
Computer Physics Communications 271 (2022) 108230

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

On the implementation of flux limiters in algebraic frameworks ✩

Nicolás Valle a, Xavier Álvarez-Farré a, Andrey Gorobets b, Jesús Castro a,∗, Assensi Oliva a,
F. Xavier Trias a

a Heat and Mass Transfer Technological Center, Technical University of Catalonia, Carrer Colom 11, 08222 Terrassa (Barcelona), Spain
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Sq. 4, 125047 Moscow, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 June 2021
Received in revised form 5 October 2021
Accepted 9 November 2021
Available online 16 November 2021

Keywords:
Flux limiter
Parallel CFD
Heterogeneous computing
Portability
Mimetic

The use of flux limiters is widespread within the scientific computing community to capture shock dis-
continuities and are of paramount importance for the temporal integration of high-speed aerodynamics,
multiphase flows and hyperbolic equations in general.
Meanwhile, the breakthrough of new computing architectures and the hybridization of supercomputer
systems pose a huge portability challenge, particularly for legacy codes, since the computing subroutines
that form the algorithms, the so-called kernels, must be adapted to various complex parallel program-
ming paradigms. From this perspective, the development of innovative implementations relying on a
minimalist set of kernels simplifies the deployment of scientific computing software on state-of-the-art
supercomputers, while it requires the reformulation of algorithms, such as the aforementioned flux lim-
iters.
Equipped with basic algebraic topology and graph theory underlying the classical mesh concept, a new
flux limiter formulation is presented based on the adoption of algebraic data structures and kernels. As
a result, traditional flux limiters are cast into a stream of only two types of computing kernels: sparse
matrix-vector multiplication and generalized pointwise binary operators. The newly proposed formulation
eases the deployment of such a numerical technique in massively parallel, potentially hybrid, computing
systems and is demonstrated for a canonical advection problem.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The evolution in hardware technologies enables scientific com-
puting to advance incessantly and reach further aims. Nowadays,
the use of high-performance computing (HPC) systems is rather
common in the solution of both industrial and academic scale
problems. However, many algorithms employed in scientific com-
puting have a very low arithmetic intensity (AI), which is the ratio
of computing work in floating-point operations (FLOP) to mem-
ory traffic in bytes, hence numerical simulation codes are usually
memory-bounded, making processors suffer from serious data star-
vation [1,2]. To top it off, the calculations often result in irregular,
non-coalescing memory access patterns, reducing the memory ac-
cess efficiency. Ironically, the memory bandwidth of computing
hardware grows much slower than its peak performance, aggra-
vating the problem. All of this motivates the introduction of new
parallel architectures with faster and more complex memory con-
figurations into HPC systems.

✩ The review of this paper was arranged by Prof. N.S. Scott.

* Corresponding author.
E-mail address: jesus.castro@upc.edu (J. Castro).
https://doi.org/10.1016/j.cpc.2021.108230
0010-4655/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
To take advantage of the increasing variety of computing ar-
chitectures and the hybridization of HPC systems, the computing
subroutines that form the algorithms, the so-called kernels, must
be adapted to complex paradigms such as distributed-memory
(DM) and shared-memory (SM) multiple instruction, multiple data
(MIMD) parallelism, and stream processing (SP). It also encour-
ages the demand for portable and sustainable implementations of
scientific simulation codes [3]. While portability is an intangible
characteristic of software, it may be easy for a developer to have
an idea of how difficult it is to rewrite, debug and verify a specific
code on its adaptation to a new architecture. On the other hand,
sustainability refers to developing reusable and resilient codes. The
way a code is conceived at its inception enormously determines
the degree to which both properties can be attained.

Traditionally, the development of scientific computing software
is based on calculations in iterative stencil loops (ISL) over a dis-
cretized geometry—the mesh. This implementation approach is re-
ferred to as stencil-based. Despite being intuitive and versatile,
the interdependency between algorithms and their computational
implementations in stencil applications usually results in a large
number of subroutines and introduces an inevitable complexity
when it comes to portability and sustainability [4].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2021.108230
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108230&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jesus.castro@upc.edu
https://doi.org/10.1016/j.cpc.2021.108230
http://creativecommons.org/licenses/by/4.0/

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
Regarding portability, the complexity of stencil applications mo-
tivates the adoption of conservative strategies, which consist of
porting (rewriting) the most time-consuming part of an existing
code, or even the entire code, to a new architecture but mini-
mizing the structural modifications. In other words, it leads to a
partial or complete reimplementation of an existing code. These
strategies were common during the rise of general-purpose com-
puting on graphics processing units (GPUs) because they allow for
direct comparison studies of both numerical and performance re-
sults versus the legacy versions. Well-known commercial computa-
tional fluid dynamics (CFD) codes and open-source platforms offer
GPU extensions for solvers of systems of linear algebra equations
(SLAE), which represent a significant part of the overall computing
time. This can provide substantial acceleration with compactly lo-
calized changes in the code. Such an example can be found in [5],
where the authors coupled a GPU-accelerated library for solving
large sparse SLAE with the OpenFOAM platform and demonstrated
performance on up to 128 nodes of a GPU-based cluster. The use of
GPUs in scientific computing is nowadays rather mature, and there
are many successful examples in the literature [6–9]. For instance,
the early GPU implementations in [10], extended in [11], proved to
be two orders of magnitude faster than its central processing unit
(CPU) counterpart. Moreover, the solution of two-phase flows on
multi-GPU systems [12] was not only faster but also more energy-
efficient. An example of a GPU porting of an open-source Navier–
Stokes solver, the AFiD code, is found in [13]. Further examples of
multi-GPU simulations of supersonic and hypersonic flows can be
found in [14]. One of the most impressive GPU-based simulations
is found in [15], after [16], on the solution of turbulent flows, re-
porting a sustained performance of 13.7PFLOPS.

Regarding sustainability, the implementation of new physics or
numerical methods in a stencil-based framework, or its special-
ization for different mesh types, usually requires the design of
new computing subroutines and data structures. This represents
the main drawback of such an approach because the effort is not
necessarily accumulative and thus reduces the software’s sustain-
ability. To address this, some authors propose domain-specific tools
to generalize the stencil computations for specific fields. For in-
stance, a framework that automatically translates stencil functions
written in C++ to both CPU and GPU codes is proposed in [17].
However, these generalizations are still heavily restricted by the
shape of the stencil they target.

An alternative to stencil implementations is to break the afore-
mentioned interdependency between algorithm and implementa-
tion so that the calculations are cast into a minimalist set of ker-
nels. In other words, the idea is to use the classical ISL just for
building data and leave the calculations to a reduced set of ba-
sic operations; thus, legacy codes may be maintained indefinitely
as preprocessing tools, and the calculation engines become easy to
port and optimize.

By casting discrete operators and mesh functions into sparse
matrices and vectors, it has been shown that nearly 90% of the
calculations in a typical CFD algorithm for the direct numerical
simulation (DNS) and large eddy simulation (LES) of incompress-
ible turbulent flows boil down to the following basic linear algebra
subroutines: sparse matrix-vector product (SpMV), linear combi-
nation of vectors (axpy) and dot product (dot) [18]. Moreover,
after the generalizations detailed in Section 3.2 this value will be
raised to 100%. Hereinafter, we refer to this implementation based
on algebraic subroutines as algebraic or algebra-based. In this al-
gebraic approach, the kernel code shrinks to dozens of lines; the
portability becomes natural, and maintaining OpenMP, OpenCL, or
CUDA implementations takes minor effort. Besides, standard li-
braries optimized for particular architectures (e.g., cuSPARSE [19],
clSPARSE [20]) can be easily linked in addition to specialized in-
house implementations. A similar approach is found in PyFR [16],
2

where the majority of operations are cast in terms of matrix-
matrix multiplications linking with appropriate BLAS libraries. In
the context of the DNS, the preconditioned conjugate gradient (CG)
method following such an algebraic approach was implemented
in [21], and its potential was exploited in [22] to perform petascale
CFD simulations.

In our previous work, we proposed a heterogeneous imple-
mentation of an algebraic framework [23], the hierarchical par-
allel code for high-performance computing (HPC2), as a portable
solution with many potential applications in the fields of com-
putational physics and mathematics. Later, the minimalist design
allowed us to easily optimize our framework for HPC systems with
non-uniform memory access (NUMA) configurations [24], just by
changing the definition of the three kernels and the initialization
of vectors and matrices.

While linear schemes fit naturally in the proposed algebraic ap-
proach, the implementation of non-linear schemes is not evident.
However, as a consequence of Godunov’s theorem [25,26], those
are required for the treatment of shock discontinuities to avoid
unstable discretizations and the onset of wiggles. Such disconti-
nuities are present in many industrial applications and appear in
both compressible and multiphase flows, representing a classical
problem in numerical analysis since, at least, the 1960’s. The con-
struction of stable, second-order (and higher) discretizations, then,
requires the adoption of non-linear schemes to exhibit a total vari-
ation diminishing (TVD) [27] behavior. Among them, flux limiters
are a mature and robust method, which has been adopted in a
diversity of applications. Sweby [28] generalized several limiters
and stated the conditions for second-order TVD schemes in a one-
dimensional homogeneous mesh in its well-known Sweby diagram.
Despite the known inconsistencies that arise when departing from
the one-dimensional homogeneous case [29,30] these techniques
have been ported to non-homogeneous Cartesian [30] and unstruc-
tured [31] meshes as well. Advances in this field have also been
exploited by the multiphase flow community, particularly for the
advection of the marker function [32,33].

Both the analysis and the implementation of flux limiters are
typically performed from the aforementioned stencil-based per-
spective. However, the growing interest of the community in
mimetic methods [34] unveils an alternative to the implementa-
tion of flux limiters. Mimetic methods construct discrete operators
directly from the inherent incidence matrices that define the mesh.
Adopting such an approach presents an important advantage from
both theoretical and practical points of view. On the one hand,
this allows for a flawless discrete mimicking of the continuum op-
erators, facilitating the exact conservation of important secondary
properties, such as energy [35,36], among others. On the other
hand, this reduces the implementation to the right combination
of a reduced set of algebraic subroutines. Therefore, the present
work is devoted to the formulation of flux limiter schemes and
their implementation into algebraic frameworks. The proposed im-
plementation will be analyzed from a computational point of view
and compared with the classical stencil counterpart, and the ben-
efits of each option will be discussed in depth.

The rest of the paper is organized as follows. In section 2 a
review of basic concepts of graph theory is briefly summarized
in order to provide some context. Section 3 develops a general-
ization of flux limiters from an algebraic perspective and intro-
duces the matrix-based calculation of the gradient ratio. Section 4
highlights the capabilities of the method on a well-known three-
dimensional deformation benchmark. Finally, the discussion and
conclusions are stated in Sections 5 and 6.

2. Algebraic topology

By using concepts from algebraic topology, mimetic methods
preserve the inherent structure of the space, leading to stable and

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
Fig. 1. 2D mesh composed of cells ci , which are bounded by faces f j oriented in
the direction n̂ j . Faces, which collapse to the same entities as edges, are bounded
by the set of vertices vk .

robust discretizations [37,34]. However, the development of such
techniques is out of the scope of this paper, where we rather focus
on exploiting the relationships between the different entities of the
mesh for the construction of flux limiters. The interested reader is
referred to [38] and references therein.

Given whatever space of interest �, we can equip it with a
partition of unity, namely a mesh M , by bounding the group of
cells, C , with faces, F ; those with the set of edges, E , and fi-
nally those with the set of vertices, V . In this sequence, groups
are related to the next element of the sequence by means of the
boundary operator ∂ . This is known as a chain complex [37,39]. A
two-dimensional example can be seen in Fig. 1, where faces and
edges collapse into the same entity.

In every space Q , discrete variables are arranged in arrays such
as θq ∈R|Q | . The relationship between the bounding elements of a
geometric entity can be cast in oriented incidence matrices, EE→V ,
EF→E and EC→F , corresponding to edge-to-vertex, face-to-edge
and cell-to-face, respectively. The corresponding incidence matri-
ces for the mesh depicted in Fig. 1 read:

EF→V =

⎛
⎜⎜⎜⎜⎜⎝

0 +1 +1 +1 0 0 0 −1 0
0 0 0 −1 +1 0 0 0 0

−1 0 −1 0 −1 −1 0 0 0
0 0 0 0 0 +1 −1 0 0

+1 −1 0 0 0 0 −1 0 +1
0 0 0 0 0 0 0 +1 −1

⎞
⎟⎟⎟⎟⎟⎠

, (1)

EC→F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 +1 0
0 −1 0 +1

−1 +1 0 0
+1 0 0 0
+1 0 0 0
0 0 −1 0
0 0 +1 0
0 0 0 +1
0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Conversely, we can define EF→C , EE→F and EV→E , for the face-
to-cell, edge-to-face and vertex-to-edge incidence matrix. Such
converse incidence matrices are obtained by transposition:

EF→C = EC→F
T ,

EE→F = EF→E
T ,

EV→E = EE→V
T .

Incidence matrices represent the boundary operator between
one element of the chain and the next one. Following the exam-
3

ple of Fig. 1, EF→C and EV→F provide with the orientation of the
boundary faces f j for every cell ci and the boundary vertices vk

for every face f j . Incidence matrices also play an essential role in
preserving properties of the discrete space. In particular, they form
an exact sequence. Exact sequences are those such that the ap-
plication of the boundary operator twice results in 0. This can be
verified by checking EF→VEC→F = 0. This property is shared by its
continuum counterpart, the de Rahm cohomology [34], which is
the ultimate responsible of the following vector calculus identities
[37]:

∇ × ∇ ≡ 0, (3)

∇ · ∇× ≡ 0. (4)

These are powerful identities that mimetic methods preserve by
construction. For an extended review of the relationship between
the continuum and the discrete counterparts, the reader is referred
to [37,34] and references therein.

In addition to provide a suitable platform for the construction
of appropriate mimetic methods, the relations contained in inci-
dence matrices can be studied from a graph theory perspective.

A straightforward use of incidence matrices allows to compute
differences across faces. The fact that differences lie in a different
space (faces) than variables (cells) is an inherent property of such
an approach:

�θc = EC→Fθc. (5)

Particularly useful is the construction of undirected incidence
matrices (BQ→S), which are built by taking the absolute value of
the elements of the directed ones (EQ→S). Considering the in-
dex notation between a generic space Q (e.g., cells, faces) and its
boundary S (e.g., faces, edges), we could proceed as follows:

[BQ→S]sq = bsq = |esq|, (6)

where esq = [EQ→S]sq .
Similarly, one can proceed to compute the degree matrix of the

graph, which accounts for the number of connections that an en-
tity has (e.g., the number of cells in contact with a face). Degree
matrices are always diagonal and the value of the diagonal ele-
ments is obtained as follows:

WQQ = diag(BS→Q1S). (7)

In particular, undirected incidence matrices can be used to con-
struct suitable shift operators [40]:

�C→F = WFF
−1BC→F. (8)

This provides with a simple face-centered interpolation, weighted
with the number of adjacent faces. Note that by taking this ap-
proach, boundaries are inherently included from the graph infor-
mation.

The use of such �C→F is restricted to scalar fields. However,
following [40], this can be readily extended to vector fields as
follows. First, the discretization of a continuum vector field, �u =
(u1, . . . , ud)

T , is arranged in a single column vector, uc ∈Rd|C |×1 =
(u1, . . . , ud)T , where ui = ((ui)1, (ui)2, ..., (ui)|C |)T are the vectors
containing the components corresponding to the ith spatial di-
rection. Note that d is the number of spatial dimensions of the
problem. Next, the interpolator can be extended component-wise
by applying the Kronecker product with the identity matrix of size
Rd×d . The final ensemble is as follows:

�C→F = Id ⊗ �C→F. (9)

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
Fig. 2. Classical stencil for the computation of the gradient ratio at face f j . U , C and
D correspond to the upstream, centered and downstream nodes.

Similarly, normal vectors can be cast into a R|F |×d|F | matrix by
arranging d diagonal matrices, corresponding to every component
of the face vector, next to each other as NF = (N1| . . . |Nd) [40]. The
two-dimensional NF matrix corresponding to the mesh depicted in
Fig. 1 reads:

NF =

⎛
⎜⎜⎜⎜⎝

n1x 0 . . . 0 n1y 0 . . . 0

0 n2x . . . 0 0 n2y . . .
...

... 0
. . .

...
... 0

. . .
...

0 0 . . . n9x 0 0 . . . n9y

⎞
⎟⎟⎟⎟⎠ . (10)

In such a way, it is straightforward to either project a discrete vec-
tor as NFxf , or to vectorize a scalar quantity as NF

T sf , provided
that both are stored at the faces. An accurate discussion about the
construction of this matrix can be found in [40].

Other basic matrices derived from the graph are the graph
Laplacian (LCC) and the adjacency matrix (ACC):

LCC = BF→CBC→F, (11)

ACC = WCC − LCC. (12)

Both are constructed based on the incidence matrices and provide
information about the propagation of information along the graph.
They are constructed by connecting cells to its neighbors through
its bounding faces.

In summary, the constructor of such operators provides with
tools able to relate different elements of the graph between each
others. Equipped with such basic concepts, the development of
higher level operators can proceed as in the following section.

3. Flux limiters

The solution of hyperbolic problems in finite volume methods
when sharp discontinuities are present requires the use of high
resolution schemes in order to attain second order approximations.
In turn, the construction of such schemes is reduced to the appro-
priate reconstruction of the flux at the faces. Prone to introduce
numerical instabilities, such a reconstruction requires an appropri-
ate flux reconstruction strategy in order to guarantee TVD behavior
(i.e., such that no new minima or maxima are introduced). This is
attained by limiting the flux at cell’s boundaries by means of a flux
limiter function.

Typically, flux limited schemes are stated in the following form
[28]:

θ f = θC + �(r)

(
θD − θC

2

)
, (13)

where θC and θD stand for the centered and downwind values of θ
according to the velocity field u and �(r) is the flux limiter func-
tion. Fig. 2 depicts this situation.

From a physical point of view, this is equivalent to the introduc-
tion of some sort of artificial diffusion which stabilizes the method
at the expense of smearing out its profile. This can be easily seen
by rewriting the classical stencil-based formulation stated in equa-
tion (13) into:
4

θ f = θC + θD

2
+ �(r) − 1

2
(θD − θC) , (14)

where (�(r) − 1)/2 stands for the artificial diffusion added to a
classical symmetry-preserving scheme.

The limiting approach has been used by several authors [41,26]
who over the years developed several discontinuity sensors in or-
der to limit the dissipation to the region near the shock. Among
all discontinuity sensors, the most popular is the use of the gradi-
ent ratio. Following the nomenclature in Fig. 2, this is defined as
follows [28]:

r f = �U θ

�uθ
= θC − θU

θD − θC
, (15)

where �U θ is the gradient of θ at the upwind face while �uθ cor-
respond with the gradient at the face of interest. Both differences
are taken as positive in the flow direction, defined by the sign of
the velocity field uf .

This provides with an intuitive description of where disconti-
nuities are and its order of magnitude, at the time that keeps a
compact stencil. In addition, it allows to, after proper manipula-
tion by the flux limiter itself, limit the flux in a way which can
be interpreted as a diffusion-like term. This is known as “upwind-
ing” as it has the same effect as recovering the 1st order upwind
discretization near shocks.

TVD conditions in terms of the gradient ratio were stated
by Harten in 1983 [27] for one-dimensional homogeneous grids.
These conditions were used by Sweby in 1984 [28] to state 2nd
order and TVD conditions for different forms of flux limiters. This
idea has been extended, with several degrees of accuracy, to mul-
tidimensional and irregular grids [29,30], among others.

3.1. Algebraic formulation

As stated previously, the discretization of equation (14) may
benefit from the adoption of an algebraic approach. In this regard,
it can be easily extended to the whole computational domain as:

θf = (�C→F + F(rf)Q(uf)EC→F)θc, (16)

where θf ∈ R|F | and θc ∈ R|C | are the vectors holding all the
values of θ f and θc , �C→F ∈ R|C |×|F | is the cell-to-face interpo-
lation defined in equation (8), F(rf) ∈ R|C |×|F | is the diagonal ma-
trix absorbing the artificial diffusion introduced in equation (14),
Q(uf) ∈ R|F |×|F | is the diagonal matrix taking the proper sign of
the velocity at the faces and EC→F takes the difference across
them as in equation (5).

At this point, we may be tempted to analyze the construction
of new flux limiters by means of basic algebra concepts. In partic-
ular, to bound its spectrum by means of Gershgorin’s theorem or
to check its entropy conditions [42], among others. The interested
reader is referred to Báez et al. [43], where a similar approach is
taken for spatial filters.

While both �C→F and EC→F are readily available from the
background stated in section 2, the construction of F(rf) by means
of basic algebraic operations solely is addressed next.

Because flux limiter functions F(rf) depend only on the local
value of rf and we defer the details on the implementation of the
pointwise operations to section 3.2, the problem is turned into
the accurate computation of rf at faces. There has been several
approaches [31,29] to the construction of rf in terms of a least-
squares reconstructed gradient. However, the implementation of
such schemes can be cumbersome and may not, eventually, recover
the one-dimensional homogeneous solution when a homogeneous
structured mesh is used.

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
The construction of the gradient ratio will proceed first by the
separate calculation of both the numerator (�U θ) and the denom-
inator (�uθ) of equation (15), then computed as:

[rf]i = [dUθ]i

[duθ]i
, (17)

where duθ ∈R|F | is the face-centered vector holding the difference
across the face taken in the direction stated by uf , while dUθ ∈
R|F | holds the upstream differences according, again, to uf .

In this approach we propose to employ symmetry-preserving
gradients (see [35]) into the calculation of both face-centered and
upstream gradients in order to preserve, as much as possible, the
mimetic properties of the approach. In addition, we aim at recov-
ering the Cartesian formulation as in [33].

Before any calculation, the sign matrix (Q(uf)) is constructed by
assigning to a R|F |×|F | diagonal matrix +1 for a positive velocity
and -1 for a negative one:

[diag (Q(uf))]i = sign([uf]i). (18)

This allows a straightforward calculation of the velocity-oriented
gradient at the face as follows:

duθ = Q(uf)EC→Fθc, (19)

where Q(uf) is used to provide the right direction in which the
difference is taken according to the velocity field.

The construction of the upwind difference dUθ is more in-
volved. The idea is to construct a partial adjacency matrix which
only considers upstream faces, namely the upstream adjacency
matrix, AU

FF(u), which is responsible to garner upstream informa-
tion and will be defined further in this paper.

We proceed as follows: EC→F is used to compute the difference
across every face according to equation (5). In order to assess the
contribution of every neighboring face to the face of interest, dif-
ferences are vectorized with its corresponding normal using NF

T

and added all together with AU
FF(u). Finally, the resulting value is

projected over the normal of the face of interest by means of NF .
The overall construction of the operator is then:

dUθ = NF
(
Id ⊗ AU

FF(u)
)

NF
T EC→Fθc, (20)

where, similarly to equation (9), we reuse the AU
FF(u) operator

for all spatial dimensions. Face normal matrices NF , defined as in
equation (10), are used for both vectorization and projection of the
neighboring differences. In this way, orthogonal meshes recover
the original one-dimensional formulation, whereas unstructured
ones are handled inherently by the incidence matrix.

We are now left with construction of the upstream adjacency
matrix, AU

FF(u), which may look cumbersome at a first glance. It
can be assembled from other simpler matrices:

AU
FF(u) = 1

2

(
AFF − Q(uf)A

D
FF

)
, (21)

where AFF is the face adjacency matrix, AD
FF is a “directed adja-

cency matrix”, which will be introduced below, and Q(uf) is the
already defined velocity sign matrix. The strategy for the construc-
tion of AU

FF(u) is to add the contribution of all neighboring faces
irrespective of the flow direction and then use Q(uf)A

D
FF , to re-

move the downwind ones depending on the values of Q(uf). Note
that both AFF and AD

FF are constant matrices and that the only ma-
trix that needs to be updated according to uf is Q(uf).

The construction of AFF proceeds similarly to equation (12) as
follows:

AFF = WFF − BC→FBF→C. (22)
5

Fig. 3. Upstream (red) and downstream (blue) adjacent faces for face f1 with respect
to the positive component of velocity at face f1. The selection of the right ones
in AU

FF(u) will ultimately depend on Q(uf). (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

As seen in section 2, the adjacency matrix is symmetric and con-
tains non-negative entries only. Following on the example depicted
in Fig. 3, the corresponding AFF reads:

AFF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 +1 0 0 +1 +1 0 0
+1 0 +1 0 0 0 0 +1 +1
+1 +1 0 +1 +1 0 0 0 0
0 0 +1 0 +1 0 0 0 0
0 0 +1 +1 0 0 0 0 0

+1 0 0 0 0 0 +1 0 0
+1 0 0 0 0 +1 0 0 0
0 +1 0 0 0 0 0 0 +1
0 +1 0 0 0 0 0 +1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

On the other hand, the construction of AD
FF allows us to dis-

tinguish neighboring faces which lie, according to the face normal,
behind or ahead of the face in question. This requires the inclusion
of the directed incidence matrix EC→F into the calculation of the
adjacency matrix as:

AD
FF = EC→FBF→C, (24)

which provides with the following matrix:

AD
FF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 +1 0 0 −1 −1 0 0
+1 0 +1 0 0 0 0 −1 −1
−1 −1 0 +1 +1 0 0 0 0
0 0 −1 0 −1 0 0 0 0
0 0 −1 −1 0 0 0 0 0

+1 0 0 0 0 0 +1 0 0
−1 0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 0 −1
0 −1 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Note that AD
FF has the same pattern as AFF but entries correspond-

ing to faces located upstream (with respect to the face normal
direction) contain −1 whereas those located downstream contain
+1, as shown in Fig. 3.

However, the choice of upstream/downstream faces should de-
pend on the faces local velocity and not on its arbitrary choice of
face normal. The product Q(uf)A

D
FF , corrects this by inverting the

sign of the rows corresponding to the faces whose velocity com-
ponent is not aligned with the face normal. The result is a correct
choice of upstream and downstream faces according to the local
face velocity.

Finally, the combination of AD
FF and AFF in equation (20) results

in:

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
Table 1
Particularizations of the operator ◦ and pointwise function f (xi) to represent var-
ious kernels using the generalized binary operator described in Equation (28). The
superbeexty corresponds to the SUPERBEE flux limiter [28].

◦ f (xi) AI Resulting Kernel

+ axi 1/12 axpy
× axi 1/12 axty
/ axi 1/12 axdy
× xi > 0? + 1 : −1 1/12 signxty
× 0.5(max(0,max(min(1,2xi),min(xi ,2))) − 1) 7/24 superbeexty

dUθ = NF

(
Id ⊗ 1

2

(
Q(uf)A

D
FF − AFF

))
NF

T EC→Fθc. (26)

While equation (26) succeeds at selecting the proper upstream
faces, its direct implementation involves many redundant opera-
tions that may result in an unnecessary overhead. For this reason,
the computation of dUθ is rearranged as follows:

dUθ = (Q(uf)SC→F + TC→F)θc, (27)

where we introduce the new matrices SC→F = 1
2 NF (Id ⊗

AD
FF

)
NF

T EC→F and TC→F = 1
2 NF (Id ⊗ AFF)NF

T EC→F , which can
be precomputed at the beginning of the simulation.

3.2. Algebraic implementation

In previous works of Oyarzun et al. [18] and Álvarez et al. [23],
an algebra-based implementation model was proposed for the DNS
and LES of incompressible turbulent flows such that the algorithm
of the time-integration phase reduces to a set of only three al-
gebraic kernels: SpMV, axpy and dot. However, a close look at
Equations (17) and (18), for instance, reveals that this set is insuf-
ficient to fulfill the implementation of the flux limiter because it
comprises non-linear operations.

Nevertheless, instead of being an inconvenience, this encour-
ages us to demonstrate the high potential of our algebraic strategy
again. We propose the generalization of the axpy via the intro-
duction of a generalized binary operator (kbin) that performs any
given pointwise arithmetic calculation such that:

yi ← yi ◦ f (xi). (28)

This binary operator can easily map to the required kernels by
defining ◦ and f (xi) as outlined in Table 1. Similarly, the dot ker-
nel can be turned into a generalized reduction operator (kred),

r ← r ◦ f (xi), (29)

which can easily represent any required reduction operation such
as the calculation of the norm of a vector or the Courant-
Friedrichs-Lewy (CFL) condition. However, the details of the kred
are out of the scope of this work because it is not required for the
implementation of the flux limiter.

From a computational point of view, this kernel generalization
does not alter the implementation of the original axpy: it still
performs simple, pointwise arithmetic operations over the vector
elements and provides uniform, aligned and coalescing memory
accesses which suits the simple instruction, multiple data (SIMD)
and SP paradigms perfectly. Therefore, having already efficient im-
plementations of axpy for different architectures, the implemen-
tation of kbin is straightforward (e.g., consider the use of function
pointers, templates, macros, among others).

On the other hand, the arithmetic intensity of this new kernel is
not a fixed value anymore, as shown in Table 1. While the AI of the
axpy was 1/12 FLOP per byte (one product and one addition per
three 8-byte values), that of the kbin will depend on the specific
arithmetic calculations involved in the function f (xi). This allows
6

us to significantly increase the AI in our calls by means of kernel
fusion, reduce the number of intermediate results, and thus reduce
the time-to-solution.

The final algorithm for the deployment of a flux limiter in the
reconstruction of the variable at faces, θ f , within our algebra-based
framework is described in Algorithm 1. Note that because we are

Algorithm 1 Algorithm for reconstruction of a scalar field at faces,
θf , using the algebraic implementation of a flux limiter.
Require: θc , uf , EC→F , SC→F , TC→F , �C→F

Ensure: θf
1: duθ ← EC→Fθc � SpMV
2: duθ ← Q(uf)duθ � signxty
3: rf ← SC→Fθc � SpMV
4: rf ← Q(uf)rf � signxty
5: rf ← rf + TC→Fθc � SpMV
6: rf ← rf/duθ � axdy
7: θf ← F(rf)duθ � superbeexty
8: θf ← θf + �C→Fθc � SpMV

actually interested in the evaluation of dUθ rather than in the con-
struction of the operator itself, matrix-matrix products are avoided
and successive matrix-vector products are performed. Similarly, we
are not interested in the construction of the diagonal matrices
Q(uf) and F(rf). We will rely on the generalized binary operator
instead. Therefore, the evaluation of Q(uf)y will be done using the
signxty in Table 1 as follows:

[y]i ← [y]i × ([uf]i > 0? + 1 : −1). (30)

Finally, a particular flux limiter function must be chosen on the
evaluation of F(rf)y. Our framework allows to easily switch be-
tween different functions. Hereinafter, we will proceed with the
superbee [28], represented by superbeexty:

[y]i ← [y]i × 0.5(max(0,max(min(1,2[rf]i),min([rf]i,2))) − 1).

(31)

In conclusion, the evaluation of a scalar field at faces, θf , as
in Algorithm 1 can be fitted in our algebra-based framework by
combining two types of computing kernels: SpMV and kbin.

3.3. Comparison with stencil-based implementations

Our algebraic implementation for the appropriate reconstruc-
tion of the variables at faces, θf , is now compared with classi-
cal, stencil-based approaches. This comparison is conducted firstly
from a theoretical point of view, assessing the minimum number
of FLOP and memory traffic (in bytes) required in different scenar-
ios. Note that the actual number of memory accesses during kernel
execution depends not only on the algorithm but also on hardware
and software features. Therefore, regarding the memory traffic, two
different values are estimated considering the full-hit and full-miss
caseloads. The former refers to the best scenario with an ideal
temporal locality: multiple accesses to a particular data element
are so close in time that its value is always reused from cache.
Conversely, the latter considers the worst scenario with a null tem-
poral locality so that every repeated access results in cache-miss
and requires a memory load from memory. Thus, these two values
result in the interval of effective AI of each kernel.

For the sake of clarity, in this comparison we only consider
k-regular, periodic meshes composed of convex polygons which ac-
complish the following equality:

|F | ≈ k |C |, (32)

2

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230

Fig. 4. Example of stencils in a one-dimensional Cartesian grid according to the classical flux limiter approach. The stencil topology varies according to the sign of the velocity
field, �v .
where |C | and |F | represent the number of cells and faces, respec-
tively, and k is the degree of the mesh elements (i.e., the number
of neighboring cells). The resulting requirements are listed in Ta-
ble 2, which is described throughout the section.

Let us start from the analysis of the simplest case: the stencil-
based calculation of θ f in a one-dimensional Cartesian grid, de-
picted in Fig. 4 and described in Algorithm 2. Every ith face is
surrounded by two cells, ci and ci+1. For each ith face in |F |, the
sign of the velocity determines the upstream, centered and down-
stream values of θ , as well as the centered and upstream distances.
Following the algorithm, 5|F | FLOP are required for computing the
gradient ratio in line 9, 1|F | for computing the limiter function in
line 10 (this value may vary depending on the limiter function; in
this example we have considered the superbee limiter [28]), and
7|F | for computing the value at the face in line 11. In the algo-
rithm, three discrete fields are required for the computations: the
initial scalar field, θc ∈ R|C | , the velocity field, uf ∈ R|F | and the
distances between cells, df ∈ R|F | . Besides, the algorithm ensures
the calculation of the discrete scalar field at faces, θf ∈ R|F | . Thus,
considering double-precision values, and given that the number of
faces is equal to the number of cells in the one-dimensional case
(k = 2 → |F | = |C |), the minimum FLOP and bytes required are
5|F | + 1|F | + 7|F | = 13|C | and 8(|C | + |F | + |F | + |F |) = 32|C |, re-
spectively. The total memory traffic in the full-miss caseload would
rise to 48|C | because two different values of df and θc are ac-
cessed for every face. Note that these values are slightly reduced
in the particular case of uniform meshes: neither the distances ar-
ray nor its quotient is required, thus omitting 2|F | FLOP in line 9
and the access to df . On the other hand, the generalization of Algo-
rithm 2 for three-dimensional Cartesian grids (k = 6 → |F | = 3|C |)
is straightforward and rises the computational requirements to
39|C | FLOP and 80–336|C | bytes for non-uniform meshes, or 33|C |
FLOP and 56–216|C | bytes in the uniform case.

Algorithm 2 Stencil-based calculation of θ f in a one-
dimensional Cartesian grid.
Require: θc , uf , df � 8C + 8F + 8F bytes

Ensure: θf � 8F bytes
1: for i ← 1 to |F | do
2: if uf[i] > 0 then
3: θC = θc[i], θU = θc[i − 1], θD = θc[i + 1]
4: di = df[i], dU = df[i − 1]
5: else
6: θC = θc[i + 1], θU = θc[i], θD = θc[i + 2]
7: di = df[i], dU = df[i + 1]
8: end if
9: ri ← (di/dU)(θC − θU)/(θD − θC) � 5F flops

10: �i ← limiter(r f) � 1F flops
11: θf[i] ← (θC + θD)/2 + (�i − 1)(θD − θC)/2 � 7F flops
12: end for

A generalization of the stencil calculation for unstructured
meshes is outlined in Algorithm 3. In contrast with the structured
algorithm, the indices of neighboring nodes are not predictable,
so the incidence graphs are required. For each ith face in |F |, the
sign of the velocity determines the indices of the centered and
downstream cells, cC and cD , according to the cell-to-face inci-
dence graph. Then, for each jth face incident to cC (except f i), its
contribution to the upstream gradient, projected over the normal
7

of f i , is accumulated, accounting for 5(k − 1)|F | and 4(k − 1)|F |
FLOP in lines 20 and 21, respectively. The calculation of θ f in lines
24 to 26 follows similarly as in Algorithm 2, and adds 13|F | op-
erations. In this case, six discrete fields, one integer list and two
incidence graphs are required for the computations. The specific
requirements for two k-regular unstructured meshes, k = 2 (one-
dimensional mesh) and k = 6 (three-dimensional hexaedral mesh),
are listed in Table 2.

Algorithm 3 Stencil-based calculation of θ f in a generic unstruc-
tured grid based on incidence graphs.
Require: θc , uf , df , nx , ny , nz , � 8C + 40F bytes

kc , EC→F , EF→C � 4C + 8F + 8F bytes
Ensure: θf � 8F bytes
1: for i ← 1 to |F | do
2: if uf[i] > 0 then
3: cC = EC→F[i][0]
4: cD = EC→F[i][1]
5: else
6: cC = EC→F[i][1]
7: cD = EC→F[i][0]
8: end if
9: �U = 0

10: for k ← 1 to kc[cC] do
11: j = EF→C[cC][k]
12: if j
= i then
13: if EC→F[j][0]
= cC then
14: cU = EC→F[j][0]
15: else
16: cU = EC→F[j][1]
17: end if
18: d j = df[j]
19: θU = θc[cU]
20: nk ← nx[i]nx[j] + ny[i]ny[j] + nz[i]nz[j] � 5(k-1)F flops
21: �U ← �U + nk(θC − θU)/d j � 4(k-1)F flops
22: end if
23: end for
24: ri ← �U /((θD − θC)/di) � 3F flops
25: �i ← superbee(ri) � 1F flops
26: θf[i] ← (θC + θD)/2 + (�i − 1)(θD − θC)/2 � 7F flops
27: end for

Finally, in the algebraic implementation outlined in Algo-
rithm 1, it can be observed how it is completely independent
of the mesh type and the numerical method: these characteris-
tics only affect the matrices. The number of calls to SpMV and
kbin kernels is readily deduced from the algorithm: 4 times each.
Four matrices are required for the computations: the differences
at faces, EC→F , with 2|F | non-zero elements, the oriented and un-
oriented differences, SC→F and TC→F , with 2k|F | each, and the
cell-to-face interpolation, �C→F , with 2|F |. In this example, we
consider the use of the ELLPACK format [44] in which each non-
zero element accounts for 12 bytes (i.e., 8 bytes for the coefficient
and 4 bytes for the column index). The specific requirements for
two k-regular meshes are listed in Table 2.

4. Numerical study

4.1. Three-dimensional deformation problem

Next, the application of this technique is applied to a canonical
benchmark. In particular, the deformation (advection) of a sharp

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230

Fig. 5. Contours for θ = 0.5 in x = 0.35, y = 0.35 and z = 0.35 planes after 3.0 time-units for meshes of 723, 1443, 2883, 4323 and 5763 cells.
Table 2
Minimum number of FLOP and memory traffic (in bytes) required per mesh cell for
computing the variable at the faces in different scenarios: stencil- and algebra-based
implementations on uniform, non-uniform and unstructured one-dimensional (k =
2) and three-dimensional (k = 6) meshes.

k Approach FLOP Bytes AI

full-hit full-miss full-hit full-miss

2 Uniform 11 32 48 0.344 0.229
2 Non-uniform 13 40 56 0.325 0.232
2 Unstructured 20 84 132 0.238 0.152
2 Algebraic 28 288 352 0.097 0.080

6 Uniform 33 80 240 0.413 0.138
6 Non-uniform 39 104 360 0.375 0.108
6 Unstructured 168 228 1020 0.737 0.165
6 Algebraic 180 1408 1984 0.128 0.091

profile, which has been tested on three-dimensional hexahedral
meshes of 723, 1443, 2883, 4323 and 5763 cells following Algo-
rithm 4, where M ∈ R|C |×|F | is the divergence operator [40] and
U(uf) ∈ R|F |×|F | is a diagonal matrix containing the velocities at
faces. Recall we evaluate the products by diagonal matrices by
means of kbin calls.

Algorithm 4 Algorithm for the advection of a scalar field with a
1st order Euler method, using the algebraic implementation of a
flux limiter.
Require: θn

c , uf , dt , EC→F , SC→F , TC→F , �C→F , M
Ensure: θn+1

c
1: duθ ← Q(uf)EC→Fθ

n
c

2: rf ← (Q(uf)SC→F + TC→F)θn
c /duθ

3: θf ← �C→Fθ
n
c + F(rf)duθ

4: θn+1
c ← θn

c + dtMU(uf)θf

The sharp profile is initialized in a physical domain of [0, 1] ×
[0, 1] × [0, 1] as a sphere of radius r = 0.15, located at (0.35, 0.35,

0.35) and subject to a divergence-free velocity field:

u = 2sin2(πx)sin(2π y)sin(2π z)cos(πt/T), (33)

v = −sin(2πx)sin2(π y)sin(2π z)cos(πt/T), (34)

w = −sin(2πx)sin(2π y)sin2(π z)cos(πt/T), (35)

during 3.0 time-units, T [45].
The results of the profile on meshes of 723, 1443, 2883, 4323

and 5763 cells are shown in Fig. 5 for the slices in x = 0.35, y =
0.35 and z = 0.35 planes.

The three-dimensional temporal evolution of the sphere on a
mesh of 5763 cells is shown in Fig. 6. As in [45], the resulting
shapes after the deformation are satisfactory, and mass is exactly
conserved.
8

4.2. Performance analysis

The benchmark described in Section 4.1 has been deployed on
the HPC2 [23] framework, designed for the efficient implementa-
tion of algebraic algorithms on hybrid supercomputers. To demon-
strate its portability, the simulations have been run on different
supercomputers. Before going into details, we define the theoreti-
cal achievable performance of a particular kernel, πk , as:

πk = min(π, AIkβ),

where π is the peak performance of the computing device in
double-precision, β is the peak memory bandwidth and AIk is the
maximum AI of the kernel, taking the full-hit scenario as described
in Section 3.3. Then, we define the performance and memory effi-
ciency as the ratio of measured performance to πk and measured
memory traffic to full-hit, respectively.

The simulations on meshes of 723–4323 cells have been exe-
cuted on up to 64 nodes (3,072 cores) of the CPU-based MareNos-
trum 4 supercomputer at the Barcelona Supercomputing Center.
Its nodes are equipped with two Intel Xeon 8160 CPUs (24 cores,
2.1 GHz, 6 DDR4-2666 memory channels, 128 GB/s memory band-
width, 33 MB L3 cache), interconnected through the Intel Omni-
Path network (12.5 GB/s). The application achieved a sustained
performance of up to 1.6 TFLOPS, corresponding to nearly 80% of
performance efficiency.

The simulation on a mesh of 5763 cells has been executed on
27 nodes of the Lomonosov-2 hybrid supercomputer at Lomonosov
Moscow State University. Its hybrid nodes are equipped with one
Intel Xeon E5-2697 v3 CPU (14 cores, 2.6 GHz, 4 DDR4-2133 mem-
ory channels, 68 GB/s memory bandwidth, 35 MB L3 cache) and
one NVIDIA Tesla K40M GPU (12 GB of GDDR5 memory, 288 GB/s,
PCIe 3.0 x16 – 16 GB/s), interconnected via InfiniBand FDR net-
work (7 GB/s). The application achieved a sustained performance
of 0.9 TFLOPS, corresponding to nearly 75% of performance effi-
ciency and 98.5% of the heterogeneous efficiency (i.e., the ratio of
the heterogeneous performance to the sum of CPU-only and GPU-
only performances).

Finally, we complete the performance analysis, and the theo-
retical comparison in Section 3.3, by comparing the actual per-
formance of the algebraic and stencil approaches. Following Al-
gorithm 3, a stencil kernel has also been implemented in HPC2.
The tests have been carried out on the CPU-based JFF cluster at
the Heat and Mass Transfer Technological Center. Its nodes are
equipped with two Intel Xeon Gold 6230 CPUs (20 cores, 2.1
GHz, 6 DDR4-2933 memory channels, 140 GB/s memory band-
width, 27.5 MB L3 cache). Considering that the DM parallelization
is equivalent in both approaches since the data exchanges are the
same, only single-node comparisons have been conducted.

The results are shown in a roofline plot in Fig. 7 for both single-
and dual-socket executions using a NUMA-aware, SM paralleliza-
tion on meshes of 1443 (A) and 2883 (B) cells. We have discarded

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230

Fig. 6. Time evolution of the θ = 0.5 contour for t = 0, 0.25, 0.75, 1.5, 2.25, 2.75 and 3.0 time-units for mesh of 5763 cells.

Fig. 7. Roofline models representing the ranges of achievable performance for the stencil- and algebra-based implementations of the flux limiter on three-dimensional un-
structured meshes. Results on Intel Xeon Gold 6230 are shown for meshes of 1443 (A) and 2883 (B).
the smallest mesh of 723 to ensure a memory-bounded behavior
and the biggest meshes of 4323 and 5763 because they do not fit
in a single node. In the plot, two vertical lines represent the mini-
mum and maximum values of the AI for each kernel as estimated
in Section 3.3 and outlined in Table 2. Then, the roofline curve is
calculated as follows:

�(π,β) = min(π, AIβ).

In this particular test, β and π are 140 GB/s and 1344 GFLOPS per
socket, respectively. The real number of memory accesses to main
memory have been measured using a profiling tool to calculate the
effective AI of each execution.

In single-socket execution, the stencil kernel performs nearly
twice faster than the algebraic one (stencil: 33.02 (A) and 24.52 (B)
GFLOPS, algebraic: 13.89 (A) and 13.54 (B) GFLOPS), even though
its lower performance efficiency (stencil: 32% and 24%, algebraic:
78% and 76%). However, this gap is reduced to approximately
×1.35 in the dual-socket case (stencil: 37.01 and 33.82 GFLOPS,
algebraic: 27.16 and 25.17 GFLOPS). The algebraic kernels feature
a regular unit-strided memory access everywhere except the input
vector in SpMV. In contrast, the stencil kernel leads to irregular
accesses to EF→C , EC→F , df , θc and �n, resulting in higher cache
miss rates and reducing the memory efficiency, especially in dual-
socket configurations (stencil: 36% and 33%, algebraic: 96% and
94%). Thus, the actual performance gap is far from the ×5.75 of
the (worst) theoretical scenario.

For further details of the implementation of our framework and
a detailed performance and scalability analysis on different types
9

of supercomputing facilities, the reader is referred to Álvarez-Farré
et al. [24].

5. Discussion

The advantages and disadvantages of the algebra- and stencil-
based implementations of the flux limiter are discussed below.

The algebraic formulation of flux limiters proposed in this work
allows for fitting the calculation of such high-resolution schemes
into algebra-based frameworks. Following this approach, the DNS
and LES of turbulent multiphase flows, for instance, is reduced to a
minimal set of algebraic subroutines, leading to fully portable and
sustainable implementations. The challenges associated with the
introduction of new architectures, and the ongoing hybridization of
HPC systems make these two properties of the uttermost impor-
tance in the development of modern scientific computing codes.
Moreover, algebraic kernels are so widespread that optimized li-
braries are available for virtually all the existing architectures.

From the results listed in Table 2, a significant (theoretical)
overhead is revealed in the algebraic implementation. This over-
head is mainly induced from Equation (27), where we are enforced
to calculate the contribution of all neighboring faces twice as de-
scribed in Fig. 8, according to the oriented and unoriented matri-
ces, to cancel the downwind values. Note that TC→F and SC→F are
the matrices with the largest number of non-zero elements. On
the other hand, the algebraic implementation requires more kernel
calls which reduces the maximum AI of the algorithm. However,
the memory access patterns in algebraic kernels are regular and
unit-strided everywhere except the input vector in SpMV.

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
Fig. 8. Equivalent stencils used in the computation of an algebraic flux limiter. In
this case the adjacency matrices involve the operation with all neighboring nodes.

Although the differences in theoretical achievable performance
(πk) are evident, reaching high performance and memory efficien-
cies with complex stencil kernels usually requires more complex
optimizations. For instance, the authors in [1] study different types
of kernels, including SpMV, and show that simpler kernels require
fewer optimizations to reach higher efficiencies, even though their
absolute performance is still lower. Also, the authors in [46] study
the progressive performance improvement of a CFD solver applying
several optimizations such as kernel fusion, cache-blocking, vec-
torization, and NUMA-aware memory initialization. Indeed, their
fully-optimized solver reports absolute performances that are al-
ready higher than the πk of any equivalent algebraic counterpart.
However, from their results, the performance gap is far from the
(worst) theoretical predictions in Table 2 because their stencil ap-
plication achieves low performance efficiencies (around 10–40%).
In contrast, our measurements in Section 4.2 show that our alge-
braic kernels report a very stable 80% efficiency. Furthermore, the
test case in [46] on a mesh with 2 million grid points appears to
be benefiting from cache reuse, especially in the Broadwell device
with 56 MB L3 cache, hence the gap on larger grids should be even
smaller.

Regarding the parallelization both implementations are very
similar. The distributed-memory parallelization remains the same.
In both cases, the overlapping schemes for hiding the communica-
tion overhead have reported solid results [24,47].

Finally, it is noteworthy that the calculation of θf represents a
marginal part of a simulation, and that the overhead of the alge-
braic implementation is not significant in other evaluations such
as the advection–diffusion of the variables. Indeed, the most time-
and memory-consuming part in CFD simulations is the solver of
SLAE which, in our implementation, not only does not suffer but
benefits: our fields are vectors suitable for the SLAE throughout
the entire simulation. Neither copy, transfer, nor manipulation is
required for passing our vectors as input parameters to our solvers.
Therefore, the drawbacks of the algebraic approach of the flux lim-
iter are diminished in an actual CFD simulation.

6. Conclusions and future work

A flux limiter scheme has been formulated from an algebraic
perspective resulting in a compact formulation that allows for easy
implementation on algebraic frameworks. The resulting implemen-
tation provides accurate results and collapses to the traditional
approach of Sweby [28] when a homogeneous, Cartesian grid is
used.

Graph incidence matrices (both directed and undirected) are
exploited to construct appropriate gradient ratios, while the face
velocity sign determines the appropriate side to pick the upstream
information. After the sign operation, the remaining operations are
either linear or local.

This approach presents several advantages, most remarkably re-
ducing the number of computing kernels that need to be ported
when moving to new architectures. On the other hand, a theo-
retical comparison with respect to a classical stencil-based imple-
mentation reveals that the latter is cheaper regarding the memory
traffic because it can make use of specialized kernels that require
less intermediate results, or discriminate some operations with
10
conditional statements, most remarkably when locating upwind
values. However, the performance study shows that the perfor-
mance gaps are much smaller than the worst theoretical scenario
(×1.35 instead of ×5.75). Either way, the calculation of θf repre-
sents a marginal part of an actual CFD simulation and, therefore,
the drawbacks of the algebraic approach in realistic simulations are
diminished.

Finally, the approach developed in this work can be improved
to include the effect of the non-homogeneous distance across up-
stream faces or its surface in calculating the upstream gradient.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The work of N. V. and X. Á. F. has been supported by the
Government of Catalonia, FI AGAUR predoctoral grants 2019FI_B2_
000104 and 2019FI_B2_00076.

N. V., X. Á. F., J. C., A. O. and F. X. T. have been funded by the
Spanish Research Agency, ANUMESOL project ENE2017-88697-R.
J. C. has also been funded by Spanish Research Agency, GALIFLOW
project ENE2015-70662-P.

The studies of this work have been carried out using the
MareNostrum 4 supercomputer of the Barcelona Supercomput-
ing Center, projects IM-2019-3-0026 and IM-2020-1-0006; the
TSUBAME3.0 supercomputer of the Global Scientific Information
and Computing Center at Tokyo Institute of Technology; the
Lomonosov-2 supercomputer of the shared research facilities of
HPC computing resources at Lomonosov Moscow State University;
the K-60 hybrid cluster of the collective use center of the Keldysh
Institute of Applied Mathematics; the JFF cluster of the Heat and
Mass Transfer Technological Center at Technical University of Cat-
alonia. The authors thankfully acknowledge these institutions for
the compute time and technical support.

References

[1] S. Williams, A. Waterman, D. Patterson, Commun. ACM 52 (4) (2009) 65–76,
https://doi .org /10 .1145 /1498765 .1498785.

[2] J. Dongarra, M.A. Heroux, P. Luszczek, Nat. Sci. Rev. 3 (1) (2016) 30–35, https://
doi .org /10 .1093 /nsr /nwv084.

[3] M. Al Farhan, A. Abdelfattah, S. Tomov, M. Gates, D. Sukkari, A. Haidar, R.
Rosenberg, J. Dongarra, Int. J. High Perform. Comput. Appl. 34 (6) (2020)
645–658, https://doi .org /10 .1177 /1094342020938421.

[4] T. Gysi, T. Grosser, T. Hoefler, in: Proc. 29th ACM Int. Conf. Super- Comput, ACM,
New York, NY, USA, 2015, pp. 177–186.

[5] B. Krasnopolsky, A. Medvedev, Adv. Parallel Comput. 27 (2016) 93102, https://
doi .org /10 .3233 /978 -1 -61499 -621 -7 -93.

[6] J. Romero, J. Crabill, J.E. Watkins, F.D. Witherden, A. Jameson, Comput. Phys.
Commun. 250 (2020) 107169, https://doi .org /10 .1016 /j .cpc .2020 .107169.

[7] F. Jiang, K. Matsumura, J. Ohgi, X. Chen, Comput. Phys. Commun. 259 (2021)
107661, https://doi .org /10 .1016 /j .cpc .2020 .107661.

[8] S. Watanabe, T. Aoki, Comput. Phys. Commun. 264 (2021) 107871, https://doi .
org /10 .1016 /j .cpc .2021.107871.

[9] S. Ha, J. Park, D. You, Comput. Phys. Commun. 265 (2021) 107999, https://doi .
org /10 .1016 /j .cpc .2021.107999.

[10] A. Yamanaka, T. Aoki, S. Ogawa, T. Takaki, J. Cryst. Growth 318 (1) (2011)
40–45, https://doi .org /10 .1016 /j .jcrysgro .2010 .10 .096.

[11] S. Sakane, T. Takaki, M. Ohno, Y. Shibuta, T. Aoki, Model. Simul. Mater. Sci. Eng.
27 (5) (2019) 054004, https://doi .org /10 .1088 /1361 -651X /ab20b9.

[12] P. Zaspel, M. Griebel, Comput. Fluids 80 (1) (2013) 356–364, https://doi .org /10 .
1016 /j .compfluid .2012 .01.021.

[13] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-
Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R.J. Stevens, Comput. Phys.
Commun. 229 (2018) 199–210, https://doi .org /10 .1016 /j .cpc .2018 .03 .026.

[14] A. Bocharov, N. Evstigneev, V. Petrovskiy, O. Ryabkov, I. Teplyakov, J. Comput.
Phys. 406 (2020) 109189, https://doi .org /10 .1016 /j .jcp .2019 .109189.

https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1093/nsr/nwv084
https://doi.org/10.1093/nsr/nwv084
https://doi.org/10.1177/1094342020938421
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibA87FF679A2F3E71D9181A67B7542122Cs1
https://doi.org/10.3233/978-1-61499-621-7-93
https://doi.org/10.3233/978-1-61499-621-7-93
https://doi.org/10.1016/j.cpc.2020.107169
https://doi.org/10.1016/j.cpc.2020.107661
https://doi.org/10.1016/j.cpc.2021.107871
https://doi.org/10.1016/j.cpc.2021.107871
https://doi.org/10.1016/j.cpc.2021.107999
https://doi.org/10.1016/j.cpc.2021.107999
https://doi.org/10.1016/j.jcrysgro.2010.10.096
https://doi.org/10.1088/1361-651X/ab20b9
https://doi.org/10.1016/j.compfluid.2012.01.021
https://doi.org/10.1016/j.compfluid.2012.01.021
https://doi.org/10.1016/j.cpc.2018.03.026
https://doi.org/10.1016/j.jcp.2019.109189

N. Valle, X. Álvarez-Farré, A. Gorobets et al. Computer Physics Communications 271 (2022) 108230
[15] P. Vincent, F. Witherden, B. Vermeire, J.S. Park, A. Iyer, in: SC16 Int. Conf. High
Perform. Comput. Networking, Storage Anal., IEEE, Salt Lake City, 2016.

[16] F. Witherden, A.M. Farrington, P.E. Vincent, Comput. Phys. Commun. 185 (11)
(2014) 3028–3040, https://doi .org /10 .1016 /j .cpc .2014 .07.011.

[17] T. Shimokawabe, T. Aoki, N. Onodera, Proc. Comput. Sci. 80 (2016) 1646–1657,
https://doi .org /10 .1016 /j .procs .2016 .05 .499.

[18] G. Oyarzun, R. Borrell, A. Gorobets, A. Oliva, Int. J. Comput. Fluid Dyn. 31 (9)
(2017) 396–411, https://doi .org /10 .1080 /10618562 .2017.1390084.

[19] NVIDIA Corporation, cuSPARSE: The API reference guide for cuSPARSE, the
CUDA sparse matrix library, Tech. Rep., March 2020.

[20] J.L. Greathouse, K. Knox, J. Poła, K. Varaganti, M. Daga, in: Proc. 4th Int. Work.
OpenCL, ACM, New York, NY, USA, 2016.

[21] G. Oyarzun, R. Borrell, A. Gorobets, A. Oliva, Comput. Fluids 92 (2014) 244–252,
https://doi .org /10 .1016 /j .compfluid .2013 .10 .035.

[22] R. Borrell, J. Chiva, O. Lehmkuhl, G. Oyarzun, I. Rodríguez, A. Oliva, Int. J. Com-
put. Fluid Dyn. 30 (6) (2016) 425–430, https://doi .org /10 .1080 /10618562 .2016 .
1221503.

[23] X. Álvarez, A. Gorobets, F.X. Trias, R. Borrell, G. Oyarzun, Comput. Fluids 173
(2018) 285–292, https://doi .org /10 .1016 /j .compfluid .2018 .01.034.

[24] X. Álvarez-Farré, A. Gorobets, F.X. Trias, Comput. Fluids 214 (2021) 104768,
https://doi .org /10 .1016 /j .compfluid .2020 .104768.

[25] S. Godunov, Mat. Sb. 47 (271) (1959) 271–306.
[26] C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 2: Com-

putational Methods for Inviscid and Viscous Flows, Wiley-Interscience, 1990.
[27] A. Harten, J. Comput. Phys. 49 (3) (1983) 357–393, https://doi .org /10 .1016 /

0021 -9991(83)90136 -5.
[28] P.K. Sweby, SIAM J. Numer. Anal. 21 (5) (1984) 995–1011, https://doi .org /10 .

1137 /0721062.
[29] M. Berger, M.J. Aftosmis, S.M. Murman, Analysis of Slope Limiters on Irregular

Grids, Tech Rep., 2005, pp. 1–22.
[30] X. Zeng, SIAM J. Sci. Comput. 38 (2) (2016) A789–A813, https://doi .org /10 .1137 /

140970185.
[31] M.S. Darwish, F. Moukalled, Int. J. Heat Mass Transf. 46 (4) (2003) 599–611,

https://doi .org /10 .1016 /S0017 -9310(02)00330 -7.

[32] E. Olsson, G. Kreiss, J. Comput. Phys. 210 (1) (2005) 225–246, https://doi .org /
10 .1016 /j .jcp .2005 .04 .007.

[33] N. Balcázar, L. Jofre, O. Lehmkuhl, J. Castro, J. Rigola, Int. J. Multiph. Flow 64
(2014) 55–72, https://doi .org /10 .1016 /j .ijmultiphaseflow.2014 .04 .008.

[34] R. Hiemstra, D. Toshniwal, R. Huijsmans, M. Gerritsma, J. Comput. Phys. 257
(2014) 1444–1471, https://doi .org /10 .1016 /j .jcp .2013 .09 .027.

[35] R.W.C.P. Verstappen, A.E.P. Veldman, J. Comput. Phys. 187 (1) (2003) 343–368,
https://doi .org /10 .1016 /S0021 -9991(03)00126 -8.

[36] N. Valle, F.X. Trias, J. Castro, J. Comput. Phys. 400 (2020) 108991, https://doi .
org /10 .1016 /jjcp .2019 .108991.

[37] N. Robidoux, S. Steinberg, Comput. Methods Appl. Math. 11 (1) (2011) 23–66,
https://doi .org /10 .2478 /cmam -2011 -0002.

[38] K. Lipnikov, G. Manzini, M. Shashkov, J. Comput. Phys. 257 (2014) 1163–1227,
https://doi .org /10 .1016 /j .jcp .2013 .07.031.

[39] E. Tonti, J. Comput. Phys. 257 (2014) 1260–1290, https://doi .org /10 .1016 /j .jcp .
2013 .08 .016.

[40] F.X. Trias, O. Lehmkuhl, A. Oliva, C.D. Pérez-Segarra, R.W.C.P. Verstappen, J.
Comput. Phys. 258 (2014) 246–267, https://doi .org /10 .1016 /j .jcp .2013 .10 .031.

[41] C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 1: Fun-
damentals of Numerical Discretization, Wiley-Interscience, Brussels, 1988.

[42] S. Osher, S. Chakravarthy, High Resolution Schemes and the Entropy Condition,
Tech. Rep., 1984.

[43] A. Báez Vidal, O. Lehmkuhl, F.X. Trias, C.D. Pérez-Segarra, J. Comput. Phys.
326 (4) (2016) 474–498, https://doi .org /10 .1016 /j .jcp .2016 .09 .002.

[44] D.R. Kincaid, T.C. Oppe, D.M. Young, ITPACKV 2D User ’s Guide, Tech. Rep., Cen-
ter for Numerical Analysis, University of Texas, 1989.

[45] K. Yang, T. Aoki, J. Comput. Phys. 431 (2021) 110113, https://doi .org /10 .1016 /j .
jcp .2021.110113.

[46] B. Mostafazadeh, F. Marti, F. Liu, A. Chandramowlishwaran, in: Proc. - 2018 IEEE
32nd Int. Parallel Distrib. Process. Symp. IPDPS 2018, 2018, pp. 753–762.

[47] A. Gorobets, S. Soukov, P. Bogdanov, Comput. Fluids 173 (2018) 171–177,
https://doi .org /10 .1016 /j .compfluid .2018 .03 .011.
11

http://refhub.elsevier.com/S0010-4655(21)00342-8/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1016/j.procs.2016.05.499
https://doi.org/10.1080/10618562.2017.1390084
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib98F13708210194C475687BE6106A3B84s1
https://doi.org/10.1016/j.compfluid.2013.10.035
https://doi.org/10.1080/10618562.2016.1221503
https://doi.org/10.1080/10618562.2016.1221503
https://doi.org/10.1016/j.compfluid.2018.01.034
https://doi.org/10.1016/j.compfluid.2020.104768
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib4E732CED3463D06DE0CA9A15B6153677s1
https://doi.org/10.1016/0021-9991(83)90136-5
https://doi.org/10.1016/0021-9991(83)90136-5
https://doi.org/10.1137/0721062
https://doi.org/10.1137/0721062
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
https://doi.org/10.1137/140970185
https://doi.org/10.1137/140970185
https://doi.org/10.1016/S0017-9310(02)00330-7
https://doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
https://doi.org/10.1016/j.jcp.2013.09.027
https://doi.org/10.1016/S0021-9991(03)00126-8
https://doi.org/10.1016/jjcp.2019.108991
https://doi.org/10.1016/jjcp.2019.108991
https://doi.org/10.2478/cmam-2011-0002
https://doi.org/10.1016/j.jcp.2013.07.031
https://doi.org/10.1016/j.jcp.2013.08.016
https://doi.org/10.1016/j.jcp.2013.08.016
https://doi.org/10.1016/j.jcp.2013.10.031
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibA1D0C6E83F027327D8461063F4AC58A6s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibA1D0C6E83F027327D8461063F4AC58A6s1
https://doi.org/10.1016/j.jcp.2016.09.002
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibF7177163C833DFF4B38FC8D2872F1EC6s1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibF7177163C833DFF4B38FC8D2872F1EC6s1
https://doi.org/10.1016/j.jcp.2021.110113
https://doi.org/10.1016/j.jcp.2021.110113
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibD9D4F495E875A2E075A1A4A6E1B9770Fs1
http://refhub.elsevier.com/S0010-4655(21)00342-8/bibD9D4F495E875A2E075A1A4A6E1B9770Fs1
https://doi.org/10.1016/j.compfluid.2018.03.011

	On the implementation of flux limiters in algebraic frameworks
	1 Introduction
	2 Algebraic topology
	3 Flux limiters
	3.1 Algebraic formulation
	3.2 Algebraic implementation
	3.3 Comparison with stencil-based implementations

	4 Numerical study
	4.1 Three-dimensional deformation problem
	4.2 Performance analysis

	5 Discussion
	6 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

