
Performance Evaluation of Data-Centric Workloads
in Serverless Environments

Anna Maria Nestorov
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya
anna.nestorov@bsc.es

Jordà Polo
Barcelona Supercomputing Center

jorda.polo@bsc.es

Claudia Misale
IBM T.J. Watson Research Center

c.misale@ibm.com

David Carrera
Barcelona Supercomputing Center

david.carrera@bsc.es

Alaa S. Youssef
IBM T.J. Watson Research Center

asyousse@us.ibm.com

Abstract—Serverless computing is a cloud-based execution
paradigm that allows provisioning resources on-demand, freeing
developers from infrastructure management and operational
concerns. It typically involves deploying workloads as stateless
functions that take no resources when not in use, and is meant
to scale transparently. To make serverless effective, providers
impose limits on a per-function level, such as maximum duration,
fixed amount of memory, and no persistent local storage. These
constraints make it challenging for data-intensive workloads
to take advantage of serverless because they lead to sharing
significant amounts of data through remote storage.

In this paper, we build a performance model for serverless
workloads that considers how data is shared between functions,
including the amount of data and the underlying technology
that is being used. The model’s accuracy is assessed by running
a real workload in a cluster using Knative, a state-of-the-
art serverless environment, showing a relative error of 5.52%.
With the proposed model, we evaluate the performance of
data-intensive workloads in serverless, analyzing parallelism,
scalability, resource requirements, and scheduling policies. We
also explore possible solutions for the data-sharing problem,
like using local memory and storage. Our results show that the
performance of data-intensive workloads in serverless can be up
to 4.32× faster depending on how these are deployed.

Index Terms—Serverless, Distributed Computing, Kubernetes,
Knative, Tekton, Performance Model, Storage

I. INTRODUCTION

In recent years, serverless computing has received a sig-
nificant uptick in attention. In this event-driven paradigm,
the operational concerns of managing the infrastructure are
entirely left to the cloud provider, letting more users approach
the cloud and allowing them to be completely focused on their
domain of expertise. Its fundamental principles, such as ‘pay-
as-you-go’ billing and auto-scaling all the way down to zero
resources in the absence of requests, make serverless attractive
to many users.

Serverless has shortfalls and presents challenges, as depicted
in the literature [1–5]. Due to the stateless nature of serverless,
only a subset of workloads, e.g., web microservices and
IoT applications, currently benefit from it. In the context
of data-intensive workloads, characterized by large resource
requirements and significant amounts of data transfers, none

of the major serverless platforms, such as AWS Lambda,
Google Cloud Functions, IBM Cloud Functions, and Microsoft
Azure Functions, offer efficient support. The imposed memory
and storage limitations at function level represent a major
constraint. For example, in AWS Lambda, each function
can only allocate from 128MB to 3GB of memory and a
maximum of 512MB of ephemeral storage. Another significant
constraint of public cloud solutions is the limitation to share
data only through remote shared storage, completely cutting
off data locality. Hence, directly using a serverless platform
for data-intensive workloads could lead to extremely inefficient
executions [6].

While the desirability and advantages of enabling more
complex workloads in serverless environments are known, its
feasibility and efficiency still remain unclear. There is a need
to fully understand 1) data exchange mechanisms between
functions in current serverless platforms, and whether new
approaches are needed, and 2) data flows of these workloads,
considering their parallelism and resource requirements. Aim-
ing to understand the possible data exchange solutions and the
impact of complex data flows in serverless environments, the
main contributions of this paper are:

• A performance model capturing the performance of
serverless workloads with data exchanges, supporting
different configurations and models of exchanging data.

• A complete characterization of a data-intensive workload,
showing a methodology to extract the necessary compo-
nents to translate a traditional application to serverless.

• A comprehensive evaluation of data-intensive workloads
in serverless environments, exploring parallelism, data
exchange, resource allocation, and scheduling policies.

This paper is organized as follows. Section II introduces the
reader to the Kubernetes, Knative, and Tekton platforms, and
summarizes related work. Section III describes the proposed
performance model. Section IV presents the use case and
validation workload, along with its characterization. Section V
reports the experimental setup and results. Finally, Section VII
draws the conclusions and future work.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. DOI 10.1109/CLOUD53861.2021.00064



II. BACKGROUND AND RELATED WORK

While there are a number of available container orches-
tration frameworks, Kubernetes [7] has become the leading
platform and de-facto standard. Kubernetes is an open-source
platform for automating deployment, scaling, and management
of containerized applications across multiple cloud providers
platforms, as well as on dedicated Virtual Machines (VMs),
or on bare metal. Knative [8] introduces event-driven and
serverless capabilities for Kubernetes clusters and has become
the open serverless standard. In particular, it manages stateless
services by reducing the users’ effort required for autoscaling,
networking, and rollouts, and it routes events between on-
cluster and off-cluster components. Tekton [9] represents a
powerful yet flexible Kubernetes-native framework for design-
ing and running event-driven and serverless workflows.

A big challenge when deploying data-intensive workloads
on serverless computing platforms is efficiently sharing data
between tasks. Several works in the literature have proposed
relaxing storage constraints to favor performance: [10, 11]
share the idea of co-locating code with the data it accesses.

There have been a few proposals, built on top of AWS
Lambda, to orchestrate distributed computing running on
serverless focusing on storage [6, 12]. In [6], the authors
propose Locus, a serverless model for the most general all-to-
all shuffle scenario that combines cheap but slow storage with
fast but expensive storage, and predicts shuffle performance
with an average error of 15.9%. Unlike Locus, our aim with
the model presented in this paper is more general and should
apply to any kind of workload. [12] highlights the relevance of
efficient data communication between functions via a shared
data store in analytics workloads. The work analyzes three
different storage systems, i.e., a disk-based managed object
storage service, an in-memory key-value store, and a flash-
based distributed storage system. In particular, the authors
show that S3 has significant overhead, particularly for small
requests. In this work, we only account for fully-managed
storage solutions, as in-memory key-value stores and flash-
based storage would require the user to select instance types,
or to manually configure and scale the resources.

III. PERFORMANCE MODEL

The goal of the proposed model is to estimate the end-to-end
performance of a non-trivial workload with data dependencies
between the pipeline tasks, as if it was running in a datacenter
on top of a Knative-based serverless environment. Since there
is a significant emphasis on data, the model allows for different
exchange mechanisms, including local memory, local storage,
and remote storage. While some of these may not be supported
or are limited in current serverless implementations, they can
still be used to evaluate alternative solutions.

The inputs of the model are: 1) hardware platform descrip-
tion, 2) scheduling strategy, 3) workload input, 4) workload
graph, and optionally 5) bandwidth characterization. The hard-
ware platform description (1) input provides the necessary
information about the cluster machines’ memory and storage.

For memory, it specifies the data width and the speed, neces-
sary to compute the theoretical memory bandwidth, while for
storage, the maximum transfer rate is reported. The scheduling
strategy (2) input specifies the task-node assignments. The
workload (3) input defines the input dimension, the total
execution time, and the amount of data it contains. The
workload graph (4) input specifies for each task its name,
predecessor tasks names, inputs/outputs object names, com-
pute time or profiling real percentage, parallelisms object
with their possible unrolling factors. With unrolling factor we
denote the number of concurrent task executions for a specific
parallelism. Finally, the optional bandwidth characterization
(5) input provides, for a set of data dimensions, the median
read/write bandwidths for the three accounted data exachange
mechanisms. If this last input is provided, the model returns
a more realistic estimation; otherwise, it provides a best-case
prediction by using the theoretical bandwidths.

Given a pipeline composed of n tasks, each i-th task total
time is composed of: the time necessary to read the input data
T r
i , the compute time T c

i , and the time necessary to write the
output data Tw

i . Given the i-th task exploits m parallelisms,
for each j-th parallelism, we denote with xi,j the number of
sequential computations in case of no task replication and with
pi,j the unrolling factor. Thus,

⌈
xi,j

pi,j

⌉
represents the actual

number of computations the task has to perform. In case of
no concurrent execution, the model considers pi,j = 1. We
derive the end-to-end pipeline time Ttot as:

Ttot =

n∑
i=1

[(
m∏
j=1

⌈
xi,j

pi,j

⌉)
(T r

i + T c
i + Tw

i )

]
(1)

where:

T r
i =

3∑
k=1

(
ni∑
s=0

Ds

BW r
k (Ds)

)
(2)

Tw
i =

3∑
k=1

(
no∑
u=0

Du

BWw
k (Du)

)
(3)

As shown in Equation (2) and Equation (3), to account for
the three data exchange mechanisms, the model computes the
read time T r

i and the write time Tw
i as the sum of the ni inputs

and no outputs partial communication latencies, computed by
dividing the amount of data to be read/written D by the specific
mechanism bandwidth BW. Bandwidths BW are functions of
the amount of data D. If the bandwidth characterization input
is given and the target data dimension D is not present in
the set of benchmarked dimensions, the bandwidth BW is
estimated by applying the linear interpolation method.

IV. USE CASE AND VALIDATION WORKLOAD: TESSERACT

To validate the proposed performance model we character-
ize and study Google’s Tesseract Optical Character Recogni-
tion (OCR) engine [13], representing the current open source
state-of-the-art. It is an interesting use case study because
it represents a more traditional workload with non-trivial
computational and data graphs, not currently well supported

2



in serverless environments. Tesseract features smaller data
transfers compared to more I/O-intensive workloads; however,
it involves a significant amount of data at scale. For example,
financial institutions processing large amounts of documents.

A. Methodology

Transforming a traditional application like Tesseract into a
serverless workload requires understanding its internal com-
putational graph, and splitting the application into smaller
computational units. Obtaining the computational graph in-
volves profiling the application to extract a detailed call-graph
representing the workload call chains using tools like the
Valgrind profiler along with Callgrind [14].

Since the code base of applications like Tesseract can be
very large, it would not be feasible to map every application
function into an independent serverless function. Hence we
simplify the call-graph by grouping functions into computa-
tional units called macro-nodes. These macro-nodes can be
further evaluated by instrumenting the application code, and
using memory-profiling tools like Massif [14]. Since such tools
do not provide any information on the correlation between
memory allocations and variables/objects to which the memory
belongs, we build a set of custom tools to trace the average
dimension of each macro-node’s inputs and outputs.

Finally, to highlight data exchanges, we create a dataflow
graph where nodes represent macro-nodes and arcs represent
data channels. Macro-nodes with small cost-times and trivial
data movements are merged with neighboring macro-nodes.

B. Tesseract Characterization

To characterize Tesseract, we evaluate the execution time
and the data dimensions of two single-page documents,
DataSetA and DataSetB, that present different page structure
and number of lines. To evaluate the scalability, datasets are
replicated generating increasingly bigger inputs, from 1 to 128
pages. All the experiments are executed on an Intel Xeon
Silver 4114 CPU running at 2.20GHz.

Table I presents the simplified Tesseract call-graph, where
the macro-node real percentage is computed by subtracting the
children inclusive percentages from its inclusive value. The
three main Tesseract phases, namely pre-processing, process-
ing and post-processing, are identified by the FindLines, Reco-
gAllWords and DetectParagraph macro-nodes, taking 12.54%,
83.82%, and 1.17% over the total execution time, respectively.
The processing phase is the most time-consuming, mainly
due to the Long Short Term Memory (LSTM) based Neural
Network (NN). The workload is characterized by three paral-
lelisms: at page, block, and textline-level.

In experiments not shown for space limitations, we find
that the TIFF conversion time scales linearly with the number
of pages and is strongly dependent on the page dimen-
sion. Specifically, a single PDF page in A4 format takes
1.19s to be converted. Concerning Tesseract computation,
the single-threaded implementation average execution times
amount to 9.06s for DataSetA and 11.41s for DataSetB. The
corresponding multi-threaded implementations are only 15%

TABLE I: Tesseract simplified call-graph

Macro-node
Percentage [%]

Parallelism
Granularity

Inclusive Real CG FG

main 99.97 0.28 - 1 1
ProcessMultipageTIFF 99.69 1.56 - 1 1
Recognize 98.13 0.60 Page 2 2
FindLines 12.54 0.01 Page 2 2
ExtractThresholds 2.33 2.33 Page 2 2
SegmentPage 10.20 0.01 Page 2 3
AutoSegmentation 8.13 0.01 Page 2 3
SetupSegCorOrient 4.18 4.18 Page 2 3
FindBlocks 3.94 3.94 Page 2 4

MakeTextlinesWords 2.06 2.06 Page, Block 2 5
RecogAllWords 83.82 0.20 Page 3 6
LSTMRecogWords 83.62 0.01 Page, Textline 3 7
GetLineImage 2.60 2.60 Page, Textline 3 7
RecognizeLine 81.01 0.04 Page, Textline 3 8
LSTM-NN 79.65 79.65 Page, Textline 3 8
DecodeNNOutput 1.32 1.32 Page, Textline 3 9

DetectParagraphs 1.17 1.17 Page 4 10

faster on average, since threads are only used for some NN
computations. We observe that both single and multi-threaded
implementations scale linearly with the number of pages.

Last, we analyze the workload memory footprint and we
highlight the input and output dimensions of the initial con-
version step and of each workload macro-node. The memory
footprint is up to 150MiB, with a short peak of 166.9MiB,
in the first two-thirds of the workload execution and up to
90MiB in the last one-third. For the initial conversion step, a
page of roughly 40KB is converted into a 8.7MB image, and
grows linearly with the number of pages, so a 128 pages input
takes 1.09GB. By analyzing the dataflow graph, we observe
that data movements are in the order of tens of MB. While this
seems relatively small, data transfers could become prohibitive
when exploiting parallelism.

To evaluate Tesseract in serverless environments, in this
paper we provide two scenarios with different task granularity,
which defines at what level code functions are grouped to
become serverless tasks. Accounting with the initial TIFF
conversion step, the Coarse-Grained (CG) scenario consists
of bigger groups for a total of 5 tasks, while the Fine-Grained
(FG) scenario consists of smaller groups for a total of 11 tasks.
Table I shows the mapping between macro-nodes and tasks of
the two different scenarios.

V. EVALUATION OF THE MODEL

In this section, we conduct an accuracy analysis of the
proposed performance model. Experiments are executed on
a virtualized Kubernetes cluster composed of one master,
representing the control-plane, and three worker nodes on
which tasks are deployed, along with an Network File System
(NFS) server inside the same infrastructure. The master runs
in a VM with 32GB of memory and 16 virtual cores, while the
three workers and the NFS server run in a VM with 32GB of
memory, 8 virtual cores, and 50GB of disk space each. The
Kubernetes cluster and the NFS server are mapped on five
physical nodes residing in the same rack and featuring an Intel
Xeon Silver 4114 CPU running at 2.20GHz connected to four

3



Local Memory
Local Disk First
Local Disk Next
Remote Disk First
Remote Disk Next
Remote Disk SN

R
ea

d 
Ba

nd
w

id
th

 [M
Bp

s]

0
250
500
750

1000
1250
1500
1750
2000

W
rit

e 
Ba

nd
w

id
th

 [M
Bp

s]

0
100
200
300
400
500
600
700
800
900

1000

Data Dimension [Bytes]
1K 4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

Fig. 1: Read and write bandwidths. First and Next keywords
highligh the first and subsequent local/remote disk bandwidths,
while Remote Disk SN refers to remote operations with
producer and consumer co-placed on the same node.

Seagate SATA HDDs. Physical nodes are connected through
a 10Gbps network switch. The memory and the disk feature
17GBps and 175MBps of maximum transfer rate, respectively.

A. Model: Bandwidth Characterization
One of the model inputs is the characterization of the

different communication mechanisms, i.e., local memory, local
storage, and remote storage. In this characterization we want to
capture the performance of the same complete stack that can be
found in a serverless platform, and not just the performance of
the devices. The experiments are based on two kinds of tasks:
producer tasks writing data, and consumer tasks reading data.
Between producer-consumer task pairs, we expect data to be
accessed only sequentially. Focusing on storage solutions in-
side the same infrastructure, data can be shared by either using
a local Persistent Volume (PV) (local memory and storage),
or a remote PV map on the NFS server (remote storage). The
latter can also be used to simulate an environment similar to
that of major public serverless providers. We evaluate data
exchanges of different sizes, ranging from 1KB to 1GB with
a 4× increment.

Figure 1 shows the sequential bandwidths of the considered
data exchange mechanisms. For both read and write opera-
tions, the local memory and the local disk (First) solutions
exhibit similar performance. Thanks to the disk buffering
computing infrastructure optimization, allowing to buffer data
in main memory buffer cache space, the local disk read
and write bandwidths reach a maximum of 535MBps and
602MBps, which are much higher than the 175MBps disk
maximum transfer rate reported by the vendor. Differently, the
remote data requests are handled by communicating directly
with the disk. The only exception is when two tasks are co-
placed: the producer task writes the data on the remote disk,
while the consumer task reads from the memory buffer cache.
We notice that in both local and remote solutions, when a
task reads/writes multiple times sequentially on the same PV,
e.g., a task collecting multiple data in input from various
producers, the first operation and the following ones exhibit
different bandwidths. More precisely, the subsequent local and

TABLE II: Model accuracy.

KPI
Coarse-grained Fine-grained

1 page 10 pages 1 page 10 pages

L
oc

al Avg I/O Time [s] 0.324 2.890 0.670 7.362
Pred I/O Time [s] 0.319 2.753 0.750 7.055
Avg Rel Error [%] 3.09 4.21 7.70 5.64

R
em

ot
e Avg I/O Time [s] 1.189 9.303 5.388 49.938

Pred I/O Time [s] 1.099 9.283 5.579 53.813
Avg Rel Error [%] 6.90 3.64 5.61 7.42

remote read and write bandwidths are up to 4.41× and 2.14×,
and 3.34× and 1.88× higher when compared to the first
operations bandwidths, accordingly. The local disk bandwidth
increase is due to caching, while, being the data read/written
sequentially, the subsequent remote operations take advantage
of the sequential locality at the hard disk level.

Since the model is meant to handle many tasks running and
sharing data at the same time, we also evaluate the perfor-
mance degradation with concurrent requests. We characterize
concurrent read and write bandwidths by manually enforcing
the synchronization of the executed tasks. As expected, by
increasing the number of concurrent requests, the single task
bandwidth decreases, especially with high data dimensions.
More specifically, with 30 concurrent tasks, the read and write
bandwidth experience the highest performance degradation
with a decrease of up to 4.60× and 5.98×, and to 26.72×
and 38.55×, for local and remote operations, accordingly.

B. Model: Accuracy

To validate and measure the accuracy of the proposed
model, we compute the average relative error of the inter-
function I/O time prediction with respect to the actual com-
munication overhead of 100 Tesseract-like deployment runs
over two different input datasets, featuring 1 and 10 pages.
Following a classical black-box approach, with Tesseract-like
deployment we mean a deployment where each task performs
the same data exchanges described in IV-B, and sleeps during
the specified time. To be fairer in the results, since compute
time is constant and significantly larger than inter-function I/O
time, we consider only the I/O time in the measurements. We
run the Tesseract-like computations in two configurations: the
first co-places all the tasks on a single node following the
default Knative/Tekton strategy, while the second maps the
tasks on the worker nodes in a round-robin fashion. These
two configurations are referred to as local and remote.

To validate our model, we only consider sequential execu-
tions, representative of several real-world serverless applica-
tions [15, 16]. We run exhaustive experiments with varying
data dimensions and number of operations, and compare the
I/O times with the model predicted values. In particular, we run
the coarse-grained and fine-grained Tesseract-like workloads
exploiting both local and remote storage configurations. As
shown in Table II, our model predicts communication latency
with an average relative error of 5.52%, which we believe is
accurate enough to analyze the I/O time impact when porting
a workload to Knative.

4



VI. EVALUATION OF DATA-AWARE SERVERLESS

Thanks to the flexibility of the proposed model, we investi-
gate the performance impact on the use case workload of the
following key factors: task granularity and concurrency, data
locality, resource allocation, and scheduling policies.
A. Task Granularity and Concurrency

Task granularity and concurrency are two relevant factors
that could highly increase or reduce performance in terms
of number of deployed task-instances and overall end-to-end
time. Finding the optimal task granularity and concurrency
becomes crucial when moving to serverless.

Figure 2 shows the effect of different granularities and
concurrencies on the number of deployed task-instances and
the end-to-end time in local and remote deployments on a
ten pages input with 100 text lines each. While the coarse-
grained (CG) solution exploits page-level parallelism, the
fine-grained (FG) solution exploits page-level and textline-
level parallelism up to an unrolling factor of 25. Block and
textline-level parallelism with greater unrolling factors are
not considered since they negligibly impact performance. The
fully unrolled coarse-grained deployment increases the number
of task-instances from 5 to 32 and achieves an end-to-end
time speedup of 4.57× and 3.44×, for local and remote
deployments, respectively. The fully unrolled fine-grained de-
ployment significantly increases the number of task-instances
from 11 to 812, achieving a speedup of 6.79× and 4.24×,
accordingly. For similar configurations (depicted as circles in
Figure 2), coarse-grained deployment outperforms fine-grained
deployment, especially in the remote configuration where it
achieves up to 1.55× of performance increase. On the other
hand, fine-grained executions achieve higher speedups, but
at the expense of number of tasks and I/O. This needs to
be considered because the number of tasks may be limited
in local configurations, and I/O may become a bottleneck
in remote configurations. In the remote configuration, the
network load changes substantially: with fully-unrolled coarse-
grained deployment it reaches 1.4GB, while it grows up to
15.6GB with fully-unrolled fine-grained deployment.
B. Data Locality

The local deployment outperforms its equivalent remote
deployment in both coarse-grained and fine-grained scenarios,
as shown in Figure 2. However, fully local deployments are
not realistic for many applications, particularly in large clusters
where remote deployments may be more flexible and improve
overall throughput and resource usage.

A shortcoming of existing serverless frameworks is that
tasks that are co-placed on the same node and share the same
inter-function data (e.g. functions that read the same input) do
not currently benefit from data reuse. That is, each instance of
a function on the same node will fetch the same inter-function
input data. Enabling data-intensive serverless workloads will
likely require some optimizations in this regard. Creating a
local memory or disk buffer holding the shared input data
might be a simple way to benefit from data locality, decreasing
requests for remote data, and improving its performance.

R
em

ot
e 

E2
E

Ti
m

e 
Sp

ee
du

p

0
1
2
3
4

Task-Instances
0 200 400 600 800

CG 1p
CG 5p
CG 10p

FG (1p, 1t)
FG (1p, 25t)
FG (5p, 1t)

FG (5p, 25t)
FG (10p, 1t)
FG (10p, 25t)

Lo
ca

l E
2E

Ti
m

e 
Sp

ee
du

p

0
1
2
3
4
5
6
7

Fig. 2: Local and remote end-to-end time speedups versus the
sequential execution, achieved by exploiting page and textline-
level parallelisms (p, t), and task-instances number. The remote
deployment reports network load impact with increasingly
bigger symbol sizes.

C. Resource Allocation

In an ideal serverless environment, the user should not
need to provide any resource configuration. However, existing
frameworks still allow customizing expected resource usage
for improved performance and cost. With the default resource
allocation, tasks under-utilizing the assigned resources could
prevent other tasks from being scheduled, leading to worse
overall system throughput. This is particularly relevant for
many data-intensive workloads since tasks belonging to the
same pipeline may have significantly different resource re-
quirements, and these can also change depending on the input.

For example, focusing exclusively on memory for the sake
of simplicity, we get approximately 31GiB of allocatable
memory in each one of the worker nodes in the evaluation
environment. In a coarse-grained scenario, and allocating the
same peak memory of 167MiB (see Section IV-B) to all 5
tasks, we would be able to fit up to 38 Tesseract deploy-
ments per node. With a more accurate allocation of 150MiB,
167MiB, 150MiB, 90MiB, 90MiB for each one of the five
tasks, we would be able to fit up to 49 Tesseract deployments.

D. Scheduling Policies

Most of the schedulers proposed in the literature consider
properties such as CPU usage, memory utilization, job ex-
ecution time, and job deadline. Another essential factor to
consider when optimizing data-intensive task placement is the
effect on the network. By leveraging on the proposed model,
we highlight the primary importance of data locality in reduc-
ing communication overheads by showing the impact on the
overall end-to-end time of four different scheduling strategies:
(1) random, (2) round-robin, (3) consolidating, and (4) data-
centric. The first two are self-explanatory. The consolidating
strategy places tasks at per-node level in a sequential fashion,
saturating the resources available for each node. The data-
centric strategy aims to reduce inter-node data movements,
and considers the number and amount of data to be shared and

5



Random 50%
Round-Robin 50%
Consolidate 50%
Data-Centric 50%
Random 100%
Round-Robin 100%
Consolidate 100%
Data-Centric 100%

E2
E 

Ti
m

e 
[s

]

0

50

100

150

Workload Scenario
Coarse-grained Fine-grained

Fig. 3: Comparison of scheduling policies running a 50 page
input on a cluster with 100 nodes. Horizontal bars divide
computational time (bottom) and inter-function I/O time (top).

exchanged between functions. For the use case workload, the
data-centric strategy maps for the coarse-grained scenario the
processMultipageTIFF, Pre-Processing and Processing tasks
on the same node. For the fine-grained scenario, instead,
the set of tasks computing the same page and belonging to
the pre-processing and processing phase are co-placed, while
spreading the remaining ones randomly. This allows to reduce
the communication overhead by exploiting the higher local
bandwidths for the most relevant data movements, and to
reduce the number of remote data exchange.

Figure 3 shows the performance achieved by the four strate-
gies when executing a 50 pages input on a 100 nodes cluster,
with unrolling factors of 50% and 100%. It is noticeable
that the random and round-robin performance are similar,
and that they are outperformed by both the consolidating and
data-centric strategies. In particular, the consolidating strategy
achieves an I/O time speedup of 4.32× and 3.40× in the
coarse-grained scenario, and of 1.49× and 1.16× in the fine-
grained scenario, for 50% and 100% unrolling factors, respec-
tively. The data-centric solution gains an I/O time speedup of
2.62× and 2.35× in the coarse-grained scenario, and of 1.84×
and 1.48× in the fine-grained scenario, for 50% and 100%
unrolling factors accordingly. The coarse-grained workload
deployment is composed of 77 and 152 tasks for 50% and
100% unrolling factors, respectively; its consolidating place-
ment performs better than the data-centric solution because
it relies on fewer nodes, i.e., one or two. Differently, the
fine-grained workload deployment comprises a much higher
number of tasks, i.e., 2027 and 4052; therefore, the data-
centric solution impact on the network load is lower than
the consolidating solution. More specifically, the data-centric
achieves a 1.23× and 1.27× of performance improvement
versus the consolidating strategy, for 50% and 100% unrolling
factors, respectively. While the consolidating solution sequen-
tially maps tasks, the data-centric one efficiently places all
the tasks characterized by the page-level parallelism as a unit,
reducing the communications over the network.

VII. CONCLUSIONS

With the introduction of serverless computing, there is a
growing interest in adopting these environments for different
kinds of workloads, including data-intensive pipelines. In
this paper, we propose a performance model for serverless
workloads that accurately predicts the performance of inter-

function data exchanges with an average error of 5.52%. We
also analyze the performance of data-intensive workloads in
terms of parallelism, data locality, resource requirements, and
scheduling policies. Depending on how workloads are de-
ployed and scheduled, our evaluation shows that performance
can be increased up to 4.32×.

As future steps, we believe that more effort is needed to
automate the configuration of task granularity and concur-
rency to take advantage of the different tradeoffs between
performance and resource usage, and also to explore more
scheduling strategies to optimize data-intensive workloads in
serverless environments.

ACKNOWLEDGMENTS

This work was partially supported by the Ministry of Economy of
Spain under contract TIN2015-65316-P, the Ministry of Science un-
der contract PID2019-107255GB-C21/AEI/10.13039/501100011033,
and the Generalitat de Catalunya under contract 2014SGR1051.

REFERENCES
[1] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of

serverless computing and function-as-a-service(faas) in industry and
research,” CoRR, vol. abs/1708.08028, 2017. arXiv: 1708.08028.

[2] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing mi-
croservice performance,” in 2018 IEEE International Conference on
Cloud Engineering (IC2E), 2018, pp. 159–169.

[3] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez,
R. Popa, I. Stoica, and D. Patterson, Cloud programming simplified:
A berkeley view on serverless computing, Feb. 2019.

[4] P. G. López, M. S. Artigas, S. Shillaker, P. R. Pietzuch, D. Bre-
itgand, G. Vernik, P. Sutra, T. Tarrant, and A. J. Ferrer, “Server-
mix: Tradeoffs and challenges of serverless data analytics,” CoRR,
vol. abs/1907.11465, 2019. arXiv: 1907.11465.

[5] J. M. Hellerstein, J. M. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” CoRR, vol. abs/1812.03651, 2018. arXiv:
1812.03651.

[6] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scal-
able analytics on serverless infrastructure,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), Boston,
MA: USENIX Association, Feb. 2019, pp. 193–206.

[7] Kubernetes (K8s), [Online]. Available at: https://kubernetes.io.
[8] Knative, [Online]. Available at: https://knative.dev.
[9] Tekton Cloud Native CI/CD, [Online]. Available at: https://tekton.dev.

[10] Z. Al-Ali, S. Goodarzy, E. Hunter, S. Ha, R. Han, E. Keller, and
E. Rozner, “Making serverless computing more serverless,” in 2018
IEEE 11th International Conference on Cloud Computing (CLOUD),
2018, pp. 456–459.

[11] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V.
Sreekanti, A. Tumanov, and C. Wu, Serverless computing: One step
forward, two steps back, 2018. arXiv: 1812.03651 [cs.DC].

[12] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and A.
Trivedi, “Understanding ephemeral storage for serverless analytics,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18),
Boston, MA: USENIX Association, Jul. 2018, pp. 789–794.

[13] R. Smith, “An overview of the tesseract ocr engine,” in Proceedings
of the Ninth International Conference on Document Analysis and
Recognition - Volume 02, ser. ICDAR ’07, USA: IEEE Computer
Society, 2007, pp. 629–633.

[14] Valgrind, [Online]. Available at: https://valgrind.org/info/tools.html.
[15] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,

“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, ser. EuroSys ’19, Dresden, Germany: Association for Computing
Machinery, 2019.

[16] T. Elgamal, A. Sandur, K. Nahrstedt, and G. Agha, Costless: Op-
timizing cost of serverless computing through function fusion and
placement, 2018. arXiv: 1811.09721 [cs.DC].

6

https://arxiv.org/abs/1708.08028
https://arxiv.org/abs/1907.11465
https://arxiv.org/abs/1812.03651
https://kubernetes.io
https://knative.dev
https://tekton.dev
https://arxiv.org/abs/1812.03651
https://valgrind.org/info/tools.html
https://arxiv.org/abs/1811.09721

	Introduction
	Background and Related Work
	Performance model
	Use Case and Validation Workload: Tesseract
	Methodology
	Tesseract Characterization

	Evaluation of the Model
	Model: Bandwidth Characterization
	Model: Accuracy

	Evaluation of Data-aware Serverless
	Task Granularity and Concurrency
	Data Locality
	Resource Allocation
	Scheduling Policies

	Conclusions

