
This is a repository copy of Machine learning cardiac-MRI features predict mortality in 
newly diagnosed pulmonary arterial hypertension.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186801/

Version: Accepted Version

Article:

Alabed, S. orcid.org/0000-0002-9960-7587, Uthoff, J., Zhou, S. et al. (15 more authors) 
(2022) Machine learning cardiac-MRI features predict mortality in newly diagnosed 
pulmonary arterial hypertension. European Heart Journal - Digital Health. ztac022. ISSN 
2634-3916 

https://doi.org/10.1093/ehjdh/ztac022

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



© The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Cardiology. This 

is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and 

reproduction in any medium, provided the original work is properly cited. 1 

Machine Learning cardiac-MRI features predict mortality in newly diagnosed 1 

pulmonary arterial hypertension 2 

Samer Alabed MD
a,b,c

, Johanna Uthoff PhD
d
, Shuo Zhou

d
, Pankaj Garg PhD

a
,  Krit Dwivedi MD

a,b
, 3 

Faisal Alandejani MD
a
,  Rebecca Gosling PhD

a
, Lawrence Schobs

d
, Martin Brook

a
, Dave Capener

a
, 4 

Chris Johns PhD
a,b

, Jim M Wild PhD
a,c

, Alexander MK Rothman PhD
a
,  Rob J. van der Geest PhD

e
, 5 

Robin Condliffe MD
a,f

,  David G Kiely MD
a,c,f

, Haiping Lu PhD
c,d*

, Andrew J Swift PhD
a,b,c

* 6 

* contributed equally to the manuscript  7 

a 
Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, 8 

UK 9 

b 
Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK  10 

c 
INSIGNEO, Institute for in silico medicine, University of Sheffield, UK. 11 

d
 Department of Computer Science, University of Sheffield, Sheffield, UK 12 

e
 Leiden University Medical Center, Leiden, The Netherlands 13 

f 
Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK  14 

Funding Support and Author Disclosures 15 

The study was supported by the Wellcome Trust grants 215799/Z/19/Z and 205188/Z/16/Z. 16 

For the purpose of Open Access, the author has applied a CC BY public copyright licence to 17 

any Author Accepted Manuscript version arising from this submission. The funders did not 18 

have any role in the design and conduct of the study; in the collection, analysis, and 19 

interpretation of the data; or in the preparation, review, and approval of the paper.  20 

The authors have no relationships relevant to the contents of this paper to disclose. 21 

Data Availability 22 

The data underlying this article will be shared on reasonable request to the corresponding 23 

author. 24 

 25 

Address for correspondence 26 

Dr Samer Alabed 27 

Cardiac MRI Research Fellow  28 

Department of Infection, Immunity and Cardiovascular Disease,  29 

University of Sheffield, Glossop Road, Sheffield, S10 2JF, United Kingdom 30 

Tel:  0114 243 4343 31 

Email: s.alabed@nhs.net 32 

Twitter: smrabd  33 

A
C
C
EPTED

 M
A

N
U

SC
R
IP

T D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
h
jd

h
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/e

h
jd

h
/z

ta
c
0
2
2
/6

5
7
6
4
8
4
 b

y
 g

u
e
s
t o

n
 1

3
 M

a
y
 2

0
2
2



2 

Abstract 1 

Background 2 

Pulmonary arterial hypertension (PAH) is a rare but serious disease associated with high mortality if left 3 

untreated. This study aims to assess the prognostic cardiac magnetic resonance (CMR) features in PAH 4 

using machine learning.  5 

Methods 6 

723 consecutive treatment-naive PAH patients were identified from the ASPIRE registry; 516 were 7 

included in the training and 207 in the validation cohort. A multilinear principal component analysis 8 

(MPCA) based machine learning approach was used to extract mortality and survival features throughout 9 

the cardiac cycle. The features were overlaid on the original imaging using thresholding and clustering of 10 

high- and low-risk of mortality prediction values. 11 

Results 12 

The one-year mortality rate in the validation cohort was 10%. Univariable Cox regression analysis of the 13 

combined short-axis and 4-chamber MPCA-based predictions was statistically significant (Hazard Ratios 14 

2.1, 95% CI 1.3, 3.4, c-index = 0.70, p = .002). The MPCA features improved the one-year mortality 15 

prediction of REVEAL from c-index = 0.71 to 0.76 (p = < .001). Abnormalities in the end-systolic 16 

interventricular septum and end-diastolic left ventricle indicated the highest risk of mortality. 17 

 18 

Conclusion 19 

The MPCA-based machine learning is an explainable time-resolved approach that allows visualisation of 20 

prognostic cardiac features throughout the cardiac cycle at population level, making this approach 21 

transparent and clinically interpretable. In addition, the added prognostic value over the REVEAL risk 22 

score and CMR volumetric measurements allows for a more accurate prediction of one-year mortality risk 23 

in PAH. 24 

Keywords: Machine learning, Artificial Intelligence, Cardiac MRI, prognosis, mortality, Pulmonary 25 
hypertension 26 
Abbreviations and Acronyms 27 

4Ch four-chamber 

CMR cardiac magnetic resonance 

MPCA multilinear principal component analysis  

mPAP mean pulmonary artery pressure 

PAH pulmonary arterial hypertension 

PVR pulmonary vascular resistance 

RHC right heart catheter 

RV right ventricular 

SA short axis 

SVM support vector machines 

  

  28 
A

C
C
EPTED

 M
A

N
U

SC
R
IP

T D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
h
jd

h
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/e

h
jd

h
/z

ta
c
0
2
2
/6

5
7
6
4
8
4
 b

y
 g

u
e
s
t o

n
 1

3
 M

a
y
 2

0
2
2



3
 

 
1

 

G
ra

p
h

ic
a

l 
A

b
st

ra
ct

 
2

 
1

3
2

x
1

2
1

 m
m

 (
.8

5
 x

  
D

P
I)

 
3

 

 
 

4
 

A
C
C
EPTED

 M
A

N
U

SC
R
IP

T

Downloaded from https://academic.oup.com/ehjdh/advance-article/doi/10.1093/ehjdh/ztac022/6576484 by guest on 13 May 2022
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Introduction 1 

Cardiac magnetic resonance (CMR) is a powerful prognostic tool owing to its ability to assess cardio-2 

physiological parameters such as the volume and function of the cardiac chambers, tissue characterisation 3 

and anatomical structure. Machine learning methods harnessing CMR’s prognostic abilities remain rare 4 

and mainly focus on segmenting cardiac chambers to automate CMR measurements 
1
. The process of 5 

automating CMR measurements has matured over recent years, proving to be accurate and comparable to 6 

results obtained from manual segmentation 
2–4

. However, there is a wealth of data available in CMR 7 

studies other than those based on volumetric measurements. A recent machine learning model based on the 8 

motion of segmented right ventricle predicted mortality in a mixed cohort of pulmonary hypertension 9 

patients 
5
. This study linked impaired basal longitudinal shortening and transverse contraction at the 10 

interventricular septum and free wall with an increased risk of mortality 
5
. Another recent machine learning 11 

model based on CMR disease features extracted by multilinear principal component analysis (MPCA) has 12 

been used to predict the presence or absence of pulmonary arterial hypertension (PAH) 
6
 without the need 13 

for segmentation.   14 

The MPCA-based model is interpretable because MPCA is a linear and transparent feature extraction 15 

method, thus a particularly promising machine learning approach for CMR imaging. Each CMR image 16 

sequence is a three-dimensional array (e.g. 512x512pixels x6mm slice thickness x20images throughout the 17 

cardiac cycle), with each element being a voxel capturing different tissue characteristics, anatomical 18 

location and temporal variation in the cardiac cycle. Such a multidimensional array can be naturally 19 

represented as a mathematical object called a tensor. MPCA extracts features directly from such multi-20 

dimensional tensor representation which preserves the multidimensional structure of the original CMR data 21 

more accurately than reshaping it into one dimensional, vector representation
7
. The extracted MPCA 22 

features can then be weighted in classification or regression models to optimise the prediction of the 23 

desired outcome.  24 

PAH is a rare but serious disease that is associated with high mortality if left untreated 
8
. This study aims 25 

to assess the prognostic accuracy of the above MPCA-based model to predict one-year mortality in PAH. 26 

Therefore, evaluating prognosis is key to identifying high-risk patients and optimising their management 27 

strategies as recommended by the European Society of Cardiology guidelines 
9,10

. Multiple clinical 28 

parameters are routinely obtained to evaluate PAH disease progression, including pulmonary 29 

haemodynamics from right heart catheterization (RHC), functional data from exercise tolerance and 30 

pulmonary function tests, biochemistry including N-terminal pro-B-type natriuretic peptide (NT-proBNP) 31 

and imaging including echocardiogram and CMR. The REVEAL score is a composite clinical risk score 32 

for mortality that combines these clinical parameters to predict one-year mortality 
11

. In addition, CMR 33 

measurements such as right ventricular volumes and function have been shown to predict mortality in PAH 34 
12

. Thus, the availability of detailed patient phenotyping and prediction scores allows setting a clinical 35 

benchmark for the performance of machine learning prognostic models in PAH. This study assesses the 36 

additive value of the MPCA-based model to predict mortality compared to established prognostic 37 

parameters such as the REVEAL risk score and CMR measurements. 38 
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Methods 1 

The TRIPOD checklist for reporting prediction model development and validation was followed 
13

 and is 2 

available in the supplemental material. 3 

Study Population 4 

All consecutive treatment-naïve patients with PAH referred for a baseline CMR between 2008 and 2019 5 

were identified from the ASPIRE registry 
14

. Eligibility criteria included; i) a baseline CMR study 6 

performed within 14 days of a PAH diagnosis, confirmed by right heart catheterisation (RHC), and before 7 

the commencement of PAH treatment. ii) minimum 12 months follow-up or death within 12 months post 8 

CMR study. The study population was divided into two cohorts; i) a training cohort whose CMR images 9 

were used to develop and optimise the prognostic algorithm and ii) a validation cohort that was left out of 10 

training and used to validate the performance of the prognostic model. The cohort was split 70:30 into the 11 

model development and model validation cohort.  12 

Ethical approval was obtained from the local ethics committee and written consent was waived for this 13 

retrospective study (ref c06/Q2308/8).  14 

MR Imaging Protocol 15 

CMR was performed with a 1.5 Tesla GE HDx (GE Healthcare, Milwaukee, USA) system using an eight-16 

channel cardiac coil. Four-chamber (4Ch) and short-axis (SA) cine images were acquired using a cardiac 17 

gated multislice balanced steady-state free precession sequence (20 frames per cardiac cycle, slice 18 

thickness 10mm, 0mm inter-slice gap, field of view 480mm, acquisition matrix 256x200, flip angle 60°, 19 

BW 125 KHz/pixel, TR/TE 3.7/1.6ms). A stack of images in the short-axis plane were acquired fully 20 

covering both ventricles from base to apex. End-systole was considered to be the smallest cavity area. End-21 

diastole was defined as the first cine phase of the R-wave triggered acquisition or largest volume. Patients 22 

were in the supine position with a surface coil and with retrospective ECG gating.  23 

Volumetric and ventricular function analysis was performed by contouring the ventricular endocardial 24 

borders at end-diastole and end-systole on the SA images using MASS software (MASS, 2020; Leiden 25 

University Medical Center, Leiden, the Netherlands). Papillary muscles and trabecula were included in the 26 

blood volume. 27 

Image Preprocessing 28 

Mid-chamber SA and 4Ch cine images were used in this study. Images were processed following methods 29 

in a previous study 
15

. In brief, images were preprocessed by standardising CMR voxel units between 30 

subjects, registering to each other using three anatomical landmarks, masking surrounding tissues, and 31 

downscaling image size (Figure 1). 32 

CMR voxel units were standardised between subjects by z-scores. Rigid image registration was used based 33 

on three predefined fixed anatomic landmarks. The landmarks were manually placed on SA (superior 34 

insertion point; right ventricular free wall inflexion; mid-left ventricular lateral wall) and 4Ch (left 35 

ventricle apex; lateral mitral annulus; lateral tricuspid annulus). CMR images were landmarked by a single 36 

reader (SA) with independent visual quality assurance checks (SA; JU).  In order to focus on spatially 37 

relevant features, an ellipsoidal mask was fitted around the heart. Downsampling was performed to four 38 

image sizes (32x32, 64x64, 128x128, 256x256).  39 
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MPCA Pipeline 1 

The prognostic prediction was achieved by training support vector machines (SVMs) on MPCA features 2 

extracted from CMR studies 
6,7

. The methodology followed the MPCA-based pipeline in previous studies 3 
6,15

. This pipeline was trained through 10 rounds of 10-fold cross-validation on the development cohort 4 

(n=516). For each fold during training, MPCA features were extracted and ranked for prognostic capability 5 

using Fisher’s Discriminant Analysis in the following way. Extracted features were ranked and selected 6 

using a step-wise feature inclusion method. This was performed using a random tuning-set (n ~=50) of 7 

cases. The feature set with the highest tuning-set performance was used to train an SVM and tested on the 8 

left-out fold. The feature set with the highest fold-performance was used to train the final development 9 

SVM. This MPCA-based machine learning model was then applied to the completely left out validation 10 

cohort (n=207). On a standard computer, the time it takes to process each image and perform inference is 11 

much less than 0.1 second. A Jupyter notebook tutorial of the open-source pipeline code is available at: 12 

https://colab.research.google.com/github/pykale/pykale/blob/main/examples/cmri_mpca/tutorial.ipynb 13 

Visualisation of Tensor Features 14 

Trained features were visualised by utilising MPCA reconstruction to obtain spatially relevant feature 15 

maps. To visually inspect the impact of specific regions on high- and low-risk of mortality prediction, a 16 

two-step procedure of thresholding and clustering was implemented. Voxels containing high absolute 17 

values (high positive = high-risk, high negative = low-risk) of MPCA features were thresholded. 18 

Morphological dilation-erosion using a spherical structural element (r=2) was performed and clusters of 19 

visually significant size were overlaid on individual patients’ original CMR scans.  20 

Clinical and Mortality Data 21 

Clinical data including intermittent shuttle walking test (ISWT), pulmonary function test, and serum level 22 

of NT-proBNP were collected before treatment was commenced. Demographic data, WHO functional 23 

status, PAH subgroup diagnosis, and outcome were collected from the electronic medical system. 24 

Mortality data were collected from the electronic records of the National Health Service (NHS) Personal 25 

Demographics Service. The NHS automatically updates the mortality records once a death is registered in 26 

the United Kingdom. All patients were followed up as part of the national service specification for patients 27 

with pulmonary hypertension for a minimum of 12 months. No patients were lost to follow-up. 28 

Statistical Analysis 29 

Continuous variables are presented as proportions, means ± standard deviations, or median and 30 

interquartile range for data not following a normal distribution. The sample size for developing the 31 

prediction model was calculated using a one-year mortality prevalence of 10% and 7 predictor parameters 32 

and required 420 patients to develop the mortality prediction model 
16

.  The REVEAL score was calculated 33 

from composite clinical parameters
 11

 and modified to include the incremental shuttle walk test instead of 34 

the 6-minute walking test 
17,18

. The CMR volumetric measurements were indexed for body surface area 35 

and corrected for age and sex by calculating the percentage predicted values as per published reference 36 

data 
19,20

. The outcome of the MPCA-based pipeline was calculated as the SA and 4Ch probabilities based 37 

on the SVM prediction. A combined probability was calculated by further training a dual-scan SVM from 38 

the selected features of both individual models - SA and 4Ch. All variables were standardised by 39 
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7 

subtracting the mean for each variable and dividing it by its standard deviation (SD) to allow for more 1 

meaningful comparisons.  2 

A univariable Cox proportional hazards regression was performed to estimate the one-year mortality 3 

prediction of the REVEAL score, CMR measurements and the MPCA probabilities. For the multivariable 4 

analysis, we planned to include the CMR measurements that were identified in previous prognostic studies, 5 

namely right ventricular ejection fraction (RVEF), right ventricular end-systolic volume index (RVESVi), 6 

right ventricular end-diastolic volume index (RVEDVi), left ventricular end-diastolic volume index 7 

(LVEDVi), left ventricular stroke volume index (LVSVi) and pulmonary artery relative area change (PA 8 

RAC) 
12,21

. Due to the high correlation between RVESVi and RVEDVi (r=0.89) we only included RVESVi 9 

as the stronger predictor in the multivariable analysis. The proportional hazards assumption was confirmed 10 

using scaled Schoenfeld residuals. The c-index was used to measure the relative goodness of fit between 11 

the different regression models. The c-index indicates the rate of correct predictions of survival the model 12 

makes. We also computed the Akaike information criterion (AIC) for each model. The AIC estimates the 13 

rate of incorrect prediction and compares the quality of different models relative to each other while 14 

penalising the models with more variables. While a higher c-index indicates a better model fit, a lower AIC 15 

value indicates fewer prediction errors 
22

.  16 

In addition, the likelihood ratio test was performed to assess if there is a statistically significant difference 17 

between the different models and to determine the additive predictive value of the MPCA probabilities. 18 

The models compared were the univariable REVEAL score, the REVEAL score combined with prognostic 19 

CMR measurements and finally a multiple variable model including the REVEAL score, CMR 20 

measurement and the MPCA probabilities. Kaplan-Meier curves were analysed to demonstrate the 21 

prognostic value of MPCA predictions dividing patients based on the median MPCA value as the 22 

threshold. The high and low mortality risk groups were compared using the log-rank (Mantel-Cox) test. 23 

The receiver-operating characteristic curve (ROC) and the area under the curve (AUC) were used to 24 

estimate the prognostic accuracy of the different MPCA features.   25 

Results 26 

Study Population Characteristics 27 

A total of 737 consecutive incident patients with PAH were identified. Incomplete scans because of 28 

claustrophobia or patient intolerance were excluded, leaving 723 scans for the analysis. The training cohort 29 

included 516 and the validation cohort 207 subjects (Figure 2).  30 

The baseline characteristics of both cohorts are presented in Table 1. In summary, the study population 31 

were 74% females aged 59 ± 16 years and included PAH secondary to connective tissue disease CTD 32 

(46%), idiopathic PAH (IPAH) (27%), congenital heart disease (CHD) (16%), secondary to portal 33 

hypertension (7%) and other PAH subtypes (4%).  34 

Mortality Prediction 35 

Survival analysis 36 

The one-year mortality rate in the validation cohort was 10% with an overall mortality rate over the total 37 

follow-up period of 29%. Kaplan-Meier survival analysis demonstrated a significant difference in survival 38 

in patients with high and low mortality risk in the validation cohort (Log-rank test <0.001) (Figure 3). The 39 
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8 

ROC curve for each model is shown in Figure 4. The AUC was 0.73 for the SA model, 0.64 for 4Ch and 1 

0.70 for the combined MPCA-based features to predict one-year mortality in the validation cohort. 2 

Univariable Cox regression analysis confirmed a strong prognostic utility of the SA and combined SA and 3 

4Ch MPCA-based predictions (Table 2). However, the 4Ch features alone were not significant predictors 4 

of mortality. The univariable Cox regression hazard ratios for the demographics, RHC and CMR 5 

measurements, functional tests and clinical parameters are shown in Table 2. The REVEAL score and, PA 6 

RAC and age and sex-adjusted RVESVi were significant predictors of one-year mortality. 7 

Additive prognostic value  8 

Several multivariable prognostic models were compared in Table 3 to compare the predictive value of the 9 

REVEAL score alone, REVEAL score combined with CMR measurements or MPCA features and finally 10 

REVEAL score combined with CMR measurements and MPCA features. The prognostic models were 11 

compared using the c-index and AIC test for goodness of fit and the log-rank test to assess the statistical 12 

significance of the difference between the models. The univariable REVEAL model allows the assessment 13 

of the one-year risk of mortality based on available composite clinical data alone. Adding the MPCA-based 14 

predictions allows evaluating the added incremental value in predicting death compared to REVEAL and 15 

segmentation based CMR parameters.  16 

The REVEAL score alone had a c-index of 0.71 and AIC of 203. Adding CMR measurements improved 17 

the model statistically significantly, to 0.78 and AIC of 205 (log-rank test p = 0.003). The model including 18 

MPCA prediction, REVEAL score and CMR measurements, showed the strongest prognostic utility (c-19 

index 0.83 and AIC 193, log-rank test p = <0.001). The MPCA model alone had similar accuracy to the 20 

REVEAL score with a c-index of 0.71 and AIC of 204.  21 

Temporal prognostic dynamics 22 

The MPCA-based features were assessed throughout the cardiac cycle and grouped according to the 23 

anatomical region into the right ventricle (RV), left ventricle (LV) and septum. For visualisation purposes, 24 

we manually segmented the averaged SA and 4Ch slice to group the MPCA features into anatomical 25 

regions. The features were divided into low and high-risk features based on the median MPCA feature 26 

values used in the Kaplan-Meier analysis (Figure 4). On the SA views, abnormal interventricular septum 27 

during systole and particularly at end-systole and the LV chamber during diastole and particularly at end-28 

diastole indicated a higher risk of mortality. On 4Ch views, the features with the highest impact on 29 

predicting mortality were at the RV at early systole. A normal LV and interventricular septum in diastole 30 

on SA and 4Ch imaging were the strongest predictors of survival, whereas the RV was a poor indicator of 31 

survival (Figure 5). 32 

Discussion 33 

This study assessed the prognostic utility of an MPCA-based machine learning model in CMR in patients 34 

with treatment naïve pulmonary arterial hypertension. This is the first study to localise prognostic PAH 35 

features with an explainable AI approach dynamically over the cardiac cycle. In addition, we have shown 36 

the incremental prognostic value of the MPCA model compared to known prognostic markers such as the 37 

REVEAL score and CMR volumetric measurements. 38 
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The advantage of using MPCA is its interpretability. The ability to directly relate prognostic features 1 

identified in the machine learning process helps understand and explain the machine learning model’s 2 

findings. Diagnostic and prognostic models based on deep learning methods have been criticised for 3 

creating a “black-box” situation where the predictions are often difficult to comprehend and retrace 23
. 4 

Visualising the MPCA features throughout the cardiac cycle allowed discerning the most significant 5 

discriminatory predictors of death on CMR in PAH. The known prognostic features identified in 6 

pulmonary hypertension of diastolic interventricular septal flattening 
24

, reduced LV size and increased RV 7 

size 
25

 can all be visually assessed on SA images. The most significant features identified in non-survivors 8 

on SA imaging were located at the septum at end-systole and LV at end-diastole. Changes in the 9 

interventricular septum at end-systole are the result of RV pressure overload. The altered pressure gradient 10 

between the LV and RV results in flattening of the septum giving a characteristic D-shaped LV and 11 

eventually results in impaired LV diastolic function and reduced LV filling 
26,27

. Survivors showed the 12 

opposite with features in the septum at end-diastole and LV at end-systole. We found fewer overall 13 

features on SA images at the RV. However, on 4Ch imaging the most significant features were identified 14 

in RV systole. Whereas the septal and LV features were less important on 4Ch imaging. The 4Ch view 15 

allows assessing the longitudinal RV contractility which for example can be inferred on echocardiogram 16 

by assessing the tricuspid annular plane systolic excursion (TAPSE). RV longitudinal contraction is known 17 

to be the larger component of RV contraction and a key prognostic indicator 
28–30

 which explains its 18 

prognostic importance in PAH.  19 

The MPCA-based model was developed and validated on CMR imaging performed at diagnosis and in 20 

treatment-naive PAH patients. Disease severity assessed at baseline assessment is important for planning 21 

an optimal treatment strategy. Almost all published prognostic CMR studies in PAH are based on disease 22 

prevalent PAH patients in later stages of the disease process 
12

. A meta-analysis of 22 studies and almost 23 

2000 patients with PAH showed that RVEF, RVESVi, RVEDVi, LVEDVi and LVSVi were significant 24 

predictors of mortality 
12

. RVEF, RVEDVi, LVEDVi and LVSVi did not predict mortality in our baseline 25 

PAH cohort. The MPCA pipeline can therefore elicit cardiac changes before they affect RV function and 26 

size and adds prognostic value at baseline evaluation.  In addition, comparing the MPCA to the REVEAL 27 

score allowed us to evaluate the incremental value benchmarked against a clinically validated baseline 28 

prognostic tool. The MPCA-based predictions significantly improved the one-year mortality prediction of 29 

the REVEAL score. The prognostic model accuracy (c-index) using REVEAL improved from 71% to 83% 30 

(log-rank test p < 0.001) when it was combined with CMR data including MPCA predictions and CMR 31 

measurements. However, even without REVEAL data, mortality can still be accurately predicted based on 32 

MPCA features alone with an accuracy (c-index) of 70%.  33 

The application of stepwise cardiac features extraction using CMR has further potential that can be 34 

evaluated in future developments. Comparing prognostic features at follow-up with baseline features might 35 

provide a better understanding of disease progression on CMR and might offer a standardised disease 36 

monitoring tool. In addition, technical improvements would allow to fully automate the prognostic model, 37 

which currently requires manual image registration. Deep learning automated landmarking for image 38 

registration would reduce the manual processing of CMR images and reduce the time and cost associated 39 

with it 
31,32

. 40 
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Limitations 1 

This was an exploratory retrospective single centre study on patients with PAH. Findings will need to be 2 

confirmed in a prospective trial with an external validation cohort. In addition, applying the model to other 3 

diseases and MRI systems would further validate its generalisability.  4 

The MPCA method was applied on cine images of the mid-chamber slice throughout the cardiac cycle. 5 

Stack imaging of the whole heart can currently not be included in the MPCA model training. However, 6 

because of the strong prognostic signal from the SA and 4Ch cine images we envisage that future 7 

developments including 3D data of the heart will further improve prognosis prediction.  8 

Conclusion 9 

Patient outcome prediction in pulmonary arterial hypertension can be enhanced by adding MPCA-based 10 

machine learning to CMR volumetric data and clinical risk scores. The MPCA analysis gives a population 11 

insight into the prognostic cardiac features in pulmonary arterial hypertension in an explainable and 12 

visualisable approach.  13 
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Figure 2: Study participants flow chart. 36 

37 

Prevalent disease 
= 490 

ASPIRE Registry 

PAH  
= 2942 

PAH with CMR 
 = 1227 

CMR at Baseline  
= 737 

 Total Included  
= 723 

Validation cohort 
= 207 

No CMR  
= 1715 

Incomplete CMR  

= 14

Training cohort 

= 516 
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 1 

Figure 3: Kaplan-Meier curve.  2 

The Kaplan-Meier curve shows the survival of high and low risk patients based on the combined short-axis 3 

and 4-chamber model predictions. The risk threshold was determined based on the median value of the 4 

MPCA predictions. The Kaplan Meier analysis shows a significant difference in survival between the high 5 

and low risk of mortality patient groups (log-rank p <0.001).  6 
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 1 

Figure 4: Receiver operating characteristic curves for one-year mortality prediction. 2 

The prognostic accuracy of the different machine learning models were compared (A: combined model, B: 3 

short-axis model and C: 4-chamber model). The highest area under the curve was achieved with the short-4 

axis model (AUC = 0.73).  5 
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 38 

Figure 5: Time-resolved prognostic cardiac features.  39 

Features of poor prognosis and also protective features were examined throughout the cardiac cycle on the 40 

short-axis and 4-chamber views. The most significant cardiac features were the end-systolic and early 41 

diastolic septum on both the short-axis and 4-chamber views. The RV during systole and LV during 42 

diastole also were predictive of one-year mortality. In contrast, the most important features of survival 43 

were the end-diastolic septum on short-axis and 4-chamber views and the LV at systole. 44 
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 1 

Figure 6: Visualisation of prognostic mortality and survival features learnt from the training data. 2 

The features were overlaid on three example short-axis / 4-chamber images from three different patients 3 

with PAH to interpret the corresponding anatomical regions. Left: Septum and LV features of high risk of 4 

mortality at end-systole. Middle image: Features of survival visualised at the septum at end-diastole. Right: 5 

4-chamber view showing high-risk features in the septum and LV in diastole. 6 

  7 
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Tables 1 

Table 1: Baseline characteristics 2 

  Training    
N = 516 

Validation 
N = 207 

p 

Age (years)  62 (22) 62 (24) .667 

Sex (female)  376 (72%) 166 (80%) .040 

BSA (m
2
)  1.82 ± 0.2 1.83 ± 0.2 .933 

Diagnosis  
  

 

 CHD 71 (13%) 34 (16%)  

 CTD 242 (46%) 96 (46%)  

 IPAH 137 (26%) 55 (26%)  

 Portal hypertension 35 (6%) 17 (8%)  

 other PAH 31 (6%) 5 (2%)  

WHO functional 
class 

 .331 

I 2 (0%) 0 (0%)  

 II 37 (7%) 11 (5%)  

 III 409 (79%) 170 (82%)  

 IV 58 (11%) 26 (12%)  

RHC 
parameters 

 
  

 

mPAP (mmHg) 46 (22) 48 (18) .164 

 PVR (dyns.s.cm
-5
) 608 (556) 822 (791) <.001 

 PAWP (mmHg) 11 (5) 10 (4) <.001 

 RA mean (mmHg) 9 (8) 9 (8) .548 

 CO (L/min) 5 (2) 4 (2) <.001 

 SvO2 (%) 66 (13) 66 (14) 0.632 

CMR 
parameters  

 
  

 

RVEF (%) 37 ± 13 36 ± 11 .539 

 RVESVi (ml/m
2
) 74 ± 35 76 ± 31 .122 

 RVEDVi (ml/m
2
) 113 ± 41 115 ± 39 .163 

 RVEDMi (g/m
2
) 27 ± 8 28 ± 8 .016 

 LVEF (%) 53 ± 10 53 ± 9 .966 

 LVESVi (ml/m
2
) 31 ± 11 31 ± 16 .212 

 LVEDVi (ml/m
2
) 67 ± 19 64 ± 21 .079 

 LVSVi (ml/m
2
) 36 ± 12 34 ± 9 .130 

 VMI (ratio) 0.58 ± 0.2 0.62 ± 0.2 .010 

Data presented as mean ± standard deviation or median (range). 3 

BSA, body surface area; CHD, congenital heart disease; CO, cardiac output; CTD, connective tissue 4 

disease; CTEPH, chronic thromboembolic pulmonary hypertension; EDVi, end-diastolic volume index; 5 

ESVi, end-systolic volume index; IPAH, idiopathic pulmonary arterial hypertension; LV, left ventricle; 6 

mPAP, mean pulmonary artery pressure; PAH, pulmonary arterial hypertension;  PAWP, pulmonary 7 

arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RA, right 8 

atrium; RHC, right heart catheterization; RV, right ventricle; RVEF, right ventricle ejection fraction; 9 

RVEDMi, right ventricular end-diastolic mass index;  SV, stroke volume; SvO2 = mixed venous oxygen 10 

saturation; VMI, ventricular mass index; WHO, World Health Organisation  11 
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Table 2: Univariable Cox proportional hazard regression ratios for one-year mortality.  1 

  
HR 95% CI p 

Age (years)  1.039 1.005, 1.075 .026 

Sex   1.036 0.346, 3.098 .950 

WHO class  2.033 0.781, 5.292 .146 

REVEAL  1.339 1.109, 1.618 .002 

RHC 
parameters 

 
  

 

mPAP (mmHg) 0.982 0.947, 1.017 .311 

 PVR (dyns.s.cm
-5
) 1.000 0.999, 1.001 .616 

 PAWP (mmHg) 1.012 0.866, 1.183 .879 

 RA mean (mmHg) 1.081 1.020, 1.146 .008 

 CO (L/min) 0.842 0.599, 1.185 .324 

 SvO2 (%) 0.969 0.929, 1.009 .127 

CMR 
parameters  

 
  

 

RVEF (% pred) 0.762 0.445, 1.306 .324 

 RVESVi (% pred) 1.699 1.099, 2.628 .017 

 RVEDVi (% pred) 1.443 0.972, 2.141 .069 

 RVEDMi (% pred) 1.113 0.781, 1.587 .554 

 LVEF (% pred) 1.275 0.790, 2.060 .320 

 LVESVi (% pred) 1.036 0.652, 1.646 .881 

 LVEDVi (% pred) 0.918 0.559, 1.509 .736 

 LVSVi (% pred) 0.933 0.592, 1.471 .767 

 VMI (ratio) 0.962 0.530, 1.748 .899 

 
PA RAC (%) 0.911 0.838, 0.991 .031 

 
Septal angle systole 0.999 0.972, 1.027 .941 

 
Septal angle diastole  0.987 0.935, 1.042 .636 

MPCA-based 
features 

 
   

 SA features 2.401 1.459, 3.951 .001 

 4-chamber features 1.472 0.978, 2.216 .064 

 Combined features 1.97 1.282, 3.028 .002 

CMR parameters are corrected for age and sex (%pred). For abbreviations see Table 1. 2 
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 C index 95% CI AIC p  
Log-rank test 

CMR measurements* 0.70 0.60-0.80 211  

MPCA** 0.70 0.59-0.81 204  

REVEAL score 0.71 0.61-0.81 203  

REVEAL + MPCA 0.76 0.67-0.85 197 .003 

REVEAL+ CMR measurements 0.78 0.70-0.86 205 .003 

REVEAL + CMR measurements + MPCA 0.83 0.76-0.90 193 <.001 

Table 3: C-index and Akaike information criterion (AIC) for the univariable and multiple variable Cox 1 

regression analysis for the REVEAL score, CMR measurements and the MPCA machine learning 2 

model. A higher c-index indicates a better model fit and a lower AIC indicates a relative lower 3 

prediction error. The log-rank test indicates that the combination of MPCA, CMR measurements and 4 

REVEAL is statistically significantly more predictive than REVEAL score alone (c-index 0.83 vs 0.72, 5 

p<0.001).   6 

* CMR measurements included age and sex corrected right ventricular ejection fraction, right 7 

ventricular end-systolic volume index, left ventricular end-diastolic volume index, left ventricular 8 

stroke volume index and pulmonary artery relative area change. 9 

** MPCA combined short-axis and four-chamber features   10 
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