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També agraeixo a tots els investigadors amb qui he treballat: en Mas-
similiano de Leoni, en Riccardo Galanti, en Nicolò Navarin, la Luz Muñoz,
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Abstract

In recent years there has been an increase in the use of artificial intel-
ligence and other data-based techniques to automate decision-making in
companies, and discover new knowledge in research. In many cases, all
this has been performed using very complex algorithms (so-called black-
box algorithms), which are capable of detecting very complex patterns, but
unfortunately remain nearly uninterpretable.

Recently, many researchers and regulatory institutions have begun to
raise awareness of their use. On the one hand, the subjects who depend on
these decisions are increasingly questioning their use, as they may be vic-
tims of biases or erroneous predictions. On the other hand, companies and
institutions that use these algorithms want to understand what their algo-
rithm does, extract new knowledge, and prevent errors and improve their
predictions in general. All this has meant that researchers have started
to focus on the interpretability of their algorithms (for example, through
explainable algorithms), and regulatory institutions have started to regu-
late the use of the data to ensure ethical aspects such as accountability or
fairness.

This thesis brings together three data science projects in which black-
box predictive machine learning has been implemented to make predictions.
In each case, we contextualize the problem and explain the use of the ex-
planatory algorithms to guarantee the robustness and quality of the model
built.

Non-Technical Losses Detection System Our first case study ex-
plains the development of an NTL detection system for the international
utility company from Spain Naturgy. Despite the good results achieved de-
tecting NTL cases (especially in certain cases in which previous approaches
had very poor accuracy), we suffered many of the problems regarding the
quality of the data. These problems hindered our system from achiev-
ing consistent and robust results. Once we made clear the existence of
these data problems, we shifted our effort from trying to make a more
complex method (to detect more complex patterns) to achieving a more
interpretable method, allowing both the scientists and the stakeholders to
understand the patterns learnt (and therefore the detection of biases and
undesired patterns). These data-related problems are partially explained
in the literature but are not tackled in any other example of the literature.



Explainable Predictive Process Monitoring This thesis also ex-
plains our collaboration with the University of Padova to provide explain-
ability to a KPI system currently implemented by the MyInvenio company.
In this case, we show that using explanatory black-box algorithms can pro-
vide robust explanations in line with the company’s analysts, with less
human effort. The predictive process management and the explanatory
algorithms are breaking new ground, and the resulting work is a pioneer in
bringing them together in the literature of business process management.

Explainable Black-Box Algorithms in Social Science The classi-
cal dichotomy of interpretable algorithms vs black-box algorithms has not
existed in Social Science literature since it is mandatory to understand the
relation between variables. In this thesis, we analyze, using as a reference
a collaboration between the author of the thesis and the Universitat de
Barcelona, if the combination of black-box algorithms with explanatory
methods can provide better results (e.g., a deeper understanding of the
interaction between features, or more flexibility) in Social Science projects
than the classical approach of using the interpretable Regression or Deci-
sion Tree models.

The unique characteristics of each project allow us to offer in this thesis
a comprehensive analysis of the challenges and problems that exist in order
to achieve a fair, transparent, unbiased and generalizable use of data in a
data science project. With the feedback arising from the research carried
out to provide satisfactory solutions to these three projects, we aim to:

• Understand the reasons why a prediction model can be regarded as
unfair or untruthful, making the model not generalizable, and the
consequences from a technical point of view in terms of low accuracy
of the model, but also how this can affect us as a society.

• Determine and correct (or at least mitigate) the situations that cause
the problems in terms of robustness and fairness of our data.

• Assess the difference between the interpretable algorithms and black-
box algorithms. Also, evaluate how well the explanatory algorithms
can explain the predictions made by the predictive algorithms.

• Highlight what the stakeholder’s role in guaranteeing a robust model
is and how to convert a data-driven approach to solve a predictive
problem into a data-informed approach, where the data patterns and
the human knowledge are combined to maximize profit.



Resum

En els darrers anys s’ha incrementat l’ús de la intel·ligència artificial i al-
tres tècniques basades en dades per automatitzar la presa de decisions a
les empreses, aix́ı com per descobrir nous coneixements en recerca. En
molts casos, tot això s’ha realitzat mitjançant algorismes molt complexos
(els anomenats algorismes de caixa negra), que són capaços de detectar
patrons molt complexos, però malauradament segueixen sent gairebé inin-
terpretables.

Recentment, molts investigadors i institucions reguladores han començat
a conscienciar sobre el seu ús. D’una banda, els subjectes que depenen
d’aquestes decisions qüestionen cada cop més el seu ús, ja que poden ser
v́ıctimes de biaixos o prediccions errònies. D’altra banda, les empreses i
institucions que utilitzen aquests algorismes volen entendre què fa el seu
algorisme, extreure nous coneixements, aix́ı com prevenir errors i millorar
les seves prediccions en general. Tot això ha fet que els investigadors hagin
començat a centrar-se en la interpretabilitat dels seus algorismes (per ex-
emple mitjançant algorismes d’explicabilitat), i les institucions reguladores
hagin començat a regular l’ús de les dades per garantir aspectes ètics com
la rendició de comptes o l’equitat.

Aquesta tesi reuneix tres projectes de ciència de dades en els quals
s’ha implementat l’aprenentatge automàtic predictiu de caixa negra per
fer prediccions. En cada cas, contextualitzem el problema, i expliquem l’ús
dels algorismes explicatius per garantir la robustesa i la qualitat del model
constrüıt.

Sistema de detecció de pèrdues no tècniques El nostre primer
cas pràctic explica el desenvolupament d’un sistema de detecció de NTL
(pèrdues no tècniques) per a la companyia internacional del sector de
l’energia d’Espanya Naturgy. Malgrat els bons resultats obtinguts en la
detecció de casos de NTL (sobretot en alguns casos en què els enfocaments
anteriors tenien una precisió molt escassa), vam patir molts dels problemes
de qualitat de les dades. Aquests problemes van impedir que el nostre sis-
tema aconsegúıs resultats consistents i sòlids. Un cop vam ser clarament
conscients de l’existència d’aquests problemes de dades, vam canviar el nos-
tre esforç d’intentar fer un mètode més complex (amb l’objectiu de detectar
patrons més complexos) a aconseguir un mètode més interpretable, que per-
metés tant als cient́ıfics com als stakeholders (els treballadors de l’empresa)



entendre els patrons apresos (i, per tant, la detecció de biaixos i patrons
no desitjats). Aquests problemes relacionats amb les dades s’expliquen
parcialment a la literatura, però no s’aborden en cap altre exemple de la
literatura.

Monitorització de processos predictius explicables Aquesta tesi
també explica la nostra col·laboració amb la Universitat de Pàdua per
donar explicabilitat a un sistema KPI (Key Performance Indicator) imple-
mentat actualment per l’empresa MyInvenio. En aquest cas mostrem que
l’ús d’algoritmes explicatius de caixa negra pot proporcionar explicacions
sòlides en ĺınia amb els analistes de l’empresa, amb menys esforç humà.
Tant la gestió de processos predictius com els algorismes explicatius es-
tan obrint nous camins, i el treball resultant és pioner a reunir-los en la
literatura de gestió de processos empresarials.

Algorismes de caixa negra explicables en ciències socials La di-
cotomia clàssica d’algorismes interpretables vs. algorisme de caixa negra
no ha existit a la literatura de ciències socials, ja que és obligatori enten-
dre la relació entre variables. En aquesta tesi analitzem, utilitzant com
a referència una col·laboració entre l’autor de la tesi i la Universitat de
Barcelona, si la combinació d’algorismes de caixa negra amb mètodes ex-
plicatius pot donar millors resultats (p. ex., una comprensió més profunda
de la interacció entre variables, o més flexibilitat) en projectes de ciències
socials que l’enfocament clàssic d’utilitzar els models interpretables de re-
gressió o arbre de decisions.

Les caracteŕıstiques singulars de cada projecte ens permeten oferir en
aquesta tesi una anàlisi exhaustiva dels reptes i problemes que existeixen
per tal d’aconseguir un ús just, transparent, imparcial i generalitzable de
les dades en un projecte de ciència de dades. Amb el feedback derivat
de la recerca realitzada per donar solucions satisfactòries a aquests tres
projectes, pretenem:

• Comprendre les raons per les quals un model de predicció es pot
considerar injust o fals, fent que el model no sigui generalitzable, i les
conseqüències des d’un punt de vista tècnic en termes de poca precisió
del model, però també com això ens pot afectar com a societat.

• Determinar i corregir (o almenys mitigar) les situacions que causen
els problemes en termes de robustesa i equitat de les nostres dades.

• Avaluar la diferència entre els algorismes interpretables i els algo-
rismes de caixa negra. També, avaluar fins a quin punt els algo-
rismes explicatius poden explicar les prediccions fetes pels algorismes
predictius.



• Destacar quin és el paper de les parts interessades (stakeholders) per
garantir un model robust i com convertir una aproximació basada
només en les dades per resoldre un problema predictiu en una aprox-
imació que faci ús de les dades però que també es complementi amb
altres coneixements, on els patrons de dades i el coneixement humà
es combinen per maximitzar els beneficis.
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Introduction
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In recent years there has been an increase in the use of artificial intel-
ligence and other data-based techniques to automate decision making in
companies, as well as to discover new knowledge in research. In many cases
all this has been performed using very complex algorithms (so-called black-
box algorithms), which are capable of detecting very complex patterns, but
unfortunately remain nearly uninterpretable.

Recently, many researchers and regulatory institutions have begun to
raise awareness of their use. On the one hand, the subjects who depend
on these decisions are increasingly questioning their use, as they may be
victims of biases or erroneous predictions. On the other hand, companies
and institutions that use these algorithms want to understand what their
algorithm does, to extract new knowledge, as well as to prevent errors and
improve their predictions in general. All this has meant that researchers
have started to focus on the interpretability of their algorithms (for ex-
ample through explicability algorithms), and regulatory institutions have
started to regulate the use of the data to ensure ethical aspects such as
accountability or fairness.

This thesis brings together three Data Science projects in which black-
box predictive machine learning has been implemented to make predictions.
In each case, we contextualize the problem, and explain the use of the ex-
planatory algorithms to guarantee the robustness and quality of the model
built.



Chapter 1

Trustworthiness in Data
Science and Artificial
Intelligence

1.1 Towards a Non-Abusive and Human-Aware
Use of Data

1.1.1 Democratisation of Data Science

The digitisation of our society, where everything has a digital trace, has
been an excellent opportunity for the companies that have started to focus
on exploiting this vast amount of data for their own competitive advantage.
In addition, public institutions have seen the value of exploiting the data
available to provide a better service. A consequence of this is the coining
of the term Data Science [134, 104], a term that encompasses a wide range
of statistical analysis, data mining techniques and artificial intelligence
algorithms whose focus is to process and discover new knowledge from
data properly (see Figure 1.1).

Data science techniques have been prevalent during the last few years,
going from being used in specific early adopters in IT companies and
academia to being popular in any industry. Thus, data science is present
in many fields in our daily lives, consciously or unconsciously. Below we
exemplify the existence of data science solutions in three different fields:

Healthcare Using smart techniques in healthcare is not new. A clear
example of this is MYCIN [124], a rule-based expert system from the 70s
that could accurately diagnose and propose treatment for infections caused
by bacteria such as meningitis. The system was accurate from a medical
perspective, but the difficulty of integrating it in the clinical workflows
(due to the state of the technology in the 70s) prevented their adoption in
clinical practice. However, this system (and other rule-based chemical and
medical systems, e.g. [51]) proved the possibilities of AI-based systems, and

3



Trustworthiness in Data Science and Artificial Intelligence 4

Figure 1.1: The term Data Science includes a wide range of techniques
[134].

during the last 50 years there has been a great deal of work to provide AI
solutions in healthcare, such that we currently possess different AI-based
solutions in different fields, for instance in computer-aided interpretation
of medical images [50] or heart-sound analysis [115].

That said, if we have to talk about the implementation of AI in medicine,
it is necessary to talk about Watson. Watson is an IBM’s artificial intel-
ligence clinical diagnostic decision tool that aims to support the doctor in
diagnosing and treating diseases by exploiting data and knowledge from the
medical literature and giving insights that would help the doctors make de-
cisions. With this help, the doctors could be up to date on all the existing
techniques and medical publications worldwide.

Beyond the detection of diseases, there exist other works that focus on
prevention. For instance, data science can be used to predict populations
at risk of suffering particular diseases [106], as well as to predict hospital
readmission [92]. Regarding the optimization of the resources, Process
Mining, the branch in Data Science that optimizes processes analyzing
event logs, has successfully produced tools to improve the processes in
hospitals [82].

Finally, we have recently seen with the Covid-19 virus pandemic how
big data can help to provide a global vision of how the epidemic has evolved
and the optimal approach to face it [9].

Finances The finance sector is one of the industries that have been using
Data Science techniques to cope with different financial tasks.

In risk management institutions evaluate customers’ creditworthiness
by scoring them based on their characteristics, such as their payment his-
tory or the types of credits used by the customer. The classical approach to
compute this credit score is a mathematical/statistical model, but recent
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approaches (e.g. [77]) advocate for the use of machine learning techniques
to provide a much more complex and accurate prediction.

Financial institutions also use data to implement fraud detection algo-
rithms that guarantee the protection of their customers against malicious
credit card purchases use. As doing this analysis humanly is not feasible,
we already have examples of the use of neural networks in the 1990s (e.g.
[60]).

Another implementation of smart techniques is algorithmic trading,
i.e., algorithms that analyze real-time financial instruments (e.g. stocks
or commodity markets) to forecast market opportunities. The advantage
over a human trader is both the capacity of analysing large amounts of data
with no emotional factors and also the speed in making trading decisions
[98].

Justice Unlike the previous examples the application of data science
techniques in justice is at a very early stage.

The most groundbreaking proposal is the possibility of replacing a court
judge using artificial intelligence, an idea that is not new [38]. Although
it might be seen as purely science fiction, it is feasible that predictive
algorithms could be helpful to complement the point of view of the judge,
for instance, to analyze the possibility of re-offending and, therefore, adapt
the prison sentence to this evidence-based analysis.

From a more administrative point of view, algorithms can help to re-
duce judges’ workloads, especially in those regions where the courts are
overburdened. An example of this is China’s intelligent court system [144]
that aims to modernize and automatize different aspects of court activities.

These examples from three different fields demonstrate the promise
in terms of benefits for society with the use of data science in the big
data age, either by discovering new unknown knowledge in the data, or by
automating routine processes.

1.1.2 Automated Data Science: Can We Trust it?

The fact that more and more data is available has led data science to use
more and more supervised algorithms from machine learning, the branch of
artificial intelligence that autonomously learns mathematical models from
data to automatize processes (and make predictions) with minimal human
intervention. However, the strengths of using machine learning to automate
processes are accompanied by several technical and ethical concerns that
prevent a more extensive use of these algorithms. Here are some examples
of these concerns also exemplified in Healthcare, Finances and Justice:

Healthcare The use of autonomous techniques in healthcare raises sev-
eral issues in accountability, transparency, permission and privacy [40].
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If a predictive cancer system (e.g., a system used to detect cancer in
image analysis and suggest the optimal treatment) detects cancer and sug-
gests a treatment for this cancer, the patient would like to understand how
the algorithm made the prediction, especially if the prediction made by
the system is that the disease is incurable and only palliative treatment
should be provided. Similarly, the accountability of the algorithm would
be complicated if the algorithm made a wrong prediction, and that might
make it difficult for the patient to allow an algorithm to decide his or her
treatment.

A clear example of the difficulties in exploiting large amounts of data
in medicine can be seen in IBM’s Watson. As we previously explained
in Section 1.1.1, although it looked like a great opportunity for medicine,
and IBM had partnerships with many hospitals in the USA, the results
have been fair [128], and even in some cases its predictions were incorrect
[114]. This is justifiable due to the difficulty of understanding ambiguities,
subtleties and nuances from medical texts. These unsuccessful results (es-
pecially considering the hopes placed in the system) changed the original
idea of IBM Watson replacing professional doctors to a more moderate and
realistic purpose of assisting them.

Finances According to the Home Mortgage Disclosure Act data from
20171, 7.9% of non-Hispanic white applicants, 10.1% Asian applicants,
13.5% of Hispanics applicants and 19.3% of black applicants for a con-
ventional mortgage were denied. Apart from the fact that there might be
a human racial bias in the home mortgage approval, the automation of this
process using predictive systems might replicate these biases, leading to a
white applicant being more likely to being accepted than a black appli-
cant, even when their characteristics regardless of race (e.g., income) are
the same.

The problems related to the lack of interpretability are evidenced in [1],
a web article from the FICO company (responsible for the FICO’s credit
score) that analyses the use of machine learning techniques in their credit
score. FICO’s results were fair: they could only increase 2% their predictive
lift, while the new approach would have reduced transparency, being hard
to explain to consumers and regulators their predictions. The trade-off
between the improvement in metrics and the lack of interpretability did
not justify using machine learning techniques.

Justice In many cases the law is interpretable, and a judge is the one
who has to interpret it. That is, the judge not only determines if a crime
(or, for instance, a fraud) is committed, but also the punishment, e.g., if

1 Available at https://files.consumerfinance.gov/f/documents/bcfp hmda 2017-mortgage-
market-activity-trends report.pdf

https://files.consumerfinance.gov/f/documents/bcfp_hmda_2017-mortgage-market-activity-trends_report.pdf
https://files.consumerfinance.gov/f/documents/bcfp_hmda_2017-mortgage-market-activity-trends_report.pdf


Trustworthiness in Data Science and Artificial Intelligence 7

Figure 1.2: FICO is one of the most important analyst companies in terms
of creditworthiness, which evaluates the customer according to the five
parameters from the image. According to their webpage [1], they are aware
of the bias and data-related problems that can make the prediction unfair
and, therefore, they avoid the blind use of machine learning models with no
interpretability and the use of conflictive feature such as customer’s race.

the accused is guilty, and if they are found guilty if they have to go to
prison and the duration of the sentence.

An example of this is the GENEQUAL project2 from the University
of Barcelona that analyses the reasons why a judge approves a restraining
order. In general, the proportion of approved restraining orders should be
similar throughout Spain (with maybe slight differences between regions
due to socioeconomic reasons), but that is not the case. For instance,
in Martorell (a city just outside Barcelona) the probability of getting a
restraining order is only 22%, while in Sant Feliu de Llobregat (another
city adjoining Barcelona) the probability increases to 66%. This research
analyses if the judge (or the prosecutor) can influence this result (e.g., if
female judges usually accept more restraining order than male judge, or
similarly if female prosecutors also increase the likelihood of approval).

This example indicates that the law (and its interpretation) is not rigid,
and therefore, an autonomous system would be highly different depending
on the data used: the existing prejudices, singular interpretations of the
law, or political and religious opinions influence their sentences and, there-
fore, would also influence the autonomous system. If a predictive system
is trained with harsh sentences, the resulting system could be biased to
long sentences. This would be aggravated in situations where courts are
influenced politically in war scenarios or political conflicts.

These examples show that the implementation of autonomous models

2 SR19-0208 “GENEQUAL-The Political Economy of Gender and Inequality in the Spanish
Judiciary”, from “la Caixa” Social Research Call 2019
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to predict is, in certain cases, not feasible or, at least, very challenging.
On the one hand, the data available to extract patterns may be biased and
therefore might not correctly represent reality. Therefore, the predictive
system might reproduce these biases in the prediction. On the other hand,
even though the system is robust and accurate, their use would raise issues
that discourage their use.

1.2 Application Areas and Published Work

1.2.1 Case of Study

This thesis brings together three Data Science projects in which the correct
use of data has been a key aspect of their development.

Non-Technical Losses Detection System Our first case study (Part
II) explains the development of an NTL detection system for the interna-
tional utility company from Spain (Naturgy). In spite of the good results
achieved detecting NTL cases (especially in certain cases in which previous
approaches had very poor accuracy), we suffered many of the problems
regarding the quality of the data. These problems hindered our system
from achieving consistent and robust results. Once we made clear the ex-
istence of these data problems, we shifted our effort from trying to make a
more complex method (with the aim of detecting more complex patterns)
to achieving a more interpretable method, allowing both the scientists and
the stakeholders to understand the patterns learnt (and therefore the de-
tection of biases and undesired patterns). These data-related problems are
partially explained in [61] but are not tackled in any other example of the
literature.

Explainable Predictive Process Monitoring In Chapter 7 we ex-
plain our collaboration with the University of Padova to provide explain-
ability to a KPI system currently implemented by the MyInvenio company.
In this case we show that using explanatory black-box algorithms can pro-
vide robust explanations in line with the company’s analysts, with less
human effort. Both the predictive process management and the explana-
tory algorithms are breaking new ground, and the resulting work [58] is
a pioneer in bringing them together in the literature of business process
management.

Explainable Black-Box Algorithms in Social Science The classi-
cal dichotomy of interpretable algorithms vs black-box algorithm has not
existed in Social Science literature since it is mandatory to understand the
relation between variables. In Chapter 8 we analyze, using as a reference
[95], if the combination of black-box algorithms with explanatory methods
can provide better results (e.g., a deeper understanding of the interaction
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between features, or more flexibility) in Social Science projects than the
classical approach of using the interpretable Regression or Decision Tree
models.

The unique characteristics of each project allow us to offer in this the-
sis a comprehensive analysis of the challenges and problems that exist in
order to achieve a fair, transparent, unbiased and generalizable use of data
in a data science project. With the feedback arising from the research car-
ried out to provide satisfactory solutions to these three projects, we aim
to:

• Understand the reasons why a prediction model can be regarded as
unfair or untruthful, making the model not generalizable, and the
consequences from a technical point of view in terms of low accuracy
of the model, but also how this can affect us as a society.

• Determine and correct (or at least mitigate) the situations that cause
the problems in terms of robustness and fairness of our data.

• Assess the difference between the interpretable algorithms and black-
box algorithms. Also, evaluate how well the explanatory algorithms
can explain the predictions made by the predictive algorithms.

• Highlight what the stakeholder’s role in guaranteeing a robust model
is and how to convert a data-driven approach to solve a predictive
problem into a data-informed approach, where the data patterns and
the human knowledge are combined to maximize profit.

1.2.2 Our Published Work

The papers published from the NTL detection case study are the following:

Fraud Detection In Energy Consumption: A supervised Approach
2016 IEEE International Conference on Data Science and Advanced Ana-
lytics (DSAA) [36] explains our first approach to building an NTL detection
system by implementing a supervised classification system. Most of the in-
formation from this paper can be read in 3.1 (which includes information
that contextualizes the NTL detection problem, including the related work)
and in 3.3 (which describes the classification approach), although the two
chapters feature information not included in those publications.

A Quality Control Method for Fraud Detection on Utility Cus-
tomers without an Active Contract Proceedings of the 33rd Annual
ACM Symposium on Applied Computing [31] is our first approach of us-
ing an explanatory algorithm to provide explainability in our system that
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uses a black-box algorithm. Different aspects of this work are reflected
in Chapter 5 that explains the explanatory methods tested in our system
(including the LIME approach).

Bridging the Gap between Energy Consumption and Distribu-
tion through Non-Technical Loss Detection Energies [32]. Anal-
yses business-related aspects as well as other data-related problems from
our NTL approach. Different aspects of this work can be read in Chapters
3.4 and 3.5.

Non-Technical Losses Detection in Energy Consumption Focus-
ing on Energy Recovery and Explainability Journal Track from
2021 IEEE International Conference of Data Science and Advanced An-
alytics, published in Machine Learning Journal [34] fully introduces the
Shapley values in our system. As we explain in this work, the use of Shap-
ley values made us understand well the shortcomings and problems of our
system, and helped us to correct them by implementing several solutions
(e.g. by using a regression approach instead of the classification approach
until now). This work is explained in Chapter 4.

Explainability in an Industrial Case: Predicting Non-technical
Losses in Energy Consumption [30] corresponds to Chapter 5, where
we provide an extensive vision of our effort to understand our predictions,
ranging from using statistical methods to the use of Shapley values.

A Human-in-the-Loop Approach based on Explainability to Im-
prove NTL Detection International Workshop on Intelligence-Augmented
Anomaly Analytics (ICDM 2021 Workshop) [33] introduces the possibili-
ties that the combination of human knowledge and explainability offers to
the system. A more extensive explanation of this paper is seen in Chapter
6.

Knowledge-Based Segmentation to Improve Accuracy and Ex-
plainability in Non-Technical Losses Detection Workshop on Arti-
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ficial Intelligence in Power and Energy Systems (AIPES), ECAI 2020 [25]
analyses the benefits of building specific campaigns for each type of NTL.

From our collaboration with the University of Padova, we have the fol-
lowing publication:

Explainable Predictive Process Monitoring International Confer-
ence on Process Mining [58] describes how we have explained the predic-
tions made by predictive process monitoring. This work is explained in
Chapter 7.2.

Regarding the collaboration with the Universitat de Barcelona, we have
the following work published:

The Logic behind NGOs’ Aid Allocation: a Complex Choice
based on Past Decisions [95] analyses if an explained LSTM model
can provide a better understanding than the interpretable Regression ap-
proach where NGOs implement their projects. This work is explained in
Chapter 8.2. This paper is still under review process in a journal.



Chapter 2

Preliminaries

2.1 Supervised Predictive Models

Being X the labelled instances {(x1, y1), ..., (xn, yn)}, where xi is the fea-
ture vector that represents an instance and yi the value to be predicted,
the supervised model aims to learn the function f, Y = f(X) (i.e. to learn
patterns so that it can predict for each xi the corresponding yi), wherein
a binary classification model Y is either 0 or 1 (or 0 ≤ Y ≤ 1 if the model
provides probabilities), in a multi-class classification is a label, in a re-
gression model the value to predict is continuous (i.e., Y ∈ IR), and in a
ranking model the value to predict corresponds to a numeric rank label,
also Y ∈ IR.

The process of building a supervised model is complex. In general, it
can be divided into three stages: the data extraction and pre-processing,
the model building, and the deployment of the predictive system. A short
description of each process is given hereunder.

2.1.1 Data Extraction and Pre-Processing

The initial process consists of extracting the data from the data sources and
its preparation to serve as input for the supervised model. In general, data
extraction and pre-processing require different tasks [59], briefly explained
as follows:

Data Extraction, Transformation and Normalization

The initial step consists of extracting the information from the data sources.
In general, the data is stored in databases (or other data structures such
as event logs) with a structure that does not suit the predictive algorithms
and, therefore, needs to be processed to facilitate the pattern extraction.
Moreover, it is necessary to normalize the information, that is that all the
information that expresses the same information is provided with the same
unit. Finally, some algorithms need a data normalization (i.e. representing
all the features in a similar or even equal scale or range) to guarantee a good

12
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Tariff Consumption Town Last Fraud NTL case

Customer 1 A 3500 kWh Sabadell No

Customer 2 A 300 kWh Madrid 12 Months Yes

Customer 3 B 450 kWh Vitoria 6 Months No

...

Customer n B 2800 kWh Toledo 38 Months No

Learning Algorithm

Tariff Consumption Town Last Fraud

Customer n+1 B 300 kWh Terrassa 12 Months

Customer n+2 A 4000 kWh Zaragoza 9 Months

Customer n+3 B 1000 kWh Donostia

Customer n+4 B 3650 kWh Almeria

...

Customer n+m B 3200 kWh Toledo

Value Predicted

0.8

0.2

0.51

0.1

0.3

Supervised Predictive Model

Figure 2.1: Visualization of a supervised model. The learning model has
a labelled dataset from which builds the Supervised Model. This model is
then used to predict non-visited profiles.

performance. Some of these algorithms that need data normalization are
the statistical learning methods (e.g. Linear Regression) or the K-Nearest
Neighbors that predicts based on Euclidean distance between instances.

Data Cleaning

The process of correcting the quality of the data when the data is extracted
from the original data sources, i.e., to remove incorrect or unnecessary data,
detect redundancies and inconsistencies, is referred to as data cleaning.
This process includes the decision regarding what to do when data is miss-
ing. Depending on the characteristics of the missing data and the problem
to be solved, the missing data can be imputed (e.g. through other machine
learning algorithms such as the K-Nearest Neighbors [13, 26]) or removed.
A similar analysis is done if there exist noisy data in the system (e.g. out-
liers related to human errors when obtaining the data), where a correction
can be applied when possible, otherwise the data can be removed.

Data Reduction

Data Reduction encompasses different techniques that reduce the data
dimensionality, maintaining the same essential information and integrity.
Removing unnecessary information (e.g. by removing correlated features
or applying Principal Component Analysis [123]) helps to avoid multi-
collinearity in linear models, which leads to numerical instability [5]. In
addition, it is also recommended to avoid the curse of dimensionality [136],
where large amounts of data both hinder the training efficiency in terms of
computational cost but also in obtaining high-quality models. In general,
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data reduction does not include reducing the number of instances (as it is
generally considered that the more data one has, the better). However, it
can be considered beneficial in specific circumstances (e.g. when there is
some over-represented type of instance, or when the quality of certain data
is in question).

2.1.2 Model Selection, Parameter Tuning and Loss Func-
tion

Once the data is prepared, it is necessary to train a model to learn the
necessary patterns from the data to make good predictions in unseen in-
stances. In general, the process of building a model follows a recursive
feedback structure: a model is built, then its correctness is analyzed (i.e.
how well the predictions fits the desired results), to finally update it with
improvements and other modifications to building the model again to im-
prove its accuracy.

Loss Function and Optimizers

Building a machine learning model consists of learning patterns from the
data, i.e., extracting patterns that reduces the difference between the cur-
rent’s algorithm output and the expected output. This process is iterative,
wherein each iteration the model measures how well the system predicts,
updating and adjusting the model to reduce the said distance (i.e., the
learning process). The function that measures the distance between the
expected and current output is the Loss Function.

Some of the most common metrics referred to in this work are the
following:

Log Loss Log-Loss measures the performance of a classification models,
and it can be can be defined as follows:

LogLoss = − 1

n

n∑
i=1

[yi · loge(ŷi) + (1− yi) · loge(1− ŷi)] (2.1)

Log Loss error increases as the predicted probability diverges from the
label, penalizing confident and wrong predictions.

MAE The Mean Average Error is a regression metric that metrics the
average of the difference between the values predicted and the real values,
defined as follows:

MAE =
1

n

∑
i=1

|yi − ŷi| (2.2)
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RMSE The Root Mean Square Error is a regression metric that is defined
as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.3)

Unlike the MAE, the errors in the RMSE is squared and, therefore,
larger errors have more weight in the metric (i.e., it is usually used when
larger errors should be avoided). For this reason, this metric is also used
in ranking problems (as a point-wise ranking metric).

The process of learning how to classify based on the characteristics of
the training dataset is carried out either by algorithm-specific techniques
(e.g., the splitting process in the Decision Tree or the euclidean distance in
K-Nearest-Neighbors) or by the optimizers. The optimizers are methods
used by complex machine learning algorithms (e.g., the algorithms used
in this thesis, the Gradient Boosting Decision Tree and deep learning) to
minimize the loss function by updating the parameters of the predictive
algorithm. There exist different approaches to optimizing a data model,
including the Ordinary Least Squares for basic Linear Models (estimated
through appropriate linear algebra) or the Newton’s Method (e.g., Scoring
Algorithm), but the most popular approach in modern machine learning is
Gradient Descent and its variants.

The Gradient Descent is a first-order optimization algorithm that calcu-
lates the minima of the loss function. Iteratively, the predictive algorithm
learns how to update the parameters of the machine learning model (e.g.,
the weights of a Neural Network model, the support vectors of the Support
Vector Machine, or the coefficients in a regression model) in the opposite
direction of the gradient of the loss function to the parameters until the
loss is minimized. In each iteration, how much the weights are updated
is controlled by the learning rate hyperparameter. A very small learning
rate will need more time to find a minima, and it also might be easier to
find a local minima. In contrast, with a too large learning rate the model
would converge to a sub-optimal solution. Therefore, obtaining the opti-
mal learning rate to find the global minima is not trivial and requires a
hyperparameter optimization search.

The vanilla Gradient Descent is referred to as Batch Gradient Descent,
which uses all the dataset instances to update the parameters. Other ap-
proaches are the Stochastic Gradient Descent (that updates the parameters
using a single instance) or the mini-batch Gradient Descent (that uses a
mini-batch of samples). Other similar optimizers that propose improve-
ments (e.g., by considering an adaptative learning rate) are the Nesterov
accelerated gradient, the Adam and the Nadam optimizers [116].
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Model Selection

As discussed above, the process of building a predictive algorithm is an
optimization problem in which the loss error is minimized. However, the
process of selecting an optimal model cannot simply consist of training dif-
ferent models until a global minima is found, since there exist the problem
of overfitting. Therefore, it is necessary to simulate the existence of unseen
data to control the generalization capability of the trained model. Thus,
it is necessary to split the labelled information into two sub-datasets: the
training and the validation dataset when comparing different models. With
the training dataset we fit the models and evaluate them on the validation
dataset that takes on the role of the unseen data. The tuned algorithm
that achieves better performance on the validation dataset should be the
best candidate in our predictive system. Then, we fit a model using all
the labelled information, since we assume that all the samples are i.i.d.
(independent and identically distributed) and therefore the conclusions re-
garding the best model and tuning should not vary when fitting a model
with all the labelled information. The results in terms of performance in
the actual unseen data (i.e. the test dataset) should be similar to the
performance achieved in the validation dataset.

The two most common methods to implement the partition of the la-
belled information to analyze the generalization performance are the hold-
out and the cross-validation methods. The holdout method consists of
splitting the information into two sub-datasets, assigning 2/3 to the train-
ing and 1/3 to the validation (or similar proportions, 3/4 and 1/4 or 4/5 and
1/5). The cross-validation divides the labelled information into different
k-folds of the same size, where each fold is used once as validation dataset
and the rest of the folds as training (i.e., its a holdout method repeated k
times). K-fold cross validation is preferred over the holdout validation for
small datasets to avoid problems related to the split process. Other pop-
ular resampling protocols are the Leave-One-Out Cross-Validation (a spe-
cific type of k-fold Cross-Validation where each fold has only one instance),
the nested Cross-Validation (also referred to as double Cross-Validation,
in which two Cross-Validation processes are nested to separate the hy-
perparameter exploration and the model evaluation to avoid optimistic
evaluation and overfitting [139]), the Out-of-Bag error from the ensemble
tree models that implements bootstrap aggregating (bagging) [18], and the
bootstrap method that implements random sampling with replacement of
available labeled information to construct the training dataset, using the
labeled information not included in the training dataset as the test dataset
[74, 75].

Evaluation Metric

The process of model selection previously explained requires using an eval-
uation metric to easily compare the different models tested and measure
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their performance on the unseen data.
Although the evaluation metric falls under the concept of ”how well

our model works”, its selection is not trivial, as the metric should vary
depending on the objective to be achieved with the system. For example,
when implementing a medical solution for disease diagnosis using predictive
models, the metric must consider that not detecting the disease in a sick
patient is a much more serious error than detecting it in a healthy patient.
All this is discussed below, where we explain the most common metrics in
machine learning discussed in this thesis:

Precision Being the true positives (TP ) the relevant instances retrieved
(the values can be so much above a threshold, usually 0.5 for classification
problems) and the false positive the retrieved non-relevant instances, the
precision is defined as follows:

precision =
TP

TP + FP
(2.4)

As seen in the formula, the false negatives (i.e., FN) are not considered;
therefore, it is indicated when the retrieved instances are taken into ac-
count.

Recall Recall corresponds to the fraction of the total amount of relevant
instances retrieved (TP ) and the total of the relevant instances (i.e., the
sum of the TP and FN , the relevant instances not retrieved).

recall =
TP

TP + FN
(2.5)

In general, the predictive algorithms that have high precision might
have a low recall. Therefore, the use of recall fits the problems in which
false positive is preferred over false negative. Returning to the example of
the disease detection system, it is preferred to have a high recall and low
precision than the other way around. A visual representation of this metric
and the precision metric is shown in Figure 2.2.

F-Score The F-score [119] (also known as f1-score or f-measure) is de-
fined as the weighted harmonic mean of the precision and the recall, that
is:

F =
2 ∗ (precision ∗ recall)
precision+ recall

(2.6)

The F-Score reaches its best value at 1 and worst score at 0. The relative
contribution of precision and recall to the F1 score is equal, while ignoring
the true negatives (i.e. the non-retrieved non-relevant instances). There
exist weighted versions of the F-Score that prioritize the precision or the
recall.
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AUC-ROC curve and score A receiver operating characteristic (ROC),
or simply ROC curve, is a graphical plot that illustrates the performance
of a binary classifier system as its discrimination threshold is varied. It is
created by plotting the fraction of true positives out of the positives (TPR
= true positive rate) vs the fraction of false positives out of the negatives
(FPR = false positive rate), at various threshold settings. TPR is also
known as sensitivity, and FPR is one minus the specificity or true negative
rate. In Figure 2.3 there is an example of the ROC curve extracted from
[36]. The score of this metric corresponds to the proportion of area under
the curve (AUC) in that plot, and summarizes in a specific value between
0 and 1 (being 1 the best result) how well the model correctly distinguish
the classes in their prediction. This metric, especially the graphical repre-
sentation, contextualizes better the performance of the predictions, is more
open to analysis and interpretation, and has the advantage that it does not
consider a threshold to analyze the correctness of the label but analyzes its
position in the prediction. However, the scores of this metric are usually
over-optimistic when the data to predict is imbalanced [47].

Precision-Recall Curve and Score As analyzed in [41], the Precision-
Recall Score is a good alternative to the AUC-ROC when the data is
skewed. The Precision-Recall is the weighted mean of precision achieved
at each threshold, with the increase in recall from the previous threshold
used as the weight.

AP =
∑
n

(Recalln −Recalln−1)Precisionn (2.7)

Similar to the AUC-ROC curve, the scalar version of this metric scores the
area under the curve of the Precision-Recall curve.

      relevant instances

      non-relevant instances

      selected instances

      non-selected instances

                  Precision

   Recall

Figure 2.2: In a classification problem, the precision corresponds to the
ratio between the selected instances that are relevant and all the selected
instances, while recall corresponds to ratio between the relevant selected
instances and all the relevant instances.

For the regression model, where the value to predict is a continuous
value, the most important metrics are the Mean Average Error and the
Root Mean Square Error. These two metrics have already been explained
in Section 2.1.2.
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Figure 2.3: AUC-ROC curve from [36], where we explored different algo-
rithms to determine the optimal approach for the NTL detection problem.

For ranking problems, we highlight the following metric:

NDCG : The Normalized Discounted Cumulative Gain (NCDGn) [70]
is a measure of ranking quality that evaluates the correctness of our output
with a value between 0 and 1 (being 1 the perfect order, and 0 otherwise).
This metric allows us a global vision of the correctness of the predictions
made without considering one specific threshold.

The NCDGn is defined as

NDCGn =
DCGn

IDCGn

where, DCGn is defined as

DCGn =

n∑
i=1

Reli − 1

log2(i+ 1)

being Reli the relevance (i.e., the score in the ranking), and IDCGn,
i.e., the ideal DCG, corresponds to a perfect ordered DCG for the top n
elements of the list.

2.1.3 Deployment of the System and Post-Analysis

Finally, once the optimal approach (i.e. the fitted model) is chosen, a model
is built using all available labelled information, and the system predicts the
unseen test data. Although it may seem that the process of developing a
predictive model is over, there are still elements to analyze, grouped into
the following concepts.



Preliminaries 20

Interpretation, Explanation and Visualization

Once the predictions are made, it is necessary to analyze them. By visual-
izing the predictions or explaining them to the user-end we have a better
understanding of what the model has learned and, therefore, it is possible
to detect biases or undesired behaviors that have been kept hidden until
now. Therefore, this process serves to check the correctness of the model
learned and, despite not guaranteeing good results in its deployment, can
be helpful to validate it.

Generalization Analysis

Finally, once the predictions are validated, we can metric our model and
compare its accuracy with the accuracy from our holdout validation (or
cross-validation) tests to analyze if the model generalized correctly.

2.1.4 Challenges in Supervised Predictive Models

The development of machine learning predictive models is not new. The
method of processing the data, fitting the data and the post-analysis is well-
known to practitioners. However, in Section 1.1.2 we show how, although
at first sight the use of data seems to be an extraordinary opportunity in
different aspects of our society, achieving successful and fair data science
methods can be challenging. The difficulty, in this case, is multifactorial,
ranging from the difficulty of the correct implementation of the processes
explained in the previous section, the difficulty of understanding the pat-
terns learned by our algorithm, and the validation of the data at source.

Data-Related Challenges: Representing Reality without Bias

The main problem that predictive Data Science models face is the quality
of the data. In general, the assumption that the labelled and the unseen
instances are i.i.d, i.e. independent and identically distributed, is usually
met in data by design. An example of this type of data would be the toy
datasets from public repositories that tend to be small and humanly vali-
dated. However, when the data comes from observational data produced
for other purposes, there is a high probability that the available infor-
mation does not reliably represent reality, being challenging to guarantee
reliability, accuracy, generalizability, or fairness in the predictive model.

In general, the main problem with observational data is selection bias.
An example of this is explained in our first case study from Part II that
analyzes the development of an NTL system for a utility company. As we
analyze in this work, the labelled information was mostly trustful, i.e., the
assignation of NTL/non-NTL was done by a professional technician that
could be trusted. However, the company decided the visited customers
based on their consumption behavior and other business-related consider-
ation. Therefore, most of the company’s customers (e.g., customers from
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specific regions or customers with a normal consumption curve) were not
correctly represented in the labelled dataset. This, together with the fact
that the data was non-stationary, implies the existence of dataset-shift
[105].

In any case, the development and use of data by design do not guarantee
its quality since the designer can introduce human biases in the data. For
instance, there is no possible nuance in the label of whether an animal is
a dog or a cat, but the definition of creditworthiness of a bank customer,
what a good worker is in a company or the value of an elite sports player
are values that can be nuanced depending on personal opinions. Moreover,
the human role in a data modeling system can prejudice or confirm bias.

All and all, these data-related problems challenges the correct devel-
opment of a predictive model. The patterns learned might not generalize
well and be biased, a fact that can be aggravated if the system learns from
its own predictions, reproducing the well-known feedback loop bias [83].

Model Generalization and Evaluation

Assuming that there is no evident bias nor misrepresentation of the case
study in the labelled instance, one would expect that the predictive al-
gorithm should be good enough to provide accurate and fair predictions.
Nevertheless, in many cases, that is not the case.

Returning to the idea of unbiased data, and also considering that we
strive to guarantee a good benchmarking of our system (an element that, as
explained in [48] is complicated to guarantee), the analysis of the patterns
learned by the model should be the keystone to guaranteeing the correct-
ness, fairness and quality of our model: if the model learns causal patterns
[100], then our system should be correct. The problem with this approach
is that, in many cases, the algorithms learn correlations that have no truly
causality in the prediction. An example of this situation is the adversarial
examples in machine learning: instances very similar to other instances
that the predictive algorithm would properly classify, but with small (and
intentional) feature perturbations that trick the machine learning model
into making a false prediction. In some cases, the error can be justified
(e.g. a spam e-mail that resembles a normal one), but in many cases, the
error, from a human point of view, is unjustifiable (see Figure 2.4).

To guarantee the causality of the patterns learned, first, it is neces-
sary to determine what patterns the system has learned. This is a very
complicated concept since in many cases, it is not possible to determine
what a model has learned. There are (broadly speaking) two different
types of predictive algorithms: the interpretable algorithms and the black-
box algorithms. The first type of algorithms are considered less accurate
and, therefore, scientists tend to use black-box algorithms that can not
be interpreted and require explanatory approaches to understand the al-
gorithms. Therefore, if it is very challenging to understand a model, we
cannot guarantee that a good model in terms of accuracy is learning good
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Figure 2.4: Example from [64] where an Artificial Neural Network erro-
neously classifies a panda as a gibbon after an adversarial modification of
the image of the panda. This can be seen as the prove that the deep learn-
ing method does not find causal patterns to identify the panda but due to
noisy characteristics of the image that are not related to the ground truth

causal patterns or if, on the contrary, it is reproducing unethical biases
that prevent the model from generalizing correctly.

2.2 Model Transparency and Explainability

There exist in the Machine Learning community the belief that the trade-
off between accuracy and explainability should be considered when using a
predictive algorithm: the most accurate algorithms are not interpretable,
while the most interpretable algorithms might have limitations in terms of
accuracy (Figure 2.5).

Figure 2.5: Image from [66] that visualize the trade-off between accuracy
and explainability and sumarise the idea that the more precise the algo-
rithm is, the more difficult it is to explain. This image has been popularized
with the DARPA’s XAI program to create tools to understand and trust
the most accurate algorithms.
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2.2.1 Interpretable Algorithms

Some predictive models are considered interpretable, i.e., one can under-
stand the patterns learned by the model from the training dataset, how
these patterns influence the predictions, and even predict how a change
in a feature would affect the prediction. The most popular interpretable
algorithms are the linear and non-linear Regression models (where the co-
efficients indicate how each feature influences the output model), the De-
cision Trees [20] (where one can follow a path in the tree to understand
how the model scored an instance), the Decision Rules [69, 29] (where the
predictive models are a set of if-else statements that can be easy to un-
derstand), the Naive Bayes [89] (where the model is interpretable due to
the independence assumption of the features as a conditional probability)
or the k-Nearest Neighbors [6, 67] (where the label of the neighbors of an
instance explain the prediction of the model).

Below we provide a better explanation of the linear and logistic regres-
sion model, and the Decision Tree. Both algorithms appear in the case
studies of this thesis.

Linear and Generalized Regression

A linear regression model is a statistical method that models the relation-
ship between a dependent variable (i.e. Y ) and the independent variables
(i.e. X) as a weighted sum. As indicated by the name, the relation between
the variables are linear, defined as follows:

y = β0 + β1x1 + . . .+ βpxp + ε (2.8)

where β corresponds to the coefficients of each independent variable,
being β0 the intercept term (a constant value) and ε the error.

Linear Regression is usually used in medicine [63], economics [45] or
sociology, fields that quantitative research needs a straightforward inter-
pretation to validate or discard hypothesis; different libraries in R and
Python has built-in summary functions that facilitate their interpretation.

The linear regression algorithm finds a correct model if the following
assumptions are met in the data:

Linearity: The prediction in a linear model is a weighted linear com-
bination of features. In a way, this is the reason why the linear regression
are fully interpretable.

Homoscedasticity: The theory says that in a linear regression model
the residuals should equal across the regression line, i.e., the variance of
the errors are constant over the feature space. In reality, this is difficult to
achieve since the variance of error is higher for higher values to be predicted
(e.g. when predicting the price of a house or a car, where there exist a
high difference in value between cheap and expensive instances). However,
it is intended that the errors are not excessively different proportionally
throughout the prediction.
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Independence: Observations are independent of each other.
Normality The target outcome should follow a normal distribution. If

this assumption is not met, then the confidence intervals of the coefficient
weights are not valid.

No Multicollinearity: The independent variables are not highly cor-
related with each other. The existence of very correlated information hin-
ders the proper assignation of weights in those features.

When these assumptions are not met, the linear models are not a good
approach. In some cases, it is possible to bypass these problems by im-
plementing feature engineering (e.g. by removing correlated features). In
other cases, it is not possible to fit the problem in a linear regression model
as is, e.g., when the value to predict is binary. In these cases, the general-
ized linear models (GLM) might be an optimal solution. The GLM are an
extension of the classical linear models in which the prediction of a linear
model is transformed using a nonlinear function to achieve the non-normal
output.

The most popular generalized model is the logistic regression that
adapts the linear regression to fit the output between 0 and 1, used for
classification problems. The logistic function is defined as:

P (y(i) = 1) =
1

1 + exp(−(β0 + β1x
(i)
1 + . . .+ βpx

(i)
p ))

(2.9)

The interpretation for the logistic regression is not as straightforward
than the linear regression, since the logistic regression model is a linear
model for the log odds:

log

(
P (y = 1)

1− P (y = 1)

)
= log

(
P (y = 1)

P (y = 0)

)
= β0 + β1x1 + . . .+ βpxp (2.10)

Decision Tree

Decision Tree is another well-known interpretable algorithm from machine
learning in which the relationship between the features and the value to
predict is, in contrast with the regression model, not linear. The Decision
Tree is built by recursively splitting the source labelled instances into sub-
sets until the subset can not be partitioned anymore, i.e., if all instances
from the set have the same label or if the configuration established deter-
mines that it should not be divided anymore. The process of division is
used by dividing the set depending on the value of a feature, maximizing
the benefit of the split (i.e. reducing the Gain Impurity, Increasing the
Information Gain, or reducing the variance of the set).

Another difference between the Decision Tree and the Linear Models is
that the Decision Tree offers both instance and modular explanations. At
instance level, the interpretation of the Decision Tree consists of following
the path the instance goes in the splitting process. In Figure 2.6 there
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is an example of a Decision Tree trained with the well-known Iris dataset
[53]. To obtain a modular explanation (i.e., the feature importance), it is
necessary to compute for each split the benefit (e.g., the increase in terms
of Information Gain) after splitting through that feature.

Figure 2.6: Example from Scikit-Learn of a Decision Tree that classify the
Iris Dataset. If a Decision Tree is plot, it is easy to follow the feature
splitting process to determine the prediction of a non-labelled instance.

The main benefit of using Decision Tree models is its simplicity, but it
has several problems. For instance, Decision Tree do not generalize well
(i.e. overfits the training dataset) and can be unstable.

2.2.2 Black-Box Algorithms

As seen in previous Section 2.2.1, the interpretable algorithms consist of
algorithms that are interpretable due to their simplicity, in many cases
thanks to several assumptions that need to be met to guarantee good pre-
dictions. In contrast, the black-box algorithms are non-interpretable algo-
rithms. A priori, these algorithms offer better prediction capacity due to
their complexity but at the cost of the aforementioned lack of transparency.

The most paradigmatic black-box algorithms are the Gradient Boosting
Ensemble Tree algorithm (and all the ensemble methods) and the deep
learning algorithms. Both algorithms are used in this thesis.

The Gradient Boosting Ensemble Tree Algorithm

There exist in the literature different approaches to combining shallow
trees to increase the performance, reducing bias and variance. The bagging
Ensemble Trees (that consist of training a bunch of individual models in



Preliminaries 26

a parallel way, where each model is trained by a random subset of the
instances, and predict as an average of each tree [17]) or the Random
Forest (that can be defined as a bagging process where, for each tree, only
a subset of features are used [19]) are two well-known examples in the
literature, used for many different predictive problems.

In [56] there is the explanation of a different ensemble approach called
Boosting, i.e., the AdaBoost. This approach combines different tree algo-
rithms as follows:

1. An initial tree model is trained.

2. A new tree model is trained. In this case, the weights of the misclas-
sified instances of the previous tree are increased to focus on their
correct prediction. This process is done iteratively N times.

3. The final prediction corresponds to a weighted average of the pre-
dictions of each tree, with greater weight given to those trees with
higher accuracy.

The Gradient Boosting Tree is a different approach to combining weak
learners. In contrast to the AdaBoost approach that builds independent
Decision Tree Model and combines them, the Gradient Boosting Ensemble
builds a boosted method where the tree at the n+1 stage aims to minimize
the errors stochastically from the n stage (see Figure 2.7). That is:

1. An initial Tree is trained to minimize the function loss, e.g. the
LogLoss function for a classification model or the Mean Average error
for a regression model.

2. A new tree is trained to correct the error of the previous tree, i.e. the
residuals. This process is performed iteratively until the residuals are
zero or the configuration of its hyperparameters so indicates.

3. The final model corresponds to the prediction done from the first de-
cision tree until the last tree, i.e. there is no combination of different
predictions but one unique prediction.

The boosting of trees has low interpretability: for the first (or few first
tree) it is possible to follow the splitting process of the trees, but in general
the ensemble has several hundred or thousand trees that make manual
interpretation unfeasible.

Some state-of-the-art implementations in python are the XGBoost [28],
the LightGBM [73] and CatBoost [103], methods that introduce several im-
provements (e.g. better regularization to avoid overfitting) to the classical
Gradient Boosting approach.
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Figure 2.7: Example extracted from [145] to explain the Gradient Boosting
Tree model: In each iteration, the new tree n reduce the errors of the model.

The Deep Learning Algorithm

Artificial neural networks (ANN) (Figure 2.8) is a predictive model con-
sisting of consecutive layers of neurons, i.e., computing units, in which
each neuron receives different weighted input values and produces an out-
put. In the classical Neural Network (with forward propagation), the input
layer receives the input instances, the layers (and their neurons) process
the instances, and finally predict the output in the last layer. The error
is then back-propagated and the weights of the neurons are updated (via
the optimizer) to reduce the error done by the predictive model. There
exist different methods of connecting the layers in a neural networks, and
also different activations of the neurons (i.e. different ways of generating
an output with the same input). Initially, artificial neural network were
shallow, i.e., had only one or very few layers. Over the last 20 years, in
conjunction with the increase in computer power, we have seen artificial
neural network become deeper and more complex: these more complex
models correspond to deep learning.
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Figure 2.8: Image from [68]: there is an input layer, an output layer, and
different hidden layers.

The classical neural network is the feedforward backpropagated neural
network, where the data only moves from input to output without loops
and cycles. The recurrent neural network is an evolution of the feedforward
neural network, where loops and cycles are included to maintain historical
information. It is used specially in image and speech processing, but has
the problem of gradient vanishing and exploding: in recurrent neural net-
works (or in very deep learning models), there is the stability issue where
in certain scenarios (e.g., a neuron with a large input and a sigmoid activa-
tion of a deep neural network learned using backpropagation) the derivative
becomes too small to learn (gradient vanishing) or too large (gradient ex-
ploting). This is solve by using other activation functions (e.g. Relu) or
other deep learning structures (e.g. the LSTM that introduces memory
units to store information in an undefined time with no degradation).

The deep learning algorithms are considered the less interpretable pre-
dictive algorithms.

2.3 Explainable AI

Explainable AI (XAI) is a new term popularized by DARPA’s XAI program
[66] that refers to techniques, methods and algorithms that explain the
predictions made by the black-box algorithms and arises as a response to
the technical, social and legal concerns of the increasing use of artificial
intelligence techniques (especially these black-box algorithms) in our lives,
as we introduced in the Introduction (Section 1.1).

Explaining a prediction is a general term that encompasses different
techniques and approaches depending on the objective to be achieved (i.e.,
the reason why we want to understand our algorithm) but also the algo-
rithm to be explained, and can include approaches that present textual,
numerical or visual information that allows the human to understand the
predictions.
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2.3.1 XAI goals

The XAI community has highlighted many different goals around the need
to explain an algorithm. Nevertheless, all of them can be categorized as
either a technical goal (i.e., whether the system is trusted) or an ethic goal
(i.e., whether the model is unfair).

How Reliable are the Predictions? Technical Analysis In [110],
trust of a prediction is defined as ”whether a user trusts an individual pre-
diction sufficiently to take some action based on it” and model trust as
”whether the user trusts a model to behave in reasonable ways if deployed”.
Both definitions of trustworthiness are intrinsically related to the patterns
learned by the model: if the model learns causal patterns, then it can be
trusted, since it correctly infers the causal relationship between the features
and the target. However, as broadly analyzed in the literature [99, 100],
the predictive algorithms can not understand the quality of the patterns
learned (i.e., whether the pattern corresponds to a causal relationship, to a
logical but non-causal correlation, or whether the pattern corresponds to a
mere coincidence that should be avoided) and therefore a human validation
of the model with high knowledge of the automated process is necessary.
For this reason, much literature emphasizes that XAI must also guaran-
tee model transparency, i.e., the model must be highly informative of the
learned patterns to facilitate the detection of undesired behaviors of the
predictive algorithms. Moreover, this transparency should not only focus
on the validation of the trained model, but also on the acquisition of new
knowledge (e.g. acknowledgment of trustful patterns previously unknown)
and also facilitate the implementation of different machine learning tech-
niques (e.g. transfer learning).

Once a reliable and transparent model that systematically learns robust
and reliable patterns is achieved, the model’s users will have confidence in
its use. Confidence in the model is key to relying on data to make decisions
in the industry (often referred to as data-driven solutions).

How Fair is the Model? Legal and Ethic Concerns From a social
perspective, explainable AI is the solution to control and audit machine
learning methods that automatize processes in which citizens are affected.
The aim of this control is to detect biases and other data problems that
would reproduce and entrench historical prejudices against citizen com-
munities, and thus ensure fairness in automated predictions. To ensure
this control by regulatory institutions or even the ordinary citizen, it is
necessary to guarantee the accessibility of these algorithms, i.e., that non-
technical users affected by these decisions should be able to access the
prediction made by an algorithm and the patterns learned.
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2.3.2 XAI Approaches

Explaining a predictive black-box model is dependent on human judgment
and is therefore difficult to uniquely mathematize. There are two opera-
tional definitions of explainability: model-level and instance-level.

Model-Level Explainability If M is a trained predictive model that
receives instances x = (v1, . . . , vn) to predict, a model-level or global ex-
planation of M is a vector (w1, . . . , wn) that describes how each feature xi
globally influences the predictions made by M , typically computed on the
training instances used to build M .

Instance Level Explainability An instance-level or local prediction
provides such a vector for a specific instance x, therefore how M is influ-
enced by each feature to produce its specific prediction M(x).

In the following we explain the explanatory methods used in this thesis,
as well as a brief summary of other explanatory approaches in the literature.

Feature Importance

In tree models (i.e.,a decision tree, or an ensemble of trees) it is common
to analyse the importance of each feature by computing the Feature Im-
portance, providing a model-level explanation. Depending on how it is
computed, the importance of a feature can be divided into prediction and
occurrence methods:

• Prediction methods: they analyze the influence of feature values in
the predictions made by the model. This naive definition includes, for
instance, the Random Forest from Scikit-learn [101] (that evaluates
the Gini impurity of the samples of the nodes decrease after a split
using that feature), or the LossFunctionChange from Catboost [103]
that evaluates how the prediction changes if that feature is removed.

• Occurrence methods: Measure the importance of the feature by an-
alyzing its occurrences in the training process, i.e. how many times
the feature has been used in the splitting process, usually referred to
as weight or frequency, or the number of instances in the node split
by that feature, usually referred to as coverage.

Local Surrogate Models

Local surrogate models are simple interpretable models that aim to repli-
cate the prediction made by complex black-box models for one specific pre-
diction, i.e. provide an instance-level explanation: Let M be a predictive
model that the surrogate model aims to explain, x be the instance to ex-
plain, and Ln be an interpretable model (e.g., a linear Regression) trained
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on n instances chosen somehow, then we would like to have Ln(x) 'M(x)
while keeping the model complexity of Ln as low as possible e.g., using as
few features as possible to provide a simple explanation. Different methods
differ in the type of model Ln and the instances used to build it, which
may be selected from the training set or generated synthetically.

A state-of-the-art approach to local surrogate models is LIME (Local
interpretable model-agnostic explanation) [111]. The idea of LIME is to
analyze how the prediction of the interpretable algorithm changes based
on the absence-presence of a feature. For image classification, the algo-
rithm creates superpixels (i.e. portion of the image), and analyze how the
prediction changes based on the absence-presence of this superpixel in the
image. For text classification, words are included-removed from the text to
understand how influence in the output. For classical tabular data, LIME
perturbs each feature of x independently, using a normal distribution with
the same mean and standard deviation.

Shapley Values

Originally, Shapley values [121] were conceptualized as a game theory ap-
proach to computing the fair distribution of payout among players in a
cooperative game. The SHAP library adapts this idea to provide explana-
tions for predictive models: being the features from an instance the players
and the difference between the prediction made by the predictive model and
the average prediction (i.e., the base value) the payout, it can be adapted
to understand the role of each feature in the prediction process. This ap-
proach provides both a global and local explanation: the global explanation
is the sum of the local explanations and, therefore, both explanations are
consistent and have a common foundation.

The Shapley values of a feature value in instance x are usually defined
as follows:

φj(val) =
∑

S⊆{vi1,vi2,...,vim}\{vj}

|S|! (p− |S| − 1)!

p!
(val (S ∪ {vj})− val(S))

(2.11)
where p corresponds to the number of features, S to a subset of the instance
features, and val corresponds to the function that indicates the payout for
that features. In the equation, the difference between the val corresponds
to the marginal value of adding the feature in the prediction for a partic-
ular subset of features S. The summand denotes all the possible subsets
S that can be done without including the feature from which the Shap-
ley values are calculated, i.e., vj . Finally, |S|!(p−|S|−1)!

p! corresponds to the
permutations that can be made with subset size |S|, in order to properly
distribute the marginal values among all the features of the instance. All
possible subsets of features are considered, and the effect on the prediction
of including the feature to each subset is observed.



Preliminaries 32

SHAP library offers different core explainers (i.e., methods to compute
the Shapley values). In this thesis we use two methods: the Tree SHAP
(to compute the Shapley values for tree models) used in Part II and Deep
SHAP (for deep learning models, that approximates the Shapley values
through an enhanced version of the DeepLIFT [125] algorithm) used in
Part III.

Other Approaches

In this thesis we highlight Feature Importance, Local Surrogate Models
(i.e., LIME), and Shapley values, as these are the approaches used in our
case studies (with tabular data); we provide an in-depth analysis of each
approach for tabular data in section 5. But there are many different ap-
proaches, which we summarize now.

One of the simplest approaches to understanding how a feature influ-
ences an outcome is through the partial dependence plot [57, 65], which
consists of showing through a plot the marginal effect (e.g., a monotonic
relationship) of the value of the feature on the predicted outcome. The
simplicity of this approach implies certain advantages (e.g., it is easy to
implement, intuitive and straightforward) but also several disadvantages
(e.g., it omits the feature distribution of the variables, and also assumes
that the features are independent).

Another rather simple model-agnostic approach is counterfactual expla-
nations [138, 39]. A counterfactual explanation aims to determine which
smallest change in the values of an instance’s features changes its predic-
tion. This approach provides a simple approach to obtain good explana-
tions. However, it is possible to find different explanations for the same
instance, so it is challenging to determine which one should be considered
the correct one. This approach shares many similarities with the adver-
sarial examples approach [131], with the difference that the former aims
to explain the model and the latter aims to deceive it (as exemplified in
Figure 2.4).

Anchors [112] is another approach that finds which feature values fix
the prediction. In other words, this approach provides a decision rule ex-
planation (i.e., very simple to understand ”if-else” explanations) to explain
the predictions of a model. This approach shares many similarities with
LIME 1, building their explanations with a perturbation-based strategy.

Finally, we would like to focus briefly on the existing approaches to
provide explainability to deep learning models for non-tabular data (e.g.,
image and text classification problems). Both LIME and SHAP (which in
turn provides two different explainers, the one based on the aforementioned
DeepLIFT algorithm, and one based on the Integrated Gradients[130])
are also popular solutions in deep learning for image and text classifica-

1 Both approaches have the same authors.
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tion. Broadly speaking, the existing solutions are either model-agnostic
approaches that base their explanation on the perturbation of the data
(e.g., analyzing the difference in prediction after pixel occlusion or per-
turbation), or they are gradient-based solutions (which are specific to deep
learning models) that explain the model through the gradients of the train-
ing process.

2.4 Discussion

The development of a predictive algorithm, as we have explained in this
chapter, is not trivial. It requires obtaining and processing data from
different sources, exploiting the data knowledge with the optimally tuned
predictive algorithm, in order to achieve the desired predictions. This whole
process, even if done with utmost care, often fails to achieve the desired
results, as there are several problems (e.g. the reliability and fairness of the
patterns learned) that are difficult to analyze and correct if they are not
optimal. That said, the data science community is aware of this, and they
propose different methods that allow us to better understand what our
algorithm is learning, allowing stakeholders and data scientists to correct
these problems to obtain a better predictive system. In this thesis we
analyze the application of predictive models in 3 different fields, with the
aim of achieving predictions that are both accurate and highly transparent
and useful for the researcher or the company using it.



Part II

Human-Aware NTL
Detection
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Our initial application area analyzes the development of a Non-Technical
Losses Detection system for a utility company developed from 2013 to 2020.

Hereunder we detail the evolution of this NTL detection system, from a
black-box algorithm to a fully explained system, step by step, providing
information of different aspects of our research such as the detection of
biases, the lack of robustness, as well as the optimal explanatory approach
between the most recent state-of-the-art techniques seen in the literature.

As far as the authors are aware, this work represents the first piece of
research that tackles the problems in interpretability of the supervised Non-
Technical Losses detection problem (as well as the problems that arise from
this such as lack of robustness or dataset-shift). Similarly, it is one of the
very first pieces of work done to explore the possibilities that explainability
provide in the implementation of predictive data science in the industry.

Papers

Fraud Detection In Energy Consumption: A supervised Approach
2016 IEEE International Conference on Data Science and Advanced Ana-
lytics (DSAA) [36].

A Quality Control Method for Fraud Detection on Utility Cus-
tomers without an Active Contract Proceedings of the 33rd Annual
ACM Symposium on Applied Computing [31].

Bridging the Gap between Energy Consumption and Distribution
through Non-Technical Loss Detection Energies [32].

Explainability in an Industrial Case: Predicting Non-technical
Losses in Energy Consumption [30].

Non-Technical Losses Detection in Energy Consumption Focus-
ing on Energy Recovery and Explainability Journal Track from
2021 IEEE International Conference of Data Science and Advanced Ana-
lytics, published in Machine Learning Journal [34].

Knowledge-Based Segmentation to Improve Accuracy and Ex-
plainability in Non-Technical Losses Detection Workshop on Ar-
tificial Intelligence in Power and Energy Systems (AIPES), ECAI 2020
[25].



Chapter 3

Preliminaries in
Non-Technical Losses
Detection

3.1 Context of the Application Area

Utility companies provide an essential service to developed societies, sup-
plying electricity, gas and water to homes, businesses and factories. The
infrastructure necessary to guarantee services ranges from the kilometers
of pipes or lines that transport the energy to the millions of meters that
monitor the consumption of individual customers. An important problem
that these companies face is the imbalance between the energy billed with
respect to the energy provided, called energy losses. Non-technical losses
is a widely used, somewhat euphemistic name including fraud and meter
malfunctions among others.

Methods for committing fraud include splicing the pipes to bypass the
meter, tampering with the meter to stop it or to slow it down, and simply
connecting to the distribution network without even having a contract with
the company or a meter. On the other hand, an accidental malfunction of
the meter also results in net energy loss for the company. Both are issues
that the company wants to detect and fix as soon as possible, and the
detection schemes are essentially the same.

Most cases of NTL involving meter tampering or malfunctioning can
be detected by direct inspection by a trained technician. However, it is ex-
tremely expensive to send technicians to inspect a large number of meters.
Therefore, companies usually perform a pre-selection of a subset of meters
to be directly verified by technicians in a given period of time and area,
a concept that we call a campaign. Every customer visit has a cost, so
in order to be worthwhile campaigns need to have relatively high precision
(i.e., percentage of problems detected with respect to the number of meters
verified). Company gains, on the other hand, are directly proportionally
to campaign recall (i.e., fraction of the existing fraud that is detected), so

36
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campaign design is all about the classical precision-recall trade-off.
Traditionally, campaigns are based on simple sets of rules indicating

fraud (e.g., abrupt decrease of consumption, or no consumption during a
long period of time). These rules can be used to detect the fraudulent/ir-
regular customers, but achieve a low success rate, not much higher than
selecting customers for the campaign at random. This can be explained by
many other reasons besides fraud (e.g., a customer spends a long convales-
cence in hospital, or the house is a second residence that does not follow
the consumption patterns of an all-year primary home). With the boom-
ing of artificial intelligence in industries, the utility companies have seen
the possibility of exploiting the large amount of data available from their
customers, especially since the installation of smart electricity meters.

Naturgy is a utility company distributing both electricity and gas in
Spain and 26 countries on 5 continents. Their classical approach of detect-
ing NTL was based on simple rules with only fair results. In mid 2013,
the company approached UPC researchers looking to improve the fraud
and anomaly detection rate of their current campaigns. The first dataset
received from the company was to be used to generate a static campaign
(no software system). It came from a medium-size city with a few thou-
sand electricity customers and another few thousand gas customers, and
contained contract information (e.g., the tariff or the age of the meter) and
about two years of consumption information.

After this initial dataset, we received four more datasets with similar
characteristics (i.e., cities with thousands of customers), either of gas or
electricity or both. From the sixth dataset onwards, and in view of the
good results of the initial campaigns, we were given access to data on a
national scale, with information of several million customers in gas and an-
other several million electricity customers; around a million customers are
customers of both utilities; the project gradually evolved from the original
goal of “mining” one specific dataset to create a one-off campaign to the de-
velopment of a software system that connects to the company’s operational
system to generate both routine campaigns and on-demand parameterized
campaigns, implementing data mining techniques to manage feedback, and
investigate the usefulness of new features, among other functionalities.

3.2 Related Work

There exist in the literature several techniques to detect NTL based on
customer data. A very common approach to detect NTL is to implement
a supervised system. In [23], a similar approach to ours was presented (it
uses Gradient Boosting models and is implemented in Spain); in [90] an
approach that uses Support Vector Machines is reported, and in [91] an
update of the previous work in which the addition of Fuzzy Rules improves
the detection system; in [37, 102, 55, 52, 142] five examples of using neural
networks to detect NTL are described, and in [107, 108] two interesting
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approaches that differ slightly from the classical supervised algorithms that
use the Optimal-Path Forest Classifier [96].

In contrast to the aforementioned supervised techniques, there are also
other different unsupervised approaches to detect NTL in the literature.
The typical technique is the clustering method, seen in [12] or [10], but
we can see other approaches such as [24] that uses unsupervised neural
networks (Self-Organizing Maps). A different technique is seen in [127] or
[80], which are two examples of using statistical process control method in
the detection of anomalies from a more industrial process control point of
view.

Despite the fact that the more classical machine learning approaches
use supervised and unsupervised methods, other alternatives exist in the
literature. For instance, in [27] there is an example of an expert system;
also, [71] presents an approach for analyzing the load flow, and in [143] a
method based on the sensors of the system is proposed.

In [62] there is a technical survey that analyses the challenges seen in
different papers such as the dataset shift, the features built and scalability,
and in [86] there is a more classical survey that summarizes the approaches
seen in the literature.

3.3 NTL Detection: Baseline Approach

Our work published in [36] explains our Non-Technical Losses Detection
system based on a classification model at the time of the publication of
the paper. We use that paper as a reference to explain our first approach
in this case study, and update the information when necessary with the
updates introduced in [32].

3.3.1 Data Processing

The sources of data used to build our NTL detection system include con-
sumption and profile data, historical fraud cases, and some external infor-
mation.

Consumption data This is the data reflecting the energy used by the
customers. It includes meter readings as well as billing statements - the
invoices the company charges to the customer based on the meter readings
or, when not available, an estimate by the company based on historical
information1. The consumption reading corresponding to the difference
between consecutive meter readings of the customer is our main source
to extract the consumption data; Figure 3.3 is an example. Note that
from this information one cannot detect the fraud cases in which someone

1 This is true before the installation of smart meters of around 2016 onwards
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18% 36%

46%
Readings from smart meters

Unique old-meter readings

Repeated old-meter readings

32%

36%

32%
customers <12 smart readings

customers 12-24 smart readings

customers >24 smart readings

Figure 3.1: Information from the quality of the information available in [36]:
Half the customers for electricity had smart meters. From all the readings
we had, 18% came from smart meters, 36% were unique readings from old
meters and 46% were repeated. Of the customers that had smart meters,
around 32% had less than 12 smart-meter readings, 36% had between 12
and 24 readings and the rest had more than 24 readings.

42%

58%
Unique gas readings

Repeated gas readings

Figure 3.2: 42% of the readings from gas are unique, and 58% are repeated.
In gas, the absence of smart meters makes the information available less
reliable.

connects directly to the grid rather than e.g., manipulating the meter; this
type of fraud can only be detected further upstream.

The origin and reliability of consumption data for our first approach
was varied. In electricity, about half the customers had smart meters that
send customer consumption to the utility company monthly and reliably.
The other customers had old meters that required manual readings: cus-
tomers were expected to use any one of a number of options to send in
the reading (calling the company, sending the reading via mail or a mobile
app, or writing it down on a shit or form available in the building). In gas
there were (and there are still) no smart meters, so all the information is
sent manually. When there were no smart meters and the customer had
not provided the reading, the company needed to estimate the consump-
tion of the customer using reference values from similar historical periods.
Customer-generated readings were notoriously unreliable and error-prone,
and many customers simply did not send any for many months in a row.
Eventually a technician would be sent to read the meter, but only after sev-
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Figure 3.3: Example customer consumption record. In light gray, use-
ful information (new readings and monthly consumption). In dark gray,
non-useful information (i.e., erroneous information is crossed out, in ital-
ics repeated readings, with a dash months without readings). Non-smart
meters give less accurate monthly consumptions; in this case, the first Oc-
tober reading is obviously wrong, so apportioned consumption because we
have new readings every two months. Since the second July, consumption
readings are reliable because a smart meter was installed.

eral months of estimated readings. Fortunately, each consumption record
was labelled as company verified, customer provided or estimated, so we
could assign them different reliabilities.

Erroneous, absurd or missing readings for non-smart meters, the co-
existence of two metering systems with different reading periodicity (1 vs.
2 months between readings), and the fact that some customers changed
from one system to another in the process (a small proportion of clients
had more than two years of smart-readings in 2016) were complications that
we had to deal with when reading, parsing and standardizing consumption
data.

Static Profile Data Within this concept we include information related
to the customer’s contract with the company (e.g., the tariff), customer
information (e.g., their address) and characteristics of the equipment (e.g.,
the age and model of the meter, whether it is inside or outside the house).
This information can be used to categorize the customer; for example, the
tariff indicates whether it is a home, a shop or a restaurant, and whether
a gas cooker or central heating is present.

Historical Fraud Cases For the first campaign, we were also provided
with a list of customers who had committed fraud and were discovered in
baseline campaigns carried out by the company in the last few years. The
list included several tens of thousands of verified fraud cases which could
be merged with their consumption data to investigate fraud patterns. No
“negative cases” (i.e., clients that were known to not commit fraud) were
received.
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FEATURE DEFINITION
Abrupt decrease in consump-
tion

A reduction of x% in consumption during n months in
comparison to the previous n months.

Abrupt decrease in equivalent
consumption

A reduction of x% in consumption during n months
in comparison to the same months from the previous
year.

Long period of low consump-
tion

A reduction of x% in consumption during n months in
comparison to the average.

Consumption discrepancy High/medium/low discrepancy between a consump-
tion in comparison to the average.

Decrease in consumption (cor-
relation)

A consumption reduction during n months using Pear-
son correlation.

Consumption peak Consumption in a month x% times higher/lower than
the previous and the following month.

Billing/consumption similarity Similarity between the consumption computed and the
billing (only in gas).

Unknown consumption Number of consecutive estimated readings, consecu-
tive 0 consumption (in the present and historically),

Difference between years Highest difference between the consumption of two
consecutive years, or if the customer has been con-
suming less year after year (only in gas).

Gas consumption without elec-
tricity

Gas consumption without electricity.

Difference of consumption High/medium/low difference between the higher and
the lower consumption of the customer.

Ratio difference of consump-
tion

High/medium/low difference between the average con-
sumption of the customer and the average consump-
tion.

Negative Consumption Whether the customer has a negative consumption
(e.g., count was reset at the installation of a new me-
ter).

Reading correction Whether the consumption obtained required a correc-
tion.

Table 3.1: Types of features extracted from the data available. In some
cases, several versions of the feature are included in the system (e.g., abrupt
decrease in consumption, where different x% and n lead to different fea-
tures, or using Spanish and regional averages to compute different features).

External Information We also used the Koppen climate classification
data [4, 3] of the different regions under study, as climate obviously affects
energy consumption patterns, as well as census data about the socioeco-
nomic classification of cities and regions.

3.3.2 Creating a Classification Problem

Below there are the three main issues we had to tackle when transforming
the data into a classification problem.

Unreliability in Consumption Data As discussed before, consump-
tion data as given by the readings was not an exact picture of the customer
consumption but an approximation, because of the heterogeneous channels
used to obtain the readings. For instance, in Figure 3.3 it can be seen that
the reading in February is wrong, according to the readings in January and
March. A small number of heuristics were designed to correct or discard
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FEATURE DEFINITION
Tariff Tariff of the customer.
Location of the meter Location of the meter (e.g., inside/outside the house)
Contracted power Contracted power (only in electricity).
Electric tension Electric tension (only in electricity).
Abnormal contractual status The client has abnormal contractual status (e.g., has

canceled the contract with the company).
Regional income Whether the customer lives in a region with an average

income above, similar or below the Spanish average.
Climatology Köppen climatology classification of the region where

the customer lives.
Reading periodicity Reading periodicity (1 or 2 months, only in electric-

ity).
Number of readings High/medium/low number of different readings from

the customer.
Province The province where the customer lives.
Capital province Whether the customer lives in a province capital.
Date information Age of the meter, date of installation and contract.
Smart meters Whether the customer has a smart meter.
Old fraud Whether the customer was detected as fraudulent by

the company in gas or electricity in the past.

Table 3.2: Types of features extracted from the data available. In some
cases, several versions of the feature are included in the system (e.g. abrupt
decrease in consumption, where different x% and n lead to different fea-
tures, or using Spanish and regional averages to compute different features).

suspicious or inconsistent data, both in gas and electricity (e.g., discard a
reading smaller than the previous and the following reading, or discard an
absurdly high reading for a month, replacing them with interpolations).
Billing information was also used, but as a secondary source compared to
actual or estimated readings.

Statistical Evaluation of the Features The main metric used to eval-
uate the features was the odds ratio (the odds that an outcome will occur
given a particular case, in comparison to the odds that the outcome will
occur otherwise), from now on denoted as OR. For each feature, we ana-
lyzed the OR between the results from the feedback (e.g., the OR between
fraudulent and non-fraudulent customers), denoted as ORPN, as well as
the OR between the fraudulent clients against all the clients not included
in any campaign, denoted as ORPG. Table 3.5 shows the odds ratios of
some features used.

Feature Construction Consumption, profile, and external information
were combined to create a number of features. These features are the result
of an evolution of the initial rules used by the company for their baseline
campaigns (e.g., the detection of customers with a long period of time with
no consumption). Yet, each rule used in the baseline campaigns used one
or at most two of the features, while we expected machine-learning-based
algorithms to be more accurate by taking into account hundreds of features
as well as their combinations.
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Some features focused on the behavior of the customers in compari-
son to themselves: an abrupt or gradual decrease in their consumption
exemplified in Figure 3.4, a repeated lack of reported readings, a substan-
tially different pattern from previous years, consumption peaks (as seen
in Figure 3.5), the difference between the minimum and the maximum
consumption of the customer, etc.

Figure 3.4: Example variable: consumption drop.

Figure 3.5: Example variable: consumption peaks. We can see that the
customer has both a positive peak (4th month) and a negative peak (11th
consumption) in its consumption curve.

Other variables measured the inconsistencies of customer consumption
in comparison to other similar customers. For example, long periods of
time where the customer consumes much less than the average of the cus-
tomers with the same tariff (exemplified in Figure 3.6), high discrepancy
between the consumption curve of the customer and the typical consump-
tion curve of the customers with the same tariff (a flat consumption line
showing no seasonality pattern may indicate that the metering has been
tampered with so as not to exceed a certain metering speed, as seen in
3.7), nominal difference between the consumption of the customer and the
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average consumption of the clients with the same tariff, etc.

Figure 3.6: Example variable: long period of low consumption. As we can
see, we have a period of time (from months 4 to 9) where the customer
consumes much less than the average.

Figure 3.7: Example variable: consumption discrepancy. Customer 1 has
a similar consumption curve to the average consumption. On the other
hand, both customers 2 and 3 have an abnormal curve that might be an
indicator of fraud.

It is worth mentioning the features that combined information from
gas and electricity consumption (e.g. the behaviour comparison between
the gas and electricity consumption, or the consumption of gas without
electricity consumption, exemplified in 3.8). These features, tested statis-
tically, were only included in the most recent campaigns, which are the
more successful ones.

From the static data we also extracted some features; the province
where the customer lives as well as its climatology, the location of the
meter, the date of installation of the meter, etc. Table 3.2 contains a list
with the feature types included in our system.

These variables were all binarized, for uniformity and simplicity; in
particular, this avoided problems with algorithms that are too sensitive to
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Figure 3.8: Example variable: Gas Consumption without electricity con-
sumption. Gas heater needs electricity to work.

outliers or extreme values. For example, one binary variable was introduced
for each tariff type that a customer may have. In some cases, several
variants of the same variable were introduced, corresponding to different
horizons or thresholds; for example, whether there has been a reduction of
x% in the last n months generates many variables for varying x and n. For
each candidate variable, the ORPG was checked, and those variables with
values near 1 that were not useful (e.g., did not have profiling information)
were removed.

All in all, the number of variables included in our first approach reached
250 features in the electricity campaign and 150 features in the gas cam-
paign. At the end of this process, a customer is represented (with the
information available at the time of generating a campaign) as a vector of
binary variables, which we call the customer profile.

Imbalanced Classification Problem We created a classification prob-
lem by labelling each customer profile in a potential training dataset either
with the positive class (P), representing fraudulent behaviors, or the nega-
tive class (N) representing non-fraudulent behavior. For populating P, we
considered customers from the historical fraud cases and those detected as
fraud in previous campaigns. Populating N was a problem in the initial
campaign, as we did not have certified non-fraud cases; we simply took a
random sample of all customers, which should be approximately correct
under the assumption that fraud prevalence is low enough. As we started
receiving feedback from the first campaigns, we did have certified negatives.

The prediction desired from the system could be a P/N value. In this
case the campaign is simply an unordered set of suspicious customers (pre-
dicted to be P). The company, however, preferred to have a fraud scoring,
or probability of being fraud, for each customer, which makes the cam-
paign an ordered list; this allowed us to detect in-place that a campaign
had entered a point of diminishing returns.
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3.3.3 The Process

Our NTL detection system could be explained as follows (see Figure 3.9):

1. From the data sources we extracted all the necessary data to create
the variables.

2. We created a profile of each user, a vector of variable values that
defined their behavior up to a certain date.

3. Based on feedback from older campaigns, we ran a number of super-
vised algorithms in a number of configurations to determine which
one could be best for this campaign.

4. We used the chosen model to compute a fraud score (a prediction
or probability) for every customer in the target area for a new cam-
paign. We excluded customers that had already been checked in
recent campaigns.

5. We created a campaign of a desired size N by selecting the N cus-
tomers with highest fraud scores.

6. When the campaign results returned from the field, the feedback
(verified fraud and non-fraud cases) was added to the system auto-
matically2.

Campaign 
configuration

Data 
extraction

Data source

User profiling
Training 
learning

Campaign 
generation

Feedback 
manipulation

Classification

Figure 3.9: The Process of NTL Detection.

This methodology allows iterative learning from the feedback from previous
campaigns, as well as the addition of new algorithms and variables. A
detailed description of the procedure is given below.

2 The company centralizes all the campaigns results introduced manually by each technician
in a database, and our system reads this information automatically to update the feedback.
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Initial Campaign

The first step in our approach was to create a model able to learn the pat-
tern frauds. This step was needed the first time we created a campaign for
a new population for which we had no feedback. It was assumed, however,
that some set of verified fraud cases was available from the baseline cam-
paigns by the company, which were labeled P. A set of randomly chosen
customers was selected and labeled N, with the understanding that some
labels may be wrong. In our case, we needed to do this learning phase on
the first campaign for a small city and for the first country-wide campaign.

In all campaigns from the initial one in one population, the training
and test sets would contain verified positives and negatives from previous
campaigns.

The Campaign Phase

After the customers had been selected for a campaign, each customer had
a fraudulent score, and the utility company would select those with higher
scores that had not been verified recently, and sent technicians to check
the corresponding meters.

The results for each customer could be summarized as Fraudulent, Non-
fraudulent and Absent. Fraudulent are those customers who have commit-
ted fraud or whose meter does not record (i.e., it does not correctly measure
consumption). Non-fraudulent customers are those whose meter could be
checked and showed no signs of tampering or malfunction. Finally, ab-
sent customers are those for which the technician could not gain access
to the meter. Absent customers are a significant fraction of the campaign
feedback. We do not include them in our performance calculation or in the
feedback to our system (i.e., they are labelled neither P nor N), although it
is believed that a fraud among these may be higher than average, because
fraudulent customers will try to avoid being inspected. The field reports
for the campaign contain a number of distinct codes, some corresponding
to malfunctioning meters and some to true fraud; as mentioned, we do
not differentiate them in our system and label them all as positive for the
feedback.

Finally, the system needed to process the results of the campaign. The
profiles of the users from the campaign were stored with their correspond-
ing P/N label. This labelled data would be used as training data in the
following campaigns.

3.3.4 Learning from Feedback

After feedback had been incorporated in the system, we had additional ver-
ified fraud cases (in addition to those coming from the baseline campaigns)
and verified non-fraud cases. These could be used to train new models
for further campaigns. Note that we decided not to include the baseline
fraud cases in the training sets of further campaigns because there was no
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guarantee that the profiles at the time the campaign was performed were
indicative of fraud. The company could have chosen them for inspection
based on behavior previous to the records we were given, or based on side
information not included in the records. Direct feedback information was
considered more reliable.

3.3.5 Algorithmic Details

Many classifier-building algorithms with different configurations were tested.
Those that contributed to real campaigns include:

• Naive Bayes.

• K-nearest neighbors: different number of neighbors and distance
weight were tested.

• Decision Tree inducers, including C4.5 and CART: both Gini and
Entropy split criteria as well as the number of features used were
tuned.

• Neural Networks with backpropagation training: The learning rate,
momentum, epochs, the number of hidden layers and the number of
errors allowed were parameterized.

• Support Vector Machines: both linear and radial basis kernel func-
tions were tested. We also tuned the cost for misclassification as well
as the gamma (for the RBF kernel).

• Random Forests: the number of iterations, as well as the parameters
tuned in the Decision Tree were modified.

• Gradient descent Decision Tree with CART: besides the optimization
applied in the Random Forest, we also analyzed how the loss function
(deviance or exponential) modified the performance.

• AdaBoost with C4.5 decision trees, naive Bayes, and PART: the num-
ber of iterations were optimized.

The tools used to implement these algorithms were the Knime Analytics
Platform [14] and the scikit-learn Python library [101].

3.3.6 Initial Results

Initially, we created fixed-size campaigns, and the scoring of each customer
was Boolean (predicted fraud or non-fraud), so we optimized f-measure
to balance precision and recall. After the first campaign, we wanted to
assign a numerical fraud score to each and every customer in order to
create a sorted list of all customers; the company could then choose the
size of the campaign going down the list as far as desired. The metric
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Figure 3.10: Area-under-curve values of the algorithms applied to the 4.5x
feedback campaign in 4-fold cross validation. The meta-algorithms (Gra-
dient Boosting Decision Tree, Random Forests, and AdaBoost with Naive
Bayes) were the top performers.

to be optimized among configurations was then the Area under Curve, to
maximize the position in the list of fraudulent customers rather than P/N
hard classifications.

In the initial campaigns, we combined several classifiers, with the final
scoring being the voting or average among their individual scores. Further-
more, most algorithms could be run in several configurations (e.g., param-
eter settings). Our system semi-autonomously3 explored several configura-
tions of each algorithm and several candidate combinations (e.g., including
or not each algorithm and assigning voting weights). This model choos-
ing process is not fully automatized, however, it can be automatized using
a classification-validation cross-validation process, to facilitate our under-
standing and post-analysis of the results. In our most recent campaigns,
we have opted for a single Gradient Boosting Model, because we observed
that it gave better AUC than any ensemble, including other algorithms
(see Figure 3.10).

The campaigns were generated once a month, executed in a commercial

3 The choice of configuration was not totally automatised to facilitate our understanding and
post-analysis of the results. This process can be fully automatised using the validation-test
case with the feedback information easily.
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computer (i.e., not a cluster). For this reason, we prioritized the scalability
of the software instead of the performance speed. Depending on the input
data (i.e., the population or the number of months to compute) the system
could last from hardly an hour to a day. With a fair optimization, the
software speed could be easily boost.

Our first campaigns were conducted in three medium-sized locations
(population between 50,000 and 100,000) to experimentally test the effi-
ciency of our methods to detect electricity fraud without investing on large,
costly campaigns. It was soon clear that they were achieving precision lev-
els notably better than the baseline.

To be precise, let us take precision as our main criteria, i.e., fraction of
fraudulent users discovered among those inspected. The size of the cam-
paigns was equal to the baseline ones, so we did not increase precision by
simply inspecting fewer customers. Then campaigns consisting of randomly
chosen customers had a precision of around z%4, and company baseline
campaigns had essentially no better results. Our three initial campaigns
had a precision of 12x, 5x, and 5x the baseline.

Encouraged by these results, the company proposed carrying out a test
on a nationwide level (Spain) with several million users, also to test the
scalability of the approach to detect electricity. We were provided with
historical fraud cases from the whole country and returned to the company
a list of several thousands of customers sorted by fraud score. The company
ran a campaign consisting of the top 10,000, as that was the standard size
of their baseline country-wide campaigns. The campaign had a precision of
4.5x that of the baseline. That is slightly less than the worst score achieved
in small populations, but of course much more than the baselines. More
interestingly, months later the company carried out a second campaign
taking the next 10,000 customers from the same list, which had lower
scores, so a priori lower precision was expected. Surprisingly, precision
was again very close to 4.5x the baseline. As a side-effect, the campaigns
provided a dataset of 16,000 customers with reliable fraud/non-fraud labels
for further campaigns, the remaining 4,000 being “absent”.

The lower performance of the first country-wide campaign (the one that
achieved a 4.5x performance) with respect to the best city-wide ones (12x)
merited consideration. We attributed this fact to the higher diversity of
customer behavior, energy rate usages, climates, and fraud patterns at a
nationwide level. More generally, considering a large user base may blur
the patterns that affect only some subsets of customers.

If we break down the data and analyze the results of our campaigns as
partial results by the tariff (Figure 3.11), the performances vary notably
depending on the tariff; for example, in the 4.5x campaign, the two most
common tariffs were those that achieved best performance). This can be
read as:

4 The exact figure is withheld at the request of the company, but it is a small 1-digit percentage.
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• The information of the less common customers is blurred by that of
the most common customers.

• We have less information from these customers, the latter being more
difficult to profile and detect.

Figure 3.11: Comparison between the precision of the baseline model and
our methodology in a local population and in all the country in our elec-
tricity campaigns.

Figure 3.12: Comparison between the precision of the baseline model and
our methodology in all the country in our gas campaigns.

3.4 Exploiting the Classification Approach

Our first approach from [36], explained in Section 3.3, provides a vision of
our system during the first years of the project. Then, the system evolved
to fit the new requirements of the company but also to improve precision.
Below we detail the improvements introduced in the system that were
explained in [32].

3.4.1 More Labeled Instances

One of the problems in our system was the lack of instances to train mod-
els. The use of our own feedback to train models could be insufficient, since
many times the campaigns were small. To increase our training dataset,
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we started to include all the NTL cases and non-NTL cases from the com-
pany, i.e., include feedback from campaigns that were not generated by our
system.

To improve our system we also considered it appropriate to make explo-
ration campaigns to feed our system with profiles that are not represented
in our campaigns. These campaigns were not carried out because the main
objective was not the precise detection of fraud and, therefore, they could
be of low success and therefore have low performance for the company.
The inclusion of NTL and non-NTL cases not generated by our system
could mitigate (though not solve) the classic problem of exploitation vs.
exploration in machine learning.

3.4.2 Segmentation of the Campaigns

At first, our system was thought of as a method to detect NTL cases in a
specific dataset of similar customers. However, when we implemented the
same solution in a more generic campaign (e.g., to detect NTL through-
out the country), although it still generated good campaigns, it had an
undesired behavior: the system detected NTL only in specific types of
customers (e.g., the company has more customers with a contract than
customers without a contract, but the proportion of NTL instances in the
customers with no contract was higher without a contract). These results
suggested to us that it was necessary to segment the customers according
to their characteristics:

• Customers with no active contract: Since this type of customer ab-
sorbed all the learned patterns from the model (i.e., the characteris-
tics of the dataset and the existing biases made the algorithm only
to focus on detecting NTL in customers with no contract), we gener-
ated a specific campaign for this type of customers (i.e., we trained
a model using only customers with no contract, and scored with this
model also the current customers with no contract).

• Customers with an active contract: from the rest of the majority of
the customers (around 90% of the customers in the company have an
active contract), we sub-segmented the campaign into sub-campaigns
depending on the region and the tariff of the customers:

– Region where they live: Spain is climatically rich. Therefore,
there are colder and less sunny regions that would have different
consumption behavior than the rest.

– Tariff: The customer has a tariff aligned to their characteristics
and behavior. Analyzing aside each tariff is the best way to
single out customers by their consumption patterns (e.g., small
apartments, big houses, or industries).

Despite that previous segmentation, we needed some extra segmen-
tation due to the existing dataset-shift (Formally, if Ppopulation(x) and
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Plabeled(x) denote the real population and labeled (train) fraud distribu-
tions, it often happens that Plabeled(x) 6= Ppopulation(x), since Plabeled =
Ppopulation(x|s = 1), where s is the binary condition of visit (i.e., if the cus-
tomer was visited)) in some segments: the company’s labeled instances (i.e.,
the results of the campaigns from the last two years) do not reflect faith-
fully the distribution from the company’s customers, since this strongly
depends on the historical success of the campaigns conducted before in
that particular segment. This imbalanced training dataset generates bi-
ased models (see for instance Figure 3.13). For this specific case of imbal-
ance, we created specific campaigns, insulating these customers that are
over/under-represented. That is:

• Over-representation campaigns: The over-representation of a type of
customer can absorb all the classification capabilities (i.e., that the
system only learns to classify that type of customers). A consequence
of this is that only the over-represented type of customer receives a
high score. To avoid this, isolating these customers and generating a
tailored campaign for them avoids the imbalance.

• Under-representation campaigns: There are cases where the infor-
mation from a type of customer is not good enough to detect fraud
(e.g., there are no positively labeled cases) and therefore that type
remains unconsidered. Generating specific campaigns for this type of
customer, even though the labeled information is not extensive, forces
the system to detect NTL patterns for this under-representation.

Figure 3.13: Real example of the dataset-shift problem between the pro-
portions of the real domain (customers from Spain with no contract in
November 2018) and the labelled instances of the customers with no con-
tract (feedback available from the same type of customer since October
2016); in the region of Madrid the company has more cases of NTL than in
any other region, and this led our system to over-estimate the score assigned
to the customers in that region. This was solved through a segmentation,
generating two different campaigns (Madrid and the rest of Spain).
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Figure 3.14: Our system can be fully configured. The contract status, the
region and the tariff of the customer can be set before starting the process,
allowing dozens of different configurations, generating successful tailored
campaigns.

3.4.3 New Features

The evolution of our NTL detection system made us evolve and adapted
the features to flexibilize them and facilitate the optimal profile of different
types of customers. These are the main changes in comparison to the
features explained in Table 3.1:

• Contract Status: To represent customer behavior in accordance with
the contract status (active contract or not), we included more consumption-
related features for the customers with contract. For the customers
without an active contract, as they do not have a recent consumption
record, we only included a reduced number of consumption features
that focused on their consumption behavior just before they cancelled
the contract (with the aim of detecting abnormal behaviors).

• Flexible Features: Instead of delimiting the features to a closed mean-
ing e.g., considering that the abrupt decrease of consumption (the
abrupt decrease in consumption are a family of features that aims to
detect consumption drops in consecutive months.) feature consists
of a binary value indicating a reduction of X%, we opted to include
as much raw information as possible, e.g., in the previous example,
including the raw value of the ratio between the consumption of the
last two consecutive months (i.e., representing this behavior with a
continuous value). This would give the algorithm more flexibility
than using static binary features, guaranteeing that:

– The continuous value provides a richer representation of the
ratio of consumptions in comparison to a binary feature and,
therefore, the partition process from the Decision Tree would
be better.

– A richer representation of the reality also provides the system
with other information that simple binary features cannot. For
instance, it could be true that in certain segmentations, a high
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increase of consumption in two consecutive periods of time would
be an abnormal behavior too. The continuous feature can pro-
vide this information to the system.

– The flexibility would help the system to be successful over time,
even though the consumption patterns from the customer change.
This can be exemplified with what we regard as low consump-
tion; in the future, apartments will be more energy efficient,
thus what we consider now a low consumption in the future
could be the average consumption and, for this reason, including
raw information of the consumption instead of binary informa-
tion (e.g., the customer has consumed less than 2000 KWh in
the last 12 months) will make the system more future-proof.

In Figure 3.15 there is a visual example that explains the flexibility
desired in our system.

• Different versions: to boost the information given to the algorithm,
different versions of the same concept are provided to the algorithm.
This will allow more flexibility for deciding which feature can give
the maximum information during the training (e.g., there are several
abrupt decreases in consumption features, with different nuances;
depending on when that consumption drop happened, how many
months are considered in the consumption decrease, etc.).

• We also reduced the number of features used in the system to avoid
overfitting.

• Categorical Features: we exploited the categorical information avail-
able from the company’s database.
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Figure 3.15: Providing to the system the ratio between the consumption
of two consecutive periods of time (i.e., 0.07 for customer 1, 0.023 for
customer 2 and 1.3 for customer 3) instead of a binary feature such as
”during the second period the customer consumes lower than 10% of the
consumption in the previous period” gives more information and flexibility
to the system. The system can determine the proper split in the training
stage, and moreover we provide extra information (e.g., that customer 3
is consuming more in the second period, something that would require an
extra feature if we used the binary feature).

Despite these changes, the basis of the variables is the same: to generate
a set of consumption variables that can represent the anomalous consump-
tion typical of fraud, and a set of complementary variables (the static,
visiting and sociological variables) that complement and contextualize the
consumption variables.

Figure 3.16: Some examples of different consumption behaviors. The fea-
tures need to provide enough information to extract as much information as
possible from these profiles: Long periods of low consumption (customer 2),
abrupt decrease of consumption (customer 1), similar consumption behav-
ior to the expected consumption curve (Normal customer) or an abnormal
consumption curve (Customer 3).
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3.4.4 Algorithm and Metrics

To simplify our system, we went from combining different algorithms at
the same time to using only a Gradient Boosting Decision Tree (GBDT)
model. This decision was multifactorial, being the optimal decision if we
analyzed the situation in terms of accuracy, simplicity, flexibility, trans-
parency, execution time and available resources.

In terms of accuracy, GBDT algorithms are the state-of-the-art solu-
tions when working with tabular data. Moreover, these good results can
be achieved efficiently: modern GBDT implementations require less com-
putational resources than other solutions, scale well, and do not require
deep preprocessing to obtain optimal results (e.g., XGBoost allows empty
values, as well as LightGBM and Catboost allow categorical values). All
of this simplified the automatic generation of campaigns, making it easier
for us to generate campaigns quickly in various domains. Moreover, as
we analyze in further chapters, there exist fast and accurate methods to
achieve robust explanations in tree models.

The alternatives considered were the Support Vector Machine and Neu-
ral Networks. The former was rapidly discarded because of computation
time rations (it is much slower than GBDT, especially if a non-linear ker-
nel is used in the SVM). The latter was also considered (especially due to
its popularity) but discarded for many reason. First, deep learning is also
slower than GBDT (and the lack of GPU capabilities in the company’s
servers made this slowness insurmountable). This is especially true consid-
ering that deep learning does not provide high performance out-of-the-box,
requiring deep parameterization (i.e., unique configuration of layers, con-
nection and activation of neurons per campaign generated). Furthermore,
the theoretical superiority of deep learning in terms of accuracy in text
and image classification problems is not seen in tabular data, where GBDT
models achieve (at least) on par accuracy, with much less effort. This is
analyzed in this recent paper [126].

Regarding the metrics used to evaluate our system, we started using
the f-score, but then we considered the use of the ROC-AUC score to avoid
the use of thresholds, since the company usually considered the order of
the customer instead of the score itself to build the campaign (i.e., the
company included the top-k customers in a campaign instead of including
the customers with scores higher than a threshold). Finally, we used the
PR-AUC instead of the ROC-AUC score since it provides more robust
results with an imbalanced dataset, as explained in Section 2.1.2.

3.4.5 More Results

The modifications explained in this section helped us to generalize the
use of the system, making it flexible to detect NTL cases for different
customers. We exemplify this success with two specific campaigns, the
36% of accuracy in customers with no consumption and the campaigns
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generated to detect NTL cases in customers with no contract.

Customers with no Consumption After several years of generating
campaigns, the company shared with us their concerns about the customers
with no consumption. After the installation of smart meters, they consid-
ered that many of the customers with no consumption (i.e., with no differ-
ence according to the difference between meter readings) would decrease.
However, it was increasing month after month.

To solve this problem, they started to create rule-based campaigns to
control this type of customer. For instance, to visit those customers that
according to the company had both electricity and gas, but the consump-
tion of gas did not match the electricity consumption. In general, we
considered the approach taken by the company to be excellent, visiting
those customers with very abnormal behavior, but the results were bad.
In part, the poor results could be explained by the centralizing power that
Madrid has for the inhabitants of the Castilian territories: many people are
compelled to live in Madrid and therefore there are many cities and towns
in Castilla la Mancha and Castilla y Leon with descending populations
and, therefore, the number of empty houses and apartments is increasing
in these regions.

For this reason, they asked us to fit our system to detect NTL cases
in this specific type of customers. The campaign generated was trained
by using as labelled instances those customers that would be defined as
customers with long periods of no consumption, i.e., customers that had 0
or close to 0 (up to 10kWh) in at least the last 7 months. The campaign
was conducted in 4 regions, where the best campaign achieved up to 36%
of precision, and the least accurate achieved a precision close to 10%.

Customers with no Contract The company used to generate fairly
successful rule-based campaigns for the customers with no contract, espe-
cially those that were recidivist, i.e., power supply points with constant
fraud (e.g., houses occupied by sqatters). In spite of the good results, we
adapted the NTL detection system to generate campaigns for the customers
with no contract.

Our system has achieved several times campaigns with a precision
higher than 50%. Moreover, we generated campaigns to detect NTL cases
for large customers (e.g., industries), recovering a large amount of energy.

3.5 Overall Analysis of the Classification Super-
vised Approach

The supervised approach to solve the NTL detection problem was successful
in general, but had different problems that needed to be tackled. Below
we set out these problems, all of them related to each other.
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Lack of Robustness Our system achieved high prediction in NTL cases,
but lacked in robustness. For instance, in many cases the results in distinct
but very similar campaigns were very different (e.g. precision of 20% and
2%). In part, this could be exemplified in table 3.3, where we analyze the
results of the system in a test dataset using 4 different metrics: the preci-
sion, the F1-Score, the AUC-ROC score and the Average Precision Score
in one dataset. As we can see, if we focus on the results in precision, the
results are excellent. However, benchmarking only provide a biased vision
of our system: The results in F1-Score, and Average Precision determine
that our system might not generalize as desired.

DOMAIN ACCURACY F1-SCORE PRECISION
Domain DAN 0.98 0.58 0.64

Table 3.3: Results from a test in a labelled dataset, with an 80% training
- 10% validation - 10% test distribution. The results in the table, which
correspond to the results in the test, indicate a priori a good benchmarking
(especially in terms of precision), but the low performance in terms of F1-
Score and Average Precision indicate that our system is not robust enough.

Our efforts to increase the robustness by increasing the regularization
to reduce the overfitting or the introduction of new labelled instances to
improve the representativity of the labelled instances did not improve the
overall robustness.

Amount of Energy Recovered In table 4.1 and Figure 3.17 we show
another side of our system’s lack of robustness: the system learn patterns
to detect NTL cases with low energy recovered. In general, patterns that
might be good to achieve good results in training/validation tests do not
properly generalize in real scenarios.

DOMAINDAN energy528 energy211 energy106 energy42

Reference 1112625 798198.3 582480.8 366088.1
Classification 434531 196407 97659 37838

DOMAIN DAN NDCG NDCG528 NDCG211 NDCG106 NDCG42

Classification 0.52 0.25 0.16 0.11 0.07

DOMAIN DAN median528 median211 median106 median42

Reference 1324 2704 4131.5 6884
Classification 692 782.5 735 610

Table 3.4: A comparison between a perfect model and the classification
model in terms of energyn (i.e., amount of kWh recovered in each threshold
n). As we can see in the results, we recover a low amount of energy, an
indicator that we might not be learning the optimal patterns that represent
the NTL.
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Figure 3.17: Results from a test in a labelled dataset, with an 80% training
- 10% validation - 10% test distribution. The model correctly predicts the
NTL cases, but as exemplified in table 4.1, we are detecting NTL cases
with a low amount of energy to recover.

Interpretability and Bias Detection Our approach to validate the
features built in our system was, in the first place, to analyze the odd-ratio
of the features (see Table 3.5 from [30]).

VARIABLES ORPG ORPN

Abrupt decrease of consumption 18.6 3.4
Long period of low consumption 6.2 3.0
High consumption discrepancy 10.4 2.4
High range higher lower consumption 12.2 2.0
Gas consumption without electricity 11 2.9

Table 3.5: Significant odds-ratio of some features from the electricity cam-
paigns. Both the odds-ratio between the fraudulent and non-fraudulent
customers (ORPN) and the odds-ratio between the fraudulent customers
and the customers not part of any campaign (ORPG) are included.

However, this approach is poor, since it only analyzes the values of the
features (helping to detect, for instance, biases in the labelled instances),
but does not analyze their influence on the system. Therefore, it is difficult
to understand the lack of robustness and energy recovered problems when
the patterns learnt by the model are not easily intepretable.

3.6 Discussion

This chapter explains our first approach to the NTL detection problem
using data science techniques, being the basis for the future chapters of
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this part of the thesis. The proposal is very similar to others existing
approaches in the literature (i.e., a supervised classification method that
predicts using a black-box algorithm), achieving good results.

However, in contrast with other works, we offer a critical analysis of
our work. In Section 3.5 we explain the existing problems of our system:
the lack of robustness, the low amount of energy recovered per NTL de-
tected, and the lack of interpretability. These challenges are analysed and
mitigated in the following chapter.



Chapter 4

A Regression Approach to
NTL Detection

4.1 System Goals and Challenges

The system explained in pevious Chapter 3 has been successful as an NTL
detection system. Nevertheless, several problems were detected, as we
discussed at the end of the Chapter (Section 3.5). Here we provide a more
extensive and ordered explanation of the existing challenges.

Technical Challenges

In general, our system has achieved good results, especially considering
that it is implemented in a European region with a very low ratio of NTL
cases. However, the robustness of our system campaigns varied depending
on the type of campaign. For instance, our system is accurate in certain
types of campaigns where the type of customer was predefined (e.g. cus-
tomers with no current contract1, or customers with long periods of no
consumption2). However, in more generic campaigns (i.e. campaigns that
included hundreds of thousands of customers) the system underperforms
in robustness, i.e. the system cannot consistently provide good results.

According to our experience and knowledge, two fronts explain these
problems: the existing biases in the labelled instances available from the
company and the difficulty of properly benchmarking a model using a val-
idation dataset.

1 Customers with no contract refers to the customers that had a contract in the past, but the
contract is currently cancelled. In many cases, these customers maintain the wire and meter
installation and, therefore, can commit fraud. Our system has achieved many campaigns of
around 50% of precision.

2 As people in Spain move to cities, many villages become empty. This is a problem for the
company as they do not know how to differentiate a house without consumption because it
is a second home with punctual consumption or a fraudulent client. Our system was able to
detect NTL cases for these types of customers with a precision of up to 36%.

62
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Regarding the data-related problems, we have already explained in [32]
how we detected different types of biases and other data-related problems in
our data. These problems are a direct consequence of using observational
data produced for other purposes. Therefore, the available information
does not reliably represent reality, and it is a challenge to ensure generaliz-
ability since the assumption that the labelled and the unseen instances are
i.i.d, i.e. independent and identically distributed, is not met. For instance,
the fact that the company visits more customers suspected of NTL leads to
an over-representation of these customers, meaning that average customers
with a normal consumption are grossly under-represented in the system.
A similar problem is that the company generates more campaigns in those
regions where it has historically achieved better results, making the quality
of the labelled information in under-visited regions very low. Therefore, it
is a challenge to continually build robust models when the labelled dataset
does not correctly represent reality.

Our first efforts consisted of implementing classical machine learning
techniques, e.g. to modify the model’s regularization and tuning, but no
improvement in the campaigns was observed. Similarly, we attempted to
improve the labelled information used to train the model, e.g. by weight-
ing the customers according to their representativeness, balancing the class
imbalance typical of fraud detection problems, or implementing a cost-
sensitive solution. However, after applying these solutions, the results
were inconclusive: some of the experiments validated in our labelled in-
formation had initially unsuccessful results in real campaigns. Moreover,
the company’s demand for having short-term results made us rule out the
generation of exploratory campaigns with these techniques that could of-
fer us a long-term improvement of the system. All of this evidenced the
difficulty of benchmarking our NTL system on validation datasets and a
scalar metric [48].

At this point, we discarded the most complex methods and introduced
some simple solutions that could be easily validated. For example, in [32]
we explained how we segmented the customers to build more targeted cam-
paigns to mitigate imbalance-related problems. For benchmarking, we used
the Average Precision Score3, which provides a good generic vision of how
well a model ranks, without setting a threshold when the data is highly
imbalanced [42]. These solutions improved our system. Nevertheless, the
system was still not sufficiently reliable for its industrial adoption.

Economic Efficiency

The use of machine learning solutions to generate campaigns is justified
if it provides a better solution than a random selection of customers or a

3 The Average Precision Score is the scalar value that results from summarizing a precision-
recall curve as the weighted mean of precisions at each threshold, using as weight the increase
in recall from the previous threshold.
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baseline non-smart method (e.g. a basic rule system consisting of visiting
those customers that have had an abrupt decrease of consumption). The
term better solution includes different aspects from the company’s point of
view but can be summarized in the following two dimensions:

• The machine learning solution is more precise than other solutions,
i.e. the proportion of True Positives is higher than the random selec-
tion or the rule-based approaches.

• The machine learning solution recovers more energy than other so-
lutions, i.e. the energy estimated that the NTL cases have not paid
(and should be charged in the near future to those customers) is
higher than the energy recovered from random selection or rule-based
campaigns.

Therefore, a campaign with a low precision but a large amount of en-
ergy recovered would be considered a successful campaign. Similarly, a
campaign with fairly low energy recovered would also be considered a good
campaign if many NTL cases are discovered, as it would prevent energy
loss in the future. Understandably, an excellent campaign would be able
to combine both good precision and a high amount of energy recovered.

To better understand what would be considered a good campaign in
terms of energy recovered, it is necessary to note that the average annual
electricity consumption per household in Spain is about 3500kWh. In ad-
dition, the distribution company can legally invoice the NTL for one year:
”... the distribution company will invoice an amount corresponding to the
product of the contracted power, or that should have been contracted, for six
hours of daily use during one year,...4”. Under these circumstances, the
following classification has been considered for the purpose of analysing the
NTL cases detected according to the energy recovered:

• >3500kWh recovered: The detection of these customers is a priority
due to the amount of energy lost.

• Between 3500kWh and 2000kWh recovered: These NTL cases are
also important. As in the previous example, the consumption curve
should reflect an abnormal behavior that the predictive system should
be able to detect, e.g. a long period of low consumption.

• Between 2000kWh and 500kWh recovered: These NTL cases should
have some abnormal consumption behavior (e.g. a recent abrupt
decrease of consumption). However, their detection should not be
prioritized over the customers with an NTL case estimated to recover
energy >2000kWh.

4 Real Decreto 1955/2000, de 1 de Diciembre, art. 87
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• 500kWh or less: Although these are NTL cases, their consumption
behavior might not properly represent the NTL behaviour (e.g. an
abnormal consumption curve or an abrupt decrease of consumption).
Therefore, these NTL cases might not be prioritized over the previous
NTL cases, as they might include in some cases noise or biases in the
system.

From the company’s point of view, our system tended to detect NTL
cases with low energy to recover. For this reason, some machine learning
techniques were implemented to increase the amount of energy to recover
(e.g. weighting the customers according to the energy recovered). However,
the results obtained after applying these solutions were inconclusive and,
in many cases, seemed to aggravate some of the existing data biases (e.g.
by oversampling the customers from specific regions).

System Transparency

Although it is generally accepted in the literature that the black-box algo-
rithms are more accurate than other more interpretable approaches, their
use poses a clear problem in terms of transparency, which greatly ham-
pered the development of our system. The problems explained above and
the lack of conclusive results in our tests were a direct consequence of the
impossibility of understanding how the methods implemented impacted
our system.

This lack of transparency affected the company’s stakeholders in dif-
ferent ways. On the one hand, the stakeholders historically in charge of
generating the NTL campaigns could not validate the patterns learned by
the model. As widely analyzed in the literature [100, 99, 11], the super-
vised methods only detect correlations, and therefore human supervision is
necessary to validate them as reliable causal patterns (or, at least, reliable
correlations in the company’s context). The use of a black-box algorithm
made this task challenging, so they could neither easily detect undesired
patterns nor suggest system improvements. On the other hand, managers
in charge of setting company guidelines had to make decisions regarding
the use of the system (i.e. whether to have confidence in the system and use
it to generate campaigns) in a blind manner, based solely on their results.

As explained in more detail in Section 4.3, our first approaches (i.e. to
use Feature Importance and LIME) to provide explainability to our system
(and therefore to make our system more transparent for the stakeholders)
were insufficient.

4.2 The Regression Approach for NTL Detection

4.2.1 From Classification to Regression in NTL Detection

The classification and regression models are two supervised methods that
can be defined as follows: beingX the labelled instances {(x1, y1), ..., (xn, yn)},
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where xi is the feature vector that represents an instance and yi the value to
be predicted, the supervised model aims to learn the function f, Y = f(X),
wherein a classification model Y is either 0 or 1 (or 0 ≤ Y ≤ 1 if the model
provides probabilities), and in a regression model the value to predict is
continuous (i.e., Y ∈ IR).

The classification approach to detect NTL is widely seen in the liter-
ature (see, for instance, the examples from Related Work, Section 3.2 or
our work explained in [36]). This approach, despite the good results that
it can achieve (in [32] we explain how we have achieved campaigns with an
accuracy higher than 50%), oversimplifies the representation of the reality
in our NTL detection system since it equalizes the importance of each NTL
case: both the customer that has been committing NTL for one year and
has stolen 3000 kWh and the customer that had a meter problem for a
few weeks (and therefore the energy loss is low), have the same label, even
though the former case is much more important for training a supervised
model for NTL detection. The higher the energy recovered, the better, as
already introduced in Section 4.1, is true for several reasons.

• On equal terms, it is preferable to recover more energy at once in
each visit from an economic point of view.

• The company usually detects short-term NTL cases through smart
meter sensors. That is, if the smart meter detects a manipulation,
it sends a signal to the company to warn about that manipulation,
taking some days (or weeks) to include that customer in a campaign.
Focusing on detecting these cases through data analysis may overlap
the sensor NTL detection method. However, the long-term NTL
cases are NTL cases that remain undetected.

• The company might have problems recovering all the NTL from long-
term fraudulent customers due to legal reasons. For this reason,
companies focus their efforts on detecting these long-term fraudulent
customers to reduce the difference between the energy loss and the
energy they will be able to bill5.

Moreover, as we explain in Section 4.1, we work with observational
data, i.e. data produced for other purposes that has not been prepared nor
randomly sampled to properly represent the actual customers. The fact
that the labelled information available corresponds to customers visited to
control abnormal behavior (or correct a meter problem), altogether with
other company-related decisions that aim to maximize the campaign results
(e.g. the companies usually over-control the customers that constantly
commit fraud), lead the training dataset available to train the model to not

5 For instance, not detecting a long-term NTL customer (e.g. 20 months of energy loss) will
increase the energy stolen by the customer. A customer that has been committing NTL for
three months will also steal energy, but the company will still be able to bill all the stolen
energy if it is detected during the next nine months.
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represent the reality of the company’s customers properly, disserving the
machine learning process. Consequently, we are dealing with the existence
of dataset-shift, i.e. the joint distribution of inputs and outputs differs
between the training and test datasets: if Ppopulation(x) and Plabeled(x)
denote the real population and labeled (train) fraud distributions, it often
happens that Plabeled(x) 6= Ppopulation(x), since Plabeled = Ppopulation(x|s =
1), where s is the binary condition that indicates if the customer is included
in the training dataset, in our case if the customer was visited. All these
problems cause the robustness degradation of our classification approach,
visually represented in Figure 4.1.

  Important NTL

   Not Important NTL 

  
   Important Pattern (low consumption): 2/4 precision
  Anecdotal Pattern (lives in Town T): 3/4 precision.

NTL

NTL

non-NTL

non-NTL

Figure 4.1: With the binary classification we are equating the importance of
each NTL, learning undesired patterns: if we do not prioritize the darker
red instances (NTL cases with a large amount of energy recovered and,
therefore, better representatives of the behavior of an NTL case), we might
prioritize undesired patterns like the one represented in a blue pattern. The
result is a biased model that cannot robustly detect NTL cases.

In this work, we propose to use the energy to recover as the value to
be predicted by the model, i.e., to convert our classification approach with
a LogLoss function model (explained in Section 2.1.2) into a regression
problem, where the value to predict is the amount of energy recovered in
the NTL case. With this fundamental change, we aim at improving our
system by focusing on learning better patterns that generalise better on
unseen data, as we explain below:

• By breaking the NTL/non-NTL binary representation of the NTL
case, we implicitly indicate to the system that it should focus on
learning patterns from high NTL cases whose profile should have
clearer abnormal consumption feature values (e.g. low consumption
during the last year).

• Moreover, we avoid learning patterns from over-represented customers
in the observational data due to business-related decisions (e.g. the
recidivist customers) if it does not entail greater energy recovery.

If we look again at the example in Figure 4.1, using the energy to recover as
the target variable means that the system is going to learn the important
pattern first rather than the other.

The two most typical regression Loss Functions are the Root Mean
Square Error (RMSE) and the Mean Absolute Error (MAE), both ex-
plained in Section 2.1.2. The difference between the RMSE and the MAE
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 2540kWh 240kWh  1021kWh

Profile analysis

2540 kWh: Abrupt decrease of consumption, several months with no consumption. Detected 
because of its consumption profile.
240 kWh: No significant abrupt decrease of consumption, average consumption during the last 
months relatively high. Probably detected due the previous NTL detection. Non-relevant 
consumption patterns.
1021 kWh: Gradual decrease of consumption, average consumption during the last months low but 
not close to 0. More relevant NTL case than the 240 kWh instance

 

 10 months profile

16 months profile

 24 months profile

Figure 4.2: Twenty-four months consumption curve from a recidivist cus-
tomer that has committed fraud three times (each vertical line corresponds
to the moment the company detected that the customer was committing
fraud, with the amount of energy recovered). A binary approach would
label each case equally (i.e. as a positive instance), overlooking the fact
that each NTL detection is different, and needs to be contextualized. The
RMSE regression approach would set the desired priority.

loss function is the square of the errors, i.e. the higher errors have more
weight in the RMSE (as exemplified in Figure 4.2). Therefore, the RMSE
fits better in ranking problems, in recommender systems, or in our pur-
pose of learning patterns from the higher NTL instances from our training
dataset.

4.2.2 Experiments: Classification vs. Regression Bench-
marking in Real Data

In this subsection we compare both the classification and the regression
model for NTL detection and confirm the expected benefit of using regres-
sion when the organization’s aim is to recover energy without visiting too
many customers.

Preliminaries

Data For the experiments, we will use four different datasets from two
regions (A and B), with two different tariffs (1, the most common tariff
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for houses and apartments in Spain, and tariff 2, an equivalent tariff to 1
but with hour price discrimination. The regions are anonymous to protect
the privacy of the data. 6). The customers must have less than 10kwh
of Contracted Power to be on these tariffs. The domain DA1 (i.e. the
customers from region A and tariff 1) has more than 1000000 customers,
and domain DB2 has less than 50000 customers. The other two datasets
fall between these two datasets in terms of population. The proportion of
the NTL cases in each domain is lower than 5%. We have around 300000
labelled instances for the DA1 domain, several thousand cases for DA2 and
DB1, and several hundred cases for DB2.

Model For the classification and the regression predictions, we have
trained two different CatBoost models. Each model is trained using the
same 80% of the positive instances and 80% of the negative instances. We
split in half 20% of instances left, keeping the positive/negative ratio, to
build the validation dataset (i.e. the data used to tune the model), and the
test dataset (i.e., the training, the validation and the test dataset are strat-
ified). The random partition is chosen over considering the timestamp (e.g.
the last 10% of NTL cases as the test dataset) to guarantee diversity and
reduce the differences between the datasets due to company decisions. To
avoid overfitting, the metric used for early stopping to establish the optimal
number of trees is the Average Precision Score for the classification model
and the RMSE for the regression model. Both models use the same cus-
tomer profile, with the only difference that for the classification approach
we use a binary target (NTL/non-NTL), while in the regression approach
we use the amount of energy to recover (information that is provided by
the technician when an NTL is detected).

Benchmarking A good benchmarking metric to use if we aim at recov-
ering more energy in our campaigns is the Normalized Discounted Cumula-
tive Gain (NCDGn) [70]. It is a measure of ranking quality that evaluates
our output’s correctness with a value between 0 and 1 (1 being the perfect
order of the NTL cases, and 0 otherwise). This metric allows us a global
vision of the correctness of the predictions made, without considering one
specific threshold (i.e. the top 100 customers): in many cases, the number
of customers to be included in a campaign is unknown when the campaign
is being built.

The NCDGn is defined as

NDCGn =
DCGn

IDCGn

6 A tariff with price discrimination involves charging a different price for the electricity de-
pending on when the electricity is consumed. More specifically, electricity would be cheaper
at night but more expensive during the day. The potential customer of this tariff is the
customer that has an electric car and charges it at night.
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where DCGn is defined as

DCGn =

n∑
i=1

Reli − 1

log2(i+ 1)

Reli being the relevance (i.e. the score in the ranking, in our case the
amount of energy recovered), and IDCGn, i.e. the ideal DCG, corresponds
to a perfect ordered DCG for the top n elements of the list.

In addition to the NDCGn metric, we use the amount of energy re-
covered from the top n scored customers to compare approaches. In both
cases we provide four different results (i.e. four different n threshold val-
ues): n = (NTL cases in test)/2, n = (NTL cases in test)/5, n = (NTL
cases in test)/10 and n = (NTL cases in test)/25; each threshold aims to
represent different types of campaigns: from very small campaigns where
just a few customers are visited to big campaigns where hundreds of cus-
tomers are included in the campaign.

Benchmarking Results

In Table 4.1 we report the comparison, in terms of energy recovered and
NDCG metrics, for the regression and classification approach in the four
datasets (for each n threshold).

In terms of NDCG, the regression models always score better than
the classification models, meaning that the regression approach is able to
order better the test customers according to its consumption. Therefore,
we recover more energy at the very top of the list, confirming in terms of
benchmarking its superiority over the classification approach. This superi-
ority is especially true for small campaigns,where the NDCG value for the
classification approach is extremely low.

In terms of energy recovered, the regression approach is superior to
the classification approach; the amount of energy recovered in our results
is usually higher than the energy recovered with the classification models,
especially for small-sized campaigns. Recovering more energy is the desired
outcome: accumulating very high NTL cases at the very top of the list
would allow the company to generate more fruitful campaigns.

With large or medium-sized campaigns, the benefits in terms of NDCG
and energy recovered of the regression approach is not as clear as in small-
sized campaigns, as we can see in Figure 4.3: the regression model ranks
higher the high-NTL cases (i.e. the NTL cases in which more energy can be
recovered, in purple and in red) in comparison to the classification model,
but then this advantage fades slightly, and the energy recovered by both
approaches becomes more similar.
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Energy recovered from an n-sized campaign (kWh)

Domain DAN n = 528 n = 211 n = 106 n = 42

Reference 1112625 798198.3 582480.8 366088.1
Classification 434531 196407 97659 37838
Regression 468496 (+7%) 267121 (+36%) 164814 (+69%) 73092 (+93%)

Domain DAD n = 186 n = 74 n = 37 n = 15

Reference 362877.4 273622.2 204201.6 139045.6
Classification 164509 68391 39941 8704
Regression 151844 (-8%) 96520 (+41%) 70022 (+75%) 54988 (+532%)

Domain DBN n = 79 n = 31 n = 16 n = 6

Reference 146245.7 102029.7 75141.3 46690.3
Classification 50596 22164 10079 3542
Regression 67163.9

(+33%)

25764.2
(+16%)

15148.2
(+50%)

12595.2
(+256%)

Domain DBD n = 19 n = 7 n = 4 n = 1

Reference 46482.3 31957.3 22607.3 7555
Classification 16799 7472 5975 2691
Regression 14036 (-16%) 11370 (+52%) 8679 (+45%) 5484 (+104%)

Ranking quality from an n-sized campaign (NDCG)

Domain DAN NDCG NDCG528 NDCG211 NDCG106 NDCG42

Classification 0.52 0.25 0.16 0.11 0.07
Regression 0.57 0.32 0.26 0.23 0.18

Domain DAD NDCG NDCG186 NDCG74 NDCG37 NDCG15

Classification 0.43 0.25 0.15 0.11 0.05
Regression 0.65 0.46 0.44 0.45 0.49

Domain DBN NDCG NDCG79 NDCG31 NDCG16 NDCG6

Classification 0.45 0.22 0.15 0.11 0.08
Regression 0.47 0.29 0.19 0.16 0.17

Domain DBD NDCG NDCG19 NDCG7 NDCG4 NDCG1

Classification 0.47 0.30 0.24 0.25 0.36
Regression 0.59 0.39 0.43 0.46 0.73

Table 4.1: The table at the top compares classification and regression in
terms of energy recovered (i.e. the kWh recovered in each threshold n). As
we can see in the results, the regression approach can recover more energy
than classification in most cases. In several cases, the amount of energy
recovered is significantly greater, especially when the n threshold is small.
This means more efficient campaigns in economic terms. The table at
the bottom provides a similar analysis, comparing the campaigns in terms
of NDCGn. In this analysis, the regression results always outperform
classification results in ranking performance (i.e. sorting the customers
according to their NTL).

4.3 Analysing NTL Detection Beyond Benchmark-
ing
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Figure 4.3: The results obtained in Table 4.1 are confirmed in these images:
the regression model recovers more energy at the very top of the test pre-
diction list. More specifically, we can see how the purple cases (NTL cases
with more than 3500kWh, the average customer’s energy consumption per
year) in the regression model are recovered at the very top of the rank.

4.3.1 Classification vs. Regression in Terms of Explainabil-
ity

The results from Section 4.2.2 suggest that the regression models recover
more energy than classification. However, as explained in Section 4.1,
we are not confident with only benchmarking our models: increasing the
accuracy in validation sets that are subsamples of biased labelled instances
does not guarantee that the system is fair (i.e. the system is unbiased
against a particular type of customers, e.g. customers from poorer regions),
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and robust (the system will perform as expected in reality, learning causal
patterns, with no data leakage [72] nor dataset-shift [105]). The regression
approach should be humanly validated as a better method (e.g. learn better
patterns) than the classification approach. The purpose of this section is
to illustrate this through explanatory algorithms.

The first explanatory algorithm tested in our system was the Feature
Importance method. This approach was useful for us to detect biases
(e.g. by detecting features that were not indicators of NTL but were too
important in the model), but only provided a global vision of the model,
with no possibility of analyzing the importance of the features on specific
customers with a high score. For this reason we explored the use of LIME
to explain our predictions at instance level. As we explain in [31], we were
able to implement a rule-based double-checking method in campaigns to
discard customers for whom, despite a high score, the explanation obtained
from LIME was undesired (e.g. the patterns explained by the local model
would not be validated by a human expert). Despite the good results we
did not implement LIME as our explanatory algorithm due to the well-
known problems of robustness (e.g. [7]) because of the random component
of the algorithm but also the difficulty of having an optimal configuration.

After these two initial unsatisfactory approaches, we started to use
SHAP (more specifically, the tree SHAP implementation [81] to obtain the
Shapley values from Tree Models). According to our experience, the tree
SHAP was the optimal approach to obtain an explanation from a Tree
Model because of the following advantages summarized below:

• Consistent global and local explanations: SHAP provides like LIME
local explanations but also a consistent global explanation like Fea-
ture Importance, since the Shapley values of each instance are the
”atomic unit” of the global interpretations. Moreover, it maintains
the feature dependence from the model trained.

• Robustness: SHAP always provides the same explanation for the
same Tree Model, in contrast with LIME that includes randomness
that makes the whole approach look unreliable.

• Reliability: The explanations obtained using SHAP are based on a
solid theory and distribute the effects fairly based on the analysis
of the original model trained. On the other hand, LIME surrogates
the original model and, therefore, it can use features in the local
interpretable model not used in the original model.

• Informativeness: The explanation from SHAP provides a very exten-
sive explanation of how the model learnt, allowing the stakeholder
and the scientist to be properly informed to support their decisions.

• Low computational cost: Although the computational cost of the
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Shapley values are very high7, the computational cost for the tree
SHAP is low (i.e., O(TLD2), T being the number of trees of the
ensemble model, L the maximum number of leaves in any tree and D
the maximal depth of any tree).

In the next section we will analyze both classification and regression
from the Shapley values’ perspective for the case of NTL detection. In
the following Chapter 5 we offer a more in-depth analysis of each of the
explanatory approaches used in this thesis.

4.3.2 Experiments: Classification vs. Regression Explain-
ability in Real Data

Preliminaries

Data, Classification and Regression Algorithms For the experi-
ments of this section, we use the classification and regression model from
subsection 4.2.2 for the DA1 domain. Similar conclusions can be drawn for
the rest of the domains.

Shapley Values and Interpretability To analyze the goodness of our
model, we use the summary plot method from SHAP. This method provides
two plots for our type of problem (i.e., tabular data): a bar chart that
represents the mean of each Shapley value of each feature, and a more
complex plot that indicates how each value influenced (i.e., increased or
decreased the prediction made from the base value). Both plots can be
seen in Figure 4.4, applied on the classification approach. Regarding the
second plot, in red there are the higher values of the features and, in blue,
the lower values. When the feature is categorical there is no color scale
and all the dots are gray. For example, in Figure 4.4 we can see that,
on average, Current Reading Absences is the variable that contributes the
most to the prediction, increasing the prediction when the value is high
(i.e. the customer has had reading absences). In contrast, when there is no
reading absences (i.e. Current Reading Absences = 0, in blue), the Shapley
value is 0 or negative.

It is necessary to remark that when Shapley values correspond to the
regression model, they can be read directly as the apportion to the stan-
dard output. In contrast, in the binary classification the Shapley value
corresponds to the log odds ratio8. Moreover, it is necessary to clarify
that the red/blue feature value representation is not valid for categorical
features. In these cases, SHAP plots the dots in grey. Hence, Shapley

7 The Kernel SHAP cost is O(TL2M ) in tree models, being M the number of features, T the
number of trees and L the maximum number of leaves.

8 That is, x being the sum of the base value and the Shapley values from an instance, we would
obtain the probability between 0 and 1 by doing 1/(1+exp(-x)).
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values on regression have the additional characteristic of being simpler to
interpret.

Considerations Regarding Subjectivity in the Analysis As it is
widely analyzed in the literature, the supervised methods only detect cor-
relations, hence human supervision is necessary to validate them as reliable
causal patterns (or, at least, reliable correlation in the company’s context).
For this reason, the following model comparison from Section 4.3.2 requires
a human analysis of the Shapley values and therefore includes subjective
considerations.

In general, a reliable pattern would consist of a correlation between a
feature value xi and the prediction ŷ that a stakeholder would trust. For
instance, the stakeholders could easily validate patterns indicating that the
customer is consuming less than expected based on their previous consump-
tion or in comparison to other similar customers. A doubtful or question-
able pattern would consist of those patterns that either cannot be easily
validated by the stakeholders or whose interpretation is counter-intuitive
(e.g. a correlation between a long period of average consumption and a
high NTL score).

All these considerations are properly explained, in the following anal-
ysis, based on our experience in campaigns. In any case, we provide a
fairly generic analysis that fits in most domains similar to the one used in
this experiment. We try to avoid very complex analyses that could require
information from the company (e.g. the historical NTL cases in specific
towns) that cannot be disclosed.

Features Referenced in the Experiments The features referred to
in this section are described in Table 4.2. For each model, we analyze in
depth 8 features to ensure the readability of the document. However, we
also provide a more generic description of the model that includes more
information beyond the 8 features at the end of the analysis.

Evaluation Analysis through Explainability

According to Figure 4.4 and our interaction with the company’s tech-
nicians, we cannot trust the classification model since there is only one
consumption-related feature in the top eight most important features (the
Min/Max bill last 12 Months, a feature that refers to the ratio between the
minimum and maximum consumption bill in the last year). Instead, many
of the features are visit related (features that, as exemplified in Figure 4.2,
can be useful but can also produce bias and other learning problems).

For a deeper analysis we can analyze the effect of each value on the
output with the bottom plot from Figure 4.4:

• Reliable patterns: In the classification model, several patterns can be
easily confirmed as true indicators of NTL:
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FEATURE DEFINITION
Current Reading Absences After the installation of smart meters the company can

remotely communicate with the meters. The absence
of the meter readings can indicate either an incident
in the meter (e.g. that it stopped working) or fraud-
ulent manipulation. This feature indicates how many
months have passed since the last meter reading.

Last Visit: Correct/Fraud Categorical information that indicates if the last visit
done to that customer has been correct or an NTL has
been detected. If the customer has not received any
visit, the feature’s value is empty.

Town The town where the customer lives.
# Meters in Property How many meters the customer has in property. In

general, the meter is owned by the company, and is
rented/handed over to the customer.

Date Last Reading How many months have passed since the last meter
reading.

Last ’No Fraud’ Visit How many months have passed since the last time the
customer was visited with a visit whose aim was not
to detect fraud, i.e. the installation might not actually
be checked during the installation.

Min/Max Bill Last 12 Months The ratio between the minimum and maximum bill
during the last 12 months.

Contracted Power The contracted power by the customer. In general, it
is expected that a customer with a high consumption
needs a higher contracted power.

Cons. Zone/Cons. Last Year Ratio between the consumption of the customer and
the average in the zone from the same type of cus-
tomers. A zone is an internal reference that refers to
a group of customers that receive the electricity from
the same point of supply. Therefore all the customers
in the zone are very similar and have similar energy
needs.

Last Bill Last Bill in kWh.
Diff Consumption 6 Months The difference in terms of kWh between two equivalent

periods of time (i.e. the same six consecutive months)
in consecutive years. A higher value indicates that the
customer has had a consumption reduction.

# Months with No Consumption Consecutive months with no consumption until the
present.

Consumption Penultimate Year Consumption of the customer in the penultimate year
(i.e. from 24 to 12 months ago).

Table 4.2: Features referred to in the experiments with their descriptions.

1. Current Reading Absences: This feature is the most important
feature for the model (according to SHAP). This is a very reli-
able pattern learnt because the company expects to have, after
the introduction of smart meters, information from the meter
on an ongoing basis, including meter readings. The lack of me-
ter readings is for sure a very suspicious behaviour since it may
indicate meter manipulation.

2. Contracted Power : According to the Shapley values there is
a correlation between a higher contracted power and a higher
probability of committing NTL. This pattern can be a bias since
the company usually tends to include customers with higher
Contracted Power in the campaigns. However, the company
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Figure 4.4: SHAP explanation of the classification approach: there is only
one consumption-related feature on the top 8 most important features.
Moreover, how each feature influenced in the score assignation is not easy
to interpret: only the Current Reading Absences can be fully trusted as a
good pattern and, for this reason, we cannot validate the model as a good
and robust model.

validated this pattern based on their experience.

3. Min/Max Bill Last 12 Months: We can see that, in general, the
model considers a lower value more related to NTL behaviour.
We consider this pattern valid because, in general, we expect
that monthly consumption will not vary in a very marked way
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during the year. If this occurs, it may be a consequence of meter
tampering.

• Categorical information Two categorical features (with no colour
scale in Fig. 4.4 bottom) are very relevant in our system, as we ex-
plain as follows:

1. Last Visit: Correct/Fraud : This information is valuable since
the patterns learnt should be contextualised to the visits carried
out by the company. That is, a customer that committed Fraud
in the past is, according to the company, very likely to commit
fraud in the future.

2. Town: The town where the customer lives can be a good indica-
tor for the NTL detection system. Statistically, there are towns
in which the company has always detected more NTL cases than
in other towns.

• Unknown interpretability The interpretation of how a feature value
influences the output can be hard to understand for the classification
approach. Several examples are given below:

1. # Meters in Property : When a customer owns a meter, it is
more likely to be in an inaccessible location. Therefore, it would
be easier for the customer to manipulate it. Moreover, having
more than one meter increases the possibilities of having an
NTL. Therefore, one would expect that a high feature value
would correspond to a high Shapley value. However, a high value
in this feature influences unevenly on the output. With this
information the stakeholder might not draw conclusions about
the feature role in the prediction or its correctness.

2. Last ’No Fraud’ Visit Several interpretations can be expected
for this feature. For instance, a recent visit combined with a
high electricity consumption can confirm that a customer is not
committing NTL, but also a recent visit to a customer that is
consuming less than expected can be suspicious. The lack of
context harness the interpretation of the feature by the stake-
holder.

• Questionable pattern Finally, there is a pattern learnt from a feature
that the stakeholder cannot validate:

1. Date Last Reading According to the SHAP value, low values (i.e.
the last meter reading is recent) is more related to the NTL
behavior. At first glance, this pattern is unintuitive since we
would expect a similar pattern to the one learnt from the Cur-
rent Reading Absences: a recent reading would indicate that the
meter is working as expected. A possible explanation for this
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unexpected output might be the correlation between the Cur-
rent Reading Absences and the Date Last Reading : the model is
already learning the expected pattern from the Current Read-
ing Absences, and therefore the role of the Date Last Reading
becomes unstable. Another option would be that the system is
detecting an unexpected NTL pattern (e.g. a technician makes
a manual meter read, detects an abnormal behavior and informs
the company that the meter should be checked, and therefore
there exists in the next few days another technician visit that
confirms the NTL case).

Despite several aspects of the model being reliable in terms of NTL
detection, the model relies on very few consumption features in the predic-
tion process. This can be problematic in terms of robustness and fairness
since the consumption features are better NTL predictors.

Instead, the regression model shown in Figure 4.5 is more robust, as it
uses more consumption-related features, and it is easier to validate, as we
explain as follows:

• Reliable consumption patterns In comparison to the classification
model, the consumption features are the most relevant in the model:

1. Cons. Zone/Cons. Last Year : Since we are comparing similar
customers in terms of Tariff and region, we would expect that
fraud corresponds to low consumption. This feature has learnt
this pattern and, therefore, we consider it correct.

2. Diff Consumption 6 Months: A high value indicates that in the
past the customer consumed more than in the present. There-
fore, the pattern learnt that a high value increases the output of
the prediction and therefore should be considered reliable and
correct.

3. # Months with No Consumption: if the customer has several
months with 0 kWh of consumption, it should be considered
as a probable case of NTL, especially in populated regions and
cities where there are not as many empty homes as in rural
regions (at least in Spain).

4. Consumption Penultimate Year : A high electricity consumption
two years ago is not in itself a clear pattern of fraud. Neverthe-
less, it can be a very good complementary feature that indicates
a change in consumption behavior. For instance, a customer
who has always had low consumption is not the same as a cus-
tomer who consumed in the past a lot and has recently changed
their consumption behavior.

• Reliable patterns from the binary model Two important features in
the classification model remain important in the regression model:
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Figure 4.5: The regression model relies on consumption features to learn
patterns and, therefore, we can consider that this model is better than
the binary approach. Moreover, the patterns learnt seem to be easier to
understand by the stakeholder, since more abnormal behaviors (the absence
of meter readings or the number of months with no consumption) are more
clearly related to a higher prediction than in the classification model, where
lesser patterns can be easily trusted as trustworthy indicators of NTL.

1. Current Reading Absences: As explained in the previous analy-
sis, the absence of meter readings is a likely indicator of NTL.

2. Contracted Power : The contracted power was also considered a
very important feature in the classification approach. However,
in the regression approach, the use of this feature makes more
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sense: in the regression model we are trying to maximize the
amount of energy to recover and, in general, the customer with
a higher contracted power consumes more energy.

• Categorical information Only one categorical feature is in the top
important features in the regression model:

1. The Town feature: In comparison to the binary approach, the
Town feature seems to have less relevance. However, we can see
one specific Town value whose Shapley value is much higher than
the other towns. This town corresponds to a small municipality
where the company recovered a lot of energy in the past, and
therefore it can be trusted.

• Doubtful/Questionable pattern Finally, we consider that there is one
pattern in Figure 4.5 that the stakeholder cannot fully understand:

1. The Last Bill : According to SHAP, a high value is learnt by
the model as an indicator on NTL. The classical NTL behav-
ior consists of manipulating the meter to avoid high bills and,
therefore, we would expect the opposite behavior regarding this
feature. However, there are circumstances in which a high last
bill can be correlated with an NTL case:

– A recidivist fraudulent customer that has been visited twice
in a short period of time. The high bill corresponds to the
back-payment of the previous fraud detected.

– A customer with very high consumption that is not normal
(e.g. illegal drug cultivation) that combines a correct instal-
lation of electricity with an illegal junction to get enough
power.

In any case, these cases are more exceptional than the classic
examples of reduced consumption and should therefore not be
a pattern that is so prominent in the system.

This in-depth analysis of each model through their most important
variables faithfully represents each model. For instance, the classification
model only has 3 consumption features in the top 15 most important fea-
tures, and 7 consumption features in the top 25 most important features
according to Shapley values, while the regression approach has 10 and 19,
respectively. In addition to that, it is tangible (as we have explained for
each variable) that the patterns from the regression model are easier to
analyze and corroborate by the stakeholder. This is true because as we
have analyzed variable by variable, in the regression model, we can inter-
pret what NTL patterns have been detected in that variable in a much
simpler way. In classification, such analysis requires much more effort (the
stakeholder cannot easily interpret what the pattern learnt by the model
is), and the conclusions are often nuanced or unclear.
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4.3.3 Customer Selection Through Local Explainability

Preliminaries: Local Explanation as Sanity Check

In Section 4.3.2 we have seen that the increase in energy recovered in Sec-
tion 4.2.2 is justified because the regression model learns better patterns
from the stakeholder’s perspective than the classification model. The re-
sulting system is more robust since it learns less circumstantial patterns
(e.g. fewer patterns related to the company’s decision that highly influ-
ence the observational data). Thus, the challenges regarding the lack of
robustness and the low energy recovered per campaign generated are mit-
igated. Nonetheless, we can see in Table 4.1 that the system has room
for improvement. That is, the system does not provide a perfect ordering
of the customers according to NTL. Moreover, in Figure 4, we can detect
that still, some non-NTL cases (or NTL cases with a very low amount of
energy to recover) have a high score. In [31] we propose a solution to re-
duce the number of these undesired high-scoring customers with low or no
NTL: to analyze through LIME the local explanation of each high-scoring
customer included in the campaign, discarding those that, according to
human knowledge, the explanation obtained is not reliable. Therefore, the
final selection is a subset of the original sample.

In this section we propose an updated version using the local explana-
tions of the Shapley values instead of LIME. This change of explanatory
algorithm has two significant advantages. On the one hand, the Shapley
values provide local explanations consistent with the global explanation
of the model since the global explanation is constructed as the sum of the
local explanations. On the other hand, the solid theory behind Shapley val-
ues (particularly the implementation for trees, i.e., tree SHAP) provides us
with robust explanations (i.e. the explanations obtained for a model and
prediction are always the same).

This sanity check has points in common with the analysis proposed
in Section 4.3.2, where we analyze the correctness of the modular expla-
nations. However, a good modular explanation does not guarantee that
all the explanations at instance level of the top-scored customers are also
reliable. Similarly, just because the model has learned a reliable and im-
portant fraudulent pattern at the modular level (e.g. a feature that, on
average, greatly increases the prediction score) does not guarantee that all
high-scoring customers have learned that pattern. Having said that, a good
modular explanation, as it is built as the sum of the local explanations,
should be an indicator of good explanations at instance level.

Post-Process Example

By way of illustration of this method, this example implements a sim-
ple rule system that automatically discards all the high-scored instances
in which the most important fraudulent pattern (i.e. the feature value
that increases more the prediction according to the Shapley values) is not
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consumption-related. This is in line with the modular analysis from Sec-
tion 4.3.2 in which we regard the regression model as a better predictor
because the most important features are consumption-related.

This post-process approach aims to increase the campaign’s economic
efficiency by increasing the amount of energy recovered per customer vis-
ited. Therefore, we compare in Table 4.3 the amount of energy recovered
for each customer on average in an n-sized campaign9, for the Domain
DAN . As expected, we can see in Table 4.3 that the regression approach
outperforms the classification approach in terms of energy recovered per
customer visited. However, our post-processing at instance level imple-
mented in the regression approach outperforms the regression approach by
up to 34%.

Average energy recovered per customer in an n-sized campaign (kWh)

Domain DAN n = 528 n = 211 n = 106 n = 42

Reference 2107 3782.9 5495.1 8716.4
Classification 823 930.8 921.3 900.9
Regression 887.3 1266 1554.8 1740.3
Regression+Rule 944 (+6%) 1398.4

(+10%)

1741.5
(+12%)

2328.7
(+34%)

Table 4.3: The post-processing at instance level (by not including those
customers whose most important fraudulent feature according to the Shap-
ley values is not a consumption-related feature), referred to in the table
as Regression + Rule) reduces the size of the selection but increases the
amount of energy to recover on average for each visit. More specifically,
31 out of 42 customers, 84 out of 106, 173 out of 211 and 469 out of 528
customers would be included in the final campaigns, but in each case, we
would increase the amount of energy recovered per customer visited, a
clear indicator that this post-process would discard more non-NTL cases
(or NTL cases with low energy recovered) than otherwise. That is, we
increase the economic efficiency of our campaign, recovering more energy
per visit carried out by the technician.

In this example, we have used a straightforward rule to provide a rather
generic example. However, this approach is very useful to nuance the cam-
paign based on the stakeholder’s knowledge. For instance, as we explained
in Section 4.2, one of the existing biases is related to the fact that the
company generates campaign to over-control historically fraudulent cus-
tomers. From our perspective, this pattern is valuable and trustworthy
since many fraudulent customers are recidivists. However, we would like
to avoid high-scoring customers with only this pattern as an indicator of
NTL. Therefore, this post-process method would be helpful to discard these
specific high-scoring customers that would not be humanly validated.

9 n corresponds to the customers preselected for the campaign, as explained in Table 4.1.
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4.4 Discussion

This chapter introduces the NTL detection system grounded on regression
as a valid alternative to using classification. Moreover, we illustrate the
use of explanatory algorithms to understand the predictions of the system.
Experiments performed indicate that using the energy recovered as the
priority setter helps the system be more successful, mitigating the biases
problems regarding the use of observational data. The patterns learnt
are easier to validate from a human perspective, and therefore the models
generalize better. Surprisingly, the use of regression in the NTL literature
is scarce. For instance, [76] describes an outlier detection system, where
the amount of energy to be spent by a customer is forecast. We believe our
approach can be enhanced by using the techniques in the aforementioned
work.

On the other hand, this work is one of the few examples in the lit-
erature that implements explanatory algorithms for NTL detection. Our
experiences and lessons learned can be useful not only for any initiative
that aims at increasing interpretability but also for any data-oriented in-
dustrial project. The following chapter delves deeper into the subject of
interpretability, explaining the multiple methods used in this project.



Chapter 5

Introducing the Human
Perspective

5.1 What is my System Learning?

Our first approach to building the NTL detection system (Chapter 3)
achieved good results, but lacked robustness and transparency. For this
reason, we started to analyse in depth what our model was learning through
statistical methods such as explanatory algorithms. The initial result of
this analysis can be seen in Chapter 4, where through Shapley values we
were able to better understand what our model was learning at a modu-
lar and local level, and we were able to propose key improvements in our
system, such as the use of recovered energy as a variable to be predicted
instead of using the binary information NTL/non-TNL. However, we do
not provide details regarding why we use Shapley values instead of other
existing alternatives in the literature.

This chapter details our experience of providing the desired trans-
parency in our NTL detection system. We explain how we started to use
simple statistical analysis (i.e., odds-ratio, Pearson Correlation and Feature
Distribution), then how we used the feature importance implementation
from the ensemble tree methods, to finally using state-of-the-art explain-
ability methods like LIME (for tabular data) and SHAP (tree explainer).
Finally, we compare each approach in our context1, concluding that we
consider Shapley values the best approach in our context and, in many
cases, the best approach seen in the literature to provide explainability in
an industrial project.

The analysis and tests carried out in this chapter include several con-
clusions already referred to previously in Chapters 3 and 4. For instance,

1 The labelled information used in this analysis corresponds to the dataset used in [30], a
rich dataset with almost three hundred three thousand labelled instances, containing 3.3%
of NTL cases. The model M used to make the predictions is a CatBoost regression model
tuned through a training-validation process.
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the models used to compare the explanations from the explanatory algo-
rithms are regressive, since as we explained in Chapter 4 the regression
approach gives us better results than the classification one.

Features Definition
Last Impossible 2 Indicates the number of months since the last time the company could not

perform a visit. The suffix 2 indicates that the original purpose of the visit
was not to detect an NTL case, but to implement another technical visit.

# Impossible 2 Number of times the company could not perform a visit to the labelled cus-
tomer. The purpose of the visit was not to detect NTL.

# Correct 2 Number of “no Fraud” visits to the customer with result of “no NTL de-
tected”.

Last Impossible Number of elapsed months since the last time the company could not perform
a visit. We compute both the visits to detect NTL cases but also the other
visits (referred in this analysis, as explained before, with the suffix 2).

Current Reading
Absences

Number of months since the last meter reading.

Power Contracted The power contracted by the customer.
Town Town where the customer lives.
# Visits 2 Number of “no Fraud” visits made to customer. We do not consider the

results of the visit, but if the customer has been historically ”controlled” by
the company.

SCC12MP Similarity (consumption curve, 12 months) between the customer and similar
customers. We compute the average consumption per month of the customers
from the same province and Tariff, normalize the consumption curve, and
compute how similar this normalized consumption curve is to the normalized
consumption curve of the customer. A low value would indicate that the
consumption is similar to the expected consumption curve, while a very high
value indicates that there is no similarity (i.e., an indicator of NTL).

SCC12M Similarity (consumption curve, 12 months) between the customer and similar
customers. This variable is computed as explained in SCC12MP, but the
comparison is done with all the customers included in the campaign.

Con.Penultimate
Year

Consumption of the customer during the penultimate year. This information
might not provide meaningful data, but it is useful to understand the histor-
ical consumption behaviour of the customer and, therefore, can nuance the
meaning of consumption behaviours at the present time.

Last Bill Amount of energy billed to the customer in the last bill.
Last Fraud 2 Number of months since the last time the company performed a “no Fraud”

visit with an NTL result.
Con.Drop 24-6M
Abs

Absolute consumption difference (i.e., kWh) between two consecutive 6 month
periods. It is checked for the last 24 months.

Last Threat Number of months since the last time the customer threatened a technician
from the company preventing the meter’s technical service.

#Threat Number of times the customer threatened a technician from the company
preventing the meter’s technical service.

Energy Cut Number of times the company cut the energy supply to the customer.
Fraud Building 1Y Number of times an NTL has been found in the customer’s building dur-

ing the last year. This information is interesting since neighbors can share
information about how to commit fraud.

#Gas Fraud Number of times the customer has had NTL cases in gas.
Con.Last Year/-
CLY Zone

Ratio between the customer’s consumption and the average consumption in
the region (last 12 months). This information is straightforward, i.e., a much
lower consumption should be an indicator of NTL.

Con.Low 24-6M. Ratio between the customer’s consumption and the average consumption of
similar customers (i.e., customers from the same region and Tariff). The
period of time considered is the last 24 months, and the consumption window
is 6 months.

Con. Customer/-
Con. Cust. 24M

Ratio between the customer’s consumption and the average consumption in
the region (last 24 months).

Median Bill 12M Median Bill of the customer for the last 12 months.

Table 5.1: Brief description of the features referred to in this chapter.
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5.2 Our Experience Using Explanatory Algorithms

5.2.1 The Starting Point: Statistical Analysis

Our first approach to understanding our predictive models was to analyse
the training dataset statistically. The statistics measures referred to in this
work are the following:

Feature Distribution The distribution of the values of each feature in
different domains and segments might indicate patterns and other inter-
esting characteristics to analyse. For instance, this simple analysis might
provide a small intuition on why, in certain regions, the company has been
more successful in detecting NTL cases.

Pearson Correlation A measure of the linear correlation between two
features, where 1 indicates a perfect positive correlation (i.e., for every
increase in one feature, there is a positive increase of a fixed proportion in
the other feature), and -1 indicates a perfect negative correlation (i.e., for
every increase in one feature, there is a decrease of a fixed proportion in
the other feature), where 0 indicates no linear relationship. The coefficient
(r) is defined as the ratio between the covariance Cov of the values of two
features divided by the product of their standard deviation S, i.e.:

−1 ≤ rXY =
Cov(X,Y )

SXSY
≤ 1 (5.1)

There exist in the literature examples of using the Pearson Correlation
Coefficient to detect NTL. For instance, in [88], the Pearson Correlation
coefficient is used to detect an abrupt and gradual but constant decrease
of consumption in customers, hence suspicious of NTL. Thus, the Pearson
Correlation can be used to detect patterns in our data useful in under-
standing NTL behaviors.

Odds-Ratio The Odds-Ratio OR statistic is usually used in medical
reports (as explained in [16]). It quantifies the influence of a binary value
on an outcome. In an NTL detection context, let Fxi=1 be the number of
NTL instances x with feature xi = 1, Fxi=0 be the NTL instances x with
feature xi = 0, Cxi=1 be the non-NTL instances x with feature xi = 1, and
Cxi=0 be the non-NTL instances x with feature xi = 0; then the OR is:

OR =
Fxi=1/Cxi=1

Fxi=0/Cxi=0
=
Fxi=1/Fxi=0

Cxi=1/Cxi=0
. (5.2)

Odds-Ratio values far from 1 indicate that customers with xi = 1 and
customers with xi = 0 have a different proportion of NTL.

These statistical metrics are not often considered explanation meth-
ods, but help understand the data used to train the model and, in some
cases, are sufficient to detect biases or undesired prediction rules. In part,
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many of the problems explained in Chapter 3 were detected using these
statistical metrics (for instance, the over-representation of the recidivist
customers explained in Chapter 4. Nevertheless, the statistical analysis
could not provide satisfactory explanations for how our black-box model
made predictions. For this reason, we started to introduce different ex-
planatory approaches in our system to better understand the role of each
feature in the prediction process.

5.2.2 Feature Importance

The Feature Importance method, as explained in Section 2.3.2, provides a
simple modular explanation of how important each feature has been dur-
ing the training process. In this case, we will analyse the feature impor-
tance method in Catboost, more specifically the PredictionV aluesChange
method that evaluates how much the prediction changes on average if the
value of that feature is changed2. The result of the method is a ranking of
features by importance, where importance values are normalized so that
their sum equals 100.

Figure 5.1 shows the top 10 features3 of our M reference model. This
information provides a global picture of the learnt model, since the most
important features to detect NTL cases are consumption features (and, to
a lesser extent, visit features). Overall, the fact that 8 out of 10 features are
related to consumption or visits (and not, for example, to the town where
the customer lives) convinces the domain experts that the model focuses
on the right information. Hence, using feature importance is helpful as a
first sanity check of the model.

However, feature importance is insufficient when it comes to analyzing
in depth how features influence the prediction. See for instance the most
important feature, Last Impossible 2 in Figure 5.1; this feature indicates
the last time the company failed to carry out a “No Fraud” visit. A “No
Fraud” visit is one whose main aim is not to detect fraud, but some other
generic purpose. Yet, the impossibility to perform the visit may hide an
abnormal customer behavior (e.g., the customer obstructs the technician’s
visit because they know the meter has been tampered with). Although the
model has learned this fraudulent pattern, it cannot be confirmed though
feature importance, since it only provides a global, fast4 explanation of
the importance of the features in the model, but does not provide the
reason behind a high relevance. Indeed, in the ideal case, a high relevance
describes a learned pattern of NTL. But it can also be the result of a bias

2 The definition of the PredictionV aluesChange is available in the documentation from Cat-
Boost, https://catboost.ai/docs/concepts/fstr.html#fstr regular-feature-importance

3 In this section we will only analyze the top n features of each method to facilitate the
explanation.

4 In our tests with a catboost model with 3056 trees and 605076 instances takes less than 0.05
seconds to compute the Feature Importance. The hardware used in all the tests is an Intel
Core i7-8550U CPU, with 16GB of RAM and an SSD disk.

https://catboost.ai/docs/concepts/fstr.html#fstr__regular-feature-importance
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Figure 5.1: Top 10 most important features according to the feature impor-
tance method from Catboost, i.e., PredictionValuesChange. It evaluates
how much the prediction changes if the value of that feature is changed,
on average.

in the data, or an internal decision of the learning algorithm that is not
always justified or understandable by the stakeholder.

In this situation, it is necessary to complement the Feature Analysis
with, for instance, a statistical analysis. In Table 5.2 we analyze the dis-
tribution of the Last Impossible 2 feature. In general, most of the labelled
instances are undefined for this feature (i.e., there are no cases of Last
Impossible 2 ), but this proportion is reduced when we focus our analysis
on the NTL cases with more than 3500kWh 5 recovered (where more than
10% of the cases had a Last Impossible 2 ), and the ratio is reversed for the
very top cases, where 75% of the customers had a value for Last Impossible
2. This pattern should be the one learned by our model.

In conclusion, based on our experience, the feature importance methods
might not be a proper method to fully understand the patterns learned by
the NTL detection model, but can be a good baseline approach to detect
clear undesired patterns.

5.2.3 Local Surrogate Models

This section discusses an example of the explanations obtained from LIME
for tabular data. We fix one particular customer for the remainder of
the section 6. This is an NTL case for which a fraud of 3000kWh was

5 The consumption of a house or apartment in Spain is, on average, around 3500kWh. There-
fore, this figure is informally used in the project as a delimiter of what would be a great NTL
case, i.e., an NTL case in which the amount of energy recovered is remarkable.

6 The execution time to obtain an instance explanation for LIME is, in our case, around 38
seconds.
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Top Selection Last Impossible 2 undef. Last Impossible 2>=0
3500 to 35000kWh 571 84
>35000kWh 1 3
Customers 295218 7324

Table 5.2: Analysis of the value Last Impossible 2 feature for the NTL
labelled customers with recovered energy from 3500kWh to 35000kWh,
more than 3500kWh and all the labelled customers. This feature indicates
the months passed since the last Last Impossible 2 visit, where the value
remains undefined (i.e., the missing values) in case of no visit. The pro-
portion of Last Impossible 2 >= 0 increases for the NTL cases, especially
when the energy recovered is high.

Figure 5.2: Local Explanation of the NTL case, first run. The top-10
most important features from the LIME explanation of an NTL case with
energy recovered of around 3000kWh. The most important features are
the Current Reading Absences (i.e., that it has absences in readings) as
an indicator of NTL and the Last Impossible 2 feature (i.e., that has a
negative value, indicating the absence of Impossible “No Fraud” visits as
a non-NTL pattern).

reported; our model predicted an amount of energy to recover of around
2100kWh. Note that all features discussed are numerical, since LIME
requires re-encoding categorical variables as numerical ones, as explained
in the documentation7. This example has been carefully selected because
it exemplifies the problems we have had with LIME in our system.

Figure 5.2 shows an example of a subset (top-10) of the most impor-
tant features for that customer according to LIME: the explanation indi-
cates which feature values increase or decrease the specific prediction of

7 https://marcotcr.github.io/lime/tutorials/Tutorial%20-%20continuous%20and%
20categorical%20features.html

https://marcotcr.github.io/lime/tutorials/Tutorial%20-%20continuous%20and%20categorical%20features.html
https://marcotcr.github.io/lime/tutorials/Tutorial%20-%20continuous%20and%20categorical%20features.html
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Figure 5.3: Local Explanation of the NTL case, second run. The same
instance of Figure 5.2 is explained differently by LIME in a second run,
due to sampling a different set of neighbours.

2100kWh. The sum of each prediction apportion should be the predic-
tion made by the black-box model in that local region (or at least, a good
approximation).

However, LIME seems to have a major robustness problem, exemplified
in Figures 5.2-5.3. If the LIME algorithm is rerun on the same instance, a
different random sample is generated each time to generate the local model,
and this leads to different explanations of the same instance.

A second issue with LIME, reported elsewhere, is the high sensitivity of
the output to the setting of certain parameters, particularly kernel width.
For instance, in Figure 5.4 we show the explanation of the same instance
of Figure 5.2, but now using a different kernel width value. There is also
little theoretical guidance for choosing appropriate values.

Finally, there is no guarantee that the explanation that we obtain from
the local surrogate model is faithful to what M(x) computes, as shown in
Figure 5.3. The #Threats feature indicates if the company’s technician
has received threats from the customer when performing an installation
or service, and Energy Cut indicates whether energy has been cut off to
this user at some point in the past. However, upon closer inspection, these
features are not used in M(x) computation.

Despite these problems, based on the information provided by LIME,
a methodology can be proposed. In [31], we describe an approach for
double-checking the predictions made by a model by implementing a rule
system. Based on the features that, according to LIME, most influenced
the score for each instance, this methodology would determine if the high
prediction was trustworthy, discarding as NTL-cases those instances for
which, according to human knowledge, a high score is not justified. The
accuracy in our tests increased around 13% with this simple heuristic, as
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Figure 5.4: Example of how the kernel width highly influences the expla-
nation process.

shown in Table 5.3.

Dataset % NTL % Non-NTL % Precision
Original Campaign 72 28 72
LIME Campaign 18 3 85

Table 5.3: Results from the tests in [31] where we used LIME as a post-
process method to rule out customers with an unjustifiably high score.

5.2.4 SHAP

As explained in subsection 2.1.4, we consider it mandatory to analyze the
goodness of a model by analyzing how it has learned to score: if we only
focus our analysis by comparing experiment benchmarking in a validation
test dataset, we might perceive as good models those that have learned
undesired patterns and, therefore, might fail in the real-world scenario. In
this work we propose using the SHAP explainer method that, as introduced
in Section 4.3, explains how the supervised model predicted Ŷ . The overall
process of how the Shapley values work is explained in Section 2.3.2; here
we only include a reminder of how the values are interpreted:

1. The supervised model predicts Ŷ .

2. Based on these predictions, SHAP extracts the Shapley values, and
the base value.

• Base Value: The mean of the labelled instances the supervised
model used in the training stage.

• Shapley Values: Each value of each instance has an associated
Shapley value, that corresponds to the influence of said value
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Figure 5.5: Example of the Shapley values for our reference NTL case
of 3000kWh. The most important feature for this instance is the Curr.
Reading Absences and the Power Contracted.

to the final prediction (i.e., if that value pushes the final score,
increasing or decreasing it).

3. The final prediction for each instance can be understood as the result
of the sum of all the Shapley values of that instance and the Base
Value8.

We will use the bar chart that represents the median of each Shapley
value for each feature and the fuller version of it that indicates how each
value influenced (i.e., increased or decreased the prediction made).

In this section we analyze the explanations from SHAP for trees (i.e.,
the Tree Explainer). We use the same reference instance used in the pre-
vious section, i.e., the positive NTL customer for which 3000kWh of fraud
was reported and for which our model M predicted 2100kWh of recoverable
energy.

Figure 4.4 shows the explanation of SHAP of a subset (top-10) of the
most important features for our reference instance. Similar to LIME, SHAP
indicates how the feature values increase or decrease the specific prediction
of the energy to be recovered. Furthermore, it does not have the robust-
ness problems of LIME since the computation is deterministic and always
provides the same explanation for a given model and instance9. In addi-
tion, the explanation is consistent with what the model has learned, which
was not always the case in LIME as described before with the Energy Cut
feature.

SHAP for tree-based models [81] is, according to our experience, a very
robust and rich method to provide interpretability to our system. To begin
with, the fast implementation10 provides local explanations (i.e., instance
level, see Figure 5.5) and global explanations (i.e., modular explanations,
similar to the feature importance method previously analyzed, see Figure

8 It is necessary to remark that SHAP, at least in the XGBoost and Catboost binary models
that we have tested, the Shapley values do not correspond to the direct probability but a
raw value from the learning process. In our case, to obtain the real probability from the

Catboost model, it is necessary to calculate the sigmoid of that value, i.e.
1

1 + exp(−value)
9 For the Tree Explainer used in our system.

10 In our case, the system computed the Shapley values in around 260 seconds. We did not use
the GPU accelerated version of the Tree Explainer, which for sure would provide an even
faster computation but would require an Nvidia GPU.
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Figure 5.6: Two versions of the summary plot from SHAP: above, a box-
plot diagram showing the average of the Shapley values for the most impor-
tant features (similar to feature importance plots). Below, a distribution-
like description (more fine-grained) of the same information. According to
SHAP, the most important feature in the model is Curr. Reading Absences.

.

5.6). Remarkably, this global explanation is consistent with the local ex-
planations (as explained in [87], ”the Shapley values are the ’atomic unit’
of the global interpretations”), and with the feature dependency of the pre-
dictive tree Model. Moreover, the theory of Shapley values [121] guarantees
the properties of efficiency (the feature contribution adds up the difference
of prediction), symmetry (two features have the same Shapley values if they
contributed equally), dummy (a feature that is not used in the prediction
model has a Shapley value of 0) and additivity (if the computation of the
prediction can be divided into sub-processes, i.e. the boosting process in
our model, the Shapley values can be seen as the average of the Shapley
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values of each tree).

5.2.5 Comparison in our NTL Detection System

Statistical
Analysis

Feature Im-
portance

LIME (tabu-
lar data)

SHAP (tree
SHAP)

Coverage Data Model Model Model
Model Agnostic Yes No Yes Yes
Robustness Stable Stable Unstable Stable
Scope Global Global Local Local/Global

Table 5.4: Comparison in terms of Coverage (what the method analyses),
Model-Agnosticism (if the method can be used in any model), Robustness
(if the methods always provide the same explanation for the same data) and
Scope (if the method explains an instance or provides a global explanation
of the model) between the four methods considered.

Feature importance, the local approach from LIME for tabular data,
and the SHAP method for tree-based trees, are three methods that repre-
sent a step forward to better understand our predictive models in compar-
ison to the statistical methods referred to in Section 5.2.1. Each method
offers a different approach to the goal of explaining the models, with its
advantages and disadvantages, which are discussed below:

• Depth: The big difference in terms of depth is that Feature Impor-
tance provides a superficial and modular explanation of the influ-
ence of each variable on the predictions, while LIME and SHAP offer
deeper explanations at the instance level. Therefore, as we have seen
in our use case, Feature Importance can be interesting because of its
speed in getting a first sanity check of the model, but its superficiality
would not allow us to implement the double-checking methods exem-
plified in [31] (that uses LIME) or [35] (that uses Shapley values).

• Bias Detection: Feature significance is a good approach to easily
detect biases and other data-related problems. However, this can
also be done with SHAP, which by complementing such information
with local explanations, gives us a better insight into which values
cause biases. In contrast, LIME’s local approach makes it much more
complicated when it comes to analyzing biases and unwanted patterns
in the model due to the lack of global analysis.

• Robustness: LIME has the problems of robustness of explanations
across runs due to its random component, which makes the whole
approach look unreliable. In contrast, feature importance and SHAP
(Tree SHAP) always give the same results for the same data.

• Truthfulness: Feature importance and SHAP compute the impor-
tance of the features by analyzing (with very different approaches
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and with a different focus) how the prediction changes when there is
a modification in the feature. The local model from LIME, on the
other hand, can use features in the local explanation not used by the
model (and therefore the explanation is not trustworthy).

• Complexity: Obtaining explanations for each method, in our case
study, is fast:

– The Feature Importance provides a superficial modular expla-
nation in much less than a second.

– The LIME method provides a local explanation in around 38
seconds.

– SHAP provides local and global explanation in around 250 sec-
onds.

Thus, we could conclude that no approach can be discarded because
it is computationally expensive. That said, it is worth noting that
LIME offers local explanations (i.e., if we wanted a global explanation
of the system, e.g., which variable might be relevant in general, we
would have to compute the explanations multiple times). Regarding
SHAP, we should also take into account the computational cost of
obtaining the explanations since we use the implementation specific
for tree-based models11.

Thus, SHAP is the method we consider the best of the three methods
tested to explain our models, and the one we have worked with to analyze
our system. With SHAP we have local and global explanations consistent
with each other in a fast way, with the guarantee that the explanations are
robust, always obtaining the same explanations for the same model and
dataset. This gives us confidence in the explanations obtained, allowing
us the data scientists, to make decisions on improving the system based
on the explanations obtained, as well as giving stakeholders confidence in
their model and explanations, thus acquiring useful new knowledge.

5.3 Discussion

As explained in previous chapters, developing a robust NTL detection sys-
tem is challenging. For this reason, many of our efforts during its de-
velopment has involved better understanding our system, i.e., achieving
transparency in our predictions to mitigate and correct many of the flaws
in our system. In this chapter we provide an in-depth explanation of all the

11 TreeSHAP has a computational cost of O(TLD2), being T is the number of trees, L the
maximum number of leaves in any tree and D the maximal depth of any tree, while the
KernelSHAP (the model-agnostic approach that can be used for any type of algorithms such
as neural networks, support vector machines or tree-based models) cost is O(TL2M ) in tree
models, being M the number of features.
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methods used to achieve this goal, analyzing their advantages and disad-
vantages, concluding that the method that gives us the best explanation,
both globally and locally is SHAP’s Shapley values.

In the next chapter we take interpretability considerations a step fur-
ther. More specifically, we analyze the role that the stakeholder should have
in the NTL detection system. We propose a human-in-the-loop system to
empower stakeholders so that they can have full control of the system and
the campaigns to be generated.



Chapter 6

Human-in-the-Loop
Approach to Improve NTL
Detection

6.1 Mitigating the Existing Problems for each Model
Built

In previous Chapter 5 we have analyzed how explanatory algorithms, and
more specifically Shapley values, can provide us robust explanations that
allow us to validate the patterns learnt by the model, as well as compare
beyond benchmarking different approaches with the aim of analyzing which
one would generalize better on unseen data. This allowed us to implement
different solutions that would improve our system overall. However, as we
explain in our work [34], there exist several biases and other data related
problems that cannot be treated with a general approach, since it affects
specific domains. In other words, the observational data causes different
specific biases in each domain that it is difficult to treat at once.

Thus, in this Chapter we present our step forward to exploit the infor-
mation provided by the Shapley values: to convert the process of building
our model into a human-in-the-loop process controlled by the stakeholder
in charge of the NTL detection process. In each iteration, this specialist
analyses what the model has learned and implements feature engineering
to improve the model if it detects an undesired pattern, a bias, or an un-
used feature. After several iterations, as we exemplify in this work, the
resulting model is better in terms of accuracy, robustness, interpretability,
generalizability, flexibility, and simplicity.

98
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6.2 Human-in-the-Middle Approach to Implement
Specific Solutions for each Domain

6.2.1 The Proposal

In this chapter we propose to involve the stakeholder through a human-
in-the-loop solution to guide the system when training the model (Figure
6.1). In each iteration, the stakeholder analyzes through Shapley values
the patterns learned and implements feature engineering to correct biases
and other data-related problems that are specific to that domain at the
moment of building the campaign, as well as remove correlated or unused
features to increase the system’s interpretability, to achieve a simpler (i.e.
with fewer variables), more understandable (i.e. with patterns validated by
the stakeholder) and, therefore, a better model in terms of generalization.

To benchmark each model we use the Normalized Discounted Cumu-
lative Gain (NDCG, [70]) to obtain a global vision of the quality of the
predictions made by a model,

NDCGt =
DCGt

iDCGt

where DCGt is defined as

DCGt =

∑t
i=1 energyi − 1

log2(i+ 1)

being energyi the amount of energy recovered in the visit made to the cus-
tomer ranked at position i, and iDCG corresponds to the maximum DCG
possible (i.e. a perfect prediction in terms of order). The NDCG provides
a generic vision of the correction of the model beyond any threshold. Other
alternatives (e.g. precision@k, i.e. precision at the top k instances) can
tend the model to exploit the existing biases in the data and, therefore,
the resulting model would not be generalizable.

6.2.2 The Human Analysis in the Building Process

With the information provided by the Shapley values and the NDCG met-
ric, the stakeholder has to analyze in each iteration n the correctness of the
model trained in comparison to the previous iteration n − 1, and propose
a new model in iteration n+ 1 by implementing feature engineering. This
process is subjective (e.g. depending on the stakeholder there might be
slight differences regarding what can be considered a good pattern), and
also needs to be adapted to every domain (e.g. a good pattern in one
domain might be a fair pattern in another domain). However, there are
certain fundamentals that every analysis shares, summarized as follows,
which we will use in this work:
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Analysis of each iteration

  

Analysis for
 baseline model

Analysis for second 
Iteration 1: Accept

Analysis for 
iteration 1: Reject 

Analysis for Iteration
n: Definitive model

Iteration 1: 
Drop feature f1

Iteration 2: 
Drop feature f3

Second Iteration 1: 
Change prediction

Iteration n: 
Drop feature i

...

Second test: Compute Shapley Values for both the training + validation model, 
and the top N customers of the test dataset.

First test:  NDCG for the top f customers (f = NTL cases in the dataset) in the 
validation dataset after training a model with the training dataset.

Human analysis and decision:
1. If NDCG for the model at iteration n is worse than the NDCG for the 

previous model (i.e. iteration n-1) we discard the iteration.
2. We analyse the Shapley Values:

a. Detect Bias and other undesired patterns.
b. Detect Unused features.
c. Detect Correlated features

3. Decision:
a. Either we implement feature engineering.
b. Or we stop the iteration process.
c. Or we discard this iteration and go to the previous iteration.

Preliminaries: The labelled dataset is divided into the training and validation 
dataset. The test dataset is predicted using a model trained with the training 
and validation dataset.

Figure 6.1: The building process is an iterative human-in-the-loop process
where the stakeholder uses Shapley values to guide the model’s training
process to achieve a more generalizable and fairer model.
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The NDCG Should not Decrease between Iterations In each it-
eration, we should not decrease the benchmarking performance on unseen
data. Therefore, in each iteration, NDCGn >= NDCGn−1

1.

The Outliers Should be Detected and Processed A Shapley value
from a high-scored instance that stands out in comparison to the rest of
the Shapley values can be a consequence of an outlier in the prediction
labels (more specifically, an NTL case with a much higher value of kWh
recovered than the rest of the NTL cases). In this case, the stakeholder
should consider transforming the instance that causes the outlier to avoid
biases on prediction.

The System Should be as Simple as Possible To reduce the com-
plexity of the model to increase generalizability on unseen data but also
improve interpretability, we should remove features that have a low impact
on the model. Also, we should remove correlated features with similar
meanings that contribute similarly according to Shapley values.

The correction of bias should have priority over removing a feature: a
bias highly influences how a model is learned and, therefore, its correction
can cause a feature with no importance in the biased model to gain rele-
vance in the new model. All these considerations are explained in the short
example that we provide in the following Section 6.3.

6.3 A case Study with a Real Dataset

In this section, we exemplify the human-in-the-loop process and analyze
the benefits of implementing it in our NTL system.

6.3.1 Preliminaries

The Dataset Used

For the case study we use a real dataset2 from the utility company with
more than 1, 000, 000 customers3. The labelled instances include around
10,500 NTL cases, and almost 300,000 non-NTL cases and the dataset is
split into three sub-datasets: the training (80% of the labelled instances),
the validation (10% of the instances) and the test dataset (the remaining
10%). Each partition is stratified. There is no timestamp consideration

1 We would accept some margin in this description, i.e. we consider that a model is worse in
terms of NDCG when the value is significantly lower (at least 0.1 lower).

2 further information like the region and the typology of the customers is anonymized to protect
the privacy of the data.

3 The customers are apartments/small houses from the same Spanish region.
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(i.e. we do not use the last 10% of NTL cases as the test dataset) to
guarantee diversity and reduce the differences between the datasets4.

The Algorithm, Loss Function and Metric Used

The Gradient Boosting Model trained is a Root Mean Square Error Cat-
boost Regressor, i.e. we consider the problem of detecting NTL as a point-
wise ranking problem where we predict the amount of energy to recover
for each customer. The methods used to analyze the correctness of our
model are the energy200 (to compare the energy recovered before and af-
ter the human-in-the-loop process), NDCG on the validation dataset, and
Shapley values plots to analyze the patterns learnt by each model.

Semantic Grouping of Features and Evaluation

To facilitate the explanation and readability of this work, we exemplify
the human-in-the-loop approach only on the visit-related features, includ-
ing plots for the Shapley values in the training and test dataset. A brief
description of these features is the following:

Types of Visits Most of the visit-related variables represent the visits
made to the customers and their three possible results. More specifically,
the Fraud features refer to the visits in which the company detected an
NTL case. The Correct features refer to the visits where the installation
was checked, but no NTL was detected. The Impossible features profile
the visits with no conclusive result (in general, because the meter was
not accessible). Finally, the Visit features represent all the visits with-
out NTL/Non-NTL distinction. Based on this information, we profile the
following features:

• Number of Occurrences: Those features that include the # prefix
refers to the occurrences of that type of visit (e.g. #Visit refers to
the number of visits the company has made to the customer).

• Last occurrence: The last occurrence of each type of visit is repre-
sented with the features with the last prefix (e.g. LastVisit would
refer to how many months have passed since the last visit). When the
customer has never been visited, the value of the feature is empty5.

• Type of Visit : A visit to a customer is often prompted by suspicion of
fraud. In other cases, the visit is related to more generic reasons (e.g.

4 If the stakeholder decides to visit recidivist customer in July and August, and in September,
we split the data considering the timestamp, in the test dataset we would have an over-
representation of the recidivist customers.

5 That is, there is no value assigned, i.e. a missing value, that the Catboost library is able to
process. This solution is applied in all the features to represent the non-existence of a value,
e.g. the non-existence of a visit for that customer.
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a generic revision of the meter). Both cases are reflected with suffix
1 and 2, respectively: LastFraud1 refers to how many months have
passed since the last fraud was detected in which the reason to visit
was a suspicion of fraud (or NTL), LastFraud2 corresponds to how
many months have passed since the last fraud in which the reason to
visit was not NTL-related. LastFraud (with no suffix) corresponds
to the features that groups both types of features.

Region-Related Features There are also features related to the density
of fraud around the customer. That is, #FraudZone indicates the histor-
ical number of NTL cases in a customer’s zone6. Similarly, #FraudStreet
is the same information than the #FraudZone but focused specifically on
the street where the customer lives, and #FraudInBuilding counts the his-
torical NTL cases in the building where the customer lives. There exist for
each feature a derivative (with a suffix 1Year) in which the information is
bounded in the last year (e.g. #FraudZone1Year indicates the number of
fraud cases in the region during the last 12 months).

Threats There is a third group of features (#threats and LastThreat)
that refers to the threats of the customer to the technician, i.e. if the
customer violently prevents the installation revision from being carried
out.

Energy Cut Finally, the EnergyCut feature indicates how many months
have elapsed since the last energy cut by the company due to non-payment.

6.3.2 Tests

In this section we exemplify the process of stakeholder-system interaction
by implementing the following: removing a feature due to its irrelevance,
removing a correlated feature and correcting an outlier. We compare the
baseline model and the resulting model in terms of energy200 to see if, in
addition to the improvement in terms of interpretability and bias reduction
(that would help to increase the robustness in real campaigns), the resulting
model also recovers more energy in the test dataset.

First Model (Baseline)

• NDCG: 0.44 in the validation dataset.

• energy200: 249242.9kWh.

• Shapley Values: Figure 6.2 (training+validation model).

6 A zone corresponds to a technical term regarding the distribution of the electricity: nearby
towns or neighborhoods in a big city share a zone.
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Analysis As we can see in Figure 6.2, our baseline model has Shapley
values that are abnormal, because the impact on the output is remarkably
higher than all the other values for those features. For instance, if we an-
alyze the LastImpossible2 feature, there is no compelling reason to justify
that a feature value increases the output of the model up to 25,000kWh,
while the second highest Shapley value increases ten times less. Thus, this
is an indicator of an outlier in the labelled information, i.e. an NTL case
in which the company recovered a large amount of energy. In this case,
the outlier corresponds to an NTL case in which the company recovered
260,000kWh, an extremely abnormal case of NTL due to the large amount
of energy recovered7. With this information, the stakeholder would have
two options: maintaining the outlier or correcting it. Maintaining an out-
lier could be useful in some specific cases (for instance, if the company aims
to exploit biased patterns learnt8) but, in general, the stakeholder should
consider its correction.

Next step In this case, an optimal solution would be reducing the weight
of this NTL by modifying the label (for instance) four times (i.e. from
260,000 to 66,000kWh). With this change, we still indicate to the system
that it is the higher NTL case in the labelled information, but we will avoid
biases in the system.

Second Model (First Iteration)

• NDCG: 0.43 in the validation dataset.

• Shapley Values: Figure 6.3 (training+validation model).

Analysis First of all, we can see that we achieve a similar NDCG value
in the validation dataset, i.e. it seems that the unbiasedness does not
reduce the prediction capacity of our model. Then, the Shapley values
from Figure 6.3 seem to indicate that the model learnt is better: there
are no outliers (the higher Shapley value is reduced from around 30000
to 5000), and therefore it should generalize better on unseen data. So, in
summary, a stakeholder would prefer this model over the previous one.

Next step For the next iteration we opt to drop the less important
feature in the model: #Threats. This should not modify the model trained
but would simplify the explanation provided to the stakeholders.

7 In the second NTL case in the dataset the company recovered around 50,000kWh. The
typical customer consumption is close to 3,500kWh per year.

8 In some cases a biased pattern might be in line with business-related decisions. For instance,
the stakeholder might consider not removing a pattern in which the customers from a region
have higher predictions if the company aims to visit these type of customers more.
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Figure 6.2: The outliers seen in the image (in yellow) are a consequence
of an NTL case in which the amount of energy to recover is higher than
250000kWh. In this situation, the stakeholder in charge of the model
building would consider reducing this prediction value to build a more
unbiased model.

Third Model (Second Iteration)

• NDCG: 0.42 in the validation dataset.

• Shapley Values: Figures 6.4 (training+validation model) and 6.5
(top-scored customers from the test dataset).
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Analysis Dropping the #threats has not changed much, as expected,
what the model has learned (i.e. the plot from Figure 6.3 and the left plot
from Figure 6.4 are similar). However, the possibility of dropping features
can be fruitful from the company’s perspective. First, it allows to correct
undesired patterns learned that, from the human perspective, have no logic
but can be seen in a biased dataset. When we introduce a feature in the
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Figure 6.3: The Shapley values for the trained model indicates the non-
relevance of the #Threats feature. Therefore, to facilitate the interpre-
tation of the model by the stakeholders, we drop this feature from the
training process.
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Figure 6.4: The Shapley values highlighted indicate that the model has
learned similar patterns from both features with similar meanings. Re-
moving one of the features would increase interpretability and reduce the
curse of dimensionality. To decide the best feature to be removed, we can
analyze how these patterns translate on unseen data (Figure 6.5).

system, we expect that the system will learn some specific patterns. For
instance, when we profile with a feature that the customer is consuming
much less than the average, we consider that the system should see this
as an indicator of NTL. Therefore, if the system learns otherwise in one
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Figure 6.5: The Shapley values in the top-scored 200 customers test
dataset we see that how #FraudZone1Year influenced the prediction is
much clearer than in the #FraudZone feature and, therefore, we would
drop the latter feature from the dataset.
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specific domain9, the stakeholder can consider it appropriate to remove
it in that specific campaign. Moreover, learning from fewer features with
low relevancy helps avoid overfitting and increases the generalizability and
interpretability of the model.

Next step For this third iteration, we exemplify the process of removing
a correlated feature from the model. As shown in Figure 6.4, the fea-
tures #FraudZone and #FraudZone1Year provide similar information to
the learning process globally: a high number of NTL cases in the zone is
an indicator of NTL. If we focus on the Shapley values from the top-scored
200 customers, we can see that the patterns learnt from the #FraudZone
feature are unclear10 and, for this case, we would opt to remove the #Fraud-
Zone feature.

Resulting Model

The resulting model corresponds to the baseline model + correction of
the bias + #threats drop due to its low relevance + #FraudZone drop
(correlated with #FraudZone1Year).

• NDCG: 0.44

• energy200: 257038.7kWh

Analysis The resulting model, in terms of NDCG, is as good as the
vanilla model, and in terms of energy200 is slightly better, recovering
around 8000kWh more energy. However, in terms of Shapley values the
resulting model is more trustworthy from the stakeholder’s point of view,
and should generalize better on unseen data.

This example is rather naive since we have only slightly modified the
system by implementing feature engineering. However, it exemplifies the
benefits of the human-in-the-middle approach in which the stakeholder
guides the system to learn an optimal model, mitigating the specific biases
and other problems regarding the use of observational data. Moreover, the
fact that the stakeholder is an active part of the system has positive con-
sequences beyond the ones mentioned above (i.e. the better generalization
on unseen data and the better interpretability), as the company can trust
the system much more, one of the objectives of explainable AI [11].

9 If this undesired pattern is constantly learned in all the domains, then the feature drop would
be definitive.

10 From the stakeholder’s point of view, it is simpler to explain the #FraudZone1Year pattern
”high values is an indicator of NTL” than the patterns from #FraudZone, which are unclear,
where sometimes a high value has positive Shapley values, and in other cases, it has negative
Shapley values.
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6.4 Discussion

One of the things we detected during the development of the system for
Naturgy was the lack of ”communication” between the system and the
stakeholders: the stakeholders had a passive role in the system, they did
not know what the algorithm was doing, nor could they participate in the
learning process in an effective way. In this chapter we offer a human-in-
the-loop solution that, despite its apparent simplicity, has great benefits
for the system. On the one hand, the stakeholders can play a much more
active role in guiding the learning system to make correct predictions and,
on the other hand, its high transparency means that the company can have
much more confidence in the implemented system.



Closure

In these chapters we have presented the process of developing a Non-
Technical Losses (NTL) detection system for the company Naturgy. As in
most of the literature, this system focuses on machine learning algorithms,
more specifically on a supervised algorithm (Gradient Boosting Decision
Tree), to learn NTL patterns from historical NTL/non-NTL cases to pre-
dict energy losses in the present.

The initial Chapter 3 provides the classical problem description seen
in many other examples in the literature, i.e., a description of the data
available, the creation of the classification problem, as well as some initial
results that improved the existing rule-based approach of the company.
However, we began to realize that the initial goal of achieving a robust,
fully autonomous system that would achieve good results in any domain
would be a major challenge.

From this initial chapter, we contribute to the NTL detection literature
(and to the machine learning community applied to industry in general)
by analyzing the use of explainability algorithms in an NTL detection sys-
tem. During the development of this thesis, we have witnessed the birth of
many explainability techniques, and the increasing interest in the artificial
intelligence world for algorithms and methods that make predictions more
transparent and fair. This work has been pioneering in implementing some
of the most popular and efficient techniques to provide explainability to
black-box algorithms, such as the Shapley values of SHAP or LIME. This
highlights our work in the literature, since through explainability we pro-
pose solutions to existing problems in the use of observational data such
as low energy recovery (Chapter 4) or how to involve the stakeholder in
the process automated by the predictive algorithm (Chapter 6), allowing
its guidance and the exploitation of human knowledge in an efficient way.

All and all, the development of this NTL detection system has provided
us with an in-depth knowledge of explainable machine learning. In Part
IV we discuss several aspects of the state-of-the-art techniques.
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Part III

Explainable AI in Other
Fields
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Below is explained two collaborations in which the interpretability of
the data science models have been a key aspect in their development.

Chapter 7 explains our collaboration with a project of the University of
Padova and the Italian company My-Invenio. Our assignment consisted of
providing explainability to an existing predictive process monitoring sys-
tem, understanding why a prediction was being made and the important
features of the system. This chapter is divided into two sections. The
first section (Section 7) aims to provide an overview of Business Process
Management (BPM), explaining the life-cycle of BPM, focusing on process
monitoring. Section 7.2 analyzes the resulting paper from this collabora-
tion ([58]). This work is a pioneer in successfully implementing explana-
tory algorithms in predictive process monitoring, automatically achieving
explanations in line with those obtained by My-Invenio’s human experts.

Chapter 8 analyzes the implementation of explainable solutions in ma-
chine learning for social science problems. Taking as example the initial
results from the unpublished paper [95] from the Universitat de Barcelona
in which we collaborated, we discuss if the explainable algorithms can pro-
vide enough information to validate hypothesis, replacing the regression
models in social science literature.

Taking as an example the initial results of the unpublished paper [95]
from the Universitat de Barcelona in which we collaborated, chapter 8
discusses the implementation of explainable solutions in machine learning
for social science studies. We discuss whether explainable algorithms can
provide sufficient information to validate hypotheses, replacing regression
models in the social science literature.

Papers

Explainable Predictive Process Monitoring International Confer-
ence on Process Mining [58].

The Logic behind NGOs’ Aid Allocation: a Complex Choice
based on Past Decisions [95].



Chapter 7

Explainable Predictive
Process Monitoring

7.1 Business Process Management (BPM)

7.1.1 Introduction

Business Process Management (BPM) is a discipline that encompasses dif-
ferent methods, tools and techniques that support and analyze how the
processes in an organization work to guarantee their correct implementa-
tion and monitoring, and also their improvement when possible. Depending
on the nature of the organization and its context, the improvement of the
process might mean a cost reduction cost, a reduction in execution time
or a reduction in error rates, but also the detection of innovation opportu-
nities that would mean a competitive advantage against the competition
[49].

The following are examples of the use of BPM in different fields:

Healthcare One of the paradigmatic examples of the benefits of the solu-
tions that BPM can provide is its application in hospitals, where resources
are limited, a rapid response to a medical emergency is mandatory, and
the existence of different medical departments may lead to the existence
of redundant processes due to a lack of interdepartmental communication.
Thus, BPM aims to provide different solutions to improve hospital pro-
cesses, including a better patient flow in terms of processing time, resource
use and costs, but also optimization of less critical processes such as data
gathering. Some examples of the analysis of using BPM in medical envi-
ronments as well as their implementation can be read in [137, 129, 15].

Banking Another field in which there exist several examples of imple-
menting Business Process Management solutions is Finance. For example,
banks have had to modernize by leaps and bounds, moving in a short
period of time from being entities where many of their processes were ex-
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ecuted manually (and where the customer had to go to a bank branch to
carry out any process) to doing these processes automatically or online.
These changes involved analyzing the manual processes in order to mod-
ernize and automate them, minimizing the possible errors that could arise,
reducing their time execution, and improving the overall customer expe-
rience. There exist several examples of successfully implementing BPM
techniques in banking, e.g. [78, 122].

7.1.2 Life Cycle

Business Process Management comprises several phases that guide the pro-
cess of understanding the existing processes in organizations, their flaws
and problems, their improvements and post-control; this life cycle of a pro-
cess is usually represented as seen in Figure 7.1, where each state is defined
as follows [49]:

Figure 7.1: Lifecycle of Business Process Management.

Process Identification Process Identification corresponds to the initial
process of BPM when the organization has not engaged in BPM before.
The result of this stage is a process architecture that provides an overall
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vision of the company’s processes and their relationship; identifies which
processes should be analyzed and improved. To achieve this process identi-
fication, it is necessary to determine how the process should be evaluated,
i.e. the process performance measures (or metrics), e.g. the duration of a
process, the quality of the output or the errors committed. Establishing
the optimal measure is crucial for BPM to analyze the correctness of the
process properly.

Process Discovery The next step corresponds to properly understand-
ing the business process in detail, where the outcome of this process is
the process models. These process models must be understandable since
they are a key aspect of all the stakeholders involved in the BPM analy-
sis. The model can be text descriptions, a diagram, or a combination of
both. The diagrams are usually flowcharts where the rectangles represent
activities, and diamonds represent points in the process where a decision
has to be made. From this baseline, several extensions of flowcharts exist
that include different aspects that help to represent the process better.

Process Analysis Once the process is appropriately represented and ex-
plained, the next step consists of analyzing it to identify the issues in the
process. In this step of the process, the correct determination of the perfor-
mance metric would help detect the current method’s errors and problems.
The issues identified are then classified according to their importance (i.e.
what would be the impact of solving them, or the effort needed to do it).

Process Redesign The process redesign corrects the problems detected
in the previous step. This step requires a deep understanding of the global
process, since in many cases a solution to the problems of the current
process might cause other problems that currently do not exist. In point
of fact, the process redesign is closely related to the previous step to avoid
these problems. The new process design should improve the performance
metrics established at the beginning of the process.

Process Implementation After the process redesign has been done, it
should be implemented. This involves changes from the workers, referred
to as organizational change management, in their activities and methods
used, and technical changes referred to as process automation, such as a
new IT system.

Process Monitoring Once the process is redesigned and implemented,
the process should be monitored to record its performance. This informa-
tion should be then used in the short term to implement small corrections
to the model built, and in the long term, to restart the cycle. These event
logs can be used to monitor the historical performance of the process exe-
cutions (referred to as Offline Process Monitoring) and monitor processes
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currently being processed (referred to as Online Process Monitoring). The
former analyzes information from a long period of time (e.g. a full year)
to provide a picture of the performance of the process, and is useful to
understand the correctness of the process globally. The latter is focused on
analyzing current process instances and is used to correct specific problems
(e.g. when a customer request remains unanswered).

7.1.3 Predictive Process Monitoring

Predictive Process Monitoring is a sub-field of the Process Monitoring pro-
cess in which the event-logs from the process are used to generate predic-
tions for a specific process, for instance the remaining time of that process
(that would correspond to a numeric output), the fulfilment of a certain
goal (binary), or a metric that would score the effectiveness of the process.

The initial stage of Predictive Process Monitoring consists of encoding
the process’ event logs into feature vectors. In general, the information
available is massive and, therefore, the encoding process requires feature
engineering to extract the most relevant information from four perspectives
[43]: control-flow perspective (i.e. the order of the activities performed in
the process), the data-flow perspective (i.e. the different attributes at-
tached to the event), the time perspective (i.e. the duration of an activity
or the whole process) and the resource perspective (i.e. information re-
garding the organization that executes the process). These four perspec-
tives differentiate the data processing for process monitoring from the more
generic data models (e.g. supervised machine learning).

The next stage corresponds to the building of the predictive model.
Depending on the approach, the model can be a statistical model (e.g.
Hidden Markov Model, [79]), a machine learning approach (e.g. [93]), an
annotated transition system (e.g. [120]) or a hybrid of different approaches
(e.g. [135]). In the same way, the models can be classified as process-aware
models (if there is an explicit representation of the process model, e.g.
the annotated transition models) or non-process-aware models (if there is
no explicit representation of the process model, i.e. mostly the machine
learning models). The validation of the model, similar to what is done
in classical machine learning, is evaluated using classical metrics such as
precision or accuracy for classification problems, and RMSE or MAE for
regression. Finally, the model is used for predicting. In general, predictive
process monitoring uses the models for online predictive monitoring (e.g.
to predict the remaining time of a process) at a certain point of the process,
referred to as checkpoint.

Most of these prediction systems cover the following purposes:

• Performance indicator: The Process Performance Indicators are met-
rics that evaluate how well (i.e. how efficient and effective) the pro-
cess is, providing quality information useful in controlling and im-
proving it. The most common performance metrics aspects evaluated
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are time-related (e.g. the duration of the activity).

• Risk Predictions: Risk predictions encompass all information related
to the detection of anomalous process executions, either because an
instance of a process is taking too long to execute, or because an
activity is running too many times (in a loop).

• SLA violation predictions: A Service Level Agreement (SLA) defines
a contract between a supplier and a customer, where a breach of any
part of the contract may result in financial penalties. Thus, predictive
models can be used to identify if an SLA is going to be breached in
order to correct it in time.

In addition to these cases, there exist other purposes such as the detec-
tion of abnormalities (e.g. the abnormal termination of an event) that do
not fit previous categories but are common in predictive process monitor-
ing.

7.1.4 Predictive Process Monitoring through Machine Learn-
ing

Recently, the use of machine learning techniques in predictive monitoring
has been increasing dramatically. Their application is a clear example of
how machine learning can be implemented in the industry.

There are many examples in the literature, ranging from cases where
unsupervised and supervised algorithms are used. Some examples of the
application of unsupervised algorithms are [44] (that describe a clustering
and decision method for the prediction of a violation (or otherwise, the
fulfillment) of a determined predicate, or [54], which implements a solu-
tion based on clustering to determine a violation of the ongoing instance.
In relation to the examples of supervised algorithms, we find examples of
both interpretable algorithms (such as [133], in which the framework pre-
sented combines different techniques, including Decision Tree models, to
predict risk probability), and black-box algorithms that use more complex
algorithms that, a priori, should better exploit large amounts of data. Ex-
amples of the latter would be the predictive process monitoring systems
that are based on Long-Short Term Memory, e.g. [132, 93].

As we can see, machine learning offers different solutions for predictive
process monitoring, so the choice of algorithm will depend on many factors.
As we are analyzing in this thesis, one of the factors to consider is that
the use of complex algorithms is, according to the accepted literature,
the algorithms that can predict best but are poorly interpretable. This
is a problem as we have discussed above in the case of NTL detection in
electricity. In the case of BPM the fact of using opaque algorithms is also
a problem to be taken into account, since for sure many stakeholders with
different roles (that need to understand the predictive systems) will be
involved in the process of improving the institution’s processes.
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7.2 Case Study: Explainable Predictive Process
Monitoring

In [58] the problem of providing trustworthy explanations to a predictive
process monitoring framework is tackled. This work builds a framework
based on LSTM models that estimates the corresponding KPI value with
an explanation of the features that influenced that prediction.

7.2.1 Preliminaries, Context and Problem Statement

The Long-Short Term Memory algorithm is the approach that, according
to [97, 93, 132], provides better results, at the cost of not being transpar-
ent. At the time of publication of the paper no relevant work had managed
achieved to provide explainability of predictive monitoring models, as ex-
plained in [84], which claims that “little attention has been given to [. . .]
explaining the prediction values to the users so that they can determine the
best way to act upon”, and that “it is necessary to develop tools that help
users to query these models in order to get information that is relevant for
them”. Existing work attempted to provide explanatory solutions [21, 109],
but they were simple solutions bounded to simple and specific use cases,
difficult to generalize in real case scenarios.

In [58] the proposal is to implement explainability with Shapley values
to an LSTM-based predictive monitoring framework. The main dataset1

used in the work corresponds to an Italian banking institution, and the
process to be monitored is the Bank Account Closure (the process that deals
with the closure of customer’s accounts), with 212721 events and 32439
complete traces. From this dataset, 2/3 of the traces would be the training
dataset (20% of which has been used for hyperparameter optimization, i.e.
used as validation dataset), and 1/3 corresponds to the test dataset.

The KPI to be predicted related to this process are the following:

Remaining Time The estimation of the remaining time allows the bank
to detect those process cases requiring special attention in order not to
postpone them much longer.

Activity Occurrence There exist several activities2 that are linked to
contingency actions that should be avoided to reduce inefficiencies in terms
of cost, time and resource utilization.

Case Cost In this case, the estimation of the case cost would help to
detect cases that require special attention.

1 The original paper contains other experiments with public datasets.
2 Authorization Requested, Pending Request for Acquittance of heirs, and Back-Office Adjust-

ment Requested.
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The LSTM model provides an optimal structure to represent the se-
quence of events that constitute a trace. Being e an event (encoded as a
feature vector e =< x1, x2, ..., xn >), then a trace t can be represented as
an ordered sequence of events (i.e. t =< e1, e2, ..., em >), that is a matrix
NxM of features. Therefore, the Shapley values provide, for each feature, a
value indicating its contribution to the predictive output in the same NxM
form. Regarding all the Shapley values, in this work the Shapley values
considered relevant are the values outside the range I = [µ− δξ, µ+ δξ], µ
being the average of the Shapley values, ξ their standard deviation and δ
a parameter set by the user. Once the relevant features are computed, two
types of explanations are provided, the offline and the online explanations,
summarized as follows:

Offline Explanations Heatmap that overviews information regarding
the frequency in which an explanation has been relevant for the test dataset.
Therefore, this offline explanation provides a global explanation of the
importance of each feature.

Online Explanations The online provides information regarding run-
ning instances. In this case, the information is given as a table.

7.2.2 Case Study Analysis

Below we provide a summary of the experiments from [58], results that
show not only the accuracy of the LSTM models but also the good expla-
nations provided by SHAP.

Remaining Time

According to the heatmap from Figure 7.2, the most influential feature
would be CLOSURE TYPE!=Inheritance, with a negative value of -71598,
i.e. it normally reduces the remaining time. This pattern can be humanly
validated as when the type of procedure is Inheritance, the process duration
is 29 days, versus 14 days when not. Similarly, the LSTM model detects
that attributes Role=Back-office and CE UO=BOF (back-office activities)
reduce the prediction time, an expected behavior since both activities are
performed in the final stage of cases.

Regarding the online explanations, in Table 7.2 there is an example
of the information provided by the framework. For instance, the last row
indicates that the remaining time of that case is just over two and a half
hours, with two explanations increasing the prediction, one related to the
fact that the previous activity performed was not Service Closure Request
with BO Responsibility, and the other related to the resource performing
the previous activity with a role not being Back-Office.
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Figure 7.2: The offline explanation of the remaining time KPI.

CASE ID REMAINING
TIME

EXPLANATIONS
FOR INCREASING
REMAINING TIME

EXPLANATIONS FOR
DECREASING TIME

201810011258 5d 6h 7m ACTIVITY=Evaluating
Request (NO registered
letter)

CLOSURE TYPE!=Inheritance

201810000206 5d 2h 12m ROLE=DIRECTOR CLOSURE TYPE=Bank
Recess

201811010829 2d 2h 31m ROLE!=BACK-OFFICE
(-1) AND ACTIV-
ITY!=Service closure
Request with BO respon-
sibility (-1)

-

... ... ... ...

Table 7.1: Online explanations for Remaining Time for three running cases.
When the explanation is followed by (−1), it means that it refers to the
value assigned to the attribute by the event that precedes the last of re-
spective case.
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Table 7.2: Online explanations for Back-Office Adjustment Requested. Val-
ues 1 and 0 indicate if the activity is predicted to occur or not. Explanation
followed by (−1): attribute value assigned by the event that precedes the
last of respective case.

CASE ID BACK-
OFFICE
ADJUST-
MENT RE-
QUESTED

EXPLANATIONS
FOR BACK-OFFICE
ADJUSTMENT
REQUESTED HAP-
PENING

EXPLANATIONS FOR
BACK-OFFICE ADJUST-
MENT REQUESTED
NOT HAPPENING

201810000206 0 ACTIVITY=Service closure
Request with network respon-
sibility (-2) AND CE UO=195
(-1)

201811008237 1 CLOSURE TYPE=Porting -
201812005701 1 CLOSURE REASON!=1

- Client lost
-

... ... ... ...

Finally, the metric used for the LSTM was the Mean Absolute Error
(MAE), achieving a MAE on the test dataset of around 4.37 days, which
is around 28% of the average case duration (i.e. 15.5 days).

Prediction on Activity Occurrence

In this work the contingency action analyzed is Back-Office Adjust Re-
quested, an activity related to inefficiency that demands rework. The met-
rics regarding the LSTM model that predicts this activity achieved an
F1-score of 0.65, an AUROC of 0.86, and APR of 0.69.

In Figure 7.3 we have the heatmap from the offline analysis, where the
Shapley values indicate that the features related to a closure of the bank
account influence the most. When the customer makes a request to close
all their bank account (i.e. Closure Reason=1 - Client Lost) or only one
bank account (i.e. Closure Reason=2 - Keep bank account- Same dip), the
adjustment is unlikely: the values of these activities in the heatmap are neg-
ative. Negative values are seen in other similar features where the customer
decides to close their bank account. On the other hand, when the bank
is the one that decide to close the account (e.g. ClOSURE TYPE=Bank
Recess), then the activity is more likely to occur.

In Table 7.2 we have a small sample of the online explanations. Taking
the first case as an example, we can see the rework activity is not expected
to happen because two events ago Service Closure Request with Network
Responsibility has been performed and because the previous event has been
performed by the resource 195. On the contrary, it is predicted to even-
tually happen for the other two cases in the table, and the explanation is
related to the closure type being Porting and the closure reason not being
Lost Client.
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Figure 7.3: Offline explanations for Back-Office Adjustment Requested

Case Cost Prediction

Finally, for this third KPI the metric adopted is the MAE, achieving an
error of 0.95 euros. In this case, this error is very low, since the average
cost is 12.86 euros, with a standard deviation of 6.41 euros.

Figure 7.4 shows the heatmap of the offline explanation. In this case,
the fact that a bank account needs to be closed as requested by the cus-
tomer (i.e. CLOSURE REASON=1 - Client Lost) increases the cost of
the process: according to the paper this is a consequence of the fact that
this process is evaluated by the director whose wage is higher than other
workers. On the other hand the values in the heatmap are negative when
the bank is the one that closes the account (CLOSURE REASON=1 -
Client Lost) or the customer only wants to close one of its bank accounts
(CLOSURE REASON=2 - Keep bank account. Same dip), expected value
considering that the director does not have to carry out any evaluation in
these cases.
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Figure 7.4: Offline explanations for Case cost
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Closure

In predictive monitoring, a lot of work has been done to increase the ac-
curacy of the predictive monitoring system, usually by implementing more
complex solutions, such as using black-box algorithms. However, little
attention has been paid to making the solutions transparent, facilitat-
ing the interpretation of the predictions by the stakerholders, who have
to make decisions based on these values. In a way, we find ourselves in
a situation similar to the one explained in the project implemented for
Naturgy, where automation through artificial intelligence can generate dis-
trust among stakeholders due to its opacity. The lack of interpretability
can lead one to discard the use of more complex solutions that, in general,
should provide better results, in favor of simpler solutions. Therefore, it is
necessary to build trust to guarantee that the system is adopted in practice
[94, 46].

In this chapter we have analysed the work done in [58], which imple-
ments an LSTM framework to predict different KPI. This paper achieves
a milestone in Business Process Management in general, and in predictive
monitoring in particular, by implementing a fully interpretable system that
combines the algorithm that, according to the literature, is the best option
to guarantee high accuracy, with the Shapley values that provides reliable
explanations, in line with the on obtained from the human analyst from
MyInvenio.

Our contribution focused on the development of Shapley values ex-
planations of the predictive framework. In Part IV we provide different
conclusions regarding the use of this solution in a Business Process Man-
agement context, and in Machine Learning in general.



Chapter 8

Explainable Black-Box
Algorithms in Social Science

8.1 Data in Social Science

8.1.1 Data Modelling in Social Science

Social Science is the field in science that studies societies and their indi-
viduals, including political structures (i.e., political science), the value of
goods and services (i.e., economics), or past human events (i.e., History),
among many other research fields.

In general, social scientists aim to validate hypotheses through data.
That is, the social scientist builds a statistical model with some indepen-
dent variable (i.e., explanatory variables, that represent different hypothe-
ses) and a dependent variable (i.e., the response). The model reveals re-
lationships between the independent variables and the dependent variable.
Based on these variable interactions, the social scientist can validate one
hypothesis or another. The quintessential social science model is linear
regression (and other generalized versions, e.g., logistic regression) used in
Gaussian data and linear, where the coefficients indicate how an indepen-
dent variable influences the dependent variable. Based on these coefficients,
the hypothesis can be validated or otherwise. Thus, the main focus in social
science is to validate a hypothesis through statistical analysis.

In contrast, predictive machine learning aims to build a model that au-
tomatizes a prediction process by learning historically labelled instances to
predict unseen new instances. The data distribution is unknown, requiring
that both the labelled and unseen instances to be drawn with the same
distribution. The fact that in many cases there is no prior assumption
of the data distribution means there is no ”correct” modelling algorithm,
and therefore it is necessary to analyze how well a model predicts using
training-validation split or cross-validation, as explained in 2.1.2. The best
model in terms of benchmarking (e.g., the precision result in a validation
dataset) is considered the best option to automatize the prediction pro-

126
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cess. This is another key difference with the social science models where
benchmarking (e.g., the R2 and the p value in linear regression, Section
2.2.1) is used to validate that the model is able to explain the variance of
the output, but there is usually no direct comparison between approaches.

The intrinsic characteristics of Machine Learning made the field exploit
the large amount of data available thanks to Big Data, since more data
should better represent the reality that one is aiming to model. However,
this is not seen in Social Science, where the humanistic point of view of
exploiting the data, where the main goal is to detect causal patterns to
validate hypotheses, has kept them in the small data.

8.1.2 Challenges and Possibilities of XAI in Social Science

The use of artificial intelligence solutions outside the purely technological
field has been evident for years. For example, we have already mentioned
in Chapter 1 its use in the medical field, being one of the pioneering fields
in applied artificial intelligence. In social sciences, its use is less evident,
although there are several examples of it. In [113] how artificial intelli-
gence has been introduced in social and behavioral science between 2010
and 2019 is analyzed, differentiating three different applications: to in-
crease the effectiveness of diagnosis and prediction of different conditions
(e.g. by reducing the diagnosis of autism [140], the risk of alcohol use
among adolescents [2]), to increase understanding of human development
and functioning (e.g. Twitter analysis to examine weekly trends in work-
related stress and emotions [141]), or to increase the effectiveness of data
management in different social and human services (e.g. detecting child
abuse cases [8]). All these applications are focused on implementing ap-
plied solutions to social problems. However, extracting conclusions and
validating hypotheses from complex machine learning is not intuitive.

Recently, as we explained in Section 2.3, the artificial intelligence com-
munity is putting a lot of effort in implementing solutions to better un-
derstand predictive algorithms and, therefore, mitigate many of the exist-
ing ethical and technical challenges. Hence, these explanatory solutions
(that in this thesis have already been introduced in previous technologi-
cal projects) may be the necessary tool to introduce the use of complex
artificial intelligence algorithms to analyze social science problems from a
theoretical perspective; these explanatory algorithms would allow us to val-
idate or discard a hypothesis, as done when using interpretable algorithms,
but with the added value that complex models can represent reality in a
more complex way, thus bringing new insights into analyses.
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8.2 Case Study: How NGOs Prioritize Foreign
Aid Recipient Countries

The work done in [95] analyses the reasons why an NGO goes ahead with
a project in a country, proposing the hypothesis that their previous expe-
rience (i.e. if the NGO has a bond with the country) is the main reason in
their decision, a hypothesis not explored in the literature. This work anal-
yse this hypothesis with other existing hypotheses in the literature, using
as modelling algorithm the classical logistic regression approach, but also
explores the use of explained machine learning to answer this question.

8.2.1 Preliminaries, Context and Problem Statement

In general, the literature proposes different hypotheses when determining
the reason why an NGO develops a project in a country, which can be
grouped into two main hypotheses: the pragmatic rational and/or norma-
tive and reasons of principle [22]. For the former hypothesis, most of the
literature considers that the NGOs usually allocate their projects based
on donor prioritization. The latter considers that the NGOs are principle-
driven organizations and, therefore, their aim is to reduce poverty and
inequality.

The work done in [95] puts on the table a third hypothesis: that the
NGOs are path-dependent, developing projects where they have bonds with
the community or other local NGOs, since they have the knowledge and
experience to develop their projects with success. This work explores the
three hypotheses in the Spanish context. The data from this research is
extracted from different data sources, as seen in Table 8.1, profiling different
Spanish NGOs (see Table 8.2). Each data instance profiles the NGO and
the country from 2009 to 2016, as well as the existence (or the lack thereof)
and information of a project developed by the NGO in that country for
one specific year. Except for the control variable colony, the variables aim
to represent different aspects of the hypothesis explained above. That is:

H1: Back Donor Effect This hypothesis, defined in the work as NGOs’
aid allocation is influenced by public donors’ preference. In other words,
NGOs prioritize aid to those countries that prioritize their own donor is
represented in the profile with both the Donor Aid Budget and Public
Grant variables.

H2: Country Needs The second main hypothesis, which argues that
Objective country needs, such as poverty indicators, increases the probabil-
ity that NGOs provide their aid to that country, represented in the work
with the variable GDP per capita, has two derived sub-hypotheses, i.e.
The recommendations of international organizations to pay more attention
to special countries will positively influence NGO countries prioritization.,
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profiled by the variable UN LDCs, and NGOs’ aid allocation is influenced
by their geographical preferences as stated in their statutes, represented by
the Latin America Mission and Africa Mission variables.

H3: Path dependence the new hypothesis defended in the thesis corre-
sponds to two ideas, i.e. Allocating aid repeatedly in one country increases
the probability of coming back, i.e., accumulating experience in one coun-
try predicts an NGOs aid allocation, profiled by the Budget Previous Year
variable, and Choosing one country as aid recipient at present is highly
influenced by the factor that the NGO has put down roots in that coun-
try, i.e., has an institutional structure in the country such as a delegation,
represented by the Delegation variable.
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Name of the NGOs included in this work and their size

NGO NAME SIZE
Acción Contra el Hambre Large
Acción Verapaz Large
Caritas Española Large
Cruz Roja Large
Médicos del Mundo Large
Oxfam Intermon Large
Asociacion FONTILLES Medium-large
Educo Medium-large
Fundacion Adsis Medium-large
Fundacion Entreculturas Medium-large
Manos Unidas Medium-large
Movimiento por la Paz -MPDL- Medium-large
ADRA Medium
AIETI Medium
ALBORAN Medium
Amigos de la Tierra España Medium
Asociación Entrepueblos Medium
CESAL Medium
CODESPA Medium
Economistas sin Fronteras de España Medium
FAD Medium
Farmamundi Medium
FERE-CECA Medium
Fundación CIDEAL Medium
Fundacion de Religiosos para la Salud Medium
Fundacion del Valle Medium
Fundacion Iberoamerica-Europa Medium
Fundacion para el Desarrollo de la Enfermeria Medium
Fundacion Promocion Social Medium
InteRed Medium
ISCOD Medium
JOVENES Y DESARROLLO Medium
Juan Ciudad ONGD Medium
MUNDUBAT Medium
Paz con Dignidad Medium
Prosalus Medium
PROYDE Medium
SED Medium
Accion Verapaz Small
AMREF Salud Africa Small
Edificando Comunidad de Nazaret Small
Farmaceuticos Sin Fronteras de España Small

FISC-COMPAÑIA DE MARIA Small
PUEBLOS HERMANOS Small

Table 8.2: NGOs included in the study classified according to the number
of employees (E) or annual income in million Euros (AI). Small: < 10E
or AI <= 2. Medium: < 50E or AI <= 10. Medium-large: < 250E
or AI <= 50. Large:>= 250E or AI > 50.

The resulting dataset consists of 5236 developed projects. The negative
cases (i.e., the absence of a project from an NGO in a year in a country)
are built combining all the possible NGO-country combinations that have
no project. Finally, each NGO has 139 instances each year, with a total in-
formation of 1112 instances per NGO. The resulting dataset includes 44804
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negative instances (i.e., triads NGO,Y ear, Country) with no project, for
a total of 50040 instances. With this dataset the work proposes two mod-
els to analyze the hypothesis: a logistic regression and an LSTM model
(combined with Shapley values to understand the patterns learned).

Donor Aid Budget = 40000  Colony = 0 Budget Previous Year = 6000 Project developed{NGO, C, 2009}

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 8000 Project not developed{NGO, C, 2010}

Donor Aid Budget = 6000 Colony = 0 Budget Previous Year = 0 Project not developed

{NGO, C, 2013}

Donor Aid Budget = 7000 Colony = 0 Budget Previous Year = 0 Project not developed

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 0 Project not developed

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 0 Project not developed

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 0 Project developed

Donor Aid Budget = 10000 Colony = 0 Budget Previous Year = 9600 Project developed

{NGO, C, 2011}

{NGO, C, 2012}

{NGO, C, 2014}

{NGO, C, 2015}

{NGO, C, 2016}

Donor Aid Budget = 40000  Colony = 0 Budget Previous Year = 6000

Donor Aid Budget = 40000  Colony = 0 Budget Previous Year = 6000

Donor Aid Budget = 6000 Colony = 0 Budget Previous Year = 0

Donor Aid Budget = 7000 Colony = 0 Budget Previous Year = 0

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 0

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 0

Donor Aid Budget = 0 Colony = 0 Budget Previous Year = 0

Donor Aid Budget = 10000 Colony = 0 Budget Previous Year = 9600 Project developed

{NGO, C, 2016} start

{NGO, C, 2016} end

Figure 8.1: Our regression dataset considers each NGO,Country,Year in-
stance as independent, with no relationship between them. For this reason,
each instance has a dependent variable (i.e., if the project was developed
or otherwise). In contrast, the LSTM dataset has a temporal structure in
which only the NGO, Country, 2016 has a dependent variable, and all the
information from previous years (from 2009 to 2015) is information from
the instance NGO, Country, 2016.

The regression model is chosen because it is widely used in the literature
(e.g., all the references included in this section use regression models to
validate their hypothesis). However, the paper goes a step further beyond
what exists in the literature and analyzes the data using the LSTM model
to have the data structured as a time series to further analyze hypothesis
3. This analysis forces a different representation of each instance. More
specifically, for each NGO and country we will have as dependent variable if
the NGO developed a country in 2016, where the independent variables will
be all the historical information from that country and NGO, as explained
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in Figure 8.1.

8.2.2 Case Study Analysis

Here below we provide a summary of the analysis included in [95].

Previous Analysis

Before data modelling, a previous analysis is required to not only under-
stand the characteristics of the data but also to avoid collinearity. In
Figure 8.2 the Spearman correlation between variables is analyzed. The
Spearman correlation is chosen over the Pearson Correlation due to the
characteristics of the data (the assumptions of normal distribution, linear
relationship and no homoscedasticity are not met in our data), but also to
achieve a comparable correlation metric between two continuous variables,
a continuous and a binary variable, and two binary variables1.

Three pairwise correlations between the independent variables can be
highlighted in Figure 8.2: the negative correlation of -0.65 between the
UN LDCs and the GDP per capita variables (that indicates that the UN
prioritizes the poorer countries); the correlation between the Delegation
and the Budget Previous Year of 0.5, indicating that there is a statistical
dependence between the existence of a project in the previous year and
the existence of a Delegation; and the Donor Aid Budget and the Colony
variable correlation (0.47), indicating that Spain seems to prioritize his-
torical colonies (e.g. Latin American countries) in their donor aid. No
correlation seems important enough to implement feature selection due
to multicollinearity, as confirmed with Table 8.3 with very low Variance
Inflation Factor values between 1 and 2.

When analyzing the correlation between each independent variable and
the dependent variable we see that the H3 variables have an above-average
correlation with the dependent variable. However, there exist no leakage
in terms of the chronological order2, and also, the variables are not good
enough to fully explain the prediction, as explained in Table 8.4. Therefore,
both features are simply considered as good predictors and kept in the
model.

Logistic Regression

Table 8.5 summarizes the logistic regression results, including one model
for each hypothesis, and a fourth model that analyses the importance of

1 The Spearman correlation measures the monotonic relationship between continuous data
and/or ordinal data based on the ranked values instead of their raw value. If it is assumed
that the binary data can be seen as ordinal data of two levels, then it is possible to obtain a
global vision of the correlations between the variables.

2
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Spearman’s Correlation Heatmaps
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Figure 8.2: Spearman’s Correlation between variables. The plot above
provides the strength and direction of monotonic association between the
independent variables. Most of the correlation values are low, with some
correlation values around ± 0.5. The plot below provides the same in-
formation between the independent and the dependent variables, showing
that the variables from H3 hypothesis are more correlated to the Project
Developed variable than the variables from H1 and H2 variables.

all variables combined. The coefficients of the variables, as well as the
pseudo−R2 [85]3, are used to analyze each hypothesis.

As we can see in the results from H1, the Donor aid budget and the
Public Grant have a positive coefficient, meaning that the Donor Aid (i.e.,
Spain in this case study) might influence the NGOs in the decision to ahead
with a project in a country. However, the low R2 indicates that these vari-
ables cannot properly explain the variance of the dependent variable and,

3 In R, McFadden’s pseudoR2 can be computed using the DescTools package.
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therefore, this hypothesis cannot be validated. Regarding the constant, it
is negative, which is to be expected because it is more likely to not im-
plement a project than otherwise. Finally, it can be seen that Colonial
History positively influences the output, a pattern repeated in each of the
four models.

For H2, the coefficient for the GDP per capita shows a negative trend
(i.e., this is the higher the GDP per capita, the less likely it is that a de-
velopment project will be undertaken) and a highly statistically significant
coefficient, as we might expect according to the value principled hypothe-
sis. Regarding the UN LDC priority, the coefficient is negative, meaning
that Spanish NGOs do not prioritize these countries (since these are the
poorest countries from Africa and Asia, while Spanish NGOs prioritize
Spanish-speaking countries). Finally, both the Africa Mission and Latin
America Mission have a negative coefficient, an expected variable consider-
ing that these regional focused NGOs are smaller than other non-regional
focused NGOs (e.g., Cruz Roja or Caritas) and, therefore, they develop
fewer projects. Nevertheless, the low R2 value of 0.16 still indicates that
H2 cannot explain the variance in the dependent variable.

Finally, H3 seems to be the hypothesis that explains better the variance
in the model, with a R2 value higher than 0.5 (and a lower AIC, Akaike
Information Criterion, indicating a more parsimonious model). Providing
financial aid in the previous year (NGO budget previous year) to one coun-
try increases the probability of being prioritized by the organization. In
addition, an NGO delegation has a positive coefficient, confirming that past
experience in one country is important to understand NGO aid allocation.

Finally, the conclusions from H1, H2 and H3 can also be achieved when
analyzing the fourth model that includes all the variables: the indepen-
dent variables from the Back Donor Effect have a positive impact, all the
variables regarding the principles and needs of the host have a negative
impact, and the path dependence variables have positive impacts and are
the most important variables according to their coefficients. In this case,
the R2 and the AIC are similar to H3, which reaffirms the importance of
the NGO’s past choices and experience to determine where the projects
are developed.
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Variance Inflation Factor of each independent variable

VARIABLES VARIANCE INFLATION FAC-
TOR

UN LDC 1.75
GDP per capita 1.87
Budget Previous Year 1.03
Delegation 1.04
Donor aid Budget 1.54
Colony 1.84
Latin America Mission 1.02
Africa Mission 1.02
Public Grant 1.06

Table 8.3: The results indicate that there exist no multicollinearity problem
in this dataset, with very low VIF values that are never higher than 2.

Contingency Table (Budget Previous Year/Delegation, Project
Developed)

BUDGET PREVIOUS
YEAR=0

BUDGET PREVIOUS
YEAR>0

Project Developed=0 43439 1365
Project Developed=1 1417 3819

DELEGATION=0 DELEGATION=1
Project Developed=0 44404 400
Project Developed=1 3308 1928

Table 8.4: As indicated by Spearman’s correlation in Figure 8.2, there
exists a strong correlation between the variables from H3 and the target
variable. However, this correlation is not enough to fully predict if a project
is going to be developed in a country and, therefore, it is reason enough to
discard the suspicion of data leakage.
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Explained LSTM model

Figure 8.3 includes two charts with the top 10 variables that have the
most influence on the dependent variable according to the Shapley values.
Indeed, the main conclusions from the regression analysis can be extrapo-
lated in the LSTM model, i.e., the importance of the H3 variables is also
shown in the LSTM model. However, the use of the LSTM allowed going
further in the analysis, where the information from prior years (e.g., Donor
Aid budget 2015 or Delegation 2015) indicates a path-dependence pattern
beyond one year.

Most important independent variables according to the Shapley
values

0.00 0.01 0.02 0.03 0.04 0.05 0.06
average impact on model output magnitude

Donor Aid Budget_2015
Delegation_2015

Donor Aid Budget_2016
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Budget Previous Year_2013

Delegation_2016
Budget Previous Year_2014
Budget Previous Year_2015
Budget Previous Year_2016
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impact on model output

Donor Aid Budget_2015
Delegation_2015

Donor Aid Budget_2016
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Figure 8.3: The most important independent variables according to the
Shapley values’ explanation. As indicated by the Regression Model, the
Path Dependence variables are the most important independent variables
in the model. However, LSTM allows us to include a temporal analy-
sis absent in the Regression model, allowing us to determine historical
Path Dependence variables (e.g., Budget Previous Year 2015 and Bud-
get Previous Year 2014 highly influence the decision to develop a project
in 2016.
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Although it is evident that, at least for Spanish NGOs, the path-
dependence hypothesis is confirmed, the paper also analyses the variables
of the other two hypotheses (not included in 8.3 due to their low relevance),
as can be seen in Figure 8.4. In spite of their negligible impact on model
output, these features influence the output as expected. For instance, ac-
cording to the UN LDCs’ Shapley values, Spanish NGOs do not prioritize
the Least Developed Countries, since most of their projects are developed
in former Spanish colonies, as previously seen in Figure 8.2. However, we
see that a low GDP per capita increases the prediction. If we analyze the
variables regarding the mission of the NGOs, we can see that those with
a Latin America Mission slightly increase the probability of developing a
project, while if we analyze the Africa Mission NGOs, we can see the op-
posite behavior. Finally, it is clear that the fact that an NGO has a Public
Grant to develop a project should increase the model output.

Shapley values from other H1 and H2 variables
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Figure 8.4: As we can see in these Figures, H1 and H2 variables are not
the most relevant variables for the model, but are worthy of analysis. We
would highlight that, according to the UN LDCs values, we can confirm
that Spanish NGOs do not prioritize the countries from the UN LDC. If
we analyze the variables regarding the mission of the NGOs, we can see
that those with a Latin America Mission slightly increase the probability
of developing a project, while if we analyze the Africa Mission NGOs we
can see the opposite behavior. This is expected since most of the projects
from Spanish NGOs are developed in Latin America. Finally, the models
consider that the NGOs prioritizes countries with low GDP per capita, an
expected behavior.
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Closure

Within the international aid system, NGOs are key actors, as they are the
ones that distribute most of the aid, both from public and private sources.
Therefore, NGOs are one of the main focuses of attention when analyzing
how such aid is prioritized. The question raised by previous studies is to
what extent NGO aid follows a pragmatic or survival logic (developing
projects in countries where they can receive donor aid), referred to in this
paper as hypothesis 1 (H1) or whether, on the contrary, they move with a
logic based on values and principles, more attached to the altruistic idea
that surrounds the actions of this type of organization (referred to in this
paper as H2). The work carried out in [95] proposes a third option: that
NGOs develop projects in those countries where they have roots (referred
to in the work as path dependence hypothesis or H3), either because they
have developed projects in previous years or because they have a delegation.

These three hypotheses are analyzed in this paper using two data meth-
ods. The first method consists of developing several logistic regression
models, where each model is intended to validate each of the above hy-
potheses. All the variables are significant, so it is not easy to evaluate
which is the clearly determining logic. However, only the models with the
path dependence independence variables achieve a high R2, around 0.5
(while the other models had R2 values close to 0.16), i.e. the information
related to the existence of a project in the previous year or a Delegation is
able to explain the variance of the dependent variable.

The second approach consists of fitting a Long-Short Term Memory
Neural Network model, an Artificial Intelligence predictive algorithm that
has persistence on historical data. This approach allows to determine if
the path dependence patterns from H3 exist beyond one year (e.g. if a
project developed before 2015 can influence the developing of a project in
2016). The explanation of the model obtained using Shapley values con-
firms the existence of this relationship, since among the ten most relevant
variables to determine whether a project is developed in 2016, five corre-
spond to whether a project existed in previous years (2011-2015)4, and two
correspond to the existence of a Delegation in 2016 and 2015. The other
three variables are if the country is a former colony of the back donor, and
the Donor Aid Budget for that country in 2016 and 2015. This temporal
perspective cannot be achieved through the classical regression approach,
demonstrating that explained artificial intelligence models can be a great
tool in social sciences, with non-restrictive fully interpretable data models.

4 As a reminder, the Budget Previous Year from a year X corresponds to the money spent in
that country in the previous year, i.e. year X-1.
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This work has previously explained three data science projects where
the human factor has been a key element in their development, allowing us
to understand, explore and apply the most important tools of explainable
artificial intelligence. Below we will summarize the contributions of the
work carried out. Then, we will draw some general conclusions about the
current state of machine learning in general and interpretability tools in
particular and analyze what it means to achieve a robust and transparent
predictive model.



Chapter 9

Discussion

Undoubtedly, the use of predictive machine learning and other data sci-
ence solutions is rapidly increasing, being applied in many fields beyond
academic computing or technology companies, as we have explained in the
introduction. We have found examples of this in this thesis, where we have
implemented human-aware data science solutions in three different fields:
utilities, banking and social sciences. We have analyzed existing solutions
to achieve predictive models that are truly transparent and understand-
able to stakeholders (or researchers), implementing successful solutions in
each case. In this section we draw some conclusions, considerations and
thoughts.

9.1 This Work: Contributions and Results

The need to understand the predictions made by a predictive algorithm
is not new, as the goal in machine learning has always been to achieve
reliable predictions. However, during the last few years we have witnessed
a boom in the need to understand such algorithms, with the emergence of
new tools that address the need to respond to the concerns arising from the
use of machine learning algorithms in our daily lives. This work pioneers
the application of transparent machine learning solutions in different fields.

Our main contribution has been the development of the NTL detection
system for Naturgy. This work has encompassed all machine learning pro-
cesses, from data extraction to post-analysis. That said, our added value
consisted in giving the system a layer of transparency to achieve high in-
terpretability, which in general had not been analyzed in the literature:
there exist some examples in which the explanations of the predictions are
analyzed (e.g., [118]), but not with the depth that we offer in this the-
sis. Moreover, we highlight our focus on involving the stakeholder in the
predictive process, since in many cases machine learning is regarded as a
human substitute in business processes, which we do not consider to be
true, due to the limitations outlined throughout the work.

The knowledge acquired in the NTL detection process was applied in
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two other domains: predictive monitoring (business process management)
and development cooperation (social science). In BPM we have been the
first to implement highly explainable solutions to achieve transparent pre-
dictions in predictive monitoring. In development cooperation, we have
also been pioneers implementing artificial intelligence solutions combined
with Shapley values to understand how NGOs decide their projects, being
also one of the first works implementing these techniques in social science.

9.2 General Discussion

9.2.1 The Importance of Data in Predictive Modeling

In general, data from machine learning projects can be divided between
controlled data and observational data. Controlled data (also referred to
in the literature as data by design and, depending on their structure, ex-
perimental data) adequately represent the actual scenario, i.e., controlled
data are i.i.d. (independent and identically distributed) with respect to
the test data set, have no bias (or, at least, the sampling bias is controlled
by an expert) and, therefore, the process of building a model might not be
as challenging as training a model using observational data. The problem
with observational data is that they are often obtained for other purposes.
The obvious consequence is that, in many cases, this results in biases and
other data-related problems that might frequently go unnoticed. Despite
this, most of the literature uses observational data. After all, it is quicker
and cheaper to obtain because it does not need to be processed. In other
words, the data are already ”constructed” and, therefore, there is no need
to analyze their correctness. Observational data are what they are.

This comment on observational data comes on the heels of the data
used in the NTL detection system from Part II. As explained in this thesis,
this work used the data from the company’s visits that did not adequately
represent customers as desired. Considering that this would be a problem,
an optimal solution was put forward to generate exploration campaigns
to obtain better customer representativeness, but this was not carried out
due to the company’s refusal. This caused certain blindness on the part
of the data scientists that made it difficult for us to implement technical
solutions, since by using biased data to validate our proposals we could
never be entirely sure whether or not these changes were an improvement
to the system.

Thus, explanatory algorithms (especially those that provide modular
explanations), can be useful to compensate for problems related to the
use of observational data. All problems relating to representativeness and
biased patterns arise through model explanation, and for this reason our
efforts in the NTL system evolved from the initial goal of building a very
complex system with many variables to a more controlled environment in
which the stakeholder controlled the system.



Discussion 145

9.2.2 Involving the Stakeholder: Causality Validation and
Benchmarking

The classical approach to hyperparameter tuning and model selection needs,
as explained in Section 2.1.2, to use a validation dataset, with the goal of
reproducing the unseen data set and thus determining how well the system
generalizes. However, as we explain in Part II, when the labeled infor-
mation is biased, the results in the validation dataset may not adequately
represent how well our system generalizes. Thus, the classical approach of
grid (or random) search for the optimal hyperparameter, and direct com-
parison of different algorithms on the same dataset, becomes obsolete or,
at the very least, less reliable than one would want.

We explain how we analyze our NTL detection system based on learned
patterns instead of classical benchmarking in different sections. For exam-
ple, the man-in-the-loop approach explained in chapter 6 aims to imple-
ment a naive but functional method in which the stakeholder determines
when the system is learning unwanted patterns and corrects it when pos-
sible. Auditing the algorithm beyond benchmarking through an in-depth
explanation of the learned patterns allows us to detect biases and other
unwanted behaviors that go unnoticed when using metrics on a dataset,
especially when the i.i.d assumption is not met. Similarly, in the BPM
example from Part III, we validate the explained LSTM approach because
the explanations obtained are in line with the one obtained from human
analysts.

Thus, the development of increasingly complex algorithms to exploit the
vast amount of data available has not diminished the role of the human
being, but has made it more indispensable than ever.

9.2.3 Interpretable vs Explained Black-Box Algorithms

This work’s last and most important conclusion consists of the classical
trade-off between interpretable algorithms and explained black-box algo-
rithms. In general, most literature considers the latter option to provide
more accuracy, while the interpretable algorithms approach should be re-
served for simple predictive problems. This dichotomy should, at the very
least, be seriously discussed based on our experience, as extensively ex-
plained in [117].

In general, we could agree that in a perfect scenario where the avail-
able data represents reality, with no biases or dataset shift, the black-box
algorithm should be as accurate as the interpretable approach, since the
black-box can reproduce the simpler patterns learned by the interpretable
models. However, in real-world problems with messy data (due to biases
and sub-optimal data generation processes) benchmarking can be mislead-
ing, and thus both interpretable and black-box algorithms could provide
sub-optimal results, even though the latter can provide a priori better re-
sults in terms of benchmarking (e.g., due to overfitting) that may not gen-
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eralize well on unseen data. The virtue of interpretable models is that, in
general, the process of building a model is far more transparent and, there-
fore, it is easier to reprocess the data to represent reality and guarantee
causal patterns properly.

The situation of having a sub-optimal system was faced during the de-
velopment of the NTL detection system, and the introduction of Shapley
values in the system provided us with an optimal method to explain Gra-
dient Boosting Decision Tree models. In a sense, the original decision to
use an Ensemble of Trees to predict the NTL cases allowed us to benefit
from the existence of the Tree SHAP from [81], which provides robust and
faithful explanations of what the system learned.

In any case, this thesis does not want to discourage the use of black-box
algorithms, but rather advocates contextualizing their use in a context that
requires it. The NGOs project from Part III is a good example where an
explained black-box algorithm can provide a different point of view to the
researcher, in such a way that it helps them to validate hypotheses that
are difficult to do so with simpler algorithms.
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and B. Kröse. Deep learning to predict falls in older adults based on
daily-life trunk accelerometry. Sensors, 18(5):1654, 2018. 4

[93] N. Navarin, B. Vincenzi, M. Polato, and A. Sperduti. LSTM net-
works for data-aware remaining time prediction of business process
instances. In Proceedings of the IEEE Symposium Series on Compu-
tational Intelligence (SSCI 2017), 2017. 117, 118, 119

[94] I. Nunes and D. Jannach. A systematic review and taxonomy of
explanations in decision support and recommender systems. User
Modeling and User-Adapted Interaction, 27(3–5):393–444, Dec. 2017.
125
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