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Abstract—This work present a framework based on data-
driven techniques for quantifying and chaos theory for propagat-
ing the uncertainty present in the aircraft trajectory prediction
process when computing the expected trajectory from a given
flight plan. The developed framework employs data assimilation
models to capture real-time information from the air traffic
system and introduces a novel methodology in order to account
for the uncertainty of the weather conditions. The comparison of
the resulting set of probabilistic trajectories and the actually
flown ones proves how the former could be a key enabler
to support envisioned trajectory-based operation concepts and
modern airline operations planning.

Index Terms—uncertainty quantification, probabilistic aircraft
trajectory, ATM systems, flight planning

I. INTRODUCTION

Within the full Air Traffic Management (ATM) system,
there are multiple influencing elements that have the potential
of deviating an aircraft trajectory from its nominal or planned
development and introduce uncertainty in its evolution, both
due to factors inherent to the trajectory (e.g., the type of
aircraft executing the operation or the selected route) and due
to factors exogenous to it, such as the congestion in the air
traffic system at a particular point in time or spontaneous
Air Traffic Control (ATC) interventions. These factors, of
unknown a priori magnitude, play a very significant role in
the generation of the observed deviations between the aircraft
trajectory planned in a strategical or pre-tactical phase through
a trajectory prediction process and the one actually being
executed on the tactical phase.

This project has received funding from the SESAR Joint Undertaking (JU)
under grant agreement No 893204. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and the SESAR
JU members other than the Union.
The communication activity related to the action will indicate that it reflects
only the author’s view and that the SJU is not responsible for any use that
may be made of the information it contains.

Quantifying and modelling the effect of these uncertain
factors when computing the prediction for any given aircraft
trajectory in any potential air traffic scenario is a key step in
the development of the capabilities for implementing robust
and resilient airline operations. Within this work, the focus
has been placed on characterizing the micro- or trajectory-
level uncertainty, paying attention to the modelling of those
uncertain factors unique and inherent to the aircraft trajectory
prediction process, disregarding for now those potential in-
fluences coming from the air traffic network or system, such
as conflicts with other airborne aircraft or deviations coming
from demand-capacity imbalances.

The characterization and propagation of the uncertainty
present at the aircraft trajectory prediction level is a complex
problem that is by no means a new topic, as it has been
widely covered in the literature [1] [2]. Generally, most
approaches are based on the identification and consideration of
the potential uncertainty sources that may impact a flight prior
and during its development. This results in the computation of
distributions of the potential values for the uncertain variables,
and that, jointly propagated, would lead to the consequent
probabilistic distributions of the evolution in time of the state
variables defining the aircraft trajectory.

For the earlier phase of characterizing the considered un-
certainty sources, the aim is to propose a data-driven approach
that relies solely on data inputs from historical instances
to infer the probability distributions of the expected values
for the identified uncertain factors. By doing so, the work
deviates from previous approaches that take assumptions on
the potential values to be expected based on models or
standard distributions [3] and allows for retrieving any value
distribution specific to the problem being studied [4].

Regarding the propagation of the characterized uncertain
factors downstream through the aircraft trajectory prediction
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process, the classical approach observed in the literature relies
on the application of statistical studies on numerous evalua-
tions of the variability of the output of the dynamical system
being studied (i.e., an aircraft trajectory) as a function of the
variability of the inputs (i.e., uncertain factors for the aircraft
trajectory prediction tool). This is mostly supported by the
implementation of Monte Carlo simulations, and introducing
different ways of modelling the variability of the inputs,
such as with neural networks [5] or worst-case prediction
algorithms [6]. However, the high computational demand
associated to Monte Carlo simulations has been pointed out
as well in the literature when working with aircraft trajectory
predictions in large-scale air traffic situations [7].

With the purpose of finding a more efficient framework for
the uncertainty propagation in aircraft trajectory prediction, a
method based on Polynomial Chaos Expansions is proposed,
following approaches found to be successful in similar prob-
lems [8]. This framework will allow for establishing a efficient
methodology for assessing the probability distribution of the
output trajectories that could be expected when accounting
for possible deviations from a given flight plan based on
the variability of the uncertain input factors of the aircraft
trajectory prediction process.

Within this framework, a novel methodology will be embed-
ded in order to account for the potential inaccuracies in the
forecasts of the weather conditions affecting the trajectory in
its development. As part of the data-driven approach proposed,
this allows to avoid approaches that assume a given a priori
distribution of the potential variations of the weather variables
[9], and provides a way to employ Ensemble Prediction
System (EPS) forecasts that account for perturbations in the
weather conditions.

This paper is organized as follows: Section II describes
the process followed for the identification and quantification
of the sources of uncertainty to be considered; Section III
introduces the theoretical background necessary for applying
arbitrary Polynomial Chaos Expansions for the propagation
of the characterized uncertainties within the prediction of the
aircraft trajectories; Section IV establishes the framework that
is employed for the obtainment of the probability distributions
for the variables of interest defining the aircraft trajectory by
integrating the quantification and propagation of the identified
uncertainties; Section V proposes a case study showing the
capabilities of the developed framework when applied to a
relevant air traffic scenario.

II. TRAJECTORY-LEVEL UNCERTAINTY
CHARACTERIZATION

The task of determining the relevant sources of uncertainty
in the aircraft trajectory prediction activity can be imple-
mented with different levels of rigor and sophistication, mainly
depending on the specific factors that can be modelled as
inputs in the implementation of the trajectory prediction tool
or engine to be employed. The literature has widely covered
the identification of the sources of uncertainty that should be

considered in any first approach [10], classifying them in four
basic groups:
• Aircraft intent uncertainty: The way in which the aircraft

is actually operated (i.e., operational definition of the
aircraft intent in the tactical phase) can differ from the
way in which the trajectory was initially declared. In
addition to this, further deviations could be incurred due
to potential errors in the navigation of the intended path,
although modern flight management systems cause these
deviations to be negligible.

• Aircraft performance uncertainty: This group encom-
passes all those deviations that may arise from the dif-
ferences between the aircraft performance model used to
integrate the dynamic equations of motion of the aircraft
in the trajectory prediction task and the real aircraft
performance characteristics of the aircraft operating the
actual flight.

• Initial conditions uncertainty: There may be differences
between the initial flight conditions considered for the
prediction of the aircraft trajectory, propagated then for-
ward in the calculation process, and the ones that are
incurred in reality due to typical modifications (e.g., flight
departing later than scheduled or using a runway config-
uration for departure different than the one planned).

• Weather conditions uncertainty: The trajectory prediction
process normally employs a given forecast of the weather
conditions to be expected at the time of flight in order to
model the trajectory accounting for this relevant factor.
However, these forecasts do normally present deviations
with respect to the incurred conditions in reality, as it is
normal for a highly stochastic process such as the weather
evolution, affecting then the flight in the tactical phase.

Within this work, the ambition is to deploy a methodology
capable of assessing the actual impact of most of those
factors characterizing each source of uncertainties. For each
classification, a different approach needs to be taken according
to its details and the data available, as there is too much
variation between them to establish a common methodology.
However, the main driver transverse to all of them is to apply
a data-driven approach for the quantification of the present
uncertainty, avoiding any a priori assumption not supported
by actual data observations.

A. Aircraft intent

The uncertainty related to the aircraft intent stems from the
deviations incurred from the flight plan, which is considered
to be the basis information for the planned intent, with respect
to the actual trajectory flown. Therefore, the characterization
of these differences through a planned vs flown comparison
analysis between the intent features of the flight plan and of
the actual trajectory allows to retrieve probability distributions
of the values of the observed deviations.

This analysis is enabled by the employment of two data
pieces: Filed Traffic Flight Model (FTFM) flight plan def-
initions, retrieved from EUROCONTROL’s Demand Data
Repository (DDR2), and actual trajectory profiles from



FlightRadar24 Automatic Dependent Surveillance Broadcast
(ADSB) data reconstructed following the INTRAC process
[11] [12], illustrated schematically in Figure 1. The compari-
son between the former and the latter will then provide some
insight on the statistical distribution defining the differences
to be expected in the trajectory execution.

Fig. 1. Schema of the process followed to obtain reconstructed flight profiles
from ADSB surveillance data.

The parametrization of these differences depend on the
methodology employed to compare trajectories, which is a
complex task. As a straightforward and effective simplification
of the trajectory comparison activity, the differences to be
studied will be focused on relevant parameters that define on
a high-level the trajectory. The number and type of parameters
to be considered can vary. As was introduced before and will
be further explained in Section III, the output trajectory will
be computed as a function of the value of the variable inputs
for the trajectory computation. Therefore, the selected aircraft
intent parameters need to be part of the input required by
the selected computation engine for the trajectory prediction
process.

For this work and attending to this constraint, the following
parameters describing the trajectory were selected: constant
calibrated airspeed (CAS) and Mach number (M) set during the
climb and descent phases, the pressure altitude (Hp) attained
at the Top of Climb (TOC) and Top of Descent (TOD) and
the pressure altitude and Mach number set during the relevant
cruise segment.

B. Aircraft performance

The study of the deviations in the planned and actual tra-
jectory stemming from the differences between the modelled
and the actual performance of the aircraft operating are quite
relevant. Significant differences between the real performance
characteristics and the performance model used when planning
the operations can have a major impact in the tactical phase
and can lead to unrealistic planned trajectories that could not
be possibly flown with the real aircraft.

In order to study these differences, the data-driven approach
to be followed is similar to the one proposed for the aircraft
intent uncertainty, with a comparison-based analysis between
the model used for planning and the actual performance
observed in reality. For the former, the aircraft performance
model of reference for the planning of trajectories in Europe
is Base of Aircraft Data (BADA) 4 [13], which is easily ac-
cessible. Accessing real performance data of actual aircraft is
complicated, since airlines tend to keep these data confidential.

Due to the lack of availability of actual performance
data from any on-board Quick Access Recorder (QAR), this

comparison-based analysis can not be implemented, and there-
fore no data-driven approach can be adopted. Therefore, for
this work, deviations coming from differences between the
modelled and actual aircraft performance will be neglected.

C. Initial conditions

In the trajectory prediction process, the initial conditions
from which the state variables will be propagated forward
have a very significant influence in the later values of the
aircraft trajectory variables. Any potential variation arising
from differences with respect to the planned ones must be
studied in order to execute an accurate assessment of the
aircraft trajectory. The typical parameters to be studied are
the initial 4D position of the aircraft and the initial mass.

With respect to the latter, the lack of QAR data impedes
the comparison-based analysis with assumed values in the
planning phase. There are alternatives to estimate this initial
mass, as for example the reconstruction process proposed by
INTRAC [14], but all of them employ model-based method-
ologies that do not comply with a data-driven approach, so the
effect of deviations in the initial mass values will be neglected
within this work.

Regarding the initial position and time of the aircraft, having
an accurate estimation of the first point to be propagated is
essential to obtain an accurate propagation of the trajectory.
For this purpose, and due to the lack of a valid way to
retrieve planned (flight plans may not explicitly define the
runway configuration to be used or the take-off time) and flown
(surveillance data on ground tends not to be as consistent as
airborne data) observations for these data pieces to perform the
comparison-based uncertainty characterization, an alternative
and accurate way of building estimates needs to be established.

The proposed method within this work is to develop data
assimilation models that are able to capture, assimilate and
process current air traffic data for the system of interest in
order to issue an estimate for the expected take-off time
and runway configuration to be followed by the operation of
interest. These data assimilation models would then be fed
historical instances of the incurred conditions of past opera-
tions. Then, using statistical and machine learning techniques,
a normal approach for prediction of various aircraft trajectory
variables [15], use them to estimate the operational initial
conditions for the flights in the proposed scenario.

When looking specifically to the initial time, a probabil-
ity distribution can then be built for the potential range of
values to be adopted by this initial condition based on the
estimates issued. Assuming that this initial take-off time can
be approximated as the sum of the time spent in turnaround
and taxi phases (i.e., assuming the parking time for the prior
operation served by the tail of interest is known), probability
distributions can be built for the former based on the joint
probability distributions of the estimated turnaround and taxi
times. Examples of these estimations are introduced below for
taxi times in Figure 2 and for turnaround times in Table I.

For the taxi time estimation, both a machine learning and
a deep learning model were trained on one year worth of



historical taxi times for departure operations on LEMD and
EGLL airports. The error incurred by the built models when
estimating the taxi times on both airports during January 2018
is shown in Figure 2. This example serves to illustrate how
the probability distribution characterizing the taxi time, and
consequently the initial time, would then be dependent on the
forecasting error.

Similarly, an statistical analysis of the historical surveillance
data instances can provide the distributions characterizing the
turnaround times to be observed in any airport of interest.
An example of these calculated turnaround times using DDR2
data is introduced in Table I for LEMD airport during January
2018, which establishes different distributions depending on
the runway configuration employed by the consecutive arrival-
departure operations.

This is then complemented with the estimation of the
runway configuration to be used by any operation during
its departure and arrival phases. As commented before, this
prediction can be used as an updated estimate of the initial
point of the trajectory based on current information relevant
to the air traffic scenario of interest, and as introduced in
Table I, will also participate in the estimate for the turnaround
time, and consequently, for the initial time. The issuance of
the runway configuration estimations can also be executed by
applying a data-driven approach of gathering historical surveil-
lance data instances and tailor them to feed different machine
learning models. An example of the accuracies obtained in a
relevant scenario is shown in Table II, predicting the runway
configuration for both departure and arrival phases on LEMD
during 2018 using different classification algorithms (Decision
Tree Classifier (DTC), K-Nearest Neighbor (KNN) and Naive-
Bayes Classifier (NBC)).

Fig. 2. Distribution of the estimation error incurred on the taxi time prediction
for all departure operations during January 2018 from (left column) LEMD
and (right column) EGLL when using a (top row) machine learning and a
(bottom row) deep learning model. Red vertical line indicates the median of
the error, black dashed lines indicate the 10th and 90th percentile.

D. Weather conditions

Weather conditions are a very relevant factor affecting the
evolution of any given aircraft trajectory. In any given aircraft

TABLE I
PROBABILITY DISTRIBUTION PARAMETERS FOR THE ESTIMATED

TURNAROUND TIMES OF DEPARTURE OPERATIONS IN LEMD DURING
JANUARY 2018 FOR DIFFERENT RUNWAY CONFIGURATIONS (IN MINUTES)

Landing Take-off Normal Distribution Gamma distribution
14 14 N(91.10, 22.70) Γ(17.07, 0.187)
14 36 N(86.73, 23.63) Γ(14.32, 0.165)
36 14 N(87.50, 21.60) Γ(17.69, 0.202)
36 36 N(87.83, 20.44) Γ(20.27, 0.231)

TABLE II
TRAINING AND TESTING ACCURACIES FOR THE MACHINE LEARNING

MODELS BUILT FOR THE RUNWAY CONFIGURATION ESTIMATION FOR ALL
OPERATIONS IN LEMD DURING JANUARY 2018.

Phase Classifier Training accuracy Testing accuracy

Departure
DTC 0.73 0.67
KNN 0.71 0.66
NBC 0.62 0.62

Arrival
DTC 0.90 0.86
KNN 0.89 0.87
NBC 0.84 0.95

trajectory prediction process, weather forecasts are used to
provide an estimation of the weather conditions in which
the flight will have to operate, and it is a key step in any
planning process [16]. Consequently, the deviations between
the weather situation indicated by the employed forecasts and
the conditions that are actually incurred are an uncertainty
factor that needs to be taken into account.

However, this is a very complicated task as any weather
forecast is a high dimensional element whose uncertainty
can not be easily quantified, as it entails two main issues.
The first one is that a comparison-based analysis between
the planned or expected weather conditions and the actual
ones is not possible. Although the expected one could be
considered as that weather forecast that was used for the
aircraft trajectory planning activities, there is not a single
weather element reflecting the actual conditions. Reanalysis
products, which are reconstructions of past weather instances
blending meteorological models and multiple real observa-
tions are the best approximation (e.g., European Control for
Medium-range Weather Forecasts (ECMWF) ERA5 datasets
employing Integrated Forecast System (IFS) models), but still
they do not rely solely on actual data.

A second issue with the quantification of uncertainty in
the weather conditions is that deviations in such a large-scale
stochastic element can not be boiled down to joint probability
distributions. Weather is time and location dependent, so a
probability distribution of the potential deviation should be
characterized for every point in which a weather estimate is
issued, making the problem impossible to handle.

Solutions to the problem of including weather uncertainty
in the aircraft trajectory prediction process observed in the
literature entail simplifications and/or largely increased com-
putational demand. When employing Monte Carlo simula-
tions, the straightforward approach of evaluating the scenario



of interest with different potential weather conditions [17]
consequently introduces a significant computational charge.
Other approaches which employ correctly the polynomial
chaos theory for the aircraft trajectory prediction modelling
use simplified distributions of the weather conditions [18]
disregarding temporal or spatial dependence.

As an alternative, this work proposes to directly embed the
weather forecast as a set of dependent variables in the poly-
nomial chaos expansion through a dimensionality reduction
process. With this method, there is no need to simplify the
potential variations of the weather as provided in ensemble
forecasts, and it does not entail a significant increase in the
computational demand. The specifics of this process will be
detailed in the next section.

III. UNCERTAINTY PROPAGATION USING ARBITRARY
POLYNOMIAL CHAOS EXPANSIONS

Following the characterization of the sources of uncertainty
affecting the aircraft trajectory prediction process, it will be
paramount to develop the capabilities to assess the impact
of the variability of the identified stochastic factors on the
operations of interest. This is an essential step to evaluate how
input variability affects the output predicted trajectories to be
obtained, as the spectrum of possible predictions will depend
on the value distributions for each of the identified uncertain
input variables.

Therefore, now the focus is on determining how to propa-
gate these characterized uncertainties along the aircraft trajec-
tory prediction process, so that an assessment can be obtained
on the effect of the inputs’ variability on the full trajectory
predicted for a nominal flight plan.

The selected framework for the uncertainty propagation
task is based on the Polynomial Chaos (PC) theory. This
is proposed as an alternative to the classic Monte Carlo
approach that still will provide the capabilities to retrieve the
probabilistic trajectories that can be output for an initial flight
plan as a function of the spectrum of values to be adopted
by the characterized uncertain inputs for the aircraft trajectory
prediction process.

A. Theoretical framework

Norbert Wiener introduced the concept of chaos theory
in 1938 [20], which states that any function or model z
dependent of a stochastic variable ξ can be posed as a linear
combination of coefficients ai(t), independent of the stochastic
variable, times a set of one-dimensional polynomials γi(ξ),
which form a basis orthogonal to the probabilistic distribution
of the stochastic variable ξ, such that:

z(t, ξ) =

∞∑
i=1

ai(t)γi(ξ) ≈
d∑
i=1

ai(t)γi(ξ), (1)

where the subindex i refers to polynomial degree. Whilst the
approximation error disappears when i tends to infinity, it is
common practice to truncate the model at certain polynomial
degree d. Nonetheless, any realistic model representing a

physical mechanism depends on several stochastic parameters
such that ξ = ξ1, ξ2, ..., ξN . Henceforth, the total number
of stochastic input parameters will be referred as N . Con-
sequently, (1) needs to be reformulated as a multidimensional
polynomial expansion as follows:

z(t, ξ1, ξ2, ..., ξN ) =

∞∑
i=1

bi(t)Γi(ξ1, ξ2, ..., ξN ), (2)

where bi(t) still quantifies the model’s dependence on the
polynomial expansion, while γi(ξ1, ξ2, ..., ξN ) contains a mul-
tidimensional orthogonal polynomial basis for the stochastic
variables ξ. Assuming that the stochastic input variables ξ
are independent of each other, the multidimensional basis can
be constructed as a simple product of the one-dimensional
polynomials, such that:

Γi(ξ1, ξ2, ..., ξN ) =

N∏
j=1

γ
αi

j

j (ξj), (3)

where the index αij is used to indicate the combinatory
information between the different independent variables and
the polynomial degrees, such that:

N∑
j=1

αij ≤M, (4)

where index i ranges from 1 to M . The number of possible
combinations between polynomials degrees and the different
stochastic variables is defined as:

M =
(N + d)!

N !d!
, (5)

which allows to define αij as M × N matrix containing
the corresponding degree of the stochastic variables for each
combination.

B. Polynomial expansions definition

While there are several methods to compute these polyno-
mials based on predefined probability density functions such
as normal, gamma, beta or uniform, this project tackles these
polynomials construction from a data-driven point of view, for
which the arbitrary Polynomial Chaos Expansion (aPCE) [21]
method is used. This method uses the statistical moments for
each stochastic variable, calculated as:

µk =

∫
ξmi dP (ξi), (6)

where each polynomial γki is defined with a set of polynomial
coefficients c(k)m multiplied by their corresponding power of
the stochastic variable ξi, such that:

γki =

k∑
m=0

c(k)m ξmi , (7)

and



c
(k)
m=k = 1. (8)

For each stochastic variable, the polynomial coefficients
can be computed by ensuring the orthogonality between two
polynomials of order k and l such that:∫

γk · γl · dP (ξi) = δk,l, (9)

where δk,l is the Kronecker delta and is equal to 0 unless k
is equal to l. Subsequently, a set of equations can be defined
for each polynomial degree such that:∫

c
(0)
0 ·

[
l∑

m=0

c(k)m ξmi

]
· dP (ξi) = 0 (10)

∫ [ 1∑
m=0

c(1)m ξmi

]
·

[
l∑

m=0

c(k)m ξmi

]
· dP (ξi) = 0 (11)

...∫ [ k−1∑
m=0

c(k−1)m ξmi

]
·

[
l∑

m=0

c(k)m ξmi

]
· dP (ξi) = 0 (12)

∫ [ k∑
m=0

c(k)m ξmi

]
·

[
l∑

m=0

c(k)m ξmi

]
· dP (ξi) = 1. (13)

Substituting (6) into (10)− (13) leads to a system of linear
equations that can be written in a matrix form.


µ0 µ1 · · · µk
µ1 µ2 · · · µk+1

...
...

. . .
...

µk−1 µk · · · µ2k−1
0 0 · · · 1




c
(k)
0

c
(k)
1
...

c
(k)
k−1
c
(k)
k

 =


0
0
...
0
1

 . (14)

C. Coefficients calculation

To compute the aPCE coefficients bi(t), the aPCE poly-
nomials γki (ξ) need to be evaluated at certain points of the
stochastic-variable parametric space in order to solve the
system of equations defined in (14), where the number of
unknowns is defined by (5). Several methods can be found
in the literature for this task, such as Galerkin projection [22]
or collocation [23] methods, of which we will use the latter.
The collocation method evaluates each polynomial expansion
at certain values, known as collocation points, which are
extracted from the roots of the next higher-order polynomial
for each stochastic parameter [24]. This implies that, for a
polynomial of order d, the number of available collocation
points is (d + 1)N , which is always larger than the number
of unknowns in the system of equations. This overdetermined
system is solved by selecting the optimal M combination of
collocation points based on the probability of each combina-
tion of collocation points. This probability is computed from

the sum of the polynomial degree of each stochastic variable
in every combination, assuming than in a standard Gaussian
random variable with zero mean and unit variance the higher
the root degree the lower the probability to occur.

Each of the M combinations of collocation points require
to compute a solution of z(t, ξ1, ξ2, ..., ξN ). Following [25],
the coefficients bi(t) can be computer either using Galerkin
projection: 〈

d∑
k=0

bkΓk(ξ(i)),Γl(ξ
(i))

〉
= 0 (15)

or least-square approximation:

b̂i(t) = argminb

M∑
i=1

(
z(i) −

d∑
k=0

bkΓk(ξ(i))

)
. (16)

D. Weather uncertainty consideration

The computational cost of arbitrary polynomial chaos ex-
pansion increases factorially with the increase of the polyno-
mial degree and the number of variables, as shown in (5).
This poses a problem when dealing when systems affected by
a large number of stochastic input variables, such as weather
information that would require O(1012) collocation points,
which is far beyond the scope of computational cost reduction
intended for aPCE and the computational capabilities available
in the consortium. To overcome this issue, a dimensionality re-
duction of the weather information can be carried out, allowing
the aPCE to deal with a reduced version of weather. Later,
the collocation points provided by aPCE for this reduced-state
weather information can be translated back into the original
weather dimension, allowing any aircraft trajectory predictor
tool to ingest this artificial information. For that purpose,
proper orthogonal decomposition (POD), also known as prin-
cipal component analysis or Karhunen–Loève decomposition,
has been proposed. This decomposition states that any signal
dependent of time t and space x can be decomposed in a
time-averaged value plus a fluctuating component defined as
a linear combination of a spatial basis, composed of spatially
orthonormal functions φi(x), times a temporal orthonormal
basis made of orthonormal function ψi(t):

s(x, t) ≈ s̄(x) +

Nm∑
i=1

ψi(t)σiφ(x), (17)

where Nm is the number of orthonormal modes used for
the reconstruction and σi is a weighting factor. The practical
implementation of POD follows the method of snapshots
proposed in [26]. Each weather sample is reshaped in a vector
of size Np, where this value refers to the total number of
variables in each sample. The total number of samples Nt in
vector form are rearranged in a matrix:

S =

 s(x1, t1) · · · s(xNp
, t1)

...
. . .

...
s(x1, tNt) · · · s(xNp , tNt)

 , (18)



with size Nt × Np, where each row refers to a sample and
each column to a variable. The matrix Ψ containing the
POD temporal modes can be obtained solving the eigenvalue
problem of the temporal correlation matrix S as follows:

C = SST = ΨΛΨT , (19)

where λ is a diagonal matrix with elements λi = σ2
i repre-

senting the variance content of each mode. The σi coefficient
can be rearranged in a diagonal matrix Σ. Finally, the matrix
Φ containing the spatial modes can be obtained by projecting
the weather matrix of the temporal basis as:

Φ = Σ−1ΨTS = Σ−1ΨTΨΣΦ. (20)

Assuming statistical convergence of the weather dataset
used to compute the POD modes, any weather sample (inside
and outside of the training dataset) can be quite accurately
described as a linear combination of the modes contained in
the ΣΦ matrix by the corresponding time coefficients. Thus,
a reduced version of any weather sample can be obtained
by truncating the number of POD modes used in the recon-
struction and requiring only the temporal coefficients to be
embedded on the aPCE as inputs.

IV. PROPOSED METHODOLOGY

The developed framework for the implementation of the
polynomial chaos expansion is a two-phase system depending
on several inputs coming from different data sources, as well
as on multiple standalone modules that have their own inherent
complexity.

The first phase is dedicated to the obtainment of the full
definition of the polynomials, posed following the PC theory,
that will describe the evolution of the variables characterizing
an aircraft trajectory as a function of the time elapsed and of
the values adopted by the identified uncertain input variables.
It is then focused on implementing a data-driven approach for
retrieving the set of polynomial coefficients that are best suited
to describe the trajectories of interest.

Once the full definition of the polynomials is obtained, the
second phase of the system is applied to use them to retrieve
the set of probabilistic trajectories that can be associated to
a nominal flight plan. This second phase is then dedicated to
perturbing an initial flight plan with the characterized value
distributions for the uncertain variables that determine the
trajectory evolution as per the PC formulation.

A. Offline polynomial fitting

This first phase of the developed framework aims to obtain
the polynomials that describe the evolution of the variables
defining the aircraft trajectory. To that end, different modules
have to be coordinated based on a thorough and complex
aircraft trajectory prediction process. The input datasets to
this first phase are the network demand data for the defined
past instances, composed of flight plan, surveillance and
performance data, as well as the weather information for the

established timeframe. The proposed structure is illustrated
schematically on Figure 3.

In this schema, it has to be mentioned that the main focus
is to build the obtainment of the boxes coloured in red, which
constitute the modules that will be required in the second
phase. These three modules are: the polynomials that will al-
low to describe the aircraft trajectory variables as a function of
the possible values of the defined uncertain input parameters,
as described in Section III-C; the module for integrating the
retrieved weather information in order to consider the weather
conditions as a potential source for uncertainty affecting the
trajectory, as explained in Section III-D, and the uncertainty
quantification process for the uncertain trajectory variables, as
detailed in Section II.

Fig. 3. Schema of the offline framework proposed for the fitting of the
polynomials

Additional modules of this phase, depicted in Figure 3
with green boxes, are the tools employed for deterministic
Flight Plan Optimization (FPO) and deterministic Trajectory
Prediction (TP). The former will allow for the optimization of
the trajectories to be followed starting from an initial flight
plan, so that the dataset feeding the process for calculating
the collocation points required to fit the aPCE polynomials is
constituted of optimized trajectories. The latter allows for the
calculation of the trajectories that are needed in order to fit
the coefficients of the aPCE polynomials. Both activities are
executed using a tailored implementation of the DYNAMO
software [19].

B. Probabilistic trajectory generation

The built framework for the second phase is to be used
in the tactical phase, because the modules deployed within
it are prepared to consume network demand information as
it is issued. Upon receiving this updated information, it will
be able to compute the set of probabilistic trajectories that
can be incurred when following the filed flight plans, taking



Fig. 4. Schema of the online framework proposed for the generation of
probabilistic trajectories

into consideration the potential perturbations that it may suffer
along its execution.

The schema for the proposed methodology to be followed
is represented in Figure 4. It can be observed that both the
weather processing module and the polynomials, retrieved
within the first phase of the framework, constitute an integral
part of the process. Regarding the input data, the information
is to be consumed through a live feed, so that current data
relevant for the short-term future is expected regarding the
scenario of interest.

Three additional modules, represented in green in Figure 4,
are required. The first one is the module for executing the de-
terministic optimization of the flight plans that are gathered in
the tactical phase, built as well using a DYNAMO implementa-
tion. Also, the probability distributions for the uncertain input
parameters will be integrated in order to retrieve the necessary
perturbation values on which the polynomials depend. This is
the key step that allows the deployed methodology to account
for the potential deviations that the flight may suffer with
respect to the declared plan, as observed in similar flights in
the past. Finally, the data assimilation models proposed for the
initial conditions, as described in Section II-C, are integrated
in order to receive updated information about the current air
traffic status that may affect the flight in its execution.

Following this process, the flight plan will be taken as initial
point, consumed in its filed version from a live feed and
then optimized. As a result of applying the first phase of the
framework, the weather processing module and the uncertainty
distributions can be employed to calculate the initial values
for the input variables as calculated from the optimized flight
plan. This constitutes different input cases to be fitted into
the polynomials. Once fitted, the system of equations can be
solved for each of the input cases to retrieve the values for
the variables defining the aircraft trajectory.

Consequently, each of the input cases will lead to a different
description of the final trajectory that could be described by an
aircraft executing the declared flight plan. When considering
all these cases together, a probability distribution of the pos-

sible values to be adopted by the aircraft trajectory variables
will be obtained, and thus the required probabilistic trajectory
set will be defined for the declared flight plan.

V. STUDY CASE

The objective of this study case is to exemplify the frame-
work proposed in order to obtain a probability distribution of
values for any given aircraft trajectory variable as a result of
the consideration of uncertainty in the identified set of input
variables affecting the trajectory prediction process. The use
case developed during this section will therefore comment on
all the steps to be followed for both phases of the framework.

The flight time will be the trajectory variable under eval-
uation, specifically at the end point of the trajectory. It is
selected because it is the trajectory variable that allows for
a straightforward comparison to similar values obtained by
using the trajectory prediction tool or by analyzing the flown
trajectories as per the surveillance data.

The data sources sources to be employed are specific to
each data piece. Flight plans will be gathered from DDR2
in the ALLFT+ format, in their filed version. Surveillance
data are consumed in historical instances and live feed from
Flightradar24. Aircraft performance models employed are EU-
ROCONTROL’s BADA4. Regarding weather information, the
ERA5 reanalysis datasets from ECMWF will be employed.

The proposed study case will consider all flights cover-
ing the route between Adolfo-Suárez Madrid Barajas airport
(LEMD) and Franz Josef Strauss Munich International Airport
(EDDM) during June 2018, for all present airlines and aircraft
types.

In order to obtain the probability distribution of possible
flight times for the trajectories that follow the considered
declared flight plans, the process described by schemas in
Figures 3 and 4 will be employed.

The process starts by gathering flight plan information for a
relevant timeframe regarding the scenario of interest. For this
purpose, 2731 flight plans declared for the flights between
LEMD and EDDM were collected and optimized for the
period between June 2017 and May 2018. These constitute
the baseline for the calculation of the collocation points for
all the considered uncertain aircraft intent variables.

The calculated collocation points for the proposed polyno-
mial chaos expansions of order 3 are shown in Table III.
Considering (5), and taking into account that 8 different
aircraft intent variables are taken into account and that the
selected degree of the polynomial d is 3, a total of 165
combinations of values are obtained. Then, the trajectory
prediction tool will compute the trajectories following each of
the input variables’ combinations in order to have the required
elements to perform the polynomials fitting. Once these are
obtained, the coefficients of the polynomials can be calculated
following (16).

Then, it is required to execute the uncertainty quantification
associated to the considered aircraft intent variables to define
the perturbations to be introduced. As explained in Section II,



TABLE III
COLLOCATION POINTS FOR INPUT AIRCRAFT INTENT VARIABLES FOR ALL

LEMD-EDDM TRAJECTORIES BETWEEN JUNE 2017 AND MAY 2018.

CASclimb[kts] 141.15 137.01 132.59 129.21
Mclimb 0.764 0.756 0.745 0.733

HTOC [ft] 41,006 40,765 38,990 37,001
Mcruise 0.769 0.762 0.753 0.742

Hcruise[ft] 41,521 41,006 38,990 37,001
HTOD[ft] 41,005 39,801 38,991 37,001
Mdesc 0.759 0.751 0.739 0.728

CASdesc[kts] 137.03 133.93 131.04 128.63

Fig. 5. Probability distributions of the differences between real and planned
values for the first block of aircraft intent variables

Fig. 6. Probability distributions of the differences between real and planned
values for the second block of aircraft intent variables

TABLE IV
SELECTED DEVIATIONS FOR INPUT AIRCRAFT INTENT VARIABLES

CASclimb[kts] ±19.22 Hcruise[ft] ±2, 000
Mclimb ±0.051 HTOD[ft] ±2, 000

HTOC [ft] ±2, 000 Mdesc ±0.307
Mcruise ±0.056 CASdesc[kts] ±62.13

a comparison-based analysis is implemented finding the differ-
ences between the planned and flown trajectories. The planned
values are retrieved from the filed flight plan information,
while the actual values are retrieved from the surveillance
data for all flights between LEMD and EDDM during the
considered period (June 2017 to May 2018). Executing this
analysis, it is possible to build to distributions of the deviations
between planned and flown trajectories, and consequently
provide a certain insight on the dimension of the uncertainty
to be expected on the selected variables. These distributions
are presented for the selected eight uncertain aircraft intent
variables on Figures 5 and 6. Knowing the range of values
that can be observed, the deviations to be expected for the
nominal values of the aircraft intent variables can be defined.
The selected perturbations for this study case are introduced
in Table III based on the observed deviations.

To include weather information into the aPCE polynomials
as a few input variables, two different compressing methodolo-
gies have been evaluated: POD and CNN-AE. Both approaches
have been implemented with the goal of encoding three-
dimensional fields of temperature and wind velocity compo-
nents into 3 latent variables. Figure 7 shows the low-order
reconstruction provided by POD approach. A visual inspec-
tion makes it clear that the large-scale structures populating
atmospheric flows are well captured by the reconstructions.
However, the predictions show attenuated values of these
temperatures close to the peak. This result is expected since
the truncation of POD modes is removing energy from the
reconstruction.

A dataset containing the first three POD coefficients for the
flights between May 2017 and May 2018 has been included to
the original dataset of aircraft intent variables, thus increasing
the number of dependent variables in the aPCE polynomials
up to 11. In this study case, however, the perturbations for the
weather conditions were not considered using the EPS datasets
due to the simpler scope proposed. Instead, the reference
reconstruction of weather conditions coming from ECMWF’s
ERA5 datasets will be used.

In order to assess the suitability of the issued flight time
estimations, the estimated flight times for the 202 flights
considered during June 2018 need to be evaluated against
the incurred values. Therefore, a comparison of the flight
times issued against the real flight times is necessary to
understand how well the developed methodology replicates
the real conditions. Figure 8 illustrates this comparison for
the estimations issued with the built framework, showing the
error incurred for each estimated flight time of each operation.
As it can be observed, results are quite satisfactory, showing a
normal distribution of the error centred around zero, so a large
proportion of the estimations issued are accurate with respect
to reality. The inaccurate estimations may be traced to cases
in which the perturbations included for some of the uncertain
aircraft intent variables or for the weather conditions deviate
too much the trajectory from the normal course, and therefore
lead to a final estimation of the flight time that is off with
respect to the incurred one.



Fig. 7. Results for low-order reconstruction of weather data at three different
pressure levels for the POD method. Top row refers to reference data, while
bottom one refers to POD low-order reconstructions. Contour plot refers to
temperature fluctuations with respect to the mean temperature at each level,
while arrows heading and length refer to the direction and intensity of the wind
component in the Earth-surface-parallel directions. Arrow colour denotes the
magnitude of the wind in the Earth-surface-normal direction. All quantities
are scaled with their corresponding standard deviation.

Fig. 8. Probability density function of the error incurred in the flight time
estimation with the aircraft intent set of input variables together with weather
variables

Thus, the proposed study case shows how, when applying
the framework to a relevant scenario within the European air
traffic, the results obtained for estimating the probability distri-
bution of the flight times resembles the actual values observed
in reality. This framework can be extended to estimate the
associated values for other trajectory variables such as the 3D
position or the speed.
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