

ni
ng

 sp
ee

d-
up

 w
ith

 E
S

(re
la

tiv
e

to
 P

PO
)

Local Server AWS

Break-even
point

ES slower
than PPO

ES faster
than PPO

NSFNET GÉANT2 NSFNET + GEÁNT2

Figure 13: Training speed-up achieved when switching from PPO to ES across different
number of workers and topologies

On one hand, NSFNET benefited massively by switching to ES. The only scenario where
PPO is faster than ES is when it only has one worker, where it goes twice as fast. How-
ever, by increasing to two workers by we see the time taken to reach the benchmark fall
by one quarter, from taking twice the time than PPO to slightly over half of the time.
Further duplicating the number of workers continues this trend: with four workers the
training time is one eighth of PPO’s time, and with eight workers ES reaches the bench-
mark 32 times as fast as PPO. This streak is broken by running 16 workers, where the
speed-up stalls. When changing to the remote server the results fall within our original ex-
pectations: doubling from 32 to 64 workers halved the time taken to reach the benchmark.

The question then is how duplicating the number of threads results in a four-fold decrease
in the training time, as well as how did the speed up stalled when jumping from eight
to 16 workers. The answer lies in the method’s inherent instability due to its reliance
in Gaussian noise. Thus, during those four first experiments not only each iteration was
becoming shorter, but also the amount of epochs required to reach the benchmark score
was also decreasing due to having better “luck” with the perturbations it sampled. Simi-
larly, that randomness might explain why with 16 workers the speed up stalled, as poorer
sampling resulted in taking more iterations that its predecessors to reach the benchmark.

40

Exploring Alternatives to Policy Search

On the other hand, both the GÉANT2 topology and running both topologies offered
more moderate results. Compared to the NSFNET results, both curves had a more sta-
ble trajectory along our expected outcome of double the workers, half the time. At first
the results appear to be abnormally bad, with both one and two workers taking 16 times
longer than PPO respectively. However, by looking the trend between four and 16 workers
we can observe the desired behaviour: with four workers the training time was roughly
twice as slow as PPO, with eight was approximately just as fast, and with 16 around
twice as fast.

When switching to the remote server the trend continued. The only notable fact here
is how in the local server the GÉANT2 topology by itself was taking slightly longer to
reach the benchmark relative to using both topologies at once, while in the remote server
it was the other way around. While we discussed this when presenting the results from
Figure 10, we believe that this is due to a slight increase in PPO’s performance when
training in both topologies due to the method’s inherent instability.

Another important observation is the clear the gap that exists between the curves us-
ing NSFNET and the other two configurations. The main reason why the gap exists is
due to the difference in the number of mutations. Looking back at Table 1 we can see
that the NSFNET topology used 128 perturbations per iteration (doubled if counting the
mirrored perturbations), while the other two episodes used 640, five times as many. As a
remainder, the number of perturbations used per each iteration also equals the number of
episodes in it. The increased number of perturbations is needed however, as the GÉANT2
and the combined NSFNET and GÉANT2 configurations use a larger MPNN, meaning
its solution space is larger and more perturbations are needed to properly cover it when
computing its gradient.

Still, even if the number of episodes increases five-fold, from the graph we can observe that
roughly NSFNET takes an eight of the time to reach the benchmark compared to the other
two configurations. On one hand this can be explained by the fact that NSFNET’s initial
scores are closer to the benchmark than GÉANT2, and therefore it requires less iterations
to reach it. Looking back at Figure 8b we see when applying ES to NSFNET the initial
solutions start with a mean reward of around 15 while PPO converges at around 17. On
the other hand, looking at Figure 9b shows that when applying ES to GÉANT2 the initial
solutions also start with a mean reward of 15 but PPO converges at around 23.5. The
difference between the starting points may explain this massive difference, but also hints
that NSFNET speedups are too optimistic for new untested scenarios, and instead it is
more realistic to expect results similar to the ones obtained with GÉANT2. Other factors
also include longer computation times from GÉANT2’s larger MPNN, or longer episodes
due to its larger topology. In the end, it is clear that problem’s size will eventually affect
the number of parameters of the network, which in itself will have a direct and indirect
(through the effect on the number of perturbations) impact in the training time of ES.

41

Exploring Alternatives to Policy Search

7 Conclusions

In conclusion, in this thesis we have examined the viability of using ES to train RL models
as a more scalable alternative to RL. On one hand, the algorithm has proven beyond rea-
sonable doubt that it was able to scale to a high number of workers, more than enough to
cover all available CPU cores in a machine, without being limited by memory consumption
or degrading its performance due to its overhead. While in our experiments only reached
to up to 64 workers, profiling results show that we still have plenty of margin to further
increase the number of workers while causing a linear decrease in training time. Of course
this growth is limited by the amount of CPU cores available, although they do not have
to come from the same machine necessarily. Conversely, one aspect this method is unable
to do is to take advantage of any accelerators such as GPUs.

While the algorithm scaled well with the number of workers, it was unclear how well it
did with the size of the problem. In the tested use case it was clear that larger networks
increased the cost of the algorithm: episodes take longer and require of larger models,
which operate slower and requires more interactions to train. The fact that currently a
network such as GÉANT2 with 26 nodes and 74 edges requires for 8 workers to match
PPO shows that this method in its current state will not be appropriate for massive prob-
lems, at least without the adequate hardware to match it.

In spite of this, ES offers benefits besides scalability alone. One of them was unexpected,
which better scoring models than those obtained by PPO. This means that even in the
cases where ES does not provide improved training times, it may be worth the consider-
ation to use it nevertheless due to its better results, at the very least in this the studied
use case. Another advantage of ES it that it only depends on three hyperparameters,
and arguably only two without considering noise in the action distributions which has a
marginal effect, if any. As a result is easier to launch and optimize, especially compared
to the many hyperparameters PPO has (size of mini-batches, experience replay horizon,
discount factor, clipping values, GAE parameter...).

Overall, ES is in fact a viable alternative under certain conditions. First, just because
of the better scores alone is a more than enough reason for considering using ES. ES is
also interesting in those complex scenarios where the environment does not follow the as-
sumptions that most RL algorithms depend on (as commented at the end of Section 4.1).
Moreover, ES will increase its advantage over traditional RL algorithms when using mod-
els with fewer trainable parameters. Even in cases where none of the above apply, ES can
still prove to be more adequate if the amount of hardware resources at disposal is enough
to support enough worker instances, specially if accompanied with a correct selection of
hyperparameter choices.

Additionally, we believe that the work done in this thesis can be expanded in several ways
as to improve its competitiveness:

42

Exploring Alternatives to Policy Search

• Attempt to perform the analysis with more uses cases, to see if the higher scores
translate to other scenarios and environments that the ones tested here. If so there
is a strong argument to use ES over PPO for purely obtaining better models.

• Change the internal ES algorithm for a more complex one. Algorithms such as
CMA-ES samples higher quality perturbations, meaning they are more effective at
directing training towards the global maximum. The main issue lies that it does
this sampling using a learned covariance matrix, while NES currently assumes no
covariance, meaning the cost of the algorithm increases by O(n2), where n is the
number of parameters in the solution. Nevertheless, using CMA-ES, or finding a
way of lowering its cost, may reduce the number of perturbations generated per
epoch and/or the number of epochs needed to reach convergence, compensating for
its higher cost.

• Consider other approaches mentioned but untested in the original OpenAI paper to
reduce the computational cost, such diving between workers not only the number
of episodes but also the parameters it is affecting.

• Additionally considering other modifications to the ES algorithm. For example,
while uncommon in ES, a population of perturbations could be kept between itera-
tions. This could reduce the number of perturbations to be generated in iterations
beyond the first, hence also reducing the number of interactions with the environ-
ment.

43

Exploring Alternatives to Policy Search

References

[1] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[2] Christopher John Cornish Hellaby Watkins. PhD thesis, Chris Watkins, 1989.

[3] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: an Introduction.
Bradford Books. MIT Press, 2nd edition, 1998.

[4] Martin Riedmiller. Neural fitted q iteration – first experiences with a data effi-
cient neural reinforcement learning method. In João Gama, Rui Camacho, Pavel B.
Brazdil, Aĺıpio Mário Jorge, and Lúıs Torgo, editors,Machine Learning: ECML 2005,
pages 317–328, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, and et al. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, 2015.

[6] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190,
2008. Progress in Modeling, Theory, and Application of Computational Intelligenc.

[7] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning, 8(3-4):293–321, 1992.

[8] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning, 2016.

[9] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay, 2016.

[10] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, and et al. Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature, 575(7782):350–354, 2019.

[11] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13:165 – 188, 2005.

[12] Machine learning finds new ways for our data centers to save energy, Dec 2016.

[13] Ingo Rechenberg. Evolutionsstrategie – Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. PhD thesis, Frommann-Holzboog, 1973.

[14] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen Mittels der
Evolutions strategie mit einer Vergleichenden Einführung in die hill-climbing- und
zufallsstrategie. PhD thesis, 1974.

[15] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, and Jürgen Schmidhuber.
Natural evolution strategies, 2011.

44

Exploring Alternatives to Policy Search

[16] Nikolaus Hansen. Invariance, self-adaptation and correlated mutations in evolution
strategies. 10 2000.

[17] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning, 2017.

[18] Cristopher Hesse and Jonathan Ho. Openai/evolution-strategies-starter: Code for
the paper ”evolution strategies as a scalable alternative to reinforcement learning”.

[19] Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim Hohm.
Mirrored Sampling and Sequential Selection for Evolution Strategies. In PPSN,
Parallel Problem Solving from Nature (PPSN XI), pages 11–21, Warsaw, Poland,
September 2010.

[20] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Net-
works, 20(1):61–80, 2009.

[21] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry, 2017.

[22] Paul Almasan, José Suárez-Varela, Arnau Badia-Sampera, Krzysztof Rusek, Pere
Barlet-Ros, and Albert Cabellos-Aparicio. Deep reinforcement learning meets graph
neural networks: exploring a routing optimization use case, 2020.

[23] Hans-Werner Braun. Nsfnet – the national science foundation network.

[24] Welcome to the géant2 website, Feb 2011.

[25] Miriam Di Ianni. Efficient delay routing, volume 196, pages 258–269. 01 2006.

[26] Deep Medhi and Karthik Ramasamy. Chapter 2 - routing algorithms: Shortest path,
widest path, and spanning tree. In Deep Medhi and Karthik Ramasamy, editors,
Network Routing (Second Edition), The Morgan Kaufmann Series in Networking,
pages 30–63. Morgan Kaufmann, Boston, second edition edition, 2018.

[27] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence
Filsfils, Thomas Telkamp, and Pierre Francois. A declarative and expressive approach
to control forwarding paths in carrier-grade networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIGCOMM
’15, page 15–28, New York, NY, USA, 2015. Association for Computing Machinery.

[28] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence
Filsfils, Thomas Telkamp, and Pierre Francois. A declarative and expressive approach
to control forwarding paths in carrier-grade networks. 45(4):15–28, aug 2015.

[29] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

45

Exploring Alternatives to Policy Search

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[30] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensor-
flow.org.

[31] François Chollet. keras. https://github.com/fchollet/keras, 2022.

[32] Software in the Public Interest, Inc. OpenMPI Project Version 4.1, 2021.

[33] Lisandro Dalcin and Yao-Lung L. Fang. mpi4py: Status update after 12 years of
development. Computing in Science Engineering, 23(4):47–54, 2021.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[35] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[36] NetworkX Developers. NetworkX, 2021.

[37] Chong Hon Fah and Lee Shangqian. Kspath, 2021.

[38] Nikolaus Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772,
2016.

46

https://github.com/fchollet/keras

	List of Figures
	List of Tables
	Introduction
	Background and State of the Art
	Deep Reinforcement Learning (DRL)
	Evolution Strategies
	Graph Neural Networks

	Thesis Objectives and Goals
	Proposed solution
	Evolution Strategies and RL
	Modifications to the parallelized solution
	Reward regularization and fitness shaping
	Mirror sampling
	Adding noise to the action probabilities
	Precomputed noise
	Distribution of perturbations among workers

	Design of our proposed solution

	Use case: Computer Network Resource Allocation
	Evaluation
	Evaluation settings
	Analysis of ES hyperparameters
	Performance of ES versus PPO
	Analyzing ES scalability over the number of workers
	Summary of results

	Conclusions
	References

