
Real-time display of a
multiprocessor Spiking Neural Network

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Clément Nader

In partial fulfillment
of the requirements for the master in
ELECTRONICS ENGINEERING

Advisor: Bernardo Vallejo
Co-advisor: Dr. Jordi Madrenas Boadas

Barcelona, September 2021 - February 2022

Contents

Acknowledgments v

Abstract vi

List of Figures vii

List of Tables x

Acronyms xi

1 Introduction 1

2 State of the art 2

2.1 Biological neurons . 2

2.2 Artificial Neural Networks . 2

2.3 Spiking Neural Networks . 3

2.4 HEENS architecture . 4

3 Project development 9

3.1 Current state of the project . 9

3.2 Vivado software and VHDL language . 11

4 Screen display via HDMI 12

4.1 Principle . 12

4.1.1 Introduction . 12

4.1.2 Aspect ratio and video resolution . 13

4.1.3 Video timings . 14

4.1.4 Color format . 16

4.2 Hardware specification . 17

4.2.1 HDMI transmitter: ADV7511 . 17

ii

4.2.2 I2C bus switch on ZC706 . 24

4.3 Programming . 25

4.3.1 Introduction . 25

4.3.2 Clock generation . 26

4.3.3 Screen resolution . 26

4.3.4 HDMI transmitter configuration via I2C 27

4.3.5 Conversion from RGB to YCbCr . 34

4.3.6 Generation of the screen . 36

4.4 Results . 39

5 Raster plot 41

5.1 Communication with HEENS . 41

5.1.1 Principle . 41

5.1.2 FIFO signals . 43

5.1.3 Block memory signals . 44

5.1.4 Reading the FIFO and storing the information 46

5.1.5 Implementation of the buffer . 49

5.2 Creating the plot . 50

5.2.1 Information to show . 50

5.2.2 Reading the memory and creating the plot 54

5.2.3 Extended plot . 55

5.2.4 Created packages . 57

5.3 Results with emulated neural network . 58

6 Plot of neural parameters 64

6.1 Communication with HEENS . 64

6.1.1 Principle . 64

6.1.2 Reading the FIFO and storing the information 66

6.2 Creating the plots . 68

iii

6.3 Results with emulated neural network . 69

7 Experimental results 71

7.1 Principle . 71

7.2 Ring oscillator . 72

7.3 Delay lines . 74

8 Conclusion and future development 77

8.1 Summary . 77

8.2 Future work . 78

References 80

Appendix 84

ADV7511 registers map . 84

Fixed registers that must be set . 84

Main Power Up . 85

HDMI or DVI mode . 85

Input Formatting Related Registers . 86

CSC related registers . 88

ZC706 I2C bus switch . 89

Raster plot results for 2x2 and 6x6 configurations . 90

6x6 configuration . 90

2x2 configuration . 92

HEENS Control Interface registers . 93

HEENS Control Interface register map . 93

HEENS Transfer Register write operation . 93

HEENS Monitored Neurons Register write operation 95

iv

Acknowledgments

I would like to thank all the people who helped me and contributed to
my work:

• Bernardo Vallejo for his daily advice, support and help during
this thesis. Thank you for your time and the knowledge that you
shared,

• Dr. Jordi Madrenas for his great supervision and proofreading of
the thesis,

• Sasan Nikseresht and Diana Mata Hernández my other
coworkers at the laboratory, thank you for the good working
atmosphere you created and support you provided me,

• my flatmates Lydia Iracheta, Andrei Platonov and Rebecca
Künnis for their daily psychological support,

• my previous coworkers and great friends Antoine Colson and
Salvador Poveda for their help and conscientiousness during all
these works,

• Mariline and Rémy Nader for their precious proofreading,

• and finally, my whole family and friends for their love and
support.

v

Abstract

Artificial Neural Networks (ANNs) are powerful computational tools that are used to solve
complex pattern recognition, function estimation and classification problems not manageable
by other analytical tools. They are inspired by the structure and function of the human brain
and throughout their development, they have been evolving towards more powerful and more
biologically realistic models.

A new generation of ANNs: Spiking Neural Networks (SNNs) have been developed. These
networks emulate the neurobiological processing of information with temporal dynamics and
precise timing. They are energy efficient and amenable to hardware application development.
Such hardware SNNs work in real time and thus, having a real-time display makes full sense.

This current thesis presents the realization of a real-time display using High-Definition
Multimedia Interface (HDMI) connected to an ongoing project. This project uses HEENS
(Hardware Emulator of Evolved Neural System) architecture to implement hardware SNNs on
Zynq FPGAs (Field Programmable Gate Arrays).

First of all, the communication to HDMI has been established, on two boards ZedBoard and
Zynq ZC706. Screen resolution, video timings and color format have been studied. I2C
(Inter-Integrated Circuit) communication has been examined and especially with the slave
ADV7511, the HDMI transmitter, whose documentation has been also studied thoroughly.
This transmitter has to be configured via I2C to be able to receive the HDMI signals and
transmit them to the connector. Finally, all this acquired knowledge has enabled the actual
implementation on the boards using VHDL (VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language) of the HDMI connection. As a result, bands of colors can be
shown on monitor displays.

Then, the representation of the Spiking Neural Network behavior has been made on screen, with
plots to display the evolution in real time of the network. Communication has been established
between the actual project architecture and the real-time display in order to receive the neural
information and store it in a form which will allow their plot. At the same time, text generation
has been implemented to be able to write text on screen. VHDL code has been developed to
generate the plots with contours, ticks and labels as any standard chart.

The first plot that has been made is the raster plot of the neuron spikes over time. Next, in order
to monitor furthermore the Spiking Neural Network, another plot has been implemented to
display internal neural parameters. Among these analog parameters, one of the most important
is the membrane potential, whose plot has been studied more specifically. In the end, both
plots: the raster plot and the membrane potential plot (for four chosen neurons to monitor),
are displayed at the same time on the screen.

To conclude, HDMI communication has been established on FPGA in order to monitor a
Spiking Neural Network in real time. Two plots are displayed on the screen: the spikes over
time and neural parameters for a few selected neurons of the network.

vi

List of Figures

1 Neuron structure. [3] . 2

2 Spiking neurons and their membrane potential. [3] 3

3 HEENS architecture with one Master Chip (MC) and n Neuromorphic Chips
(NCs) connected as a ring. [3] . 4

4 HEENS Finite State Machine. [3] . 5

5 Block diagram of HEENS Multi-Processor. [3] 7

6 Virtualization of Processing Element arrays. [3] 8

7 Picture of ZedBoard. 9

8 Picture of Zynq ZC706. 10

9 HDMI Block Diagram. [15] . 12

10 Screen areas (drawing pixels and blank interval). [18] 14

11 Chroma subsampling 4:4:4 vs 4:2:2 vs 4:2:0. [23] 16

12 Schematic of the ADV7511 chip connections on ZedBoard. [26] 17

13 Schematic of the ADV7511 chip connections on Zynq ZC706. [27] 18

14 Table of color data pins corresponding to input ID 1 and 2 on ADV7511. [28] . . 19

15 Table of color data pins corresponding to input ID 0 on ADV7511. [28] 20

16 I2C bus topology on ZC706. [29] . 24

17 I2C events. [32] . 27

18 I2C writing frame with two bytes of data. [32] 28

19 I2C reading frame with two bytes of data. [32] 28

20 FSM of the I2C sending process. 29

21 I2C clocks. 30

22 SDA and SCL signals during an I2C frame example. 31

23 FSM of the HDMI transmitter configuration process for ZedBoard. 32

24 FSM of the HDMI transmitter configuration process for ZC706. 33

25 Schematics of the hdmi connection component on ZedBoard. 36

26 Schematics of the hdmi connection component on ZC706. 36

vii

27 Result screen of the HDMI test. 39

28 FIFO input/output ports of the spikes. 43

29 Block memory input/output ports of the spikes information. 44

30 FSM of reading the FIFO and writing in memory the spikes information. 46

31 Example of character representation: the ‘A’ character. 50

32 Result screen of the raster plot implementation for ZedBoard with 5x5 array. . . 59

33 Result screen of the raster plot implementation for ZedBoard with 5x5 array
(zoomed on the top left information). 59

34 Result screen of the raster plot implementation for ZedBoard with 5x5 array
(zoomed on the plot). 60

35 Result screen of the raster plot implementation for ZedBoard with 5x5 array
with the extended plot. 61

36 Result screen of the raster plot implementation for ZC706 with 11x11 array
(zoomed on the top left information). 62

37 Result screen of the raster plot implementation for ZC706 with 11x11 array
(zoomed on the plot). 62

38 Result screen of the raster plot implementation for ZC706 with 11x11 array with
the extended plot. 63

39 FSM of reading the FIFO and writing in memory the potential information. . . 66

40 Result screen of the membrane potential plot implementation for ZedBoard with
5x5 array. 69

41 Result screen of the membrane potential plot implementation for ZedBoard with
5x5 array (zoomed at the left of the plots). 70

42 Result screen of the ring oscillator example on ZedBoard with 4x4 array. 72

43 Result screen of the ring oscillator example on ZedBoard with 4x4 array, in the
extended configuration of the raster plot. 73

44 Example of two delay lines with short and longer delays, and time base. [40] . . 74

45 Result screen of the delay lines example on ZedBoard with 4x4 array, in the
extended configuration of the raster plot. 75

46 Result screen of the delay lines example on ZedBoard with 4x4 array, zoomed
on the left of the screen. 75

A.1 Table of fixed registers that must be set. [28] . 84

viii

A.2 Register map of 0x9D. [28] . 84

A.3 Register map of 0x41. [28] . 85

A.4 Table of HDMI or DVI mode. [28] . 85

A.5 Register map of 0xAF. [28] . 85

A.6 Register map of 0x15. [28] . 86

A.7 Register map of 0x16. [28] . 86

A.8 Register map of 0x17. [28] . 87

A.9 Register map of 0x48. [28] . 87

A.10 Table of CSC - HDTV YCbCr (Limited Range) to RGB (Full Range). [28] . . . 88

A.11 Table of CSC - Identity Matrix (Input = Output). [28] 88

A.12 I2C slaves address on ZC706. [29] . 89

A.13 Result screen of the raster plot implementation for ZC706 with 6x6 array
(zoomed on the plot). 90

A.14 Result screen of the raster plot implementation for ZC706 with 6x6 array with
the extended plot. 90

A.15 Result screen of the raster plot implementation for ZC706 with 2x2 array
(zoomed on the plot). 92

A.16 Result screen of the raster plot implementation for ZC706 with 2x2 array with
the extended plot. 92

ix

List of Tables

1 Screen areas size for 3 different resolutions. [18, 19] 14

2 Pixel clock for 3 different resolutions. 15

3 Register map for ADV7511 for both ZedBoard and ZC706 boards. 22

4 Register map (CSC) for ADV7511 for both ZedBoard and ZC706 boards. 23

5 Factors decomposition in powers of two, for RGB to HDTV YCbCr conversion. . 35

A.1 HCI Registers map. [42] . 93

A.2 HTR register (write operation). [42] . 93

A.3 HMNR register (write operation). [42] . 95

x

Acronyms

AER-SRT Address Event Representation over Synchronous Serial Ring.

AI Artificial Intelligence.

ANN Artificial Neural Network.

ASCII American Standard Code for Information Interchange.

BRAM Block RAM (Random-Access Memory).

CDC Clock Domain Crossing.

CEC Consumer Electronics Control.

CSC Color Space Conversion.

DDC Display Data Channel.

DDR Double Data Rate.

DMA Direct Memory Access.

DSP Digital Signal Processor.

DVI Digital Visual Interface.

FIFO First In/First Out.

FPGA Field Programmable Gate Array.

FSM Finite State Machine.

HCI HEENS Control Interface.

HDMI High-Definition Multimedia Interface.

HDTV High Definition Television.

HEENS Hardware Emulator of Evolved Neural System.

HEENS-MP HEENS Multi-Processor.

HMNR HEENS Monitored Neurons Register.

HSR HEENS Status Register.

HTR HEENS Transfer Register.

xi

HTS HEENS Toolchain Suite.

I2C Inter-Integrated Circuit.

ID Identifier.

IO Input/Output.

IP Intellectual Property.

LCM Least Common Multiple.

LIF Leaky Integrate-and-Fire.

LSB Least Significant Bit.

MC Master Chip.

MIF Memory Initialization File.

MSB Most Significant Bit.

NC Neuromorphic Chip.

PC Personal Computer.

PE Processing Element.

PL Programmable Logic.

PLL Phase-Locked Loop.

PS Processing System.

RAM Random-Access Memory.

RGB Red, Green and Blue.

ROM Read-Only Memory.

RTL Register Transfer Level.

SCL Serial Clock.

SDA Serial Data.

SDK Software Development Kit.

SDTV Standard Definition Television.

SIMD Single Instruction Multiple Data.

xii

SNAVA Spiking Neural Architecture for Versatile Applications.

SNN Spiking Neural Network.

TMDS Transition Minimized Differential Signaling.

VESA Video Electronics Standards Association.

VGA Video Graphics Array.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

WNS Worst Negative Slack.

YCbCr Luma (Y), Blue-difference Chroma (Cb) and Red-difference Chroma (Cr).

xiii

1 Introduction

Artificial Neural Networks (ANNs) are powerful computational tools that allow solving
complex pattern recognition, function estimation and classification problems that are not
easily manageable by analytical tools outside of Artificial Intelligence (AI). They are inspired
by the structure and function of the human brain and throughout their development, they
have been evolving towards more powerful and more biologically realistic models. [1]

The third generation Spiking Neural Network (SNN) has been developed, which emulates
the neurobiological processing of information with temporal dynamics and precise timing. In
addition, with their digital signaling and sparse coding, SNNs are energy efficient and amenable
to hardware application development. [1, 2]

Hardware SNNs can work in real time and thus having a real-time display of their operation
makes full sense.

This current thesis presents the realization of a real-time display of SNN using High-Definition
Multimedia Interface (HDMI), connected to an ongoing project.

This project is an implementation of a hardware architecture for general-purpose Spiking Neural
Network. It is designed with a large scalability, reconfigurability and programmability to display
the operation of neuronal models. [3]

It uses a new version of SNAVA (Spiking Neural Architecture for Versatile Applications) [4]
called HEENS (Hardware Emulator of Evolved Neural System), which saves significant
amount of control resources, compared to the other architectures and provides programmable
connectivity. [5]

The HEENS architecture has been implemented on Zynq FPGAs (Field Programmable Gate
Arrays) containing both an integrated Processing System (PS) and Programmable Logic (PL).
In addition, a toolchain HTS (HEENS Toolchain Suite) has been developed and used to
prototype, configure and execute the SNNs on the hardware. [5]

The goal of this thesis is to establish the HDMI communication between the PL of the FPGA
and a monitor screen in order to display in real time the SNN operation.

In order to see and understand the behavior of the Spiking Neural Network with real-time
display, a raster plot of the neuron spikes over time will be made, as well as the monitoring of
some neurons through a plot of analog values such as their membrane potential.

1

2 State of the art

2.1 Biological neurons

Human brain is composed of billions of interconnected neurons that communicate via electrical
spikes transmitted through synapses. Neurons are composed by three parts: dendrites, soma
and axon (Figure 1). [3]

Figure 1: Neuron structure. [3]

Dendrites behave as input points which receive and collect electrical signals from other neurons
through synapses, and transmit them to the soma. The soma acts as the process unit of the
neuron which manages the whole cell. The axon is the output canal which transmits generated
spikes to its axon terminals, to connect through synapses to the next neurons. [3]

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired computational networks. They
simulate the electrical activity of the biological brain. Processing Elements (PEs) are connected
to each other by weighted links to inhibit or amplify the connection. It is through the
adjustment of these connection weights that learning is emulated in ANNs. [6, 7, 8]

ANNs are used in a wide range of scientific fields such as finance, hydrology, or image and voice
recognition. These applications can be regrouped into three categories of Artificial Intelligence:
pattern classification, prediction, and control and optimization. [9]

2

2.3 Spiking Neural Networks

New models of Artificial Neural Networks have appeared that try to get closer and closer to
the biological nervous system. During last years, a model has been the topic of much research:
Spiking Neural Networks (SNNs), which is considered as the third generation of ANNs. These
networks have a behavior closer to biological neurons by utilizing spikes, which enables to
integrate the concepts of space and time. Their implementation is also easier than standard
ANNs and can be made on fast and reliable hardware platforms. Indeed, they do not use
multiplications, and the connection with spikes means only to send a single bit and not real
number as other ANNs. [3, 10]

Each time a neuron receives a spike, its membrane potential increases as a function of the weight
of the link (Figure 2). When it reaches the threshold (Vthr), it increases by an action potential
(it fires) before decreasing below the resting potential (Vres). At the threshold potential, the
neuron produces a spike. Membrane potential decays with time to converge to the resting
potential.

Figure 2: Spiking neurons and their membrane potential. [3]

Different neuron models exist to integrate this behavior into hardware, such as Leaky
Integrate-and-Fire (LIF) model, Hodgkin–Huxley model or Izhikevich model. [10]

3

2.4 HEENS architecture

Hardware Emulator of Evolved Neural System (HEENS) is a hardware implementation of
Spiking Neural Networks. The current project implements this HEENS architecture.

Description of the HEENS architecture

HEENS is an evolution of the SNAVA architecture [4]. It is characterized by a better resource
utilization and by an enhanced programmability and scalability capabilities. Indeed, it allows
the user to decide the number of Processing Elements (PEs) in the two-dimension array (rows
and columns) and the number of virtual layers as a third spatial dimension. It supports also
an online dynamic evolution and reconfiguration of the synapses interconnections. [3, 11]

This architecture can interconnect multiple chips in a ring topology (Figure 3). The Master
Chip (MC) manages the network to configure and reconfigure the other nodes. It communicates
with the general purpose processor and receives the instructions for the initialization and
configurations.

Figure 3: HEENS architecture with one Master Chip (MC) and n Neuromorphic Chips (NCs)
connected as a ring. [3]

During the neural application, the MC behaves like any other chip. These other chips, called
Neuromorphic Chips (NCs), process the neural algorithm. The MC collects the spikes from the
other chips as well as from its own PEs. It then updates the neural and synaptic parameters
such as the membrane potential. Finally, it distributes to the network the post-synaptic spikes.

4

HEENS process phases

The process is split in five phases (Figure 4): the initialization (IPh), the configuration (CPh),
the execution (EPh), the evolution (EvPh) and the distribution (DPh).

Figure 4: HEENS Finite State Machine. [3]

5

The process remains in the idle phase as long as the reset has not occurred. The registers are
set to their default value.

• The initialization is made at a reset. The MC assigns the chip Identifier (ID) relative to
each node, and transmits the ring size to the network.

• The configuration occurs after the initialization. The MC sends to the PEs their neural
algorithm, their synaptic and neural parameters, as well as the map of the synaptic
connections to the other PEs. Once all chips are configured, the configuration phase
ends.

• In the execution phase, the neural algorithms are computed in a parallel way by each
PE. Their states variables are updated. Once finished, the flag eo exec is raised and the
process can go to the next state.

• In the distribution phase, the spikes that have occurred are collected by the MC and
broadcast to the network. Additionally, data will be sent to the PC (Personal Computer)
in this state, and the communication with the real-time display that we will see in this
thesis will also be made.

Actually, the data is not sent to the PC at each distribution phase. It is stored in a
FIFO (First In/First Out) memory and when the FIFO is half-full, the data is sent via
Ethernet to the PC, while the other half starts to get filled in. This feature has been
created instead of sending each time the data to increase the velocity, as the application
development with Ethernet is slow. Thus, this thesis work is important to display the
real-time behavior of the SNN, which cannot be done otherwise.

• At the end of each execution phase, the system checks if it has received an evolution
command from the user. If it is the case, the system goes to the evolution phase instead of
the distribution phase. The MC will send the newly received information to the selected
PEs. They will then reconfigure themselves accordingly by adjusting their neural and
synaptic parameters. Once all selected chips are re-configured, the evolution phase ends,
and the system goes to the distribution phase.

The time unit is defined as the number of emulation cycles. These cycles include the execution
and distribution phases (as well as the evolution phase if it appears), once the initialization
and configuration have been realized.

6

HEENS Multi-Processor

The HEENS Multi-Processor (HEENS-MP) that can be seen in Figure 5 corresponds to a
Neuromorphic Chip. It uses a SIMD (Single Instruction Multiple Data) computation scheme
with a single control unit to achieve parallelism at data level in the PE array. This reduces
area and gives a better computing efficiency. [3]

Figure 5: Block diagram of HEENS Multi-Processor. [3]

The chip is composed mainly by:

• communication buses: they permit information flow;

• the Processing Element array: each PE is a unit of SIMD-type execution, which processes
the instructions of the neural algorithm;

• the control unit: it is in charge of managing the whole flow of data and instructions of
the PE array, thanks to its sequencer. In addition, it generates the control signals to
synchronize operations with the AER-SRT controller;

• the Address Event Representation over Synchronous Serial Ring (AER-SRT) controller:
once PEs have processed their neural algorithm, a swept is made to get all the
post-synaptic spikes. The spikes generated in each execution phase are encoded and
gathered into a FIFO. This FIFO is read during the distribution phase and the
post-synaptic spikes are transmitted to the network.

7

Address format of the Processing Elements

Each neuron (or PE) possesses an ID (Identifier) defined on 18 bits: 7 for the chip ID, 3 for
the virtualization level, 4 for the row and 4 for the column.

The chip ID enables to know on which chip of the ring architecture the neuron is.

PEs can multiplex their behavior in time to emulate more than one neuron in an execution
cycle. These additional neurons are said to be on virtualisation levels. Level 0 represents the
physical layer (the HUB neurons). In addition, HEENS architecture accepts 7 other levels of
virtualization (for a total of 8 levels) (Figure 6). [3, 11]

Each of these levels of virtualization has a PE array of a certain number of rows and columns.

Figure 6: Virtualization of Processing Element arrays. [3]

8

3 Project development

3.1 Current state of the project

The project implements HEENS architecture on FPGAs and uses a toolchain (HTS) developed
in Python in order to configure the Spiking Neural Network. This toolchain also provides a
plot of the spiking neurons over time, but it is not in real time because of bandwidth and
communication limitations, so it is necessary to wait to receive the information on the PC
before displaying them.

For now, the project has been defined for two different types of boards: ZedBoard (Figure 7)
and Zynq ZC706, a more complex board (Figure 8).

Figure 7: Picture of ZedBoard.

9

Figure 8: Picture of Zynq ZC706.

The neurons possess IDs defined on 18 bits: 4 for the column, 4 for the row, 3 for the
virtualization level and 7 for the chip ID.

The project has not yet developed the virtualization levels, nor the connection to other boards.
Thus, the number of neurons is only defined by the size of the Processing Element array on
the Master Chip. Due to physical limits, on ZedBoard, arrays up to 5x5 can be defined, and
on ZC706, up to 13x13.

The emulation time slot (the duration of the execution and distribution phases) in real time is
set to 1ms. This value has been chosen in order to have an onscreen display that is not too
fast.

The data arising from the neurons is composed by the information that the neurons have
produced a spike or not during the last execution phase, as well as internal neural parameters
such as their membrane potential.

These spikes can be represented over time with as vertical axis the number of the neuron that
has produced them. This is called a raster plot. Its display onscreen will be seen later in this
document, along with the plot of neural parameters.

10

3.2 Vivado software and VHDL language

The thesis development has been made on the PL (Programmable Logic) in VHDL (VHSIC
(Very High Speed Integrated Circuit) Hardware Description Language). The software used is
Vivado from Xilinx.

Verilog can also be used on Vivado in addition to VHDL. Besides, Xilinx provides a Software
Development Kit (SDK) to create embedded applications on FPGA microprocessors (in C or
C++ languages). The Processing System (PS) of both boards is a Zynq 7.

However, since in this thesis we are only working on the Programmable Logic (PL), the SDK
is not necessary and all the current work can be done with Vivado.

In addition to the VHDL code, a constraint file is required (of extension .xdc for Xilinx Design
Constraints). It contains the design constraints and in particular the definition of the physical
pins of the board, their association to signals to be used in the code, as well as the voltage
of the corresponding IO (Input/Output) pin banks. This file also contains the creation of the
clock to specify to the software the clock constraints so that it is able to create timing reports
and gives the slack values especially the Worst Negative Slack (WNS).

Once the Register Transfer Level (RTL) design is done (the VHDL code) and the constraints
file is written, synthesis is realized to transform the RTL-specified design into a gate-level
representation. Then, the implementation is performed to optimize the logic design, to place
the logic cells of the design and to route the connection between the cells. Finally, a bitstream
is generated to configure the device. [12, 13]

For the system verification and debugging, simulations can be done in order to check the
behavior of any component with a plot of the signals against time. This helps understand
precisely what happens to each signal. For example, it helps to understand the behavior of
IPs (Intellectual Properties) [14] and their signals timings. Indeed, they are not defined by
the user, so it can be hard to understand them fully. Simulations also helps to check that the
components behave as expected and their interconnections.

To keep track of the advancement of the whole HEENS project, a Git repository was created.
It contains the two different Vivado projects for the two boards, the Verilog and VHDL files for
the PL, the C and C++ files for the PS, as well as the Python files of the toolchain. Git makes
easier to have different people working on a single project, as each one can work on their own
separated branches. And also, it allows to return to previous states, to check what changes
have been made since then, and to incorporate some of these changes into the current state.

11

4 Screen display via HDMI

4.1 Principle

4.1.1 Introduction

The High-Definition Multimedia Interface (HDMI) is provided for transmitting digital television
audiovisual signals from DVD players, set-top boxes and other audiovisual sources to television
sets, projectors and other video displays. [15]

The HDMI cable and connectors carry four differential pairs that make up the TMDS
(Transition Minimized Differential Signaling) data and clock channels (Figure 9). These
channels are used to carry video, audio and auxiliary data.

In addition, there is a VESA (Video Electronics Standards Association) Display Data Channel
(DDC) used for configuration and status exchange between a source and a sink; and there is
a CEC (Consumer Electronics Control) line that is optional and provides high-level control
functions.

Figure 9: HDMI Block Diagram. [15]

12

The 3 TMDS data channels contain the audio, video and auxiliary data. The TMDS clock
channel is typically at the video pixel rate, and is used as a frequency reference for the receiver
to read the data channels.

In the project, audio is not used.

Video data can have a pixel size of 24, 30, 36 or 48 bits. The default 24-bits color depth requires
a TMDS clock equal to the pixel clock rate, and higher color depths require faster TMDS clocks.
The video pixels can be encoded in the color formats RGB, YCbCr 4:4:4 or YCbCr 4:2:2.

4.1.2 Aspect ratio and video resolution

The video resolution is the size in pixels of the height and the width of an image, video or
screen. The aspect ratio corresponds to the ratio between the width and the height pixel sizes.

Monitors screen have had different aspect ratios. During 1990s, the most common one was 4:3,
which corresponded also to the television and cinema formats (even though cinema would soon
use 16:9). Then, in 2004, 16:10 resolution appears for computer monitors, it enables the display
of two full pages of text side-by-side on one screen. [16] Finally, in 2008, television adopted the
standard 16:9, followed by the computer monitors. [17]

The studied resolutions are:

• HD, High Definition (720p), 1280x720, aspect ratio 16:9;

• FHD, Full High Definition (1080p), 1920x1080, aspect ratio 16:9;

• WSXGA+, Widescreen Super Extended Graphics Array Plus, 1680x1050, aspect ratio
16:10.

The first two resolutions are the classical ones for HDMI (without going to very high definition),
with 1080p being the default resolution of the project. The last one corresponds to the first
screen that was used, which was older.

13

4.1.3 Video timings

In order to work with screens using FPGAs with either VGA (Video Graphics Array), DVI
(Digital Visual Interface) or HDMI (High-Definition Multimedia Interface) protocols, video
timings need to be respected. The transmission of a frame is separated in two phases:
drawing pixels and blank interval. This blank interval is split, for both horizontal and vertical
directions, between the back porch before the visible screen, the front porch after and finally
the synchronization area (Figure 10). The horizontal synchronization signal separates two
vertical lines, while the vertical signal separates two frames. [18]

Figure 10: Screen areas (drawing pixels and blank interval). [18]

These area sizes are defined as a convention for the different resolutions (Table 1). Another
important parameter is the polarity of the synchronization signals, whether they need to be
high during the synchronization pulse and low the rest of time, or the contrary.

Screen
resolution

Aspect
ratio

Horizontal Vertical
Back
porch

Front
porch

Sync
width

Sync
polarity

Back
porch

Front
porch

Sync
width

Sync
polarity

1280x720 16/9 220 110 40 positive 20 5 5 positive
1920x1080 16/9 148 88 44 positive 36 4 5 positive
1680x1050 16/10 288 104 184 negative 33 1 3 positive

Table 1: Screen areas size for 3 different resolutions. [18, 19]

14

The specifications of the sizes of these areas define the total number of pixels to be drawn for
one frame. Then, the refresh rate of the screen defines the pixel clock at which the FPGA has
to work in order to communicate with the screen (Table 2). The studied monitors work with a
refresh rate of 60 frames per second.

Screen
resolution

Total
horizontal size

Total
vertical size

Total number
of pixels

Pixel clock
Typical

pixel clock

1280x720 1650 750 1237500 74.25MHz 75MHz
1920x1080 2200 1125 2475000 148.50MHz 150MHz
1680x1050 2256 1087 2452272 147.13MHz 150MHz

Table 2: Pixel clock for 3 different resolutions.

For practical reasons and because HDMI communication still works fine, rounded pixel clocks
have been selected for the project. In order to work for screen resolution of 1920x1080 which
is the default one, and at 1680x1050 which is the first one used with the old screen, the pixel
clock was fixed at 150MHz.

15

4.1.4 Color format

To communicate via HDMI, different color formats can be used. The simplest one is RGB
which uses the classical separation of the color between red, green and blue, and each of these
components is defined on 8, 10 or 12 bits. Another format is YCbCr which uses also three
signals on 8, 10 or 12 bits: Y is the luminance component (the brightness), and Cb and Cr are
the color difference signals respectively for blue and red. [20, 21]

This second color format YCbCr is often used when noises are a prevalent problem, or simply
when we want to reduce the size of color data. Indeed, human eye is very sensitive to luminance
(or luma) which corresponds to Y signal, but less to chrominance (or chroma) which corresponds
to Cb and Cr signals. Thus, we can dedicate more bits for Y and fewer bits for Cb and Cr,
whereas with RGB we need many bits for each of the three colors to maintain a good image
quality. [22]

YCbCr format enables the use of chroma subsampling. It is a compression that keeps a good
luminance signal but reduces its color information. [23] As seen before, this does not affect
much the quality of the image.

To talk about this compression, the terms 4:4:4, 4:2:2 and 4:2:0 are often used. The first number
corresponds to the horizontal sampling reference (usually 4), the second one to the number of
chroma samples in the first row, and the third one to the number of new chroma samples in
the second row (usually it is either equal to the second number or zero). [23, 24, 25]

4:4:4 has no compression, 4:2:2 has a horizontal resolution halved and a full vertical resolution,
and 4:2:0 has a horizontal and vertical resolution halved (Figure 11).

Figure 11: Chroma subsampling 4:4:4 vs 4:2:2 vs 4:2:0. [23]

In addition to subsampling considerations, there are two formats for YCbCr: SDTV (Standard
Definition Television) and HDTV (High Definition Television). Since the screen resolutions for
the project correspond to high definition, the format will be HDTV YCbCr.

16

4.2 Hardware specification

4.2.1 HDMI transmitter: ADV7511

Our FPGA cards (ZedBoard and Zynq ZC706) provide both a HDMI transmitter integrated
circuit called ADV7511, for the HDMI output. This chip has first to be programmed via
I2C (Inter-Integrated Circuit). Then, it will receive the pixel clock signal (hdmi clk), the
synchronization signals (hdmi hsync and hdmi vsync), the data enable signal (hdmi de) and
the data color signals (hdmi d vector). In return, it will create the 3 TMDS data channels and
the TMDS clock channel, as well as the auxiliary data channels, which will then be sent and
carried by the HDMI connector.

Color signals configuration

These data color signals correspond to 36 pins on the chip. However, on the Zedboard, only 18
pins are connected (Figure 12), which correspond to pins 8 to 23, and on the ZC706, 24 pins
are connected (Figure 13), which correspond to pins 4 to 11, 16 to 23 and 28 to 35.

Figure 12: Schematic of the ADV7511 chip connections on ZedBoard. [26]

17

Figure 13: Schematic of the ADV7511 chip connections on Zynq ZC706. [27]

Now that we are aware of the connection available with the chip ADV7511 for both boards, we
can study the manual of this HDMI transmitter [28] in order to configure it.

18

The ZedBoard that uses the data pins from 8 to 23 corresponds to Table 18 of the datasheet [28]
(Figure 14).

Figure 14: Table of color data pins corresponding to input ID 1 and 2 on ADV7511. [28]

We need a color format YCbCr 4:2:2 with 16 bits. I have decided to use style 3, with Y being
sent on bits 16 to 23, and on bits 8 to 15: Cb for the first pixel and Cr for the second. The
chroma signals have half horizontal resolution.

19

ZC706 with its 24 pins corresponds to Table 16 of the datasheet [28] (Figure 15).

Figure 15: Table of color data pins corresponding to input ID 0 on ADV7511. [28]

For this board, either RGB format or YCbCr 4:4:4 (with no subsampling) can be chosen. I
have decided to use RGB because it is the easiest one, as the generated colors data will be
directly in this format, therefore no color conversion will be required.

As separate syncs are used for ZC706, I have chosen input ID 1 (and not 2) for ZedBoard in
order to use also separate syncs, and have a more similar behavior.

The colors for each board have to be defined with each component on 8 bits.

Registers map

For the ADV7511 to work as a HDMI transmitter, some of its registers have to be set. When
using I2C to set them, the whole 8 bits that compose the register must be sent. So even though
only few bits of a register must be set to a value different from the default one, the whole byte
information must be provided.

Fixed registers that must be set

There are some registers that have to be set to defined value for the chip to work properly
(Figure A.1). When the whole 8 bits are not specified in the table from the documentation [28],
these unspecified bits may have to be set to their default value that may be different from zero,
and so they need to remain at this value. Actually, it is the case for one of these fixed registers:
0x9D (Figure A.2).

Main Power Up

In order to power up the transmitter, register 0x41(6) needs to be set to zero (Figure A.3).

20

HDMI or DVI mode

For the output mode of the chip, there is a choice between HDMI and DVI modes (Figure A.4).
I have chosen DVI mode. And then 0xAF(1) has to be set to 0. However, the rest of this
register 0xAF cannot be simply set to zero (Figure A.5).

HDMI is backward compatible with Digital Visual Interface (DVI), without any signal
conversion or loss of video quality. It just necessitates that the video pixel encoding is RGB
because DVI only supports this color format. [15]

Thus, video data needs to be converted to RGB color format, which can be done directly by
the transmitter using Color Space Conversion (CSC).

Input Formatting Related Registers

For the input mode, there will be two different configurations for ZedBoard or ZC706. Besides,
both use separate syncs. And the data length of each color component is of 8 bits.

For ZedBoard, as seen in figure 14, input ID is 1, data is right justified, and input style 3 has
been chosen.

For ZC706, as seen in figure 15, input ID is 0, there is no data alignment and no input style to
be set.

Then, the input formatting related registers can be mapped following the documentation [28]
(Figures A.6 to A.9).

CSC related registers

Finally, registers have to be mapped for the Color Space Conversion (CSC).

For ZedBoard, colors data need to be converted from HDTV YCbCr to RGB (Figure A.10).

For ZC706, colors data is already in format RGB, so the identity matrix needs to be used
(Figure A.11).

21

Summary registers map tables

Finally, all the registers to be set are summarized in Tables 3 and 4.

Register address
Register value

ZedBoard ZC706

0x98 0x03
0x9A 0xE0
0x9C 0x30
0x9D 0x61
0xA2 0xA4
0xA3 0xA4
0xE0 0xD0
0xF9 0x00 → Fixed I2C Address

0x41 0x10 → Main Power Up

0x15 0x01 0x00 →

Input ID:
for ZedBoard: 1:

16, 20, 24 bit YCbCr 4:2:2
(separate syncs)

for ZC706: 0:
24 bit RGB 4:4:4 or YCbCr 4:4:4
(separate syncs)

0x16 0x3C 0x30 →

Output Format: 4:4:4,
Input Color Depth: 8 bit,
Input Style:

for ZedBoard: 3,
for ZC706: not defined

0x17 0x00 →

Vsync and Hsync Polarities: pass through,
4:2:2 to 4:4:4 Up Conversion Method:
zero order interpolation

0x48 0x08 0x00 →

Normal Video Input Bus Order,
Video Input Justification:

for ZedBoard: right justified,
for ZC706: not defined

0xAF 0x04 → DVI mode

Fixed registers to be set

Main Power Up

Input Mode

Output Mode

Table 3: Register map for ADV7511 for both ZedBoard and ZC706 boards.

22

Register address
Register value

ZedBoard ZC706

0x18 0xE7 0xA8 → A1
0x19 0x34 0x00 → A1
0x1A 0x04 0x00 → A2
0x1B 0xAD 0x00 → A2
0x1C 0x00 0x00 → A3
0x1D 0x00 0x00 → A3
0x1E 0x1C 0x00 → A4
0x1F 0x1B 0x00 → A4

0x20 0x1D 0x00 → B1
0x21 0xDC 0x00 → B1
0x22 0x04 0x08 → B2
0x23 0x1D 0x00 → B2
0x24 0x1F 0x00 → B3
0x25 0x24 0x00 → B3
0x26 0x01 0x00 → B3
0x27 0x35 0x00 → B4

0x28 0x00 0x00 → C1
0x29 0x00 0x00 → C1
0x2A 0x04 0x00 → C2
0x2B 0xAD 0x00 → C2
0x2C 0x08 0x08 → C3
0x2D 0x7C 0x00 → C3
0x2E 0x1B 0x00 → C4
0x2F 0x77 0x00 → C4

Color Space Conversion

Table 4: Register map (CSC) for ADV7511 for both ZedBoard and ZC706 boards.

23

4.2.2 I2C bus switch on ZC706

On Zynq ZC706, an I2C bus switch exists and it needs to be configured first before
communicating with ADV7511. 8 different slaves are connected to this bus switch.

I2C communication can be made via the PS (Processing System) or the PL (Programmable
Logic) (Figure 16). However, I wanted to try to have everything directly on the PL, so the I2C
has been programmed on it.

Figure 16: I2C bus topology on ZC706. [29]

The I2C address of the bus switch is 0b1110 100 [29]. A first I2C message has to be sent to the
bus switch on 8 bits with a ‘1’ at the position that corresponds to the channel(s) to be enabled.
For example, in the case where HDMI transmitter ADV7511 (which corresponds to channel 1)
is the only slave to be enabled, the I2C message 0b0000 0010 has to be sent. [29, 30]

Then, the communication can be made with the enabled slaves at their corresponding address
(Figure A.12).

Actually, the address of ADV7511 on the I2C bus 0b0111 001 is the same as on the ZedBoard,
which on its side does not possess an I2C bus switch, and the communication can directly be
made to the HDMI transmitter using the corresponding address. [26]

24

4.3 Programming

4.3.1 Introduction

As an example to understand HDMI and its connection from ZedBoard, the work of Mike
Field [31] was very helpful.

He was actually using only 8 pins on the ZedBoard: pins 8 to 15 with the same color format
YCbCr 4:2:2, with each data on 8 bits. In order to send both luma (Y) and chroma (Cb or Cr)
information in one clock period, he used DDR (Double Data Rate). This corresponds to the
input ID 7 (Table 21 of the datasheet [28]), with style 1 (actually style 2 could also have been
used but with pins 0 to 7).

In order to test the HDMI connection, an example was made only to show on the screen vertical
bands of color. Two projects for this HDMI connection test have been created: for ZedBoard
and Zynq ZC706. The sources used by the projects are located outside of the projects and are
split between the common files used by both platforms, and specific files for each of the two
platforms.

A Git repository has been created, different from the HEENS project one, for this HDMI test
including both projects. It helped me while coding to easily check the differences made between
the current code and a previous state, as well as to return to a previous state if necessary.

In order to find the pins of the different HDMI IOs, the schematics of both boards have been
studied [26, 27] to create the two constraints files (.xdc).

25

4.3.2 Clock generation

The general clock on ZedBoard is single-ended and has a frequency of 100MHz. On ZC706, it
is differential and has a frequency of 200MHz.

To generate a single-ended clock from a differential one, I have used an IP (Intellectual Property)
from Xilinx library: a Differential Input Buffer.

To generate the pixel clock at 150MHz, a Base PLL (Phase-Locked Loop) is used, with a
first clock division by 2 for ZC706, to go to the frequency of 100MHz that corresponds to the
one of ZedBoard. Then, the clock is multiplied by 15, and the divider is 10 for the pixel clock.
Actually, the PLL was also used to generate the 125MHz HEENS clock using a 12 divider in the
simpler project that was created to simulate the behavior of HEENS, before the incorporation
to the actual code where HEENS clock is generated by the PS. This explains the value of 15
as the LCM (Least Common Multiple) between 3 and 5 corresponding to the numerator of the
fractions 3/2 (= 150/100) and 5/4 (= 125/100).

4.3.3 Screen resolution

In order to keep the values of the sizes of the different parts of the screen (both visible and
the blanking interval), a VHDL package has been created (hdmi resolution pkg). It contains
the table for the three chosen resolutions (Table 1), as well as a constant to determine which
resolution is chosen. It then contains the calculation of the different ranges of areas and defines
them as constant for the other components to use them. It defines as well the sync polarities.

26

4.3.4 HDMI transmitter configuration via I2C

To program of the HDMI transmitter ADV7511, Inter-Integrated Circuit (I2C) is used.

Principle of I2C

I2C is a synchronous bus, defined at the start of 1980s by Philips company, in order to connect
integrated circuits of a same automation application. [32]

It uses three cables: the ground GND, a data signal SDA (Serial Data) and a clock signal SCL
(Serial Clock).

As the master transmits the clock to the slaves, any frequency can be used (as long as it is not
too fast).

Every station connected on this bus possesses a unique address defined on either 7 or 10 bits.
Addresses on 7 bits will be seen because they correspond to what we work with.

Stations are either master or slave. There is always only one master. Communications are
initiated by the master and consist of frames.

I2C protocol uses 4 different events based on transitions on the two lines SDA and SCL (actually
a fifth exists for repeated start but it is not used in this project) (Figure 17).

Figure 17: I2C events. [32]

The master can ask either for a writing or a reading frame.

The master sends the start condition (S), then the address (on 7 bits) of the slave with which
it wants to communicate, then the last bit of this first byte is filled with either a zero (W) for a
writing frame or a one (R) for a reading one. The slave of the corresponding address responds
with an acknowledgment signal (A) at zero. After this, the length of the transmitted data can
be zero, one or more bytes.

27

The data signal SDA can be controlled either by the master (in blue on the figures) or by a
slave (in green).

For writing frames (Figure 18), for every data byte, the master sends its eight bits of data,
and the slave responds with a A bit at zero. When the master has finished, it sends the stop
condition (P).

Figure 18: I2C writing frame with two bytes of data. [32]

For reading frames (Figure 19), for every data byte, the slave sends its eight bits of data, and
the master responds with a A bit at zero. When the master has finished, it sends the stop
condition (P).

Figure 19: I2C reading frame with two bytes of data. [32]

28

Implementation of an I2C sender

I have implemented an I2C sender component in VHDL in order to program the HDMI
transmitter. It only writes because the only needed direction is the master (the PL) which
will write registers in the ADV7511 slave. This component was mainly inspired from Mike
Field’s work on ZedBoard communication with VGA and HDMI. [31]

The size of the data is two bytes, one for the register address and the other one for the register
value to be written. Actually, at one given time, the data is only one byte: on ZC706 when
the I2C bus switch has to be programmed to enable the HDMI transmitter slave. However, in
order to avoid having two different components and thus to simplify the program, the same I2C
sender of two-byte length has been used by simply doubling the data: the same information to
enable the slave is sent two times in the message.

I2C does not work at high frequencies, so the clock which is at 150MHz has to be divided. I
have chosen to divide it by 512 (= 29) down to 293 kHz, which works to communicate with I2C.
Actually, this data rate of 293 kbit/s corresponds to the fast mode in I2C which can go up to
400 kbit/s, while the standard mode is only up to 100 kbit/s. [33]

But in order to create the SCL signal, a clock two times faster is needed. So, actually, the clock
divider will only be on 8 bits first to get this faster clock, and then it will be divided by two to
generate the data clock. Indeed, it is much easier to generate a slower clock from a faster one
than the contrary.

The implementation of the clock divider by 256 (= 28) is made with a counter on 8 bits which
will increment at each rising edge of the input clock, and when this counter reaches 0b1000 0000,
the divided clock is set to zero, and when it reaches 0b0000 0000, the divided clock is set to
one.

Now that the faster clock is generated, in order to get a clock twice as slow, a small process
is needed where at each rising edge of the faster clock, the data clock is inverted (from 0 to 1,
and 1 to 0).

With the two clocks now created, the I2C sending process can be done. It uses a Finite State
Machine (FSM) with three states (Figure 20): the ready state, the setting state when the shift
registers are set, and then the registers shifting state when the data is transmitted and the
registers are shifted. This FSM is sequenced at the data clock.

ready set
registers
shift

start=‘1’

busy=‘0’

Figure 20: FSM of the I2C sending process.

29

When the component is ready, it can receive a start signal to go to the setting state. This
setting state lasts only one clock period, and then the system goes to the shifting state, and
when the component is not busy anymore and all the data is sent, it returns to the ready state.

The process uses shift registers on 29 bits (1 for the start event, 7 for the address, 1 for the
writing bit, 1 for the acknowledgment, 8 for one data byte plus 1 for the acknowledgment so
9, times the number of data bytes, so here 2, and finally 1 for the stop event, which makes
1 + (7 + 1 + 1) + (8 + 1)× 2 + 1 = 29. There are 5 different shift registers.

The first is data sr which contains the values for SDA: a zero for the start and the stop
conditions, the value address, the writing bit at zero, as well as the actual data bytes to send.
During the acknowledgments, a one is put. At each clock period during the register-shift state,
it is shifted and filled with a one at the Least Significant Bit (LSB), while the Most Significant
Bit (MSB) is read to give the value of SDA.

In order to have the SDA signal to be set at high impedance during the acknowledgments,
another shift register ack sr is implemented which will be one during the acknowledgments and
zero the rest of the time. And at each clock period, it is filled with a zero, so that when all
data has been sent, SDA signal is not at high impedance but takes the value of data sr which
will be one.

The third is busy sr which is set to all ones during the setting state, and is filled with a zero
at each clock period, and when the MSB is zero, it means that all the data has been sent and
the component can return to the ready state.

The fourth and fifth shift registers are used to program SCL. They are the first clock quarter
and the last clock quarter shift registers. In fact, with the clock two times faster, the data clock
period can be cut in four intervals: when both clocks are at one, when only the data clock is
at one, when only the faster clock is at one, when both clocks are at zero (Figure 21).

Figure 21: I2C clocks.

30

And to program SCL in order to make it possible to have the I2C events (Figure 17), during
the second and the third intervals, SCL is set to one, during the first interval, it is set to
the value of the clk first quarter sr shift register, and during the last interval to the value of
clk last quarter sr.

The first quarter register is set to a one at the MSB and zero otherwise. The last quarter
register is set to a one at the LSB and zero otherwise. At each clock period, they are filled
with a one. Thus, during the first clock period, the SCL signal will be one during the three
first intervals and zero during the last, so the start condition is fulfilled. During the last clock
period, SCL will be zero during the first interval and one during the three last (to fulfill the
stop condition). And in the middle of the transmission, it will be zero during the first and
the last intervals, and one in the middle intervals, in order to be able to send a one or a zero
accordingly to the SDA value (Figure 22).

Figure 22: SDA and SCL signals during an I2C frame example.

31

Programming of the HDMI transmitter

In order to program ADV7511, two different descriptions have been made: one for ZedBoard
and another for ZC706. The reasons are that they use different configuration of registers, and
that for ZC706, the I2C bus switch needs to be programmed first.

The component uses an array of pairs of two bytes: the first for the register address and the
second for the register value to be set. This array will be stored in ROM (Read-Only Memory).

Again, a Finite State Machine is used (Figure 23). For ZedBoard, there are five states.

init

hdmi
config
starting

hdmi
config
wait

hdmi
configuration

finished

i2c ready=‘1’

i2c ready=‘0’

i2c ready=‘1’

finished=‘1’

Figure 23: FSM of the HDMI transmitter configuration process for ZedBoard.

The initial state is where the process starts and returns to in case of reset. In this state, the
system waits for the I2C sender component to be ready.

Then, the configuration starting state is where the address, data and start signals are given
to the I2C sender. The address is the I2C address of ADV7511. The data is set to the
corresponding value inside the array. The start signal is set to one.

The next state is to wait for the ready signal of the I2C sender to return to zero (so the
transmission will have begun). This enables to check in the next state when it will return to
one which will mean that the I2C sender has finished to transmit the data and is ready to send
new one.

32

Then, there is a state to wait for the end of the configuration and for the ready signal to be one
(as said just before). When the I2C sender is ready, the process returns either to the starting
state if there is more data to send, or otherwise to the finish state. In parallel, the pointer in
the array is incremented when it returns to the starting state in order to send the next data.

For ZC706, the FSM is changed to introduce new states before the HDMI configuration states
in order to configure the I2C bus switch (Figure 24). Three new states are created that are the
same as for the HDMI configuration but for the bus switch configuration.

init

bus sw
config
starting

bus sw
config
wait

bus sw
configuration

hdmi
config
starting

hdmi
config
wait

hdmi
configuration

finished

i2c ready=‘1’

i2c ready=‘0’

i2c ready=‘1’

i2c ready=‘0’

i2c ready=‘1’

finished=‘1’

Figure 24: FSM of the HDMI transmitter configuration process for ZC706.

From the initial state, the system now goes to the bus switch configuration starting state when
the I2C sender is ready. In this starting state, the address, data and start signals are given to
the I2C sender. The address is the I2C address of the bus switch. The data is set to twice the
byte 0b0000 0010 to enable ADV7511 as slave. The start signal is set to one.

Then, there is again a state to wait for the ready signal to return to zero as in the HDMI
configuration. This will mark that the sending process has begun.

And the last new state is to wait for the sending to finish and for the I2C sender to be ready.
Then, the process goes directly to the starting state of the HDMI configuration. Indeed, in
this bus switch configuration, there is only one message to send. Therefore, there is no need to
return to its starting state (and no pointer to increment).

33

4.3.5 Conversion from RGB to YCbCr

As the generated colors data will be in RGB format, and now that we know that each component
of colors has to be on 8 bits, we can study the conversion from RGB to HDTV YCbCr, needed
on ZedBoard.

In order to transform RGB to YCbCr for HDTV and with a full range from 0 to 255 for RGB
signals, there are equations to follow. [21]

Y = 16 + 0.183R + 0.614G+ 0.062B

Cb = 128− 0.101R− 0.338G+ 0.439B

Cr = 128 + 0.439R− 0.399G− 0.040B

(1)

However, these equations have to be transformed to be implemented in a FPGA. [20]

As multiplying by value lower than one (or dividing) is not easy with FPGA, a better and
easier way is to multiply this factor by a power of two (large enough), and then we can multiply
with the integer value of this obtained number. Finally, in order to get the desired value, the
result needs to be divided by the power of two that has been introduced, which will be done
by a right bit shift (by discarding the LSBs).

I have chosen here 8 as the power of two, so the multiplication by 256 (= 28) has to be done:
Y = 16 + 46.848

256
R + 157.184

256
G+ 15.872

256
B

Cb = 128− 25.856
256

R− 86.528
256

G+ 112.384
256

B

Cr = 128 + 112.384
256

R− 102.144
256

G− 10.240
256

B

(2)

Then, the multiply factors have to be rounded in order to work with integers.
Y ≈ 16 + 47

256
R + 157

256
G+ 16

256
B

Cb ≈ 128− 26
256

R− 87
256

G+ 112
256

B

Cr ≈ 128 + 112
256

R− 102
256

G− 10
256

B

(3)

Now, we can re-write the multiplications as only bit shift and sum/difference operations. In
order to do so, factors need to be decomposed in powers of two.

For example, the factor 47 in binary is 0b0010 1111, from which it can be deduced the
decomposition in powers of two: 47 = 25 + 23 + 22 + 21 + 20. Or rather we can remark
that when there are consecutive ‘1’s (or consecutive powers of two), it corresponds also to the
difference between the maximum power of two plus one and the minimum power of two. That
is in the example: 23 + 22 + 21 + 20 = 24 − 20. Therefore, it reduces the number of bit shift
operations and sums/differences that will be needed. It is only when there are more than two
consecutive powers of two that it permits to reduce the number of operations. To conclude, the
example results to 47 = 25+24−20, and then 47R = (R << 5) + (R << 4) − (R << 0).

Actually, this method is called the Booth’s multiplication algorithm. [34]

34

This can be done for every factor:

Sign Factor Binary value
Decomposition in
powers of two

+ 47 0b0010 1111 25 + 24 − 20 → R
+ 157 0b1001 1101 27 + 25 − 22 + 20 → G
+ 16 0b0001 0000 24 → B

- 26 0b0001 1010 24 + 23 + 21 → R
- 87 0b0101 0111 26 + 24 + 23 − 20 → G
+ 112 0b0111 0000 27 − 24 → B

+ 112 0b0111 0000 27 − 24 → R
- 102 0b0110 0110 26 + 25 + 22 + 21 → G
- 10 0b0000 1010 23 + 21 → B

Y

Cb

Cr

Table 5: Factors decomposition in powers of two, for RGB to HDTV YCbCr conversion.

Finally, all multiplications and divisions can be transformed to bit shift operations and
additions/subtractions.

Y ≈ 16 + (((R << 5) + (R << 4)− (R << 0))

+ ((G << 7) + (G << 5)− (G << 2) + (G << 0))

+ ((B << 4))) >> 8

Cb ≈ 128 + (−((R << 4) + (R << 3) + (R << 1))

− ((G << 6) + (G << 4) + (G << 3)− (G << 0))

+ ((B << 7)− (B << 4))) >> 8

Cr ≈ 128 + (((R << 7)− (R << 4))

− ((G << 6) + (G << 5) + (G << 2) + (G << 1))

− ((B << 3) + (B << 1))) >> 8

(4)

In Mike Field’s project [31], the conversion was made by multiplying the factors value by
32768 (= 215) instead of 256 (= 28). It enables having more precision in the result, but with
tests on screen, the difference was not visible. Besides, the multiplication was made using DSPs
(Digital Signal Processors) instead of the decomposition in powers of two and bit shifts. DSPs
are specialized microprocessors that are used to complete complex calculations with the use of
adders and multipliers. [35]

35

4.3.6 Generation of the screen

The HDMI connection schematic can be seen in Figures 25 for ZedBoard and 26 for ZC706.

Figure 25: Schematics of the hdmi connection component on ZedBoard.

Figure 26: Schematics of the hdmi connection component on ZC706.

The component config hdmi chip i2c handles the I2C communication to configure the HDMI
transmitter ADV7511.

36

Position Counters Generation

In order to generate a screen, two counters are needed: a vertical and a horizontal one to
describe the whole screen including the visible area and the blank one.

Instead of having the back porches before the visible screen, I have changed the reference of
the screen to start directly by the visible area. Therefore, the back porches are now at the end
of the screen after the synchronization areas. This enables to have the counters between zero
and the classical resolution lengths for the active pixels (for example the horizontal counter
between 0 and 1919, and the vertical between 0 and 1079 for a 1920x1080 screen resolution),
and to have larger values in the blank interval.

The counters start at the top left of the screen. The horizontal one is the first to increment.
When the total horizontal size is reached, the vertical counter is incremented by one and the
horizontal counter returns to zero: a new line begins. At the end of the screen, when both
counters reach the total screen size, they return to zero: a new frame begins.

Color Generation

These two counters (outputs of the hdmi connection block) are sent to a component in order
to generate the colors data in the visible area. Colors are generated in the format RGB as it
is the most practical format to understand. It is important that HDMI information to be sent
remains consistent in terms of clock period. For example, here, as colors are generated in one
clock period, the counters need to be also delayed by one clock period.

HDMI signals generation

This color data, alongside the delayed horizontal and vertical counters (that are now inputs of
the hdmi connection block), is sent to another component which will create the HDMI signals:

• the data enable signal that is one inside the visible area and zero elsewhere,

• the synchronization signals which will be equal to the specified polarity when the counters
are in the corresponding area, and the negated value elsewhere,

• and the RGB color signals are equal to the incoming colors data inside the visible area
and are set to zero elsewhere.

RGB to YCbCr conversion

Now, the color data needs to be converted from RGB to YCbCr only for ZedBoard following
equations obtained in section 4.3.5. As seen above, at each clock period of the conversion, the
data enable and the syncs signals need to go through a latch to keep time-consistent signals.

37

Actually, when the conversion is made in only one clock period, the WNS is negative,
corresponding to a timing violation.

In order to fix this, the conversion is split into a two-clock-period pipeline instead. During the
first clock period, the bit shifts and the first sums are done for each Y, Cb and Cr component
for every component R, G and B (it corresponds to the multiplication of the RGB components
by the factors), which makes nine intermediate calculations and variables. During the second
clock period, the sum of the three RGB related variables is made for each YCbCr component,
and finally the 8 last significant bits are gotten rid of in order to divide by 256 (= 28), and the
result value is added to the constant value.

HDMI output

Now that the color format is correct (directly RGB for ZC706, and YCbCr for ZedBoard) and
that the other signals are generated, these signals can be connected to the HDMI output.

For ZC706, the clock that is used for the whole screen part at 150MHz is connected to the
output pixel clock hdmi clk. The generated synchronization signals are connected to hdmi hsync
and hdmi vsync. The generated data enable signal is connected to hdmi de.

Finally, for the data color signals: the R signal on 8 bits is connected to hdmi d(35 downto 28),
the G signal to hdmi d(23 downto 16) and B to hdmi d(11 downto 4).

For ZedBoard, hdmi clk, hdmi hsync, hdmi vsync and hdmi de signals are connected the same
way: directly to the generated signals.

However, for the data color signal, it is more complicated. As the system uses 4:2:2 chroma
subsampling, a ping-pong needs to be implemented to send Cb for the first pixel and Cr for the
second one, then we return to Cb and so on. To implement this feature, a bit signal is used. It
will be set to zero when the generated data enable signal is zero. When data enable is one, the
bit signal switches at each clock period between zero and one. Thus, for the first pixel in the
visible area the bit signal equals zero and then it switches. Therefore, we can connect Cb to
hdmi d(15 downto 8) when this bit signal equals zero, otherwise Cr is connected to the same
pins. For the luma signal, Y is connected all the time to hdmi d(23 downto 16).

38

4.4 Results

On ZedBoard, the example project [31] has provided much help. The setup was working fine
at the first attempt, and it was easy to incorporate the changes little by little. The final result
of the HDMI test gives the following image on the screen (Figure 27), which is exactly what
was expected. The screen displays vertical bands of width 256 pixels, colored as follows:

• in red for the first band, by setting the Red signal at the maximum value (0xFF),

• in yellow, with both Red and Green signals,

• in green, by setting the Green signal at the maximum and the other colors at zero,

• in cyan, with both Green and Blue signals,

• in blue, with only the Blue signal,

• in magenta, with Blue and Red,

• finally, the rest of the screen is painted in white with all Red, Green and Blue signals to
0xFF.

This test was working well on both screen resolutions: 1680x1050 on the first monitor used, as
well as 1920x1080 (the target resolution) on the next monitor.

Figure 27: Result screen of the HDMI test.

39

With the other board ZC706, the implementation has been more complex. The code was not
providing any image on the screen, which remained black. I initially thought that it was the
I2C bus selector with which I had issue. Therefore, I tried to implement the I2C communication
on the PS (Processing System) (in C language, using functions for the I2C already made in the
libraries). Firstly, the PS only did the configuration of the I2C bus selector while the PL was
still doing the configuration of the HDMI transmitter. Secondly, the PS was doing the whole
I2C process with both the communication with the bus selector and ADV7511. However, the
results were disappointing, with the same black screen.

In order to solve the issue, I did several research online. In the end, I found a project online
using HDMI on several boards including ZC706. The part of this project that was helpful was
the constraints file [36]. Indeed, it contained the pins definition and more importantly, the
voltage of the corresponding banks. I noticed that they were using 2.5V for the HDMI pins
instead of the 1.8V that I was using, set by default within the software Vivado (in the Package
Pins window of the Synthesis Design). Therefore, I changed these values in my constraints file
to 2.5V.

After making this change, the display was working well, while the change of the whole I2C
process on the PS was still applied. But then, when I tried to implement back my I2C on the
PL, it failed.

By studying what could possibly go wrong in my I2C sending procedure, I tried to modify
a feature that I had implemented differently from Mike Field’s example [31]. Indeed, I had
decided to fill the shift register ack sr with ones instead of zeros when the I2C communication
was not in use. This had been done to set the SDA signal in high impedance when I2C was
not in use, to release the I2C lines for other communications. And it was actually working fine
on ZedBoard.

However, on ZC706, it was causing issue. When reverting back the behavior to fill ack sr with
zeros, I2C communication was finally working. This change makes the SDA signal take (instead
of high impedance) the value of data sr, which is set to one when the I2C is not used.

With this fix on the I2C on the PL, the HDMI connection was eventually working as expected,
and I got the same result onscreen as on ZedBoard (Figure 27). This HDMI test with ZC706
was only made on the 1920x1080 monitor because I was already working on the second screen,
which possesses the target resolution.

Now that the HDMI connection has been established between the PL and the monitor for both
boards (ZedBoard and ZC706), we can study the real-time display of the SNN (Spiking Neural
Network).

40

5 Raster plot

5.1 Communication with HEENS

5.1.1 Principle

The raster plot is meant to show the spiking neurons with time. In the following sections, I
will call HEENS all the part of the code that manages the neural network, and with which the
work described in this thesis will communicate in order to generate the real-time display.

In order for the screen generation part to receive the neurons information, a FIFO memory
is used. It is filled by HEENS during the execution phase, and needs to be read during the
distribution phase. This FIFO contains all the neurons (actually their ID) that have produced
a spike during the last execution phase. The neurons IDs are stored on 18 bits: 4 for the
column, 4 for the row, 3 for the virtualization level and 7 for the chip ID.

However, all of the possible neurons (on 18 bits) are not used by HEENS. Indeed, the boards
are limited in number of neurons: at maximum 5x5 rows and columns for ZedBoard, and at
maximum 13x13 for ZC706 (plus the 8 levels of virtualization for both). First, I focused on
ZedBoard. For this board, the maximal number of neurons is 200 (= 5× 5× 8) (without being
connected to other boards).

Therefore, in order to represent the neurons, we only want to display these 200 values.
Consequently, it is needed to convert the neuron ID on 18 bits to a value between 0 and 199.
First, the 18 bits are split between the chip ID (chip id), the virtualization level (virt), the
row (row) and the column (column). Then, we follow the equation below, where the number
of used column, row and virtualization levels of the PE array in the current application is used
for the computation of the id value:

id value = column

+NB COLUMN × row

+NB ROW ×NB COLUMN × virt

+NB V IRT ×NB ROW ×NB COLUMN × chip id

(5)

This equation can be rewritten as follows:

id value = column

+NB COLUMN × (row

+NB ROW × (virt

+NB V IRT × (chip id)))

(6)

The current time is defined as the number of working phases: it starts at zero and increments
at the end of the distribution phase (which represents the end of a whole working phase). This
value is stored into a 32-bit register.

41

It was decided to display on the screen 1024 timestamps at a time (approximately one second
of real-time operation), and then to shift the plot by introducing the new values at the right.
This value of 1024 has been chosen because it fits within the screen width of 1920 pixels for the
target resolution, as well as the 1680 pixels width of the resolution used for the first screen. In
addition, 1024 is a power of two, which facilitates work.

In order to store the neurons spike information, the initial idea was to keep directly in registers
the spiking neuron IDs on 18 bits plus the current time on 32 bits. However, it is required to
decide the maximal size of this array of registers, so the maximal number of spikes to keep in
memory, which means that when it is full, the oldest information is lost. In addition, it requires
a lot of time because at each position of screen counters inside the plot, the whole memory has
to be read. Besides, it is needed to check if the horizontal position corresponds to the time of
the spikes. Then, it is required to do the conversion from the neuron ID on 18 bits to the value
between 0 and 199. Finally, we can check if it corresponds to the vertical position.

To reduce this time, the conversion of the neuron ID can be made prior to the storage in
memory and it will also reduce the memory size. However, this solution of keeping the events
with the spikes and their generation time is still not satisfying.

The next idea was to keep in memory the visible screen with an array of the screen size filled by
ones and zeros to decide if a neuron is spiking or not, and then if the pixel needs to be painted
or not. But, a better option is to keep in memory only the useful part: only the 200 neurons
and the 1024 timestamps.

Thanks to a block memory component that represents storage as BRAM (Block RAM
(Random-Access Memory)), this array will be saved. And rather than shifting the data in
this memory at every new working phase, a pointer is used and actually it already exists:
the current time can be used. Only its 10 Least Significant Bits are used (it corresponds to
1024 = 210 timestamps), and in that case, having a power of two as the number of timestamps
to print reveals itself very practical. The column of 200 neurons will be written inside the
memory at the corresponding position given by this pointer (with ones to indicate that the
neuron is spiking). When the memory is full and the pointer reaches 1023, it will naturally
return to 0. At that stage, we can write again in this circular memory.

As this pointer will give the position of the current time, when the memory is not filled yet, the
data to be printed is between 0 and this pointer. When it is full and that we have started to
re-write information in the memory, the oldest written information corresponds to the pointer
plus one. Then, all the following columns can be plotted as the next timestamps until we reach
the value of the pointer which represents the last written information.

42

5.1.2 FIFO signals

A FIFO possesses as ports (Figure 28): a clock signal that can be different for the writing and
the reading, a reset signal, writing ports as well as reading ports.

The writing ports are the following: the input data to be written, a writing enable signal to
set to one to write the input data inside and a full signal that is one when full.

The reading ports are the following: the output data from the FIFO, a reading enable to set
to one to read this data and a empty signal that is one when empty.

In addition to these signals, there can be data counts (for the reading or writing, clocked at
the corresponding clock) and a valid signal that is equal to one when, after the read enable has
been set to one, the output data is valid to be read.

Figure 28: FIFO input/output ports of the spikes.

The PE array generates and encodes the spikes, which are written into the FIFO. Consequently
for this communication, there is only to care about the reading related ports (including the
valid signal). The reading clock is the HEENS clock, set at 125MHz.

The screen part possesses a flag to tell that it is ready to read data. And then, HEENS will
activate the read enable signal. This behavior has be done in order for HEENS to remain in
control of the reading process, as actually this FIFO is also used in order to send this spikes
information to the PC, so HEENS has to know when it can read data from this FIFO. This also
explains why this information is on 32 bits and not 18 only, which is the size of the neuron ID,
because additionally, the spikes time stamps are sent. Nonetheless, only the 18 Least Significant
Bits will be connected to the HDMI display part.

43

5.1.3 Block memory signals

A block memory supports two ports (Figure 29) at two different clocks (or only one). For each,
there are:

• the clock signal,

• the enable signal to activate the memory for both reading and writing,

• the writing enable to activate in addition to the previous signal for the writing,

• the address signal to specify at which position in the memory we want to read or write,

• the input data to be written in the memory at the address when both enable signals are
set to one,

• and finally the output data that can be read from the memory at the address when the
enable signal is one.

This output data signal equals the expected value only a few clock periods after the enable
signal and address are set. This behavior has to been taken care of when trying to read from
such block memory.

Figure 29: Block memory input/output ports of the spikes information.

This memory will store the spikes information, which is 1024 columns of neurons (values between
0 and 199), written by the FIFO reading process, which communicates with HEENS at the
HEENS clock. Then, the memory will be read by the screen generator process at the pixel
clock.

44

Actually, the size of the memory has been set to 968 and not 200 in order to have the same
component for any row and column configuration. The levels of virtualization are set to 8 for
the display (even though in the current software version, they are not supported yet). In case
of neurons array of 12x12, the number of neurons is 12× 12× 8 = 1152, which is a value larger
that the height of the screen (1080) at the target resolution 1920x1080. Then, we limit the
display to a 11x11, which makes 11× 11× 8 = 968, hence the width of the memory.

45

5.1.4 Reading the FIFO and storing the information

In order to read the spikes FIFO from HEENS and to write this information into the memory,
a Finite State Machine has been used (Figure 30).

idle

mem erase

fifo read fifo empty

id value calc

mem write

ph dist=‘1’

fifo empty=‘0’ fifo empty=‘1’

fifo empty=‘0’

ph dist=‘0’

fifo valid=‘1’

fifo empty=‘0’

fifo empty=‘1’

Figure 30: FSM of reading the FIFO and writing in memory the spikes information.

46

Idle state

The first state is where we wait when HEENS is not in distribution phase. The address at
which information will be written is set when the distribution phase begins to be the current
time (modulus 210 to get a number between 0 and 1023).

Memory writing procedure

In order to write in the memory, the neuron ID value we get between 0 and 199 represents the
position in the memory column where we need to put a one. However, as multiple spikes can
occur during one execution phase, we need to add a one at the correct position while keeping
the values at other positions in the column as they are. Consequently, we need to first read
the memory at the defined address, second add a one at the correct position and third write
the new column at the same address. Besides, for each new distribution phase, as we will only
append information to the column, we need first to erase it.

Memory erasing state

Hence, this is the state where the memory is erased at the start of the distribution phase. In
this state, the memory enable and write enable signals are set to one, and the input data to be
written is set to a column of all zeros.

FIFO empty state

Then, the new state will be FIFO EMPTY when the FIFO is empty. In this state, we wait
to return to the first idle state at the end of distribution, or to go to the same state when the
FIFO is not empty as from MEM ERASE: the FIFO READ state.

FIFO reading state

In the FIFO reading state, the flag to tell that the reading procedure is ready is set to one, and
it waits for the valid signal. When valid is one, the output data of the FIFO is read and kept
in memory, and in parallel, the memory enable signal is set to one in order to be able to read
the memory later (the memory address has already been set). Indeed, we have seen that the
output data signal from a memory can be read only a few clock periods after the enable signal
and address are set.

47

ID value calculation state

The new state when the valid signal is one is the calculation state where the conversion from
the vector on 18 bits to an integer from 0 and 199 is done. The memory enable signal remains
at one. This state lasts one clock period.

Memory writing state

Finally, information can be written in the memory. In this one-clock-period state, the output
data of the memory is read and a one is put at the position in the read column that equals the
integer value gotten from the previous calculation. Then, this new data is set as the input data
of the memory, while the memory enable remains one and the writing enable is set to one.

The conversion has been split in two steps: first the data is read from the FIFO, and then the
calculation is done during another clock period, in order to prevent negative slack.

In addition, this conversion that includes multiplication has been made directly and not using
decomposition of the factors in powers of two and bit shift operations as we have seen in the
conversion from RGB to YCbCr. Indeed, the factors depend of the number of columns, rows
(and virtualization levels but this is always set to 8), and they will be set to different values
for different PE array configurations. Therefore, the decomposition cannot be easily done
automatically.

48

5.1.5 Implementation of the buffer

HEENS has been cadenced for its working phase (execution plus distribution) to last one
millisecond in order to have a display readable with around one second (1.024 s exactly) between
the time a spike appears at the right of the screen and the time when it leaves it at the left.

This implies that each new millisecond, a new data is written in the memory and the screen
needs to shift to the left introducing the new data at the right. However, with a screen refreshing
at 60 frames per second (fps) (actually with the rounding made on the pixel clock at 150MHz,
60.606 fps), a whole screen to be displayed requires 1/60 second, which is 16.67ms. Thus, during
one display between the first point of the plot and the last, memory data can have changed.

In order to have consistent data during one display, a buffer has been implemented between
the FIFO and the memory. The buffer will store the data from the FIFO as the memory was
doing before, and when a display is finished, the buffer data will be written into the memory.
The size of this buffer memory has been set to 32 (times 968) because 16 is not sufficient as
the whole display takes more than 16 milliseconds.

In order to synchronize the writing of the buffer in the actual memory, I have decided that the
screen generator will raise a flag when it reaches the end of the visible screen. This way, there
is enough time with the blanking interval, for the buffer to be written in memory before the
next display. However, this signal will be generated at the pixel clock and it has to be read
at HEENS clock, so it needs to be synchronized beforehand. For this purpose, an IP of Xilinx
was used, called CDC (Clock Domain Crossing) in order to ensure the traversal between the
two clock domains. [37]

To implement this buffer feature, two new states were introduced in the state machine. In
FIFO EMPTY state, when the flag of the end of the visible screen is one, the new state is
WAIT BEFORE TRANSFER where we set the buffer enable signal to one in order to read
it later and wait two clock periods. Then, the next state is TRANSFER WRITE, where the
output data from the buffer can be read and written directly in the actual memory (with the
two enable signals being set to one). The state remains the same until having read and written
all data from the buffer into the memory. Finally, it returns to the FIFO EMPTY state.

49

5.2 Creating the plot

5.2.1 Information to show

There is some useful information that is useful to display. So, I decided that on the top left
corner of the screen we will write the name of the board (either ZedBoard or Zynq ZC706), the
number of columns, rows, virtualization levels and chips we are working with, as well as the
execution time.

Text font definition

In order to write anything on the screen, a font has to be defined. I found examples that
displays text using VGA [38, 39], and I used the font they have defined. It is a mono-spaced
font where each character is inside a rectangle of width 8 and height 16. It defines the 128 ASCII
(American Standard Code for Information Interchange) characters. The information is stored
in an array of 8-bit width (which corresponds to the font width) and of depth 2048 (= 128×16,
for the 16 font height of the 128 ASCII characters). The first 16 lines correspond to the
first ASCII character (of code 0x00), the next 16 correspond to the second character (of code
0x01), and so on (Figure 31). I have defined this array as a constant in a new VHDL package
(character definition pkg).

Figure 31: Example of character representation: the ‘A’ character.

50

Text generator

Now, to write a string of characters on the screen, a component is created. I used one of the
example cited above [38] as a starting point. It uses the length of the text to display as a
generic (so it will be constant for an instance of this component). Its inputs are the pixel clock,
the horizontal and vertical positions of the current pixel in the screen, and the horizontal and
vertical positions of the top left corner of the text to display. Its output is a Boolean to tell
if the current pixel should be ON or OFF. In addition, there is another input: a Boolean to
activate or not the display.

First, the horizontal and vertical positions of the current pixel are shifted so that their reference
is the top left corner of the text. In order to display something, we check if this shifted position
is positive in both directions, and that the vertical component is lower than the font height and
the horizontal one lower than the text length times the font width. Actually, in order not to
work with the signed type, these tests are made before the shift of the reference.

Then, the shifted horizontal position is used to determine to which character in the string
correspond the pixel position. This is done by a right bit shift of 3 (by discarding the three
Least Significant Bits) in order to divide by 8 (the font width). In addition, to get the bit
column of this character in order to draw it, a modulus 8 is made (by keeping only the three
Least Significant Bits).

With the character position in the string, its ASCII code can be obtained by using the pos
attribute of the character type (however, it only works if the string is a constant). Then, to get
the corresponding row in the font array, this ASCII code is multiplied by 16 (the font height)
and added to the shifted vertical position, which is the bit row of the character. This is done
by concatenating the ASCII code and the last 4 bits of the shifted vertical position.

A process is then used to read from the array (which will be stored in ROM) the row (of 8 bits,
with 8 being the font width) of the character corresponding to the vertical position.

Finally, another clocked process is used to check if there is a one at the bit column of this row
in order to tell if the pixel should be ON.

Rotated text generator

Another version of this component has been made to write rotated text for vertical axis labels.
The roles of the horizontal and vertical positions are inverted. Besides, in order to get the
character in the string, we have to count from the end as the left of the string will be at the
bottom and not top. The same applies when we have to check if there is a one in the character
bit row at the right column, because the left of this character will be at the bottom.

51

Integer text generator

A third version has been made in order to write the time, because the strings to show will
not be constant anymore. This component receives the number of digits of the input integer
instead of the text length, and the string has been replaced by a digit array.

The process is similar to the classical text generator, it is only to get the ASCII code of the
current digit that we use the zero ASCII code (0x30) and add to it the value of this digit.
Actually, the digits array allows also in addition to numbers between 0 and 9, the value -1,
which signifies not to display this character. It corresponds to the leading zeros of the integer,
in order not to display “06” for example but only “ 6” (with a leading space).

Writing time

The time to be written on the screen corresponds to the time that increments at the end of
each distribution phase. The system was cadenced to have each end of distribution phase every
millisecond. Then, with a counter of 1000, we can get seconds and thus display a classical time
with days, hours, minutes and seconds. For the day, I have decided to make it range from 0 to
63 because it is a power of two, and it is with two digits in order to keep the same behavior as
for the other time units.

These counters (except for the milliseconds one that will not be displayed) will not be integers
but digits arrays that we have defined before. They will be initialized to [-1, 0], as they are all
on two digits (and with -1 for the leading zero as said before).

At each change in the current time value, the milliseconds counter increments, it ranges from 0
to 999. Then, when it reaches 999, it returns to 0 and the seconds counter starts to increment.
The digit at position 0 (with 0 being at the right) increments first, and when it reaches 9, the
digit at position 1 increments (and if it is equal to -1, it goes to 1 directly). When the seconds
counter reaches [5, 9], it goes down to [-1, 0] and the process continues with the minutes and
so on.

I have decided to write the current time aligned to the left (with “Execution Time: ” written
before), with the fact that when leading time units are zero, they are not shown. For example,
when the day, hour and minute are equal to zero, only the seconds will be shown and on the
left. Then, when time has exceeded 60 seconds, the minute counter will appear at the left,
and the seconds will appear at the right of the minutes even when they are equal to zero. For
example, at 1 hour and 3 seconds, the 0 minute will be shown.

In order to do so, arrays of horizontal positions have been created. The one for the days will
be of length one because either days do not appear or they do so totally at the left. The one
for the hours will be of length two because when they appear it is either totally at the left or
they are the days counter before. In that case, the hours horizontal position is shifted by 2 for
the day counter, plus 1 for the “d” that will be written for day, plus 1 for the space after, so by
4. Then, the array for the minutes will be of length 3, and the one for the seconds of length 4.

52

Now, there is to design the pointers to the value to use in these arrays. For the days, there
is none because it is only of length 1. For the hours, when the days counter is zero (actually
[-1, 0]), the pointer is set to 0 (there is nothing before), and when the days counter is different
from zero, the pointer equals 1 (there is one value before). For the minutes, when both days
and hours counters are zeros, it is 0, when the days counter is zero but the hours is not, it is 1,
and if both are not zero, it is 2. And we follow the same logic for the seconds.

To know if a time unit value should appear or not, we can simply check if the next time unit
has its pointer which is different from 0, then it has to be written. Besides, the seconds are
always shown.

53

5.2.2 Reading the memory and creating the plot

To be more visible, the dots on the screen will be plus sign and not just a pixel. These plus signs
are formed with one pixel at the center, top, bottom, left and right. Therefore, when reading
the memory, we need to know the current column but also the previous one and the next one.
The previous column corresponds to the time stamp before, and permits to know if the current
position is the right of a plus sign. The next column permits to know if it corresponds to the
left of a plus sign. For the top and bottom pixels, the current column is what is needed.

In order to get the current neuron (which represents the vertical position), an integer signal is
created. It is initialized at the maximal value (199) when the vertical counter reaches the top
of the plot. Then, it is decremented at each new line. Indeed, the vertical position is defined
with the top left of the screen as a reference, but a plot has its reference at the bottom left.

Three clock periods are needed between the time the memory address and the enable signal
are set and the time the output data is correct and can be read.

Thus, four clock periods before the plot left limit, the address is set to the oldest value in the
memory and the read enable signal is set to one. This oldest value is zero when the memory
is not full yet, and the current time value plus one otherwise. Then, at each clock period, the
address is incremented until it reaches the current time value.

One clock period before the plot left limit, the output data is stored in the current memory
column, and the previous column is set to zero. Then, at each clock period, the current column
will be set to the output data, the previous column to the current value and the next column
is directly the output data of the memory.

With the buffer introduced and to have a consistent plot in the end, time-related signals should
only be updated once every display. These signals are used as a reference to know what data
from the memory represents the oldest and the last values. That is why, in the screen generation
component, the current time value is only updated when we receive the confirmation from the
FIFO reading process (through another CDC in the direction from the HEENS clock to the
pixel clock) that the buffer has been transferred into the memory, which means that new data
are available to read and display.

Now, the plus sign can be drawn by checking for the current column that at the current neuron
position there is a one (for the center point), or that at the neuron position plus or minus one
there is a one (for the bottom and top points), or that at the current neuron position but in
the previous column or the next column (which is directly the output data from the memory),
there is a one. And if one of these assumptions is true, then the pixel should be colored.

In addition to the actual dots, in order to draw a plot, I have added plot contours, with ticks
along the axes, with label on them and title for the axes. For the vertical axis, the rotated
text generator was used. Otherwise, it was the classical text generator (even for the tick labels,
which are integers, because they are constant and the pos attribute works fine then).

54

5.2.3 Extended plot

Actually, with only 200 pixels, the plot is not even occupying a fourth of the screen vertically.
Therefore, I decided to extend the plot using a button as a switch from the normal plot to
the extended one. The extension factor is 4, which is practical because first, it still fits the
screen even with the labels around the plot, and then it is a power of two so it is easier to work
with when using bits signals. This also allows, because it is greater than 3, to have the top
and bottom points of the plus sign to be painted only for the actual neuron position, and not
carrying over the other vertical positions.

In order to implement this extension, another component was created and a button on the
board will be used to switch between the two configuration and determine which of these two
components will have control on the communication with the memory, as well as the actual
painting of the pixels.

The middle button on both ZedBoard and ZC706 is used for this feature. The left button
is already used for the reset. And the right one will be used on ZC706 by HEENS (in the
multi-board configuration-). ZedBoard possesses 5 buttons (top, left, middle, right and bottom)
and ZC706 3 (left, middle and right). Then, to have a consistent behavior, only 3 buttons can
be used. In the end, only the middle one was available.

In order to avoid the bouncing when reading the button input, the clock divider component
is used with a clock divider of 221 on the pixel clock, so up to a clock period of 14ms. With
this slower clock, the input is only read once in a while and rebounds are not seen at this rate.
Then, to convert the behavior of this button to that of a switch, a flip-flop is used to alternate
between a zero and a one each time a rising edge is detected in the button signal, which is each
time the button is pressed.

Now, a extended vertical counter is used along with an intermediate counter on 2 bits to count
up to 4. This extended counter is initialized at zero when the real vertical counter is zero. When
its value is outside of the range of the previous smaller plot, it increases normally. However,
inside this range, the intermediate counter increments and when it is 3, it returns to zero and the
extended vertical counter increases by one. Also in this range, when the intermediate counter is
3, the neuron value that represents the position (which was already set to the maximal neuron
value 199) will decrement (so only once every four vertical pixels).

Thus, the same values of plot limits as the standard plot can be used. Moreover, the same
components to draw the contours can be used using this extended vertical counter, except for
the labels (for which a new component has been created). Indeed, for the text generation, the
vertical counter needs to update with each line, otherwise the text will also extend.

Additionally, not to extend the ticks along the vertical axis, a Boolean signal has been used in
the contours component to know when the intermediate counter is equal to 2, which will be
the center of the plus signs. And for the standard plot component, this Boolean will always be
set to True.

55

To paint the dots, the same previous, current and next memory columns system is used as in
the not-extended plot. However, now, for the top, center and bottom points, we check that the
current column has a one at the current neuron position and that the intermediate counter is
either 1, 2 or 3. For the left and right points, while reading the value of the next and previous
columns, we have to check also that the intermediate counter equals 2.

56

5.2.4 Created packages

In order to define the constants that will be used and to facilitate their utilization by different
components, a few packages have been created.

First, the package that contains the HDMI resolution information (hdmi resolution pkg) is still
used for the HDMI communication part.

Second, a package (neurons pkg) has been created in order to store the constants that will be
used for the neurons information. There is also the conversion function from the neuron ID on
18 bits to an integer between 0 and the maximum neuron value. In order to do this conversion
and also calculate this maximum value, the maximal numbers of virtualization levels, of rows
and of columns are defined first. In addition, this file also contains the ranges of the two raster
plot: for the small plot not extended, it is the minimum between 200 and the number of neuron
IDs; for the extended plot, this range is the minimum between 968 and the number IDs. If this
range of the extended plot is lower than 200, the extended plot will have the space between
two neurons of 4 instead of 1, with the same neuron range as the small plot. Otherwise, the
extended plot displays all the neurons up to a maximum of 968 (with the space between two
neurons of 1).

Third, another package (character definition pkg) has been created to store the information for
the text generator. It contains the definition of the digits array type (with digits between 0
and 9, and the value -1). This file also defines the size of the characters (8 pixels in width and
16 in height). Finally, it contains the table of all ASCII characters in order to display them
onscreen.

Fourth, a package (plot pkg) that contains the information relative to the creation of the plots
has been created. It contains the definition of the colors, as well as values to position the plots.

Finally, two other packages have been created that will only define the names of the concerned
board in order to write them on the screen. The two packages will possess the same name
(neurons platform spec pkg) in order for the other components to be identical for any board
and include the same package. Then, each of the two Vivado projects will only include their
corresponding package.

57

5.3 Results with emulated neural network

In order to check and debug the code, simulations were very helpful especially to understand
the timings of the IPs: FIFO and memory block, specifically the clock periods there are to wait
before reading a correct value from both components.

As it is a visible result which is created, the actual tests onscreen were very helpful to check
the good behavior of the dots of the plot, as well as the contours and the text generation (for
example for the rotated version, in order to write the text properly).

Additionally, in the standard version of the text generator, the last column of the characters
was not written. The issue was that the horizontal counter updates every clock period and
there is no latch is the text generation component. The test that the character column from
the ROM font array possesses a one at the right position, is made in a process, introducing
one clock delay. However, the extraction of the right positions is made combinational. Thus,
there was a mismatch in the timings. To solve this problem, simply a minus one is made on
the current column position in the character signal.

In addition, to decrease the time of the experimental verification and reduce the synthesis,
implementation and creation of the bitstream, an example project has been created. It emulates
HEENS behavior by managing and writing in the spikes FIFO, and by creating the phases
(initialization, configuration, execution and distribution).

In order to write into the spikes FIFO, a memory block was used with pre-charged data. To
create this data, an Excel file was used to generate a file where every neuron from 0 to 199
will be written under the neuron ID form on 18 bits. This simulates a process where the first
neuron is spiking at the first instant of time, then the second neuron at the second instant and
so on, up to the neuron number 199 at the 200th instant. After these 200 time instants, the
memory is filled with zero for the rest of the 1024 time stamps.

Then, in the HEENS simulator component, this memory is read in its execution phase, one
element at each phase, and written in the FIFO. In the distribution phase, the reading of
the FIFO is managed, and when it receives the ready flag from the FIFO reading process, it
activates during one clock period the read enable signal.

58

5x5 configuration on ZedBoard

With the 5x5 array, thus with 200 neurons, the results were as shown below with the designed
simulator of HEENS, in the standard configuration with the plot not extended (Figures 32, 33
and 34).

Figure 32: Result screen of the raster plot implementation for ZedBoard with 5x5 array.

The information is written on the top left of the screen. Here, the example is with the 5x5
array on ZedBoard. And the raster plot is placed on the top of the screen in the middle.

Figure 33: Result screen of the raster plot implementation for ZedBoard with 5x5 array
(zoomed on the top left information).

The name of the board, the number of columns, rows, virtualization levels and chips are written,
as well as the execution time that increases at the correct pace to follow the real time. Different
colors are used to highlight the values.

59

Figure 34: Result screen of the raster plot implementation for ZedBoard with 5x5 array
(zoomed on the plot).

The plot appears correctly with the curve in blue and the contours in black. The vertical axis is
labeled “neurons” with ticks every 10 neurons, bigger ones every 50 and biggest ones every 100.
Tick labels are written every 50 neurons. Here, the axis ranges from 0 to 199. The horizontal
axis is labeled “time (ms)” as every time stamp has been designed to last one millisecond. Ticks
are every 25ms, bigger every 100 and biggest every 500. Tick labels are written every 100ms.
This axis ranges from 0 to 1023.

The curve corresponds to what was expected: during the first 200 time stamps, the neurons
are spiking one after the other, and then the example memory was filled with zeros. So zeros
were written in the FIFO and then in the spikes memory, which explains the line from time
200 to 1023 where the neuron 0 is spiking.

60

As we can see with 200 neurons, the screen feels a bit empty (Figure 32), hence the idea of
the extended plot, which gives the following results (Figure 35), with the same configuration
of neurons, just pressing the middle button from the previous state.

Figure 35: Result screen of the raster plot implementation for ZedBoard with 5x5 array
with the extended plot.

Each neuron are now every 4 pixels on the vertical axis, and the plot occupies a larger part of
the screen vertically.

61

11x11 configuration on ZC706

Then, the behavior has been tested with other configurations than 5x5 and on the other board.
For a number of neurons bigger than 200, the extended plot cannot be done. Thus, it has
been decided in that case to keep only the first 200 neurons on the first switch configuration
because another plot will be drawn at the bottom, and on the second configuration, instead of
the extended plot multiplied by 4, the total plot will be shown (up to 968 neurons).

With the 11x11 configuration on ZC706, the results are shown in Figures 36 and 37 in the first
configuration with 200 neurons. The same example memory as for the 5x5 was used in the
HEENS simulator component.

Figure 36: Result screen of the raster plot implementation for ZC706 with 11x11 array
(zoomed on the top left information).

The corresponding information is correctly shown.

Figure 37: Result screen of the raster plot implementation for ZC706 with 11x11 array
(zoomed on the plot).

The plot ranges only from 0 to 199 in this configuration while the neurons values are up to
967 (= 11× 11× 8− 1).

62

With the extended configuration (by pressing the button), the results of the full raster plot are
the following (Figure 38).

Figure 38: Result screen of the raster plot implementation for ZC706 with 11x11 array
with the extended plot.

The plot now ranges correctly from 0 to 967. As the memory was designed for the 5x5
configuration, we will have on each line only neurons from 0 to 4 spiking and not from 0
to 10, and this will apply for the first 5 lines (and not 11). This explains the obtained plot:
for 5 pixels we have the spiking neuron number incrementing, then a vertical jump of 6 pixels,
and all this 5 times (for 5 lines), and then a larger vertical jump (of 66 pixels, for the 6 left line
of 11 columns), and then it repeats for the next virtualization level, and so on for a total of 8
levels of virtualization.

The results for two other configurations (2x2 and 6x6) can be found in Appendix (Raster plot
results for 2x2 and 6x6 configurations).

The next part is dedicated to the plot of neural parameters that will be drawn in the first
switch configuration under the raster plot on (maximum) 200 neurons.

63

6 Plot of neural parameters

6.1 Communication with HEENS

6.1.1 Principle

In many cases, it is interesting to watch, besides the spikes, internal neural parameters. One
of the most important is the membrane potential. These parameters are not binary anymore,
but they are multivalued, thus they should be displayed as analog values.

The new plot is meant to show the membrane potential value of 4 chosen neurons as a function
of the time.

This plot will be seen alongside the raster plot (even though because the screen is not infinite, a
maximal value of neurons to plot for the raster plot had to be decided: 200) and it will occupy
the bottom part of the screen.

For the communication between HEENS and the screen generation part, a FIFO memory
is used, and the whole communication system is very similar to the one for the raster plot.
However, the values inside the FIFO will actually be signed values on 16 bits (with a range
from −32768 to 32767).

At present, the membrane potential only varies from −80mV to −30mV, which are represented
by signed integers between −8000 and −3000, the precision being ten microvolts.

In order that everything (the raster plot of maximum 200 neurons and the four plots to be
created for every selected neurons, as well as the plot contours) fits in the screen, I decided
that each of the four plots will have a height of 180 pixels.

Therefore, the values between -8000 and -3000 have to be converted to values between 0 and
179, which is done by the following equation:

plot value =
signed value+ 8000

(−3000)− (−8000)
× (179− 0)

=
signed value+ 8000

5000/179

=
signed value+ 8000

27.932

(7)

Once again, the division will be transformed by multiplying by a power of two: 216 = 65536,
here the value is larger than in the conversion from RGB to YCbCr in order to increase the
precision in the division.

64

plot value ≈ signed value+ 8000

65536
× 2347 (8)

Here, the multiplication will not be transformed into bit shift operations because the range of
values between -8000 and -3000 may change and the transformation to bit shift cannot simply
be automatized in VHDL.

Then, values are saturated in the range between 0 and 179, to be sure that they will appear
correctly on the screen.

The system to read the FIFO is quite the same as for the raster plot. However, in order to
write the information in the memory, as there are 4 neurons for which we study the membrane
potential, the FIFO needs to be read 4 times, and each time the value will be stored. At the
fourth time, these four values are concatenated into the data to write inside the memory.

The value, as it ranges from 0 to 179, will be stored on 8 bits (which goes up to 255). And
then, the memory will be of depth 1024 and of width 32 for the 4 values on 8 bits (for each of
the 4 neurons).

All these constants for the conversion from the analog values on 18 bits into an integer between
0 and 179 are stored in the package neurons pkg. This package contains the starting range
between −8000 and −3000 as well as the target range between 0 and 179. It defines the
number of neurons to display, which is 4. It also determines the width of the memory in order
to store these values, which is 32. Finally, it calculates the constants used for the conversion:
the value to add (8000), the number of bits for the division precision (16), as well as the
multiplier (2347).

65

6.1.2 Reading the FIFO and storing the information

In order to read the membrane potential FIFO from HEENS and then to write this information
into the memory, a Finite State Machine has been used (Figure 39) which is a bit different than
the one used for the spikes FIFO reading mechanism.

idle

fifo read fifo empty

value convert

value sat

mem write

ph dist=‘1’
and fifo empty=‘0’

ph dist=‘1’
and fifo empty=‘1’

fifo empty=‘0’

ph dist=‘0’

fifo valid=‘1’

fifo empty=‘0’

fifo empty=‘1’

Figure 39: FSM of reading the FIFO and writing in memory the potential information.

66

As there is only one value for each time instant, we will write directly in memory and not
append. Therefore, there is no need to erase the memory as a first state.

Besides, another state had to be created as the conversion operations were taking too much
time, and WNS was negative. Consequently, the operations are split in 2: the conversion
operation per se is made during one clock period (and one state), and the saturation of the
value between 0 and 179 in another.

In addition, the MEM WRITE state has changed. Indeed, we need to read the FIFO 4 times
for the values of the 4 neurons and each of the three first times, the value is stored in a
register (of length 3× 8 = 24), and at the fourth time, the obtained value from the FIFO (that
corresponds to the fourth neuron) is concatenated with the register and all the data is written
in the memory.

67

6.2 Creating the plots

Four plots need to be done, each above another. The contours components have changed
compared to the ones of the raster plot. Here, the horizontal ticks are only at the bottom and
the top of all of the four charts. However, vertical ticks have to be drawn for each of the four
plots.

The horizontal axis represents the time as well as in the raster plot. This way, the different
curves evolve at the same pace. The scale remains the same as the one of the raster plot for this
horizontal axis. Then, the same axis label will be used, and the tick labels will be displayed on
the top of the membrane potential charts.

Actually, in order to use the same components to draw the ticks and the black contours as the
raster plot, a new input has been created for these components: a Boolean to tell when the
vertical counter is between the plots. Thereby, we can draw the border between two consecutive
plots of two pixels to paint in black. Moreover, in order to draw the ticks along the vertical
axis for the four plots, the counters need to be reset between two plots to be used for the next
plot.

However, the component to draw text for the axes label and the tick labels has to be different.
As the plots are somewhat small, only two vertical tick labels will be written: for −80mV
and −55mV. In addition, for −55mV, as it corresponds to the threshold potential, the word
“threshold” will be written at the right, and a dotted line will be drawn. For the dotted line,
we can simply use the horizontal counter, take one of the LSBs and check if it is zero or one. If
we consider the LSB, it will change between zero and one for every pixel. If we take the second
LSB, it will change every two pixels, and so on. I chose to check for the third Least Significant
Bit, which makes dashes of length 4 (= 23−1) as a dotted line.

In addition, to differentiate each plot even more, the color of the curve and of the tick labels
will be different for each plot. This has been done by, instead of having a Boolean to tell if the
pixels need to be ON or OFF, having an array of Booleans of length 4 (for each of the four
plot) to tell with which color the pixels have to be painted.

As it is an analog curve that is plot, it is made continuous. To do so, when the position counters
are inside one plot, the last voltage value is stored in a register. And instead of just checking
if the current pixel corresponds to the current voltage value, we check if the current pixel is in
the range between the last voltage value and the current one. Thereby, we draw vertical lines
to connect the dots. Besides, dots are only one pixel and not plus sign as in the raster plot.

Apart from the actual charts, information relative to each selected neuron will be written on
the screen. This information enables to identify which neurons are monitored. It will include
the virtualization level, the row and the column. In addition, the neuron identifier value will
be written. It corresponds to the value used as the vertical coordinate in the raster plot.

68

6.3 Results with emulated neural network

An example was made using the HEENS simulator that now reads another memory in order
to write it in another FIFO. The memory has been created with Excel and it starts by the
minimum value of −80mV and is incremented each time by 0.025mV. This last value permits
that the potential is increased by 25mV after 1000 time stamps and reaches −55mV: the
threshold value. Then, it increases by 10mV directly to simulate the firing, and it returns to
the resting potential −70mV. These values are simply duplicate three times in order to get
the 4 example values for the 4 selected neurons.

With the example project, the results are the following (in the standard configuration of the
switch, else only the extended raster plot appears) (Figures 40 and 41).

Figure 40: Result screen of the membrane potential plot implementation
for ZedBoard with 5x5 array.

We can see the disposition of the whole screen with the raster plot at the top with the 200
neurons, and below the 4 plots of the membrane potential of 4 selected neurons, one above the
other. In addition, we can see the global information at the top left corner of the screen, and
the information of each selected neurons at the left of its corresponding plot.

69

We can see that each neuron plot is well represented with different colors: the top one in blue,
the second one in red, the third one in green and the fourth one in orange. All plots are
identical. The dotted line appears well, and with the example, we see that when the voltage
crosses this threshold at time stamp 1000, it increases by 10mV before returning back to the
resting potential.

Figure 41: Result screen of the membrane potential plot implementation
for ZedBoard with 5x5 array (zoomed at the left of the plots).

We can see that the monitored neuron information is displayed on the left on each plot. In
order to check the behavior, I have chosen some random neurons (numbers 0, 5, 8 and 144)
as an example for the signal which selects the neurons to monitor. As information, we have
the virtualization level, row and column, as well as the identifier value (the value used for the
raster plot). This last value is calculated as a function of the PE array size (here 5x5).

70

7 Experimental results

7.1 Principle

In this section, the experimental results with the actual HEENS architecture will be seen.

The size of the PE arrays is defined in the VHDL package SNN pkg of HEENS.

In order to implement HEENS in the target, once the bitstream has been generated by Vivado,
it can be exported alongside the hardware. These files can then be used in the SDK (Software
Development Kit) from Xilinx. The executable can be run on the Processing System, once the
FPGA fabric (the Programmable Logic) has already been programmed.

There are some useful registers for HEENS Control Interface (HCI) that have to be written with
the PS, such as the HTR (HEENS Transfer Register) and HMNR (HEENS Monitored Neurons
Register). The operations regarding these registers can be found in Appendix (HEENS Control
Interface registers).

Then, it can already be seen on the monitor screen the frame of the plots. In order to launch a
simulation, the HEENS Toolchain Suite (HTS) is used. A Python executable called creanet.py
is used in order to assemble the sequencer program (which contains the neural model), and to
generate the Memory Initialization Files (MIFs) and the configuration files.

In addition to the assembler file, there is an application file also to give to the Python executable.
This application file contains the connection between the PEs, as well as their weight. Two
different applications have been studied in this thesis.

With the addition of the screen generation and HDMI communication parts, ZedBoard does
not support the 5x5 configuration anymore due to a lack in BRAM memory.

In these tests, to be able to take pictures and see things on the screen, the simulation has
been limited to 1024 time stamps. However, this number (which is defined thanks to the HTR
register in the PS code) can be set to a much larger value to have longer simulations and a
continuous real-time display.

71

7.2 Ring oscillator

One of the simplest application is the oscillator. Each neuron are connected to the next one
with a chosen weight (here 5500) so that the first spike in neuron 0 will lead to a spike in
neuron 1, which will then lead to another spike in neuron 2, and so on. In order to have the
ring behavior, the last neuron is simply connected to neuron 0 with the same weight as for the
other connections. It corresponds to the behavior that was emulated when testing the raster
plot implementation (except that it was not looping).

The results obtained on the monitor screen are presented in Figures 42 and 43, with the 4x4
configuration on ZedBoard.

Figure 42: Result screen of the ring oscillator example on ZedBoard with 4x4 array.

The global information can be seen in the top left, and the selected neurons information is at
the left of each of the 4 plots. For the oscillator, the selection of the neurons to monitor is not
very important as they all have the same behavior. I have chosen neurons 0, 3, 6 and 9.

72

Figure 43: Result screen of the ring oscillator example on ZedBoard with 4x4 array,
in the extended configuration of the raster plot.

Neurons from 0 to 15 generate a spike in a oscillating way. For the membrane potentials, we
can see that there is a shift in time between the different neurons, but otherwise, the plots are
the same.

With the very high weight (5500) that was set on the connections, the membrane potential
increases drastically when a neuron receives a spike from the previous neuron. It actually
saturates at −30mV, and then returns to the resting potential very abruptly as well.

The spacing between each spike of a certain neuron is of 16 time stamps, the time for the ring
oscillator to do a loop.

73

7.3 Delay lines

The topology of the delay lines can be seen in Figure 44. Neuron 0 spike triggers the delay
lines and time base.

For delay line 1, neurons 1 and 2 have positive feedback, so they oscillate, until neuron 3 fires
and inhibits them.

Delay line 2 operates with the same topology, but its delay will be bigger because neuron 6 will
take more time to fire due to the smaller weight (150) between neurons 5 and 6, than between
neurons 2 and 3 (200).

The time base oscillates continuously with a programmable rate defined by the weight (300)
between neurons 8 and 9.

Figure 44: Example of two delay lines with short and longer delays, and time base. [40]

Consequently, the most interesting neurons to monitor are neurons 3, 6 and 9. We decided to
monitor neuron 0 as the fourth neuron.

74

The onscreen results can be seen in Figures 45 and 46.

Figure 45: Result screen of the delay lines example on ZedBoard with 4x4 array,
in the extended configuration of the raster plot.

Figure 46: Result screen of the delay lines example on ZedBoard with 4x4 array,
zoomed on the left of the screen.

75

Neuron 0 membrane potential remains around −70mV, which is the defined resting potential.
Its first spike at the very beginning of the simulation cannot be seen in the raster plot, but its
membrane potential is going down from above the threshold value (of −55mV).

Neurons 1 and 2 can be seen oscillating in the raster plot as expected, until neuron 3 fires. We
can see that its potential increases little by little until it reaches the threshold value, which
corresponds to the time of its spike.

The behavior is very similar for the second delay line, except that it lasts longer, and neuron
6 potential grows slower, which is logical with the lower weight than in the first delay line.

For the base time line, the behavior is as expected: neuron 9 produces a spike even sooner
than neuron 3, with its membrane potential increasing faster, which is logical with the larger
weight than in the first delay line. Besides, as there is no inhibition system, the behavior keeps
repeating, creating this base time.

76

8 Conclusion and future development

8.1 Summary

One of the goals of this thesis was to establish the communication via HDMI to a monitor
screen. This was successfully achieved. Both FPGAs ZedBoard and Zynq ZC706 are able,
using only their Programmable Logic, to first program the HDMI transmitter ADV7511 using
I2C, and then to generate bands of colors in RGB format and send this color information (by
converting them into the YCbCr format in the case of ZedBoard) to the transmitter. The latter
will then send this information to the HDMI connector and finally the screen. This display
feature is working on screens of both 1680x1050 and 1920x1080 resolutions.

The display of text on the screen was also successfully achieved, and all required information
is now shown on the screen: the name of the board, the number of chips, the number of
virtualization levels, as well as the number of rows and columns used. The execution time is
also displayed in the form of seconds, minutes, hours and days.

In order to monitor the SNN, the raster plot of the spiking neurons over time is being displayed
in real time on the screen. This plot possesses the features of a classical chart with drawn axes,
ticks on the axes, labels on these ticks to show the values on the axes, as well as axis labels.

This plot is limited to 200 neurons in order to be able to show other plots below. However,
in order to show a plot with more neurons or on a bigger scale, a button used as a switch has
been used. If more than 200 neurons have been defined, pressing the button permits to switch
to a display of only the raster plot with all the defined neurons (the maximum is 968 neurons
due to screen height limitations). If less than 200 or 200 neurons are defined, it switches to
a display with only the raster plot but on a bigger scale: with every neuron being positioned
every four vertical pixels.

The reserved space below the maximum-200-neuron raster plot is used in order to show an
internal parameter, the membrane potential, of 4 chosen neurons. These four plots are directly
one above the other and use the same horizontal axis as the raster plot. They are displayed
using four different colors. In addition to the chart features that are also used for the raster
plot, a threshold is displayed thanks to a dotted line, as well as a “threshold voltage” label at
the right of the plots. In order to know which neurons are the ones selected to be monitored,
their relative information is written at the left of each plot.

77

8.2 Future work

The utilization of divided clocks (for instance in the I2C sending protocol) could lead to
metastability as the processes are synchronized on created clocks and not the main generated
clock (here the pixel clock), which leads to time-domain crossing which is something to be
avoided. Instead, one can use counters also to divide the clock but in order to generate pulses
as enable signals (and not clocks). Then, processes will use these enable signals while still being
synchronized at the general clock.

The protocol used in order to read the data from the neural parameters FIFO is not robust as it
has to wait for four values before writing in the memory, and if it receives fewer than these four
values, nothing is written. This case can occur when the signal used to know which neurons
to monitor contains twice the same value (which will designate the same neuron). Then, the
neural parameter data will be written only once into the FIFO. Consequently, the FIFO will
contain one value less than expected. In order to fix this issue, the system to read the FIFO
can write each time in memory, which means that it needs to read also before writing. This
procedure will resemble that of the spikes FIFO reading, which appends the information and
includes a first erasing state.

A problem is occurring on Zynq ZC706: the cooling fan stops working when the FPGA is
programmed. It seems to be a problem linked to the voltage definition of IO banks [41].
However, the fan was still working during the first HDMI test on ZC706, which uses the same
IO definition. In the end, I have not been able to find and solve the issue.

A point of concern is regarding the display of the neurons to monitor and their internal
parameters. Indeed, as HEENS works, the sending of the analog values into the FIFO is made
in neurons ascending order. However, the array that contains the identifiers of the neurons to
monitor (which is set in the PS with HMNR register) can be in any order. And it is based on
this array that the information to identify the neuron is written on the left of each plot. Thus,
the neuron information may not match the parameters plot on its right. Therefore, for now,
we have to take care that the neurons to monitor are entered in ascending order. Nonetheless,
it would be a good idea to have a procedure that sorts this array, and rather in the PS because
it would be easier.

The programming was made using many constants in VHDL. Thus, to change their value, it
cannot be done during the process by console input for example, and it requires a new run
of synthesis, implementation and bitstream generation. Being able to change these values by
serial communication could be very handy for instance for the display of other analog neural
parameters such as the firing rate or the synaptic weights. This would also mean changing the
conversion from the analog parameters into easy-to-plot values. Indeed, now it is from a value
between −8000 and −3000 to an integer between 0 and 179. Actually, the target range of 180
pixels will remain the same if we stick to the idea of displaying information for four different
neurons, while conserving the raster plot above (on maximum 200 neurons). However, the first
range of values (here from −8000 to −3000) will be different for other neural parameters.

78

In addition, many more features can be implemented for the display. For example, if we
are working with a 12x12 or 13x13 array size, the additional neurons above 968 will not be
represented at all. An idea could be to have via the console (all the three available buttons are
already used on ZC706) the possibility to choose to display the large-ID neurons or the low-ID
neurons, or directly to specify the range to be displayed. This would mean an increase in the
size of the spikes memory, whose width is currently 968, as well as an increase in the size of the
components that will have to handle larger arrays.

To conclude, HDMI display has been established on FPGA and it enables the monitoring of the
Spiking Neural Network in real time thanks to two plots: the raster plot and internal neural
parameters such as the membrane potential for some chosen neurons of the network. However,
it remains a first work and more development can be done to further improve the real-time
display.

79

References

[1] Samanwoy Ghosh-Dastidar and Hojjat Adeli. “Third Generation Neural Networks:
Spiking Neural Networks”. In: Advances in Computational Intelligence 116 (2009),
pages 167–178. doi: 10.1007/978-3-642-03156-4_17 (see p. 1).

[2] Micah Richert, Jayram Nageswaran, Nikil Dutt, and Jeffrey Krichmar. “An Efficient
Simulation Environment for Modeling Large-Scale Cortical Processing”. In: Frontiers in
Neuroinformatics 5 (2011). doi: 10.3389/fninf.2011.00019 (see p. 1).

[3] Mireya Zapata Rodŕıguez. “Arquitectura Escalable SIMD con Conectividad Jerárquica y
Reconfigurable para la Emulación de SNN”. Spanish. PhD thesis. Universitat Politècnica
de Catalunya, Departament d’Enginyeria Electrònica, September 2017 (see pp. 1–5, 7, 8).

[4] Athul Sripad, Giovanny Sanchez, Mireya Zapata, Vito Pirrone, Taho Dorta, Salvatore
Cambria, Albert Marti, Karthikeyan Krishnamourthy, and Jordi Madrenas. “SNAVA - A
real-time multi-FPGA multi-model spiking neural network simulation architecture”. In:
Neural Networks 97 (2018), pages 28–45. doi: 10.1016/j.neunet.2017.09.011 (see
pp. 1, 4).

[5] Josep Angel Oltra-Oltra, Jordi Madrenas, Mireya Zapata, Bernardo Vallejo, Diana
Mata-Hernandez, and Shigeo Sato. “Hardware-Software Co-Design for Efficient and
Scalable Real-Time Emulation of SNNs on the Edge”. In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). 2021, pages 1–5. doi: 10 . 1109 /

ISCAS51556.2021.9401615 (see p. 1).

[6] Steven Walczak and Narciso Cerpa. “Artificial Neural Networks”. In: Encyclopedia of
Physical Science and Technology (Third Edition). Edited by Robert A. Meyers. Third
Edition. Academic Press, 2003, pages 631–645. doi: 10.1016/B0-12-227410-5/00837-1
(see p. 2).

[7] Y.-S. Park and S. Lek. “Chapter 7 - Artificial Neural Networks: Multilayer Perceptron
for Ecological Modeling”. In: Ecological Model Types. Edited by Sven Erik Jørgensen.
Volume 28. Developments in Environmental Modelling. Elsevier, 2016, pages 123–140.
doi: 10.1016/B978-0-444-63623-2.00007-4 (see p. 2).

[8] Fatemeh Falah, Omid Rahmati, Mohammad Rostami, Ebrahim Ahmadisharaf, Ioannis N.
Daliakopoulos, and Hamid Reza Pourghasemi. “14 - Artificial Neural Networks for Flood
Susceptibility Mapping in Data-Scarce Urban Areas”. In: Spatial Modeling in GIS and R
for Earth and Environmental Sciences. Edited by Hamid Reza Pourghasemi and Candan
Gokceoglu. Elsevier, 2019, pages 323–336. doi: 10.1016/B978-0-12-815226-3.00014-4
(see p. 2).

[9] Arash Malekian and Nastaran Chitsaz. “Chapter 4 - Concepts, procedures, and
applications of artificial neural network models in streamflow forecasting”. In: Advances
in Streamflow Forecasting. Edited by Priyanka Sharma and Deepesh Machiwal. Elsevier,
2021, pages 115–147. doi: 10.1016/B978-0-12-820673-7.00003-2 (see p. 2).

80

https://doi.org/10.1007/978-3-642-03156-4_17
https://doi.org/10.3389/fninf.2011.00019
https://doi.org/10.1016/j.neunet.2017.09.011
https://doi.org/10.1109/ISCAS51556.2021.9401615
https://doi.org/10.1109/ISCAS51556.2021.9401615
https://doi.org/10.1016/B0-12-227410-5/00837-1
https://doi.org/10.1016/B978-0-444-63623-2.00007-4
https://doi.org/10.1016/B978-0-12-815226-3.00014-4
https://doi.org/10.1016/B978-0-12-820673-7.00003-2

[10] Jesus L. Lobo, Javier Del Ser, Albert Bifet, and Nikola Kasabov. “Spiking Neural
Networks and online learning: An overview and perspectives”. In: Neural Networks 121
(2020), pages 88–100. doi: 10.1016/j.neunet.2019.09.004 (see p. 3).

[11] Corrado Bonfanti. “Parameter Monitoring and Communication in a Ring-Topology-Based
SNN Emulator Hardware”. Master’s thesis. Politecnico di Torino, Universitat Politècnica
de Catalunya, November 2020 (see pp. 4, 8).

[12] Vivado Design Suite User Guide. Synthesis. v2013.2. Xilinx, June 19, 2013. https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2013_2/ug901-vivado-

synthesis.pdf (visited on 13/1/2022) (see p. 11).

[13] Vivado Design Suite User Guide. Implementation. v2020.2. Xilinx, February 26, 2021.
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/

ug904-vivado-implementation.pdf (visited on 13/1/2022) (see p. 11).

[14] Vivado Design Suite User Guide. Designing with IP. v2019.2. Xilinx, March 3, 2020.
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/

ug896-vivado-ip.pdf (visited on 13/1/2022) (see p. 11).

[15] High-Definition Multimedia Interface. Version 1.3a. Hitachi, Matsushita, Philips, Silicon
Image, Sony, Thomson, Toshiba, November 10, 2006 (see pp. 12, 21).

[16] Monitor Technology Guide. NEC Display Solutions, March 15, 2007. https://web.
archive.org/web/20070315085244/http://www.necdisplay.com/support/css/

monitortechguide/index05.htm#aspectratio (visited on 31/12/2021) (see p. 13).

[17] Teoalida. Screen resolution statistics. The world of Teoalida. January 2016. https://www.
teoalida.com/webdesign/screen-resolution/ (visited on 31/12/2021) (see p. 13).

[18] Will Green. Video Timings: VGA, SVGA, 720p, 1080p. Project F - FPGA Development.
June 26, 2020. https://projectf.io/posts/video- timings- vga- 720p- 1080p/
(visited on 29/12/2021) (see p. 14).

[19] VESA Signal 1680 x 1050 @ 60 Hz timing. TinyVGA.com. 2008. http://tinyvga.com/
vga-timing/1680x1050@60Hz (visited on 29/12/2021) (see p. 14).

[20] Nelson Campos. RGB to YCbCr conversion. Playing with bits and pixels. sistenix.com.
August 21, 2016. https://sistenix.com/rgb2ycbcr.html (visited on 30/12/2021) (see
pp. 16, 34).

[21] Keith Jack. Video Demystified. A Handbook for the Digital Engineer. Fourth Edition.
Newnes, Elsevier, 2005. isbn: 0-7506-7822-4 (see pp. 16, 34).

[22] The Important Role of Luminance and Chrominance in Noise Reduction. Neatlab.
September 12, 2018. https : / / blog . neatvideo . com / post / luminance - and -

chrominance-1 (visited on 30/12/2021) (see p. 16).

[23] Adam Babcock. Chroma Subsampling. 4:4:4 vs 4:2:2 vs 4:2:0. RTINGS.com. March 4,
2019. https://www.rtings.com/tv/learn/chroma-subsampling (visited on 1/1/2022)
(see p. 16).

[24] Chroma Subsampling – 4:4:4 vs 4:2:2 vs 4:2:0. Learn Media Tech. https : / /

learnmediatech . com / chroma - subsampling - 444 - vs - 422 - vs - 420/ (visited on
1/1/2022) (see p. 16).

81

https://doi.org/10.1016/j.neunet.2019.09.004
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug896-vivado-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug896-vivado-ip.pdf
https://web.archive.org/web/20070315085244/http://www.necdisplay.com/support/css/monitortechguide/index05.htm#aspectratio
https://web.archive.org/web/20070315085244/http://www.necdisplay.com/support/css/monitortechguide/index05.htm#aspectratio
https://web.archive.org/web/20070315085244/http://www.necdisplay.com/support/css/monitortechguide/index05.htm#aspectratio
https://www.teoalida.com/webdesign/screen-resolution/
https://www.teoalida.com/webdesign/screen-resolution/
https://projectf.io/posts/video-timings-vga-720p-1080p/
http://tinyvga.com/vga-timing/1680x1050@60Hz
http://tinyvga.com/vga-timing/1680x1050@60Hz
https://sistenix.com/rgb2ycbcr.html
https://blog.neatvideo.com/post/luminance-and-chrominance-1
https://blog.neatvideo.com/post/luminance-and-chrominance-1
https://www.rtings.com/tv/learn/chroma-subsampling
https://learnmediatech.com/chroma-subsampling-444-vs-422-vs-420/
https://learnmediatech.com/chroma-subsampling-444-vs-422-vs-420/

[25] Charles Poynton. Chroma subsampling notation. January 24, 2008. http://poynton.ca/
PDFs/Chroma_subsampling_notation.pdf (visited on 1/1/2022) (see p. 16).

[26] ZedBoard. Revision D.2. Digilent, March 4, 2013. https://www.xilinx.com/support/
documentation/university/XUP%20Boards/XUPZedBoard/documentation/ZedBoard_

RevC.1_Schematic_130129.pdf (visited on 1/1/2022) (see pp. 17, 24, 25).

[27] ZC706 Evaluation Platform. Version 1.1, Revision 02. Xilinx, October 31, 2012. https:
//www.xilinx.com/support/documentation/boards_and_kits/zynq-7000/zc706-

schematic-xtp215-rev1-1.pdf (visited on 1/1/2022) (see pp. 18, 25).

[28] ADV7511. Programming Guide. Revision G. Advantiv, Analog Devices, March 2012.
https://www.analog.com/media/en/technical- documentation/user- guides/

ADV7511_Programming_Guide.pdf (visited on 1/1/2022) (see pp. 18–21, 25, 84–88).

[29] ZC706 Evaluation Board for the Zynq-7000 XC7Z045 SoC. User Guide. v1.8. Xilinx,
August 6, 2019. https : / / www . xilinx . com / content / dam / xilinx / support /

documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-

soc.pdf (visited on 5/1/2022) (see pp. 24, 89).

[30] PCA9548A Low Voltage 8-Channel I2C Switch with Reset. Revised March 2021. Texas
Instruments, June 2009. https://www.ti.com/lit/ds/symlink/pca9548a.pdf (visited
on 11/1/2022) (see p. 24).

[31] Mike Field. Zedboard VGA HDMI. September 13, 2013. http://web.archive.org/web/
20190821200752/http://hamsterworks.co.nz/mediawiki/index.php/Zedboard_

VGA_HDMI (visited on 5/1/2022) (see pp. 25, 29, 35, 39, 40).

[32] Pierre Molinaro. Systèmes interconnectés (SYSIT). Cours, Option C2Syst2E. French.
Centrale Nantes, January 2019 (see pp. 27, 28).

[33] Fast Mode, I2C Bus. I2C Bus. https://www.i2c- bus.org/fastmode/ (visited on
7/1/2022) (see p. 29).

[34] Booth’s multiplication algorithm. Wikipedia. December 2, 2021. https://en.wikipedia.
org/wiki/Booth’s_multiplication_algorithm (visited on 20/1/2022) (see p. 34).

[35] Choosing FPGA or DSP for your Application. Hunt Engineering. May 5, 2009. http:
//hunteng.co.uk/info/fpga-or-dsp.htm (visited on 13/1/2022) (see p. 35).

[36] Analog Devices, Inc. HDL. hdl/projects/common/zc706/zc706 system constr.xdc.
Github. August 8, 2019. https://github.com/analogdevicesinc/hdl/blob/master/
projects / common / zc706 / zc706 _ system _ constr . xdc (visited on 11/1/2022) (see
p. 40).

[37] XPM CDC Generator. LogiCORE IP Product Guide, Vivado Design Suite. v1.0.
Xilinx, February 9, 2021. https://www.xilinx.com/support/documentation/ip_
documentation/xpm_cdc_gen/v1_0/pg382- xpm- cdc- generator.pdf (visited on
2/2/2022) (see p. 49).

[38] Derek-X-Wang. VGA-Text-Generator. Github. December 5, 2015. https://github.com/
Derek-X-Wang/VGA-Text-Generator (visited on 12/1/2022) (see pp. 50, 51).

[39] MadLittleMods. FP-V-GA-Text. Github. December 16, 2013. https://github.com/
MadLittleMods/FP-V-GA-Text (visited on 12/1/2022) (see p. 50).

82

http://poynton.ca/PDFs/Chroma_subsampling_notation.pdf
http://poynton.ca/PDFs/Chroma_subsampling_notation.pdf
https://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZedBoard/documentation/ZedBoard_RevC.1_Schematic_130129.pdf
https://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZedBoard/documentation/ZedBoard_RevC.1_Schematic_130129.pdf
https://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZedBoard/documentation/ZedBoard_RevC.1_Schematic_130129.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zynq-7000/zc706-schematic-xtp215-rev1-1.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zynq-7000/zc706-schematic-xtp215-rev1-1.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zynq-7000/zc706-schematic-xtp215-rev1-1.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/ADV7511_Programming_Guide.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/ADV7511_Programming_Guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.ti.com/lit/ds/symlink/pca9548a.pdf
http://web.archive.org/web/20190821200752/http://hamsterworks.co.nz/mediawiki/index.php/Zedboard_VGA_HDMI
http://web.archive.org/web/20190821200752/http://hamsterworks.co.nz/mediawiki/index.php/Zedboard_VGA_HDMI
http://web.archive.org/web/20190821200752/http://hamsterworks.co.nz/mediawiki/index.php/Zedboard_VGA_HDMI
https://www.i2c-bus.org/fastmode/
https://en.wikipedia.org/wiki/Booth's_multiplication_algorithm
https://en.wikipedia.org/wiki/Booth's_multiplication_algorithm
http://hunteng.co.uk/info/fpga-or-dsp.htm
http://hunteng.co.uk/info/fpga-or-dsp.htm
https://github.com/analogdevicesinc/hdl/blob/master/projects/common/zc706/zc706_system_constr.xdc
https://github.com/analogdevicesinc/hdl/blob/master/projects/common/zc706/zc706_system_constr.xdc
https://www.xilinx.com/support/documentation/ip_documentation/xpm_cdc_gen/v1_0/pg382-xpm-cdc-generator.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xpm_cdc_gen/v1_0/pg382-xpm-cdc-generator.pdf
https://github.com/Derek-X-Wang/VGA-Text-Generator
https://github.com/Derek-X-Wang/VGA-Text-Generator
https://github.com/MadLittleMods/FP-V-GA-Text
https://github.com/MadLittleMods/FP-V-GA-Text

[40] Jordi Madrenas, Mireya Zapata, Josep Àngel Oltra, Bernardo Vallejo, Satoshi Moriya,
and Shigeo Sato. Efficient Digital Spike Processing of Frequency-Encoded Sensor Signals
for Edge Computing. 2020 (see p. 74).

[41] Zynq-7000 SoC ZC706 Evaluation Kit, ZC706 Fan stops working when the Vadj voltage
is set to 1.8V. Xilinx. September 23, 2021. https://support.xilinx.com/s/article/
61712?language=en_US (visited on 1/2/2022) (see p. 78).

[42] HEENS Architecture. Datasheet, FPGA PU. Departament d’Enginyeria Electrònica,
Universitat Politècnica de Catalunya, 2021 (see pp. 93, 95).

83

https://support.xilinx.com/s/article/61712?language=en_US
https://support.xilinx.com/s/article/61712?language=en_US

Appendix

ADV7511 registers map

The following tables (Figures A.1 to A.11) give the different values to write in some chosen
registers of the HDMI transmitter ADV7511.

Fixed registers that must be set

Figure A.1: Table of fixed registers that must be set. [28]

Figure A.2: Register map of 0x9D. [28]

84

Main Power Up

Figure A.3: Register map of 0x41. [28]

HDMI or DVI mode

Figure A.4: Table of HDMI or DVI mode. [28]

Figure A.5: Register map of 0xAF. [28]

85

Input Formatting Related Registers

Figure A.6: Register map of 0x15. [28]

Figure A.7: Register map of 0x16. [28]

86

Figure A.8: Register map of 0x17. [28]

Figure A.9: Register map of 0x48. [28]

87

CSC related registers

Figure A.10: Table of CSC - HDTV YCbCr (Limited Range) to RGB (Full Range). [28]

Figure A.11: Table of CSC - Identity Matrix (Input = Output). [28]

88

ZC706 I2C bus switch

This table on Figure A.12 gives the I2C addresses of the different slaves on the I2C bus on
ZC706. The first line corresponds to the bus switch itself. The third line with the I2C switch
position of 1 is the HDMI transmitter ADV7511.

Figure A.12: I2C slaves address on ZC706. [29]

89

Raster plot results for 2x2 and 6x6 configurations

6x6 configuration

With the 6x6 configuration on ZC706, the results are the following in the first configuration
of the switch with 200 neurons (Figure A.13). The same example memory as for the 5x5 was
used in the HEENS simulator component.

Figure A.13: Result screen of the raster plot implementation for ZC706 with 6x6 array
(zoomed on the plot).

The plot ranges only from 0 to 199 in this configuration while the neurons values are up to 287
(= 6× 6× 8− 1).

With the extended configuration (by pressing the button), the results of the full raster plot are
the following (Figure A.14).

Figure A.14: Result screen of the raster plot implementation for ZC706 with 6x6 array with
the extended plot.

90

The plot now ranges correctly from 0 to 287. As the memory was designed for the 5x5
configuration, we will have on each line only neurons from 0 to 4 spiking and not from 0
to 5, and this will apply for the first 5 lines (and not 6). This explains the obtained plot: for
5 pixels we have the spiking neuron number incrementing, then a vertical jump of 1 pixel, and
all this 5 times (for 5 lines), and then a larger vertical jump (of 6 pixels, for the left line of 6
columns), and then it repeats for the next virtualization level, and so on for a total of 8 levels
of virtualization.

91

2x2 configuration

With the 2x2 configuration on ZC706, the results are the following in the first configuration of
the switch (Figure A.15). The same example memory as for the 5x5 was used in the HEENS
simulator component.

Figure A.15: Result screen of the raster plot implementation for ZC706 with 2x2 array
(zoomed on the plot).

The plot ranges only from 0 to 31 (= 2 × 2 × 8 − 1). The 32-neuron range is lower than the
200 value we have fixed, then the switch will extend the plot by increasing the space between
two neurons in the vertical axis up to 4.

With the extended configuration (by pressing the button), the results are the following (Figure
A.16).

Figure A.16: Result screen of the raster plot implementation for ZC706 with 2x2 array with
the extended plot.

The neurons are now every 4 pixels vertically. As the memory was designed for the 5x5
configuration, we will have the first two neurons correctly spiking. As the values are modulus
2, the third neuron corresponds to the first one spiking, and so on, we thus obtain this ‘M’
shape. This is for the first line so the first 2 neurons in this configuration. Subsequently, we
have the same on the second line. The third line will correspond to the first line and so on,
hence this ‘M’ shape also appears at an upper scale. Finally, this behavior is repeated for all
of the 8 virtualization levels.

92

HEENS Control Interface registers

HEENS Control Interface register map

The registers for HEENS Control Interface (HCI) are listed in the Table A.1.

Offset Register Name Access Reset

0x00 HEENS Transfer Register HTR Read-Write 0x0
0x04 HEENS Status Register HSR Read-Write 0x0
0x08 HEENS Monitored Neurons Register HMNR Write 0x0
0x0C Reserved - - -

Table A.1: HCI Registers map. [42]

These registers length is 32 bits. In this document, we will only see HTR and HMNR registers
and, in particular, their write operations.

HEENS Transfer Register write operation

The format of the register HEENS Transfer Register in write operation can be seen in Table A.2.

31 30 29 28 27 26 25 24
DT - - - - WLEN

23 22 21 20 19 18 17 16
WLEN

15 14 13 12 11 10 9 8
WLEN

7 6 5 4 3 2 1 0
WLEN

Table A.2: HTR register (write operation). [42]

93

• DT: Datatype

0b00: Configuration length
0b01: Length of DMA (Direct Memory Access) packets to device
0b10: Number of execution cycles
0b11: Execution cycle duration time (clock cycles)

• WLEN: Word length

0x0000000-0x3FFFFFF: Word length of the data being transferred

The number of execution cycles can be set for example to 1024 (0x400) in order to execute only
1024 cycles, which will be fully displayed on the monitor and the display will be still. It can
also be set to much larger values in order to increase the number of execution cycles, and the
display will be in real time and starts to scroll.

In order to have cycles of 1ms, the execution cycle duration time has to be set to 125000
(0x1E848) with HEENS clock at 125MHz. Actually, HEENS clock is at this frequency only on
ZC706. On ZedBoard, it is at 50MHz, so the duration time has to be set at 50000 (0xC350).

Nonetheless, this duration time can be set to different values. We can set larger values to slow
down the execution speed, which also reduces the speed of the display scrolling and makes
easier to see the real-time display. This value can also be reduced. However, the display may
not work anymore due to the limitation in size of the buffers. Indeed, they have a size of 32,
and with a speed of 1ms and a screen refresh rate of 60Hz, we already fill more than 16 slots
of the buffers (1/(60Hz) ≈ 16.67ms). Then, for example, we cannot reduce the cycle duration
time by two down to 500µs because we would need more than 32 slots in the buffer. An option
can be simply to increase the size of the buffers if we want to have a working real-time display
with this reduced cycle duration time.

Besides, in all the cases where the cycle duration time is not set to 1ms, the display of the
execution time on the screen and the label of the horizontal axis of the plots, which is time (ms),
will not be correct anymore. The displayed time will go slower or faster than the actual real
time.

94

HEENS Monitored Neurons Register write operation

The format of the register HEENS Monitored Neurons Register in write operation can be seen
in Table A.3.

31 30 29 28 27 26 25 24
DT - - - - - -

23 22 21 20 19 18 17 16
- - VIRT2 ROW2

15 14 13 12 11 10 9 8
ROW2 COL2 VIRT1

7 6 5 4 3 2 1 0
ROW1 COL1

Table A.3: HMNR register (write operation). [42]

• DT: Datatype

0b00: Reserved
0b01: First and second neurons to be monitored
0b10: Third and fourth neurons to be monitored
0b11: Reserved

• COL1: Column of the first neuron

0b0000-0b1111: Column number of the first (or third) neuron to be monitored

• ROW1: Row of the first neuron

0b0000-0b1111: Row number of the first (or third) neuron to be monitored

• VIRT1: Virtualization level of the first neuron

0b000-0b111: Virtualization level of the first (or third) neuron to be monitored

• COL2: Column of the second neuron

0b0000-0b1111: Column number of the second (or fourth) neuron to be monitored

• ROW2: Row of the second neuron

0b0000-0b1111: Row number of the second (or fourth) neuron to be monitored

• VIRT2: Virtualization level of the second neuron

0b000-0b111: Virtualization level of the second (or fourth) neuron to be monitored

95

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	State of the art
	Biological neurons
	Artificial Neural Networks
	Spiking Neural Networks
	HEENS architecture

	Project development
	Current state of the project
	Vivado software and VHDL language

	Screen display via HDMI
	Principle
	Introduction
	Aspect ratio and video resolution
	Video timings
	Color format

	Hardware specification
	HDMI transmitter: ADV7511
	I2C bus switch on ZC706

	Programming
	Introduction
	Clock generation
	Screen resolution
	HDMI transmitter configuration via I2C
	Conversion from RGB to YCbCr
	Generation of the screen

	Results

	Raster plot
	Communication with HEENS
	Principle
	FIFO signals
	Block memory signals
	Reading the FIFO and storing the information
	Implementation of the buffer

	Creating the plot
	Information to show
	Reading the memory and creating the plot
	Extended plot
	Created packages

	Results with emulated neural network

	Plot of neural parameters
	Communication with HEENS
	Principle
	Reading the FIFO and storing the information

	Creating the plots
	Results with emulated neural network

	Experimental results
	Principle
	Ring oscillator
	Delay lines

	Conclusion and future development
	Summary
	Future work

	References
	Appendix
	ADV7511 registers map
	Fixed registers that must be set
	Main Power Up
	HDMI or DVI mode
	Input Formatting Related Registers
	CSC related registers

	ZC706 I2C bus switch
	Raster plot results for 2x2 and 6x6 configurations
	6x6 configuration
	2x2 configuration

	HEENS Control Interface registers
	HEENS Control Interface register map
	HEENS Transfer Register write operation
	HEENS Monitored Neurons Register write operation

