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Human residential population distributions show patterns of higher density

clustering around local services such as shops and places of employment, dis-

playing characteristic length scales; Fourier transforms and spatial

autocorrelation show the length scale between UK cities is around 45 km. We

use integro-differential equations to model the spatio-temporal dynamics of

population and service density under the assumption that they benefit from

spatial proximity, captured via spatial weight kernels. The system tends

towards a well-mixed homogeneous state or a spatial pattern. Linear stability

analysis around the homogeneous steady state predicts a modelled length-

scale consistent with that observed in the data. Moreover, we show that spatial

instability occurs only for perturbations with a sufficiently long wavelength

and only where there is a sufficiently strong dependence of service potential

on population density. Within urban centres, competition for space may

cause services and population to be out of phase with one another, occupying

separate parcels of land. By introducing competition, along with a preference

for population to be located near, but not too near, to high service density

areas, secondary out-of-phase patterns occur within themodel, at a higher den-

sity and with a shorter length scale than in phase patterning. Thus, we show

that a small set of core behavioural ingredients can generate aggregations of

populations and services, and pattern formation within cities, with length

scales consistent with real-world data. The analysis and results are valid

across a wide range of parameter values and functional forms in the model.

1. Introduction
The world is becoming increasingly urban. In 2007, the global urban population

overtook the rural and, by 2050, two-thirds of the world population is expected

to live in cities [1]. Cities are vitally important as hubs of business, commerce,

social interaction and all the other necessary services that help us to survive.

They are highly complex, resource consuming and self-organizing systems, as

people are glued together by the services that support them but also pushed

away by the problems that densification causes.

Issues of urban density will affect transport networks, vehicle kilometres

travelled [2], public transport feasibility [3] as well as social implications such

as quality of life [4].

The existence and size of cities is a phenomenon largely driven from the

bottom up, by the choices of individuals and firms. Yet mathematical patterns

persist such as Zipf’s Law [5,6] which states that within a country or region, a

city’s size is inversely proportional to its rank within that region.

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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As a motivating example of population density within a

UK city, we show a map of London in figure 1. This is an

old city which has grown and absorbed many smaller

towns around it over time. There is a clear increase in popu-

lation towards the city centre, and a notable population crater

in the middle where services dominate. There are further

areas of patchy residential patterning seen within the city

as land uses such as parks, retail and industry outcompete

population in certain areas.

There is a global imperative to better understand how

cities can be structured to function in more efficient and

environmentally benign ways. To this end, we consider

here the emergence of patterns of population density; the

arrangement of people into and within cities. A mathematical

model that supports emergent cities and subsequent second-

ary patterning within the city may deepen our insights into

how cities’ spatial structures emerge and, more importantly,

reveal how these processes might be influenced.

In this paper, we will model and analyse the emergence of

cities using an integro-differential equation approach, assum-

ing a preference for people and services to locate near to each

other, with distance dependence encapsulated in spatial

weight kernels. Firstly, in §2, we will look at precedent

models showing the value of differential equation-based

modelling of cities and highlighting the scope for further

work. In §3, we show how population density in parts of

the UK demonstrates emergent length scales of 45� 50 km

between cities and, in appendix A, we show a length scale

of 200 km between cities in the USA. This analysis provides

the motivation for a new, explanatory, model developed in

§4, which explains the emergence of population patterns.

Linear stability analysis around the homogeneous steady

state, a technique not yet applied in the urban modelling lit-

erature, is used to predict emergent length scales from the

model in §5. This model is developed further in §6 to show

areas of within city structure, as population and services

develop out-of-phase patterns. Lastly, in §7, we add popu-

lation growth to the model to show how cities may grow

and agglomerate, developing structure as they do. We con-

clude with a discussion of our main findings and directions

for future work in §8.

2. Mathematical models for urban population
density

In 1951, Clark [8] proposed the empirical model that, exclud-

ing the central business district (CBD), population density in

cities declines exponentially with distance from the centre.

Subsequently, Newling [9] suggested a revised quadratic

exponential empirical model which captures the low central

population density that corresponds to a city’s CBD. Bertaud

[10] shows examples of nine world cities that display this

characteristic profile. Newling postulated that as the popu-

lation grows the parameters change to create and reinforce

this central dip.

One key model of polycentric configurations and the

interaction between households and firms is due to Fujita &

Ogawa [11]. Their economic agglomeration-based model

adapts Alonso’s well-known 1960s bid rent theory [12]

where retail, manufacturing and residents compete for land;

each having maximum bids for a given distance from the

CBD. In Fujita and Ogawa’s model, land is occupied by

population and firms. Households wish to maximize the

commodities that they can gain from firms by balancing

income, rent and travel costs while firms wish to maximize

their profit by balancing the value gained by locating close

to other businesses (captured by a weighted integral) against

wage and rent costs. Hypothetical city structures are set up,

and the parameters under which these are valid are analysed

population density

(pe km–2)

0–4000

4000–7000

7000–10 000

10 000–15 000

15 000+

0 5 10 15 20 km

Figure 1. Population density distribution in London from 2019 Population data [7], illustrating decreasing density overall with distance from the centre, with

accompanying patchiness. Central London in particular displays a ‘density crater’ with lower population density due to the competing presence of commercial

land use. Other patches are driven by commercial competition and other non-residential land use such as greenspace and parks.
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to explain the possible equilibrium states of the system. They

show that there may be both continuous and sudden struc-

tural changes in the city dynamic at the boundaries of

where an equilibrium is supportable.

In one of the first dynamic spatio-temporal models,

Bracken & Tuckwell [13] used an integro-differential equation

for population in one radial dimension. Their model has three

terms: diffusion of population, logistic growth and an integral

term that represents growth inhibition at distance r from the

city centre. This integral is proportional to the total popu-

lation between the city centre and r, emulating the negative

impacts of travel congestion and increased house prices.

A more detailed and dynamical model of the growth of

urban centres in a larger region was developed by Allen &

Sanglier [14], building on their earlier work [15]. They pro-

pose a model with logistic growth of population density at

a set of discrete locations, with a carrying capacity at each

location which depends on jobs of different types, and with

migration from higher to lower densities (penalized by dis-

tance moved). This model shows how interacting dynamics

of population and jobs or services can produce centres of

attraction; the resulting patterns always develop with

population and jobs co-located in a self-reinforcing pattern.

Alan Wilson’s entropy maximization [16] is a technique

from transport modelling that has been adapted to model

shopping power per location, considering monetary flows

to predict sites with greatest potential for service growth.

The transition from small corner shop to large supermarkets

[17] is explained by modelling the advantage of larger floor

area compared to the travel costs to such sites. Fry & Smith

[18] recently extended this approach to develop a time-depen-

dent model; they use entropy to define the profit of a

configuration and hence drive growth of each retail location.

Simplifications of their model allow asymptotic analysis on

customer preference towards larger floor areas, showing a

bifurcation from a homogeneous state where there are no

differences between centre sizes, to a ‘winner takes all’

dynamic, whereby the centre with the original maximum

size is the site that dominates the market.

Lastly, a number of recent papers on a model of reaction–

diffusion equations of population and wealth distribution

have been released [19–21]. In their statistical analysis of the

population landscape [19], the authors show spatial corre-

lation across Canada, Australia and Mongolia that cannot

be explained by environmental factors alone, highlighting

the need for explanatory modelling. In all three papers,

they model population wealth growth. Low and high

incomes both give rise to lower growth of population,

whereas growth in wealth increases with both increased

wealth and increased population. In the non-spatial system,

there are multiple steady states with complex bifurcations

leading to sudden boom or collapse in the economy or popu-

lation levels. In multiple dimensions, their stability analysis

shows the emergence of characteristic length scales.

Since the 1980s, there has been a growth of bottom-up

computational approaches to urban population modelling,

without a corresponding development of mathematical

theory to uncover general principles. Cellular automata [22–

24] and agent-based models [25–30] are powerful tools for

simulating urban populations and for making data-driven

predictions about the future state of a city, but they tend to

lack explanatory power. On the other hand, parsimonious

models of urban populations can show how the overall

shape of a city may form [9,13], how multiple centres can

dynamically emerge [15] and how to identify such transitions

between equilibria [11]. In this paper, we uncover a set of

underlying principles that can drive city formation and pat-

terning, based on spatial kernels capturing distance

preferences. We focus on the appearance of characteristic

length scales and the emergence of complementary patterns,

which is novel in the urban literature.

3. Length scales between cities
We consider two methods to quantify the length scales

between cities: two-dimensional spatial auto-correlation and

the Fourier transform of a one-dimensional transect. These

techniques are applied to UK Office for National Statistics

(ONS) mid-2016 population density data for lower layer

super output areas in England and Wales (LSOAs, average

1700 people) [31].

Spatial autocorrelation is computed by comparing

Moran’s I at a set of distances [32]. Moran’s I is a measure

from −1 to 1 of the correlation of points separated by distance

d. We group the set of pairs of LSOAs into those with cen-

troid distance 0–1 km, 1–2 km, etc., and calculate the

correlation of points in these groups.

We calculate I(k) for the whole of England and Wales

(encompassing 25 053 LSOAs), as well as showing the smaller

regions of: the North West, including Manchester, Liverpool,

Leeds, Sheffield and Nottingham (6712 LSOAs); and the

region of Oxfordshire including Oxford, Swindon and

Reading (1549 LSOAs) as can be seen on the map in figure 2.

Secondly, we take a Fourier transform of a transect

through the supporting regions. Taking a Fourier transform

breaks the population density into a sum of sinusoidal

waves and enables us to quantify the signal strength at

each wavelength. We do this for a 140 km line through York-

shire and the Midlands, encompassing Leeds, Sheffield,

Nottingham and Leicester. This is compared with a second

slice taken through Bristol, Swindon, Oxford and Luton.

The results of both approaches can be seen in figure 2. In

the North East region, we see a clear peak at a length of

around 48 km and in Oxfordshire we see peaks at 43 km

and 58 km. The Fourier transform shows similar dominant

wavelengths in both regions of around 50 km.

As a brief comparison, appendix A shows similar analysis

of length scales in the USA, which gives a longer character-

istic length of around 200 km. Although these data are not

entirely free from ambiguity, it shows that a characteristic

length scale exists of around 45 km between cities in the

UK and suggests that similar patterns but with different

length scales may be found in different contexts.

4. Integro-differential equations for population
and service dynamics

We model the spatio-temporal evolution of population den-

sity p(x,t) (number of residents per square kilometre) and

service fraction, s(x,t) (fraction of land occupied by services),

at location x and time t. Here, we assume services include

all providers of employment, leisure, retail, etc. Defining

services via land use, as opposed to an abstract term such

as utility, has the advantage of tying in both with available
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data (table 1) and some cellular automata type models

[22,24]. The model simulations will be in one or two spatial

dimensions and the analysis is in one dimension. The differ-

ence between one and two dimensions will be the spatial

kernels and the ease of computation.

We begin by defining a notion of attractiveness to the residen-

tial population, A(x,t), which captures the assumptions that a

location is more attractive if there are services near to that

place, but less attractive if the location is itself full of services

(people may not want to reside in areas of dense service pro-

vision). A is then given as the product of a non-local average

of service fraction and the local fraction of non-service space

Aðx, tÞ ¼ AðSðx, tÞ, sðx, tÞÞ ¼ Sðx, tÞð1� sðx, tÞÞ, ð4:1Þ

where

Sðx, tÞ ¼
ð

w p1ðx� yÞsðy, tÞdy ¼ w p1�sðx, tÞ: ð4:2Þ

Here, is a weight kernel, which captures the non-local contri-

bution of service density. We assume a Gaussian kernel with

length scale β1, so

w p1ðxÞ ¼ Gðx, b1Þ, ð4:3Þ

where

Gðx,bÞ ¼ 1

b
ffiffiffiffiffiffi

2p
p e�ðx2=2b2Þ (In 1D)

and Gðx,bÞ ¼ 1

2pb2
e�ðjxj2=2b2Þ (In 2D)

9

>

>

>

=

>

>

>

;

Such a kernel means that points that are further away from x

have less influence than points near x. It is used elsewhere in

the urban modelling literature [16,38]. The rate of decay is

given by β where larger β gives a more spread shape, synony-

mously with the standard deviation of a normal distribution.
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Figure 2. (a) A map of the population density of the UK showing the regions and lines analysed in this section. Background mapping © Open street map con-

tributors. (b) Autocorrelation for England and Wales, the North West and Oxfordshire regions showing a dominant length scale of 50 km and 43 km, respectively.

(c) Fourier transform of the Yorkshire/Midlands and Oxfordshire lines both showing a characteristic length scale of 45–50 km.
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The parameter β1 therefore characterizes how near the

residential population wishes to be to services.

We then assume that the rate of population movement

from location y to x is proportional to the attractiveness of

x multiplied by the density of potential movers at y and

weighted according to the distance between the locations

(short distance moves being more likely [34]). The rate of

change in population at a location x will therefore be given

by the rate of moving from all other locations y to x (moves

into x), minus the rate of moving from x to all other locations

y (moves out of x):

dp

dt
ðx, tÞ ¼ D

ð

½AðxÞpðyÞ � AðyÞpðxÞ�w p2ðx� yÞdy, ð4:4Þ

where D measures the overall rate of moving and

w p2ðxÞ ¼ Gðx, b2Þ, ð4:5Þ

gives a Gaussian dependence of the rate on the distance

moved.

The dynamics of the service fraction, s(x,t), is assumed to

be driven by a demand that is an increasing function of the

residential population that can access services at x. Growth

in the service fraction is therefore driven by innovators that

start new businesses when demand exceeds supply, and

expansion of existing businesses, imitators. However, if

supply exceeds demand, then competition would force

Table 1. Table of parameters corresponding to equations (4.1) to (4.10) that define dp/dt and ds/dt. These parameters are based on UK data from publicly

available data sources.

parameter definition default value justification

βs length scale for the kernel ws,

characterizes how close services wish

customers to be

5 km mean trip distance to shopping in an urban conurbation is

4:7 km [33]

b p1
length scale used in kernel w p1

corresponding to how near population

wishes to be to services

1 km assume attraction of an area is given by local services; those within

walking distance. Average walk to shops is 1:1 km [33]

b p2
length scale corresponding to how far

population is willing to move to a

more desirable location

10 km in 2013–2014, the median household move was in the ‘5-10 miles’

group [34]

λ population scale parameter for the

carrying capacity function,

equation (4.10)

20000 pe km�2 in London wards 0 < p < 14 000 [35] and 0 < s < 0.4 (assuming s

to be non-domestic land use) [36]. If P = λ then s will be

expected to approach σ(λ) = 1− (1/e)≈ 0.63 which is

significantly higher than the value for s in London. Since σ(P)

is an increasing function, this means that λ must be larger than

the maximum population density in London. Selecting λ =

20 000 seems a reasonable estimate for this upper end of

population density and service provision

μ steepness parameter for the carrying

capacity function

3 taking the mean of London wards gives �p ¼ 8400 pe km�2 [35]

and �s ¼ 0:06 (assuming s to be non-domestic land use) [36].

Using these values and solving the homogeneous steady-state

equation (5.1) gives μ≈ 3.2, assuming λ = 20 000

D rate of change of population density in

an area

2 yr�1 at the homogeneous state, the number of people who move in or

out of a place is given by D · p0 · A0 = D · p0 · σ( p0) · (1−

σ( p0)). In London in 2018-19, flows in and out were

approximately 290 pe km�2 yr�1 [37] and population density,

p0, was approximately 5700 pe km
�2. This gives D≈ 2.2

g speed of service followers per year 2 yr�1 ignoring f, ds/dt is at its maximum value when σ = 1 and s =

0.5, giving ds/dt = 0.25g. At this rate it will take 2/g years for s

to reach σ = 1. g = 2 (1 year) seems a sensible timescale for

this maximal rate

f speed of service innovators per year 0:05 yr�1 we assume that change is mostly driven by logistic growth and

therefore service innovation is slower than service followers. If

s = 0, ds/dt = f · σ( p). At this rate it would take 1
f
¼ 20 years

to reach the steady state
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some out of business. We have

ds

dt
ðx, tÞ ¼ ðf þ gsÞ(sðPÞ � s): ð4:6Þ

The rates f and g represent the speed of service innova-

tors and imitators respectively. The carrying capacity for

services for a given population density is σ(P(x,t)). P(x,t)

is a weighted integral of p(x,t), where the third and

final kernel in the model, ws, encapsulates dependence of

the carrying capacity on the population distribution. The

kernel here captures the typical distance residents travel to

places of work, retailers and other services. The equation

for P(x,t) is

Pðx, tÞ ¼ ws � pðx, tÞ: ð4:7Þ

We assume the spatial weight kernel ws is Gaussian;

specifically

wsðxÞ ¼ Gðx,bsÞ: ð4:8Þ

From the definition of s(x,t) being the fraction of land

occupied by services, we require 0≤ s≤ 1 and so 0≤ σ≤ 1

also. It is natural to expect that the greater the popula-

tion near x, the more services can be supported at x by

this population, therefore σ(P) should be a non-decreasing

function. We assume that carrying capacity for services will

take the form

sðPÞ ¼ 1� e�(P=l)m : ð4:9Þ

This function has the features that σ(0) = 0, lim p→∞σ( p) = 1

and dσ/dP > 0. σ can be understood as the potential for

service provision for a given population. The parameter λ

represents the population scale and μ represents the shape

of the function. If μ≤ 1 this function is concave and if μ > 1

it is sigmoidal with maximum steepness increasing with μ.

The sigmoidal form would model a situation in which, at

low populations, the benefits of setting up a business

barely exceed the fixed costs and service carrying capacity

increases weakly. As the population increases, there may be

a tipping point where the benefits gained increasingly out-

weigh the costs, leading to a marked steepening of the

carrying capacity function, which then levels off as the

population approaches saturation.

For simplicity, we assume initially that there will be no

growth of the total population. Instead, we will analyse

how the steady states of this model depend on the total

population.

Equations (4.4) and (4.6) give a description of the spatio-

temporal interaction between population and services. A dia-

gram explaining these interactions can be seen in figure 3a.

Explanations and estimates for the default parameters corre-

sponding to UK data are given in table 1. Numerical methods

are explained in appendix B.

Simulations of the model with the kernels and parameters

listed show that the system tends either to a spatially homo-

geneous state, where population and services are completely

mixed, or spatial patterns emerge. These patterns take the

form of areas of increased population and service density,

as shown in figure 3b. An initial homogeneous population

is seeded with small random perturbations. After 50 years,

we start to see some areas growing more than others and,

by 100 years, clear city structures have formed. The largest

cities have a slight density crater in the city centre.

Continuing the simulation to 150 years shows solidification

of the city structure occurring as people move to the city.

The length scale of the pattern is 53 km according to the

spatial autocorrelation (figure 3c).

5. Spatial instability leads to patterned steady
states

We wish to understand the conditions in which a homo-

geneous steady state or a spatial pattern emerge. For any

homogeneous {p0, s0}, equation (4.4) will be zero and there-

fore the homogeneous steady state for p is p0 ¼ �p, the

average population density, which is dictated by the initial

conditions. Equation (4.6) gives the homogeneous steady

state for s as

s0 ¼ sðp0Þ: ð5:1Þ

To better understand which wavelengths we expect to

emerge from an unstable homogeneous state, we consider

the perturbation from the steady state

p ¼ p0 þ ~pðx, tÞ, s ¼ s0 þ ~sðx, tÞ: ð5:2Þ

In particular, we look for Turing-like instabilities; that is by

looking at sinusoidal perturbations of frequency k, given by

f~pðx, tÞ, ~sðx, tÞg ¼ f�pðtÞ eikx, �sðtÞ eikxg: ð5:3Þ

Linearizing, we obtain a problem of the form

_�p
_�s

� �

¼ Jðp0, s0, kÞ
�p
�s

� �

ð5:4Þ

so that we can analyse the stability matrix J. Calculation of J

can be found in appendix C.1, giving

Jð p0; s0; kÞ

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵ p2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ
ð f þ gs0Þs0ð p0ÞŵsðkÞ �ð f þ gs0Þ

2

6

4

3

7

5
:

ð5:5Þ

For each frequency, k, perturbations are unstable if at least

one eigenvalue of J(k) has positive real part. We plot the real

part of the leading eigenvalue against spatial frequency in

dispersion relations to see the modes with a positive

growth rate. We plot these dispersion relations as we vary

the average population in the model in figure 4a.

This shows that for small populations, modes of lower fre-

quency grow, but higher frequency, shorter wavelength

modes dissipate. As population density increases, the fastest

growing mode moves from five peaks in the domain (40 km

wavelength) to 2–3 peaks (60–100 km). For larger population

densities, the dispersion relation predicts that all pertur-

bations will dissipate.

We can further analyse this Jacobian to calculate con-

ditions for any wavelengths to be unstable. We show in

appendix C.1.1 that there are unstable frequencies if and

only if

s0ð1� s0Þ
p0s0ðp0Þ

þ s0 , ð1� s0Þ, ð5:6Þ

and that, if this holds, then instability occurs in a window

(0, kc) for some critical frequency kc.
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We can solve for equality in (5.6) using (5.1) to find the

bifurcation point at which spatial instability arises, {p0, s0}.

For the carrying capacity function given by equation (4.9),

the bifurcation point in s occurs at the solution of s0 =

μ (2s0− 1) ln(1− s0). The bifurcation point depends only

on μ and the equation has a solution for μ≥ 1. The parameter

μ is the steepness of the change in carrying capacity for

services for a change in population. It is concave with

respect to population density if μ < 1 and sigmoidal other-

wise. Using the value of μ = 3 in figure 4, we calculate

s0 = 0.37, p0 = 15 360 for the bifurcation point.

For a more general σ(p), if equation (5.6) holds, we must

have p0σ
0(p0) > s0 = σ(p0). Although technical exceptions can

be found, this suggests that σ should be convex on (0, p0) for

instabilities to the homogeneous steady state to arise. This

model analysis predicts that when service potential is highly

reactive to a change in population (convex σ(p)) then we

expect pattern generating instabilities to arise. Conversely, if a

change in population does not drive a sufficient reaction in ser-

vice potential then we expect such a perturbation to die away.

Moreover, if equation (5.6) holds and there are instabilities

of the homogeneous steady state, then . Regardless of the
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Figure 3. Emergence of cities from an initial random population distribution. (a) The key interactions in the model. p and s represent population and services at a

point. Blue lines represent non-local dynamics, that is where a spatial convolution is used to characterize the influence of a distribution in the neighbourhood around

a point. (b) We initialize a population of p = 8000 + 1000r, where r∼ N(0, 1). After 100 years, we see the clear emergence of city structures, which are further

strengthened at 150 years. (c) The length scale between these cities is around 53 km as can be seen in the autocorrelation plot of the final simulation. Parameters

correspond to the default parameters in table 1.
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carrying capacity function, instability can only occur where

we have sufficiently small population densities and

services. If the population is too high, the model predicts

that there would be urban sprawl rather than further

agglomeration.

We can also see that for a solution to be unstable to a

certain perturbation, that perturbation must have a sufficien-

tly long wavelength. In an urban context, this means that we

do not expect to see lots of very small but high-density cities

next to each other. In this case, we expect agglomeration

would occur. However, if cities are far enough apart, we

can expect them to remain distinct.

Having analysed the homogeneous steady state, we can

now look at the patterned steady states and determine their

stability. These can be calculated using a process of numerical

continuation [39]. Beginning with a steady state produced by

simulation, we track how this state changes as we vary the

average population size, �p. This allows us to see the regions

in which a patterned state can exist and to explore the bifur-

cation points. This can be seen in figure 4b. The patterned

states emerge at low average populations until a series of

bifurcation points where each becomes stable. The last bifur-

cation to the homogeneous state is at confirming what we

saw with the dispersion relation. Between �p ¼ 15 360 and

�p ¼ 18 000, both the homogeneous steady state and the pat-

terned state are stable and for �p . 18 000 only the

homogeneous state is stable.

Figure 4b suggests that the only stable patterned state is

the single cluster pattern. This is due to the presence of meta-

stable steady states, where the instability can only be seen by

simulating the system for an extreme length of time, as in

figure 4c. All the multi-peak branches display this metastabil-

ity. However, the timescales at which this agglomeration

occurs might be of the order of greater than a millennium

or even more and these steady states are therefore only

very weakly unstable.

0 0.1 0.2 0.3 0.4 0.5
–0.08

–0.06

–0.04

–0.02g
ro

w
th

 r
at

e
(r

ea
l 

p
ar

t 
o
f 

le
ad

in
g
 e

ig
en

v
al

u
e)

m
ax

im
u
m

 s
er

v
ic

e 
p
ro

v
is

io
n
,

spatial frequency, k average population density, p

0

0.02

0.04

0.06

(a)

(c)

(b)

average  population density

p = 5000

s 
(x

)p = 13 620
p = 14 743
p = 15 360

p = 17 000

0.5 1.0 1.5 2.0 2.5

×104

3.0

homogeneous solution

1 city in domain

2 cities

3 cities

4 cities

5 cities

6 cities

7 cities

8 cities

0

0.2

0.4

0.6

0.8

1.0

population density service density

2.0 0.6

2000

1500

1000

500

0

2000

1500

1000

500

0
–100 0 100–100 0

distance (km) distance (km)

100

0.5

0.4

0.3

0.2

0.1

1.5

1.0

ti
m

e 
(y

ea
rs

)

0.5

×104

Figure 4. (a) Dispersion relations at five different values of the average population, �p. The crosses correspond to the different wavenumbers. This diagram

shows which spatial frequencies are unstable; the larger the real part of the eigenvalue, the more destabilizing that frequency. As population density �p increases,

the length scale of the dominant unstable wavelength increases from around 40 km (k ¼ 0:15) to around 60 km (k ¼ 0:1). At �p ¼ 15 360, the dispersion

relation is tangential to the horizontal at k = 0. This is the bifurcation point where no modes are unstable. At �p . 15 360 any perturbation decays. (b) Bifurcation

diagram showing where patterned steady states exist as average population density varies. Thick lines correspond to stable solutions and thin lines correspond to

unstable solutions. The stable branch is the single city solution, but other branches display metastability. (c) Time simulation showing how a seven bump metastable

steady state suddenly transitions into a three bump state after a very long time period. The three bump solution is itself metastable but persists for any reasonable

timescales. Initial conditions were p(x,0) = 10000 + 5000 cos (7πx/100) with s(x,0) = σ( p(x,0)).
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We have shown how distinct cities can form where the

average population density is sufficiently low and there is

sufficient reaction by services to a change in population.

Unstable perturbations to the homogeneous steady state

must be of sufficiently long length scale showing how

we expect agglomeration to occur over longer rather than

shorter distances. The dominant unstable wavelength of

such perturbations can be seen in the dispersion relations

given by the linear stability analysis of the steady state. We

also saw the presence of bifurcation points and metastable

steady states in the system which shows how sudden agglom-

eration may occur, particularly as population increases.

6. Secondary patterning when services compete
for space and residents avoid high service
density

London in figure 1 shows an example of multiple patterning.

Firstly, aggregation brings people and services together to form

thecity itself andthere isagrowth inpopulationdensity towards

the city centre. However, there is secondary patchy patterning

on top of this framework. Thismay bedriven bypeople and ser-

vices occupying distinct areas (one is high when the other is

low)—seen in particular at the centre of the city.

Within our model framework, we make two further

assumptions. We assume that people’s desire is to locate

‘near but not too near’ to the services that support their

needs; and that there is competition for space between

people and services within cities. The first assumption

about people’s location choice can be built into kernel w p1

by using a Gaussian kernel that has been shifted off centre

by distance ap in each direction and then summed

w p1ðxÞ ¼
1

2
(Gðxþ ap,b p1Þ þ Gðx� ap,b p1ÞÞ: ð6:1Þ

G is the Gaussian previously defined in equation (4.4). This

assumes that there is an ideal distance ap which people

wish to be from service locations. Moreover, competition is

introduced into equation (4.6) as services compete for space

with residents.

ds

dt
ðx, tÞ ¼ ðHðsðPÞ � ðsþ a1pÞÞ f þ gsÞ � (sðPÞ � ðsþ a1pÞ):

ð6:2Þ

With competition now included, the space requirements of

people can overcome the potential for service growth so we

assume that if there is no potential for service growth then

there are no innovators, f. This is why we have a factor of

H(σ(P)− (s + α1p)), where H is the Heaviside step function.

Importantly, this ensures that s = 0 is a lower bound for ser-

vices. The default values for the new parameters ap and α1

can now be found in table 2.

Including competition can give both in-phase and out-of-

phase patterning at different spatial scales (figure 5a,b). In-

phase patterns are the co-location of high-densities of

people and services, such as seen on a large scale in cities.

Out-of-phase patterns are where people and services

occupy distinct and complementary areas; here they typically

have shorter length scales and occur as secondary structures

within cities.

In this example, a three bump solution with no secondary

pattern (figure 5a) persists at the same parameter values as a

two bump solution with shorter wavelength secondary pat-

terning within each bump (figure 5b). This secondary

pattern has a wavelength of around 5 km.

In order to understand the emergent length scales, we

again use linear stability analysis around the homogeneous

steady state, {p0, s0}. The steady state for p is given by

p0 ¼ �p, the average population density which is dictated

by initial conditions. For smaller population densities

(�p , 11 500), we have that σ( p0) < α1p0 and so the spatially

homogeneous steady state is p0 ¼ �p, s0 = 0. There will not

be sufficient demand for services to overcome the compe-

tition for space and so no services can be supported.

Patterned states can exist with these average population den-

sities but they are not emergent from the homogeneous

steady state. Instead, they would have to emerge from

different initial conditions.

For �p . 11 500, we have that σ( p0) > α1p0 and the steady

state is

p0 ¼ �p, s0 ¼ sðp0Þ � a1p0: ð6:3Þ

The Jacobian is given by

Jð p0; s0; kÞ

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵ p2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ
ð f þ gs0Þðs0ð p0ÞŵsðkÞ � a1Þ �ð f þ gs0Þ

2

6

4

3

7

5
:

ð6:4Þ

Table 2. Supplement to table 1. Additional parameters for equations (6.1) and (6.2).

parameter definition

default

value justification

ap secondary length scale used in kernel w p1

corresponding to the population’s

preferred distance to services

1:5 km given b p1
¼ 1 km, ap = 1.5 creates distinct, off centre, peaks

without separating the two Gaussians completely

α1 competition parameter. How much space

does each person take away from

services

1.5 × 10−5

km2 pe�1

when population dominates, α1 p = 1. In London wards, the

maximum population density is 28 863 pe km�2 which

would give a1 ¼ 3:53� 10�5 km2 pe�1. We assume less

competition than this [35]
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The Jacobian not only enables us to see whether

an instability emerges but we can also see the phase of this

perturbation; whether we expect p and s to grow in the

same places or to separate. We do this by looking at

the eigenvector corresponding to the unstable eigenvalue.

Figure 5c shows the change in the dispersion relation as we

increase the initial population. At �p ¼ 5000, the homo-

geneous state is given as s0 = 0. At �p ¼ 12 000, both in- and

out-of-phase patterning are predicted. As we increase the

population density to no pattern is unstable. Lastly, as the

population density further increases, the competition forces

out of phase patterning again. Moreover, we see that in

phase patterning occurs at similar frequencies to before,

with a wavelength of around 50 km. Out-of-phase patterning

occurs at a shorter wavelength of around 5 km, which is a

frequency of 1.25. In order for out-of-phase patterns to

be predicted by the linear analysis, we must have α1 > 0

and ap > 0 (appendix C.2). These are necessary but not

sufficient conditions.

Figure 5d maps an example of where in the α1, ap par-

ameter regime in- and out-of-phase patterning is predicted.

The homogeneous steady state is given by s0 = σ( p0)− α1p0.

Therefore, as we increase α1 so the steady state for s0
will decrease. If the original homogeneous steady state is

stable, as in figure 5, introducing some competition may

induce in-phase patterning. Increasing ap, the ideal length

people wish to be from services, can induce out-of-phase

patterning, as long as there is sufficient competition to

drive it. For very large α1, competition for space means that

services do not have the population nearby to overcome

this competition and they die out completely, leaving a

stable steady state again.

The out-of-phase patterning seen in figure 5b is not pre-

dicted by the linear stability analysis of the homogeneous
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Figure 5. Out-of-phase patterning for the model with competition. (a,b) Example simulations showing how in-phase and out-of-phase patterning are possible. Both

have the same parameters and mean population �p ¼ 16 000, with α1 = 1.3 × 10−5. Initial conditions can be seen in figure 11. (c) Dispersion relations for different

values of the average population, �p. At low populations, there is not sufficient service potential to overcome competition for space so no instability can persist. At

higher populations, both long wavelength in phase patterns and short wavelength out-of-phase patterns are predicted by the analysis. Finally, at higher population

densities, only out-of-phase patterning persists. (d ) Spatial instabilities, their phase and spatial frequency predicted by the linear analysis in the ap, α1 parameter-

space. We use for which the spatially homogeneous steady state is stable when ap, = 0 = α1. For weak competition (α1 > 2.5 × 10−6) an in-phase instability of

low frequency (long wavelength) occurs. For sufficiently strong competition and desire for spatial separation, out-of-phase instability with higher spatial frequency is

dominant. For α1 > 2.5 × 10−5, there is so much competition for space that services do not have the population nearby to overcome this competition and they die

out completely, leaving a stable solution again. The black ‘x’ marks the point in parameter space used for the simulations in (a,b) showing how secondary patterning

persists even into regions not predicted by the linear stability analysis.
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steady state for this average population yet it can persist

across the parameter space. In this particular case, such pat-

terning is secondary, forming after an initial city has grown

and developed.

In summary, this model produces both in- and out-

of-phase patterns of different spatial lengths; the new

out-of-phase patterning is of shorter wavelength. Within a

city context, the desire for co-location agglomerates people

into cities and competition for space creates divisions in

land use.

7. Including population growth and competition
shows cities emerging before secondary
patterning appears

Lastly, we include population growth in the model via logis-

tic growth up to some carrying capacity with competition for

space from services. This changes equation (4.4) to be

dp

dt
ðx, tÞ ¼ D

ð

½AðxÞpðyÞ � AðyÞpðxÞ�wp2ðx� yÞdy

þ rp 1� pþ a2s

c

� �

: ð7:1Þ

A schematic of the full model can be seen in figure 6a and

the new parameter values in table 3 with explanations in

appendix E.

Similarly to the previous case, in- and out-of-phase pat-

terning are possible, depending upon the value for the

carrying capacity c. This can be seen in dispersion relations

as we vary the carrying capacity in figure 10 and in the

example in figure 6. The homogeneous steady state from

dp/dt is now dependent upon the carrying capacity c. The

steady state is now given by the solution to

p0 þ a2s0 ¼ c, s0 ¼ sðp0Þ � a1p0: ð7:2Þ
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Figure 6. (a) Schematic diagram of the full model from §7 explaining the key interactions. This encompasses equations (6.2) and (7.1). (b) Dispersion relations

corresponding to the one-dimensional and two-dimensional cases for the default parameter set (tables 1, 2 & 3), also corresponding to the simulation in (c). This

shows that both in- and out-of-phase patterning can still be predicted when both the population and services grow and compete for space. (c) Simulation of the

growth and secondary pattern formation of cities. Initial conditions are p0(x, y) = 200 on 10% of the domain. We see that, firstly, population grows everywhere and

as it does, distinct cities appear. Then secondary structure emerges within the cities as population separates from services.
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We note that it is possible to keep the previous steady

state {p0, s0} unchanged by choosing c as

c ¼ p0 þ a2s0: ð7:3Þ

The Jacobian used to produce these dispersion relations is

as follows:

Jð p0; s0; kÞ

¼

Dp0ð1� ŵp2ðkÞÞ�
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ �

rp0
c

ðð1� s0Þŵ p1ðkÞ � s0Þ

� ra2p0
c

ð f þ gs0Þðs0ð p0ÞŵsðkÞ � a1Þ �ð f þ gs0Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

ð7:4Þ
The effect of logistic growth is generally stabilizing for long

wavelength perturbations. In particular, homogeneous per-

turbations would return to the steady state. However, the

competition parameter α2 will tend to be destabilizing for

higher spatial frequencies, assuming that population and ser-

vices both compete sufficiently for space (appendix C.3).

Figure 6c shows an example simulation of the full model

in two dimensions, demonstrating growth of cities and sec-

ondary, out-of-phase, patterning that gives separation of

population and services. Population initially grows but is

not sufficient to drive urbanization. Then, after a number of

years, cities form as there is sufficient population to drive

the demand for services and colocation. Continuing time for-

ward further shows that, within these cities there are distinct

areas of service provision, surrounded by population. This

model more realistically captures the long-term growth

dynamics of population into urban areas.

8. Discussion

8.1. Conclusion
The emergence of spatial structure in human populations has

received relatively little attention when compared with the

quantification of urban patterns. Much focus has been on

measuring structure rather than understanding or predicting

where those structures come from. Inspired by typical length

scales that are apparent in population density data between

cities, here we have shown that a simple set of plausible

local and spatial interactions can explain the emergence of

cities via reinforced aggregation. While conceptually simple

in comparison with computer modelling techniques such as

cellular automata and agent-based models, these models

benefit from deeper explanatory power; offering the potential

not just to describe what we currently see in cities but also to

explain how such dynamics emerge.

The hierarchy of integro-differential equation models

developed here focuses on spatial kernels to capture the dis-

tribution of non-local dependencies. This model shows that

the preference for population location in proximity to services

can either lead to a completely mixed homogeneous state or

drive the emergence of urban centres, seen in a spatial pat-

tern. Numerical continuation and linear stability analysis of

the steady states of this model shows how different length

scales emerge, depending upon the initial conditions and

parameters (figure 4). In phase spatial instabilities are

shown to be destabilizing only if the perturbation is of a suf-

ficiently long spatial scale and only if a change in population

density produces a sufficient change in service density. One

observation from this model is that many steady states are

metastable; over long time periods, we would see transitions

at the merging of city centres as cities agglomerate.

Within cities, we also see patterning emerge around local

services as long scale co-location and short scale separation of

population and service provision occurs. In the model, this is

driven by competition for space and desire by people to be

near, but not too near, to the services they need to support

them (figure 5).

Length scales within the model are typical of those seen

in the data for the UK. Differences in parameters such as

house moves and preferred travel distances may explain

different length scales between the UK and the USA. In the

USA, people might tend to move greater distances, both to

move house and to travel to their desired services, which

gives rise to sprawling metropolises. Conversely, the rapidly

urbanizing cities of China and Brazil may be driven by

people moving long distances to be as close as possible to

services, generating high-density distinct megacities. Our

modelling approach would give valuable insight into the

different city formations around the world.

8.2. Limitations and future developments
Our parsimonious approach has several limitations. Firstly,

by using an aggregated differential equation methodology,

we have gained mathematical tractability but lost the effects

of population heterogeneity. As explained in the literature

review, we believe that this approach provides a useful coun-

terpoint to the increasingly popular bottom up agent-based

methodologies.

Secondly, we have considered parameters that are static

over time. Technological advances and societal changes will

doubtless affect the functions and kernels that capture behav-

iour. This simplification enables us to provide mathematical

rigour to our conclusions that would not be possible with

further complicating assumptions. Such work is beyond the

scope of this paper, but we motivate the discussion with

Table 3. Supplement to tables 1 and 2 showing the default values for the new parameters in equation (7.1)

parameter definition default value justification

r intrinsic population growth rate 0:05 yr�1 see appendix E

c carrying capacity for population

density

12 000

pe km�2

c will define p, therefore we consider a similar range

α2 competition of services to

population density

100 000

pe km�2

at steady state, p + α2s = c. If p ¼ 10 000 pe km�2, and s = 0.05,

then a2 ¼ 100 000 pe km�2
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one example of dynamically changing length scale par-

ameters in figure 7 to highlight the potential of our

modelling approach.

Thirdly, we have assumed that people (and services) are

motivated solely by coexistence preferences. In reality,

people’s desires will also be affected by multiple competing

interests such as employment opportunities, housing stock

and house prices, transport and more—all of which require

attention. This would be further confounded by the disaggre-

gation of people according to factors such as income or

ethnicity, or disaggregation of service types into retail, indus-

try, etc. It is not easy to determine the relative importance of

such influences or disentangle the effects of each. Our focus

on colocation preferences of people and services has enabled

us to elicit understanding regarding the implications of those

preferences for patterning and urban length scales.

Despite these limitations, our approach is intuitive and

mathematically rigorous. By developing an aggregated form

of model, we have sidestepped the myriad of uncertainties

involved in bottom-up modelling and minimized the varia-

bility. We hope that this exploration can be a springboard

for future developments to accommodate these complicating

factors which could deepen our understanding of the spatial

development of populations.
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Appendix A. Length scales in the USA
Figure 8 shows the results from length scale analysis of popu-

lation density data from the north east USA, from the 2010

Census at census tract level [40] similarly to §3. Autocorrela-

tion on a region of Indiana, Ohio and Kentucky demonstrates

a spatial length scale of 200 km. We also take the Fourier

transform of a slice through key cities on the East coast:

Washington, Philadelphia, New York and Boston, which

gives a similar 200 km length scale. The USA seems to

show a longer characteristic length scale than the UK.

Appendix B. Numerical methods
For timestepping and numerical continuation, we use a code

structure from Avitabile [39]. We use a pseudospectral colloca-

tion method to compute convolutional integral operators.

Hence, we expect spectral accuracy for the spatial discretization

(albeitwehavenotusedde-aliasing). This requires theuseofper-

iodic boundary conditions; implying that the region considered

is similar to its neighbouring regions.

To converge on and continue steady-states, we perform

Newton-GMRES iterations with tolerance 0.001. For the

time-stepper, we use the same spatial grid and discretization

method as the steady-state calculations, and we employ

Matlab’s in-built ode113 routine, with default tolerances.

Appendix C. Mathematical analysis of the model

C.1. Linearization of the model without competition or

population growth
Here, we show the linearization of _p, _s from equations (4.4)

and (4.6) for use in the Numerical continuation algorithm
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Figure 7. Increasing typical travel distances over time leads to exaggerated agglomeration. We vary b p1
, b p2

and βs as in (F1). The mean population density is

�p ¼ 10 000 pe km�2. Initially (t≈ 30), the pattern that emerges from random perturbations to the spatially homogeneous steady state has a wavelength of

approximately 16 km. As time continues, the pattern coarsens and larger agglomerations form with a wavelength of about 100 km. Further details of the parameter

variation can be found in appendix F.
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and then obtaining the Jacobian used in the linear stability

analysis. We define

Fðp, sÞ ¼ _pðx, tÞ
_sðx, tÞ

� �

: ðC 1Þ

Then we calculate Fðp0 þ ~p, s0 þ ~sÞ � Fðp0, s0Þ where {p0,

s0} are the current state and f~p, ~sg are the perturbations

from this state of order ϵ. Using a Taylor expansion for σ,

we get

Fðp0þ~p,s0þ~sÞ�Fðp0,s0Þ
e

¼ D½A0 �ðwp2 �~pÞþ ~A�ðwp2 �p0Þ�~p�ðwp2 �A0Þ�p0 �ðwp2 � ~AÞ�Þ
ðfþg�s0Þ�ð~p�s0ðp0Þ�~sÞþg�~sðsðp0Þ�s0Þ

 !

,

ðC2Þ

where

A ¼ A0 þ ~A

¼ ðw p1� s0Þ � ð1� s0Þ þ (ðw p1� ~sÞ � ð1� s0Þ � ðw p1� s0Þ � ~s):
ðC 3Þ

In order to look at different spatial frequencies, we con-

sider perturbations that are sinusoidal by considering

f~pðx, tÞ, ~sðx, tÞg ¼ f�pðtÞ eikx, �sðtÞ eikxg: ðC 4Þ

We will use the fact that the Fourier transform of a

Gaussian kernel, as defined in (4.9), is ŵðkÞ ¼ e�2ðp2b2Þk2 .

This is also Gaussian and ŵð0Þ ¼ 1 for any β. It has a

maximum at k = 0 and 8k, 0 � ŵðkÞ � 1. Moreover, we

define the kernel w p12 :¼ w p1 �w p2 . In the case that w p1

and w p2 are Gaussian, the convolution theorem gives

that: Fðw p12Þ ¼Fðw p1ÞFðw p2Þ ¼ e�2ðp2b2
p1
Þk2 e�2ðp2b2

p2
Þk2 ¼

e�2p2ðb2
p1
þb2

p2
Þk2 . Thus w p12 is also a normalized Gaussian

kernel with parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b 2
p1
þ b 2

p2

q

.

We have that for any kernel w,

w � ~p ¼ w � �pðtÞ eikx ¼ �pðtÞ
ð

1

�1
eikðx�yÞwðyÞdy

¼ �pðtÞ eikx
ð

1

�1
e�ikywðyÞdy ¼ ŵðkÞ �pðtÞ eikx: ðC 5Þ

Similarly, we have w �~s ¼ ŵðkÞ�sðtÞ eikx. Using this, we will

calculate the Jacobian of the temporal change in coefficients �p

and �s close to the steady state by substituting ~p ¼ �p eikx and

~s ¼ �s eikx into (C 2). At the homogeneous steady state s0 =

σ( p0), w ∗ p0 = p0 and w ∗ s0 = s0.

Factoring out eikx and writing in matrix form, we get

_�p
_�s

 !

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵp2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ

ð f þ gs0Þs0ð p0ÞŵsðkÞ �ð f þ gs0Þ

2

6

6

4

3

7

7

5

�p

�s

� �

:

ðC 6Þ

This Jacobian can be validated against the simulation to

show it correctly approximates the behaviour of the system

close to the steady state.

C.1.1. Conditions for spatial instability
Using the Jacobian from equation (5.5), also shown above in

equation (C 6), we wish to prove the following:
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Figure 8. (a) Map of the population density of north east USA showing the areas analysed. Background mapping © Open street map contributors. (b) Correlogram

for Indiana/Kentucky/Ohio region showing length scale peaks at 200 km and 400 km. (c) Fourier transform of the line from Washington to Boston, giving a corre-

sponding wavelength of about 200 km.
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For Gaussian kernels, there are unstable frequencies if and

only if s0(1− s0)/(p0σ
0(p0)) + s0 < (1− s0). If this holds,

then instability occurs in a window (0, kc) for some critical

frequency kc.

If the system is stable, then both eigenvalues of J will

have negative real part which is the case when trðJÞ and

detðJÞ . 0. We have that for the Fourier transform of a

Gaussian kernel, ŵ � 1. Moreover, s0≤ 1 and so tr(J ) < 0 for

all frequencies k.

Therefore, we only need to look at the sign of detðJÞwhich

can be rearranged as

detðJðkÞÞ ¼ Dð1� ŵ p2Þðf þ gs0Þp0s0ðp0Þ

� s0ð1� s0Þ
p0s0ðp0Þ

þ s0ŵs � ð1� s0Þŵsŵ p1

� �

: ðC 7Þ

We note that det(J(0)) = 0 and limk→∞ det(J(k)) =D( f + gs0)

s0(1− s0) > 0. Therefore,we look for a second zero of det(J(k)). If

a second solution to det(J ) = 0 exists at k = kc and no third sol-

ution exists, then det(J ) < 0 for k∈ (0, kc] and det(J ) > 0 for

k∈ (kc,∞); that is, the steady state is unstable to perturbations

with wavelengths k∈ [0, kc).

In order to analyse det(J ), we first define FðkÞ ¼
s0ð1� s0Þ=ð p0s0ðp0ÞÞ þ s0ŵsðkÞ, GðkÞ ¼ ð1� s0ÞŵsðkÞŵp1ðkÞ.
For k > 0, det(J(k)) = 0 iff F(k)−G(k) = 0. We claim that a non-

zero solution to F(k) = G(k) exists if and only if s0(1− s0)/(p0σ
0( p0-

)) + s0 < 1− s0 and that if it exists, this solution is unique.

We will use the fact that ŵsðkÞŵ p1ðkÞ ¼ e�p2k2ð1=bsþ1=b p1
Þ.

From the shape of Gaussian functions, ŵsŵ p1 , ŵs 8 k . 0.

Secondly, ŵsŵ p1 is steeper than ŵs. That is that

ðd=dkÞðŵsŵ p1Þ , ðd=dkÞŵs , 0.

Now assume that s0(1− s0)/( p0σ
0( p0)) + s0 < (1− s0). Then

F(0) <G(0). However, limk→∞ F(k) = s0(1− s0)/( p0σ
0( p0)) > 0

and limk→∞ G(k) = 0. Therefore, there must be at least one

crossing point and hence a solution to det(J ) = 0.

Conversely, if s0(1− s0)/( p0σ
0( p0)) + s0 > 1− s0, we must

look at two cases.

Case 1: s0 > (1− s0). For all k > 0,

FðkÞ � s0ŵs . ð1� s0Þŵs . ð1� s0Þŵsŵ p1 ¼ GðkÞ:

Therefore, FðkÞ= GðkÞ 8 k . 0.

Case 2: s0≤ (1− s0). We have that F(0) = s0(1− s0)/

( p0σ
0( p0)) + s0 > 1− s0 =G(0).

F0ðkÞ ¼ s0
dŵs

dk
� ð1� s0Þ

dŵs

dk
� ð1� s0Þ

dðŵsŵ p1Þ
dk

¼ G0ðkÞ:

So we have that F0(k) >G0(k) and F(0) >G(0). Therefore,

these two functions are never equal and hence there is no sol-

ution to F(k) =G(k). Thus a second solution to det(J ) = 0 exists

if and only if s0(1− s0)/( p0σ
0( p0)) + s0 < 1 – s0.

Finally, we must show the solution is unique. Assume

that there is a solution to F(k) =G(k). This implies that

s0(1− s0)/( p0σ
0( p0)) + s0 < 1− s0 and hence s0 < 1− s0. Using

case 2 from above, F0ðkÞ . G0ðkÞ 8 k . 0. As the derivatives

are never equal, Rolle’s theorem shows that the solution

must be unique in the range k > 0.

Thus we have showed that det(J ) > 0 for sufficiently large

k. Therefore, if there are no solutions to F(k) =G(k), then

det(J ) > 0 for all k > 0. A solution can occur if and only if

s0(1− s0)/( p0σ
0( p0)) + s0 < 1− s0 and if it exists, this solution

is unique

We note that in a typical reaction–diffusion equation,

Turing instabilities occur due to the interplay of the two

processes (reaction and diffusion). However, this result

shows that, in our model, instabilities occur only if the

reaction of services to a change in population is sufficient.

It is independent of the relative rates (figure 9). This indepen-

dence is largely due to the conservation of population (in the

first two model variations) which means that there is a zero

eigenvalue at frequency k=0 and instabilities occur in a

window [0, kc] rather than [k1, k2] as in a reaction–diffusion

equation.

C.1.2. Dispersion relations for other parameters
Figure 4a shows dispersion relations for the default set of par-

ameters as the total population �p varies. Here, we show

dispersion relations for the other parameters in the model

illustrating how changing them modifies the predicted emer-

gent pattern.

This gives some idea of the impact that uncertainty

about parameter values may have on model predictions.

Overall, pattern formation is robust and predicted across a

wide range of parameters. On the other hand, the specific

wavelength of predicted patterns does vary with certain

key parameters as expected; parameters controlling length

scales of movement (b p1 , b p2 , bs) and feedback (μ) signifi-

cantly modulate wavelengths, whereas those affecting rates

of movement (D) and service growth (f, g) have a much

weaker effect. See figure 9.

C.2. Out-of-phase patterning requires α1 > 0 and ŵ p1ðkÞ , 0
Here, we extend the linear analysis to the model with

services competing for space with population (α1 > 0) and

show that out of phase spatial instability is predicted

only if α1 > 0 and ŵ p1ðkÞ , 0. This condition on the popu-

lation location preference kernel corresponds to the

population preferring to move to locations near to but some

preferred distance from services (ap > 0 in equation (6.1)).

Including competition, the linearized dynamics close to

the spatially homogeneous steady state is given by

_�p
_�s

 !

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵp2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ

ð f þ gs0Þðs0ð p0ÞŵsðkÞ � a1Þ �ð f þ gs0Þ

2

6

6

4

3

7

7

5

�p

�s

� �

:

ðC 8Þ

As previously, linear stability occurs when trðJðkÞÞ , 0

and detðJðkÞÞ . 0. For Gaussian ŵ p2 , the trace is negative

for all k and therefore there are instabilities occurring for

det(J(k)) < 0.

detðJðkÞÞ ¼ Dð1� ŵ p2ðkÞÞðf þ gs0Þ
� (s0ð1� s0Þ � p0ðs0ðp0ÞŵsðkÞ � a1Þðð1� s0Þŵ p1ðkÞ � s0Þ)

ðC 9Þ

detðJÞ � 0, s0ð1� s0Þ
� p0ðs0ðp0ÞŵsðkÞ � a1Þðð1� s0Þŵ p1ðkÞ � s0Þ ðC 10Þ

,

s0
p0

ð1� sðp0ÞÞ þ s0s
0ðp0ÞŵsðkÞ

� ð1� s0Þðs0ðp0ÞŵsðkÞ � a1Þŵ p1ðkÞ: ðC 11Þ

We have 1− σ( p0) > 0 and, for Gaussian ws, ŵs . 0. This

means that the left-hand side is positive i.e. ðs0= p0Þð1� sðp0ÞÞ
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Figure 9. Dispersion relations for the growth rate of spatial perturbations to a spatially homogeneous steady state in the conservative model for population and services

dynamics given in §4, for the indicated values of the parameters b p1
, bs, b p2

, m, D, f and g. For all length scales β, as they increase the length of pattern increases.

Increasing b p1
and βs slows the rate of patterning whereas b p2

increases the speed of patterning. As shown in §5, small values of μ show stability to all frequencies.

As μ increases, the instability emerges from the origin with long wavelengths (small k) and shifts to shorter wavelengths (larger k). The rates f, D and g will, as expected,

increase the growth rate of perturbations, but do not make any noteworthy change to the wavelength of the fastest growing mode or to the window of unstable frequencies.
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þs0s
0ðp0Þŵs . 0. For instabilities to occur the right-hand side

must be therefore also be positive. The factors ðs0ðp0Þŵs � a1Þ
and ŵ p1 must at least have the same sign or else they will be

negative and this condition will not hold.

If an unstable eigenvalue, λ, occurs, then its correspond-

ing eigenvector will be

lþ ðf þ gs0Þ
ðf þ gs0Þðs0ðp0ÞŵsðkÞ � a1Þ

� �

: ðC 12Þ

As λ > 0 and ( f + gs0) > 0, this vector can only be out-of-phase

if ðs0ðp0ÞŵsðkÞ � a1Þ , 0. This occurs when there is sufficient

competition (a1 . s0ðp0ÞŵsðkÞÞ.
As ŵ p1ðkÞ must have the same sign as ðs0ðp0ÞŵsðkÞ � a1Þ

for patterning to occur at all, we must have ŵ p1ðkÞ , 0 as

well for out-of-phase spatial instability.

C.3. Analysis of the effect of logistic growth and competition on

the stability matrix
In this section, we show that logistic growth will tend to be

stabilizing for smaller frequencies (longer wavelengths) but

destabilizing for larger frequencies if there is sufficient com-

petition. The Jacobian of the full model with competition

and logistic growth from equation (7.4) is

Jðp0; s0; kÞ

¼

�Ds0ð1� s0Þð1� ŵp2ðkÞÞ �
rp0
c

Dp0ð1� ŵp2ðkÞÞ:
ðð1� s0Þŵp1ðkÞ � s0Þ
� ra2p0

c

ð f þ gs0Þðs0ðp0ÞŵsðkÞ �a1Þ �ð f þ gs0Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ðC 13Þ

Example dispersion relations can be seen in figure 10. As

in previous cases, the trace will still be negative. Assuming p0,

s0 remains unchanged (using equation (7.3)),

detðJÞ ¼ detðJÞjr¼0 þ
rp0ðf þ gs0Þ

c
(1þ a2ðs0ðp0Þŵs � a1Þ):

ðC 14Þ

If the determinant increases such that it becomes positive for

some frequency k (and the trace is negative), then that

frequency will become a stable mode and vice versa; if the

determinant becomes negative for some frequency, then

that mode will become unstable. The determinant detðJÞ
will increase if 1þ a2ðs0ðp0Þŵs � a1Þ . 0, which will occur

for larger ŵsðkÞ which occurs at smaller frequencies. Notably,

the 0 frequency homogeneous solution will no longer give a

zero eigenvalue but will be stable at the steady state (as

shown in figure 10). This will also prevent the metastability

that we saw in previous model variants.

Conversely, the determinant will decrease for some wave-

lengths if 1− α1α2 < 0; that is if there is sufficient competition.

This will occur for smaller values of ŵsðkÞ which are shorter

wavelength, typically out of phase, perturbations.

Appendix D. Initial conditions for figure 5
In order to generate figure 5a,b, we initiate a two ‘bump’ and

a three ‘bump’ solution with noise as can be seen in figure 11.

To initialize these simulations, we begin with rectangular

bumps of length 40 that give total average population

16 000 pe km�2. The two ‘bump’ solution has a peak of

40 000 pe km�2 and the three bump has 26 000 pe km�2.

These are seeded with 100 cosine perturbations of modes 11

to 111, each of random size up to ±2% of the peak. If

needed, the total population is adjusted to ensure the average

is still 16 000 pe km�2.

Appendix E. Fitting a logistic growth model
using London data
In this section, we wish to estimate the intrinsic growth rate,

r, in equation (7.1). To do this, we fit a simple, one dimen-

sional, logistic growth model of the form dp/dt =

rp(1− ( p/c)) and fit for r, c and the initial condition p(1801).

This is done using a process of minimizing the sum

of squares between the model output and the historic

data. These data are London and London borough census

data from 1801 to 2011 [41]. The results for London can be

seen in figure 12. The values for Inner, Outer and Greater
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Figure 10. Dispersion relations for the full model including logistic growth and competition for space. This figure is very similar in its trend to figure 5c. The most

notable difference is that there is no longer a zero eigenvalue at k = 0 corresponding to conservation of mass.
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London give r ¼ 0:056, 0:051 and 0:040 respectively. There-

fore, r = 0.05 seems a reasonable estimate for the intrinsic

growth rate.

Appendix F. Varying parameters temporally
In this paper, we have made the simplifying assumption that

the parameters used are static over time. This assumption is

necessary in order to make the mathematical analysis of the

steady states possible. However, we acknowledge that there

will have been many transitions between regimes over time,

especially with the advancement of technology. For example,

Borchert [42] identifies five epochs from sail-wagons (ca 1800)

to the modern technological epoch.

The model presented here has the potential to shed

further light on this in future work. For example, we show

in figure 7 a simulation in which the β parameters vary line-

arly over time, starting below and ending above their default

values in table 1

bp1 ¼ 0:5þ 0:006t; bs ¼ 1þ 0:038t
and bp2 ¼ 5þ 0:08t:

ðF 1Þ

For simplicity, we assume there is no competition or

growth; that is r = ap = α1 = 0. This simulation shows how

increasing typical travel distances over time leads to exagger-

ated agglomeration. Of course, growth, competition and

other factors may complicate this further but this brief

example shows something of the effect of socio-technological

developments.
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Figure 11. Initial conditions that generated figure 5a,b, respectively. These two initial conditions both have the same total population. However, including com-

petition in the model, one simulation gives in phase patterns only whereas the other gives secondary out-of-phase patterning.
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Figure 12. Graphs showing population data for London with the logistic growth model fitted.
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