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Abstract: This study focuses on obtaining regression models for material removal rate and tool wear
in rough honing processes. For this purpose, experimental tests were carried out according to a central
composite design of experiments. Five different parameters were varied: grain size or particle size of
abrasive, density of abrasive or abrasive concentration, pressure of the stones against the cylinder
internal surface, tangential speed (in this case, corresponding to the rotation speed of the cylinder),
and linear speed of the honing head. In addition, multi-objective optimization was carried out with
the aim of maximizing the material removal rate and minimizing tool wear. The results show that,
within the range studied, the material removal rate depends mainly on tangential speed, followed by
grain size and pressure. Tool wear is directly influenced by density of abrasive, followed by pressure,
tangential speed, and grain size. According to the multi-objective optimization, if the two responses
are given the same importance, it is recommended that high grain size, high density, high tangential
speed, and low pressure be selected. Linear speed has less influence on both responses studied. If the
material removal rate is considered to be more preponderant than tool wear, then the same values
should be considered, except for high pressure. If tool wear is preponderant, then lower grain size of
128 (ISO 6106) should be selected, and lower tangential speed of approximately 166 min−1. The other
variables, density and pressure, would not change significantly from the first situation.

Keywords: honing; material removal rate; tool wear; regression models; multi-objective optimization

1. Introduction

In the honing process, material is removed from the internal surface of cylinders by
means of abrasive stones, which are attached to a honing head. The stones are made of
abrasive material and bond. Different grain sizes (GS) or particle sizes of abrasive can
be used, as well as different densities or abrasive concentrations (DE). The stones are
expanded against the workpiece surface in order to apply a certain pressure (PR) on the
workpiece surface. Usually, the honing head combines alternate linear movement (which
provides linear speed VL) and rotation movement (which provides tangential speed VT) [1]
(Figure 1). This creates a cross-hatched pattern that favors oil flow [2,3]. Wong and Tung
stated that half of the losses in a combustion engine are produced in the piston-cylinder
interface [4]. The friction coefficient between the piston ring and cylinder liner, as well as
oil consumption, depend on the surface topography of the parts [5,6]. Thus, it is essential
to obtain an appropriate surface finish, which can be achieved through the honing and
plateau honing processes [7]. The honing process, in addition, provides high dimensional
precision [8] and requires different stages in order to achieve the final surface finish [9]. In
the rough honing phase, one of the main requirements is to maximize the material removal
rate, which is related to the productivity of the process, while minimizing tool wear, which
will lead to lower tool costs.

Machines 2022, 10, 83. https://doi.org/10.3390/machines10020083 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10020083
https://doi.org/10.3390/machines10020083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-4058-4162
https://doi.org/10.3390/machines10020083
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10020083?type=check_update&version=2


Machines 2022, 10, 83 2 of 12

Machines 2022, 10, x FOR PEER REVIEW 2 of 13 
 

 

finish [9]. In the rough honing phase, one of the main requirements is to maximize the 
material removal rate, which is related to the productivity of the process, while minimiz-
ing tool wear, which will lead to lower tool costs. 

 

Figure 1. Schematic of the honing process: VL is linear speed of the honing head, VT is 
tangential speed (corresponding to the rotation speed n of the cylinder). In this example, 
the honing head is provided with 4 abrasive stones. 

Regression models are often used to study and analyze machining processes. As for 
honing, Troglio [10], for instance, used factorial design with variables such as grain size, 
lubricating oil, and workpiece material, and average roughness Ra and parameters of the 
Rk family (Abbott-Firestone curve) as responses. Kanthababu et al. [11] investigated the 
effect of rotation speed, linear speed, pressure, honing time, and plateau-honing time on 
roughness parameters of the Rk family. Tang et al. [12] used gray relational analysis with 
response surface methodology (GRA-RSM) to model average roughness Ra. They found 
that average grain size was the most influential factor on roughness, followed by depth, 
tangential speed, and reciprocating speed. 

Different authors have studied the material removal rate in the honing processes. For 
example, Bell et al. investigated the effect of pressure and grit size on material removal 
rate, tool wear, and roughness of steel cylinders. They found that the stone pressure in-
fluenced material removal rates significantly [13]. Szabo performed honing experiments 
on cast iron material, in which cutting speed, tool pressure and machining time were var-
ied. He observed that the tool pressure increased the material removal rate. He found 
values between 0.015 and 0.020 mm/s (0.090 and 0.120 cm/min) when using cubic boron 
nitride (cBN) stones [14]. Vrac et al. varied circumferential or tangential speed, axial 
speed, pressure, and crossing angle using diamond abrasive stones in rough honing. They 
observed that honing speed influences the roughness-material removal rate dependence, 
especially for coarser-grained tools. They reported similar material removal rates, be-
tween 0.015 and 0.021 mm/s (0.090 and 0.124 cm/min) [15]. More recently, the same au-
thors [16] varied cutting speed and specific pressure in honing experiments with diamond 
abrasive stones. They obtained exponential models for maximum peak height Rp, produc-
tivity, and specific volume productivity. They found that cutting speed was the most in-
fluential factor on productivity, followed by specific pressure. A previous work about 
rough honing with cBN stones, in which grain size and density of abrasive were varied, 
reported material removal rate values of up to 0.36 cm/min [17]. In the electrochemical 
honing process, Shaikh and Jain obtained material removal rates up to 0.68 mm3/s, with 
voltage and rotary speed as the main influential parameters [18]. In the magnetic-assisted 

Figure 1. Schematic of the honing process: VL is linear speed of the honing head, VT is tangential
speed (corresponding to the rotation speed n of the cylinder). In this example, the honing head is
provided with 4 abrasive stones.

Regression models are often used to study and analyze machining processes. As for
honing, Troglio [10], for instance, used factorial design with variables such as grain size,
lubricating oil, and workpiece material, and average roughness Ra and parameters of the
Rk family (Abbott-Firestone curve) as responses. Kanthababu et al. [11] investigated the
effect of rotation speed, linear speed, pressure, honing time, and plateau-honing time on
roughness parameters of the Rk family. Tang et al. [12] used gray relational analysis with
response surface methodology (GRA-RSM) to model average roughness Ra. They found
that average grain size was the most influential factor on roughness, followed by depth,
tangential speed, and reciprocating speed.

Different authors have studied the material removal rate in the honing processes. For
example, Bell et al. investigated the effect of pressure and grit size on material removal
rate, tool wear, and roughness of steel cylinders. They found that the stone pressure
influenced material removal rates significantly [13]. Szabo performed honing experiments
on cast iron material, in which cutting speed, tool pressure and machining time were
varied. He observed that the tool pressure increased the material removal rate. He found
values between 0.015 and 0.020 mm/s (0.090 and 0.120 cm/min) when using cubic boron
nitride (cBN) stones [14]. Vrac et al. varied circumferential or tangential speed, axial
speed, pressure, and crossing angle using diamond abrasive stones in rough honing. They
observed that honing speed influences the roughness-material removal rate dependence,
especially for coarser-grained tools. They reported similar material removal rates, between
0.015 and 0.021 mm/s (0.090 and 0.124 cm/min) [15]. More recently, the same authors [16]
varied cutting speed and specific pressure in honing experiments with diamond abrasive
stones. They obtained exponential models for maximum peak height Rp, productivity, and
specific volume productivity. They found that cutting speed was the most influential factor
on productivity, followed by specific pressure. A previous work about rough honing with
cBN stones, in which grain size and density of abrasive were varied, reported material
removal rate values of up to 0.36 cm/min [17]. In the electrochemical honing process,
Shaikh and Jain obtained material removal rates up to 0.68 mm3/s, with voltage and rotary
speed as the main influential parameters [18]. In the magnetic-assisted abrasive honing
process, Chohan reported MRR values up to 0.03 g/min. using iron oxide abrasives [19].

In different machining processes, for instance, milling, it is usual to employ regression
models to obtain mathematical models that relate process parameters to responses related
to surface finish and productivity [20]. However, in the literature, not many studies are
known that analyze the influence of honing parameters on tool wear. For example, Bell et al.
observed that the stone pressure influences tool wear in honing processes [13]. Cabanettes
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et al. studied the evolution of areal roughness parameters with tool wear when honing
motor blocks. They found that the most useful parameters for this purpose are Spk, Sk, Ssc,
and a tailor-made parameter describing the plateau coverage [21]. They reported that as the
tool wears down, the plateau and peaks become rougher, with sharper asperities. In rough
honing with diamond stones, Vrac et al. observed that higher honing speed produces more
heat at the working area, and this leads to higher grain stress and fall-out of grains from the
abrasive stones [15]. In a previous work about rough honing with cBN stones, tool wear
values up to 0.0008 cm3/min were reported [17].

Regarding multi-objective optimization of honing processes, Nguyen et al. optimized
both surface roughness and machining time in finishing honing [22], by means of response
surface and genetic algorithms. Optimal values corresponded to tangential speed of
36 m/min, linear speed of 9.5 m/min, and grain size of 220. Lawrence et al. optimized
different roughness parameters and honing angles in rough, finishing, and plateau honing
processes by means of Taguchi design and Gray-relational analysis [23]. For example, in
rough honing, recommended values for the process parameters were rotational speed of
37 m/min, oscillatory speed of 19 m/min, pressure of 700 kPa, and honing time of 300 s.
However, tool wear has scarcely been used in the optimization of honing processes and
can be quite significant in rough honing processes, in which the highest material removal
rates are achieved.

As a general trend, in abrasive machining processes an increase in productivity, i.e.,
higher material removal rate, leads to an increase of tool wear. Tool wear can produce
deviations in the dimensional quality of the parts [24] as well as deviations in roughness val-
ues [21]. Thus, it is important to ensure relatively high productivity without compromising
the quality of the parts. The main objectives of this study are to model and to simultane-
ously optimize the material removal rate and tool wear in rough honing processes. First, the
main variables affecting the performance of the honing process were selected. Experimental
tests were then performed and regression models were sought. The models were simplified,
removing the less significant factors. Finally, a multi-objective optimization is proposed
involving the two questions studied, in which the material removal rate is to be maximized
while tool wear is minimized.

2. Materials and Methods

In this paper, different honing tests were carried out first, according to a full factorial
design of experiments. Liner regression models were obtained, which were later simplified
using the stepwise selection method. Multi-objective optimization was then performed, in
order to simultaneously minimize the material removal rate and tool wear.

2.1. Honing Process

A horizontal honing test machine from Honingtec (Honingtec S.A., Els Hostalets de
Balenyà, Spain) was used to perform the experiments (Figure 2).
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Cubic boron nitride (cBN) was used as an abrasive material, with metallic bond. In
Figure 3, the honing head is observed, with one of the three honing stones.
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Figure 3. Honing head provided with cBN abrasive stones.

Unlike most industrial machines, in the test machine the tangential speed is produced
by the rotation of the part, while the head only has a reciprocate linear movement.

2.2. Design of Experiments

A complete factorial design with two levels was selected. Considering that the number
of factors is 5, the number of experiments will be 25 = 32 experiments. A central point was
added to the design, with three replicates. Thus, the total number of experiments was 33.

Based on results obtained from previous studies [25,26], the variables of the honing
process (factors) that most influence the outcome of the process were selected, along with
their values. This defined the following five factors, which were the input variables of the
statistical model:

1. GS: Grain size of the abrasive stone (ISO 6106 standard) [27];
2. DE: Density of the abrasive stone (ISO 6104 standard) [28];
3. VL: Linear speed of the stone with respect to the piece (m/min);
4. VT: Rotation speed of the workpiece (min−1);
5. PR: Working pressure (N/cm2).

The selected levels for the five variables considered are shown in Table 1.

Table 1. Variables of the factorial design of experiments.

Variable Low Level High Level

GS (ISO 6106) 76 181
DE (ISO 6104) 30 75
VL (m/min) 20 32
VT (min−1) 80 180
PR (N/cm2) 450 600

2.3. Determination of Material Removal Rate (Qm) and Tool Wear (Qp)

The two output variables of the models (answers) are defined as:

1. Qm (cm/min): Material removal rate
2. Qp (cm3/min): Tool wear

The variable Qm is defined as the volume of material removed (cm3) every minute
(min) and per unit area of the abrasive wheel in cm2. This parameter allows for evaluating
whether the material start-up is optimal and calculating the machining time; Qm was
calculated by measuring a part’s initial and final diameter with an alexometer (Figure 4).
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The Qp response is a measure of the performance of abrasive wheels and is defined
as the volume of material removed over the machining time. It allows for calculating the
abrasive stone consumption. It was calculated from the measurement of the weight of the
abrasive stones before and after each honing test on a Kern 440 scale (Figure 5).
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2.4. Regression Models and Multi-Objective Optimization

Linear regression models with all the terms were obtained for each response by means
of Minitab statistical software version 19 (Minitab LLC, State College, PA, USA). Reduced
models were then obtained from the application of backward stepwise regression, in which
each step gradually eliminated the less significant terms from the model.

Multi-objective optimization was performed by means of the desirability function
method [29]. The material removal rate Qm is to be maximized, whereas tool wear Qp is to
be minimized.

3. Results and Discussion

The results of the experiments are shown in Table 2.
The highest material removal rate values of 0.743 cm/min corresponds to experiment

28, obtained with high grain size, high density, low linear speed, high rotation speed,
and high pressure. The lowest material removal rate of 0.106 cm/min corresponds to
experiment 4, with high grain size, high density, low linear speed, low rotation speed, and
low pressure.

The highest tool wear was reported in experiment 30, with high grain size, low density,
high linear speed, high rotation speed, and high pressure. The lowest tool wear was
obtained in experiment 23, with low grain size, high density, high linear speed, low rotation
speed, and high pressure. Tool wear is usually low when honing steel parts with cBN
stones.



Machines 2022, 10, 83 6 of 12

Table 2. Qm and Qp results for the different experiments.

Experiment GS
(ISO 6106) DE VL

(m·min−1)
VT

(min−1)
PR

(N/cm2)
Qm Exper.
(cm/min)

Qp Exper.
(cm3/min)

1 76 30 20 80 450 0.130 0.008
2 181 30 20 80 450 0.311 0.059
3 76 75 20 80 450 0.249 0.011
4 181 75 20 80 450 0.106 0.003
5 76 30 32 80 450 0.134 0.008
6 181 30 32 80 450 0.258 0.032
7 76 75 32 80 450 0.207 0.015
8 181 75 32 80 450 0.150 0.003
9 76 30 20 180 450 0.336 0.054
10 181 30 20 180 450 0.493 0.071
11 76 75 20 180 450 0.367 0.010
12 181 75 20 180 450 0.660 0.015
13 76 30 32 180 450 0.290 0.019
14 181 30 32 180 450 0.489 0.084
15 76 75 32 180 450 0.415 0.023
16 181 75 32 180 450 0.386 0.016
17 76 30 20 80 600 0.237 0.034
18 181 30 20 80 600 0.303 0.087
19 76 75 20 80 600 0.286 0.024
20 181 75 20 80 600 0.405 0.039
21 76 30 32 80 600 0.191 0.027
22 181 30 32 80 600 0.291 0.032
23 76 75 32 80 600 0.277 0.010
24 181 75 32 80 600 0.394 0.035
25 76 30 20 180 600 0.383 0.061
26 181 30 20 180 600 0.500 0.078
27 76 75 20 180 600 0.371 0.028
28 181 75 20 180 600 0.743 0.065
29 76 30 32 180 600 0.539 0.106
30 181 30 32 180 600 0.565 0.122
31 76 75 32 180 600 0.423 0.031
32 181 75 32 180 600 0.538 0.024
33 126 50 26 130 525 0.399 0.045

3.1. Linear Model for Qm

The reduced regression model for material removal rate is as follows (Equation (1)):

Qm = −0.236 − 0.000104 GS + 0.001094 VT + 0.000610 PR + 0.000009 GS·VT (1)

Parameter R2-adj is 74.82%.
Figure 6 corresponds to the main effects plot for Qm.

Machines 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

3.1. Linear Model for Qm 
The reduced regression model for material removal rate is as follows (Equation (1)): 

Qm = −0.236 − 0.000104 GS + 0.001094 VT + 0.000610 PR + 0.000009 GS·VT (1)

Parameter R2-adj is 74.82%. 
Figure 6 corresponds to the main effects plot for Qm. 

 

Figure 6. Main effects plot for material removal rate Qm. 

It is observed that three main variables affect material removal rate: grain size, tan-
gential speed, and pressure. Specifically, high tangential speed, high grain size, and high 
pressure lead to high material removal rate Qm. 

Figure 7 depicts the interaction plot for Qm. 

 

Figure 7. Interaction plot for material removal rate Qm. 

The interaction between grain size and tangential speed is the most significant. The 
effect of grain size on material removal rate is more important when considering high 

Figure 6. Main effects plot for material removal rate Qm.

It is observed that three main variables affect material removal rate: grain size, tan-
gential speed, and pressure. Specifically, high tangential speed, high grain size, and high
pressure lead to high material removal rate Qm.
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Figure 7 depicts the interaction plot for Qm.
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Figure 7. Interaction plot for material removal rate Qm.

The interaction between grain size and tangential speed is the most significant. The
effect of grain size on material removal rate is more important when considering high
speed of 180 min−1 than low speed of 80 min−1. However, in both cases higher grain size
leads to a higher material removal rate.

Figure 8 shows the Pareto chart of the standardized effects, with a significance level
α = 0.1. In the chart, bars crossing the red line are considered to be statistically significant.
The red number is the t value corresponding to a (1–α/2) quantile of a t-distribution that
has the same degrees of freedom as error.
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As can be seen in Figure 8, the term that most influences material removal rate is
tangential speed. This result is in accordance with the work by Vrac et al. [16], in which, as
a general trend, the higher the cutting speed (the composition of radial and axial speed) the
higher the material removal rate. Bai et al. [30] found that material removal rate increased
with tangential speed, but also with linear speed, which has less influence in this work.
Other influential factors in the material removal rate are grain size and pressure. The effect
of grain size on the material removal rate was observed by Buj-Corral et al. [31], whereas
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the effect of pressure was reported by Bell et al. [13]. The higher the pressure exerted by
the abrasive stones, the higher the material removal rate.

3.2. Linear Model for Qp

The reduced regression equation for tool wear is as follows (Equation (2)):

Qp = −0.1394 + 0.000458 GS + 0.000824 DE − 0.000286 VL + 0.000586 VT + 0.000157 PR − 0.000005 GS·DE − 0.000007 DE·VT (2)

Parameter R2-adj is 71.38%.
Figure 9 shows the main effects plot for Qp.
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Figure 10 shows that the two interactions correspond to grain size–density and density–
tangential speed. Regarding the GS·DE interaction, it is observed that tool wear increases
substantially with grain size when low density is considered. When high density is consid-
ered, tool wear only increases slightly with grain size. As for the DE·VT interaction, tool
wear has a higher value with low density for high tangential speed than for low tangen-
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tial speed. In contrast, when high density is used, similar tool wear values are obtained
regardless of the tangential speed used.

Figure 11 depicts the Pareto chart of the standardized effects, with a significance level
α = 0.1.
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The main term influencing tool wear is density, followed by pressure, tangential speed,
and grain size. Linear speed is not significant in this case. The effect of pressure on tool
wear was previously observed by Bell et al. [13]. The higher the pressure, the higher the
tool wear.

3.3. Multi-Objective Optimization

The ultimate goal of this study is to optimize the process by maximizing the volume of
machined material per time unit (Qm), which is related to productivity, while minimizing
tool wear (Qp), which is related to tool cost.

In the desirability function method defined by Derringer and Suich [29], an importance
value is assigned to each one of the selected responses. In this work, a first optimization
step is made in which the same level of importance is defined for the two responses, namely
material removal rate Qm and tool wear Qp. Two more optimization steps are then carried
out, in which one of the responses is assigned an importance value that is ten times higher
than the other one, thus highlighting the preponderance of one response over the other.

3.3.1. Optimization with the Same Importance Level for Qm and Qp

The results are presented in Table 3.

Table 3. Multi-objective optimization considering the same level of importance for Qm and Qp.

GS
(ISO 6106)

DE
(ISO 6104)

VT
(min−1)

PR
(N/cm2)

Qm
(cm/min)

Qp
(cm3/min)

Composite
Desirability

181 75 180 456.01 0.508232 0.0183842 0.741495

A composite desirability of 0.741 was obtained. In this case, in order to maximize Qm
and to minimize Qp, the use of high grain size (181, ISO 6106), high density (75, ISO 6104),
high tangential speed (180 min−1), and low pressure (456.01 N/cm2) is recommended.
High grain size leads to a high material removal rate but also produced high tool wear.
Density mainly influences tool wear, with high density corresponding to low tool wear.
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High tangential speed leads to a high material removal rate, but also to high tool wear.
Finally, low pressure leads to low tool wear but also reduces the material removal rate.

3.3.2. Optimization When Qm Is Preponderant

The results of the multi-objective optimization are presented in Table 4.

Table 4. Multi-objective optimization considering that Qm is preponderant.

GS
(ISO 6106)

DE
(ISO 6104)

VT
(min−1)

PR
(N/cm2)

Qm
(cm/min)

Qp
(cm3/min)

Composite
Desirability

181 75 180 600 0.596095 0.0409946 0.760863

In this case, as grain size is assigned a higher importance value, high pressure
(600 N/cm2) should be selected, as it is related to high material removal rate. The other
variables are kept in their high values: grain size 181 (ISO 6106), density 75 (ISO 6104), and
tangential speed 180 min−1. Composite desirability (0.761) is slightly higher.

3.3.3. Optimization When Qp Is Preponderant

The results are presented in Table 5.

Table 5. Multi-objective optimization considering that Qp is preponderant.

GS
(ISO 6106)

DE
(ISO 6104)

VT
(min−1)

PR
(N/cm2)

Qm
(cm/min)

Qp
(cm3/min)

Composite
Desirability

128 75 165.9 450 0.394140 0.0135332 0.855239

In this case, as tool wear is assigned a higher importance value than tool wear, both
lower grain size values of 128 and lower tangential speed values of 165.9 min−1 are
recommended, as opposed to the results in Section 3.3.1. A low pressure value of 450 N/cm2

is to be selected, which produces low tool wear. The highest composite desirability from the
three cases studied (0.855) was obtained in this section. High density of 75 is recommended
for the three cases studied, as it has less influence on the material removal rate but it ensures
low tool wear.

4. Conclusions

In the present work, linear regression models were obtained for the material removal
rate and tool wear in rough honing processes, considering five different variables: grain
size, density of abrasive, pressure, linear speed, and tangential speed.

It was observed that the material removal rate depends mainly on tangential speed,
grain size, and pressure, whereas tool wear depends on density, pressure, tangential speed,
and grain size. Thus, tangential speed and grain size influence both the material removal
rate and tool wear. Linear speed is not significant for either of the two responses considered.

Grain size, tangential speed, and pressure have opposite effects on the objective of
maximizing the material removal rate and minimizing tool wear. Although high grain size,
tangential speed, and pressure increase the material removal rate, they also increase tool
wear. Thus, process parameters need to be carefully selected in order to simultaneously
minimize both variables. According to multi-objective optimization, if the two responses
are given the same importance value then high values should be selected for all variables
except for pressure, which should be low. If the material removal rate is preponderant,
then all variables are to be selected at their high values, including pressure. If tool wear
is preponderant, then lower grain size and tangential speed values of 128 (ISO 6106) and
165.9 min−1, respectively, should be chosen, while low pressure (450 N/cm2) is considered.
High density (75, ISO 6104) is recommended in all cases, which leads to low tool wear
without significantly reducing the material removal rate.
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This work will help to select appropriate honing conditions in rough honing processes,
when high productivity and low tool costs are required. Future research will address the
effects of the use of different abrasive and/or bond materials on material removal rate and
tool wear.
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