
This is a repository copy of Selecting SAT Encodings for Pseudo-Boolean and Linear
Integer Constraints.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186734/

Version: Accepted Version

Proceedings Paper:
Ulrich-Oltean, Felix, Nightingale, Peter orcid.org/0000-0002-5052-8634 and Walker, James
Alfred orcid.org/0000-0003-2174-7173 (Accepted: 2022) Selecting SAT Encodings for
Pseudo-Boolean and Linear Integer Constraints. In: 28th International Conference on
Principles and Practice of Constraint Programming (CP 2022). LIPICS . (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Selecting SAT Encodings for Pseudo-Boolean and

Linear Integer Constraints

Felix Ulrich-Oltean #

Department of Computer Science, University of York, United Kingdom

Peter Nightingale #

Department of Computer Science, University of York, United Kingdom

James Alfred Walker #

Department of Computer Science, University of York, United Kingdom

Abstract

Many constraint satisfaction and optimisation problems can be solved effectively by encoding them
as instances of the Boolean SatisĄability problem (SAT). However, even the simplest types of
constraints have many encodings in the literature with widely varying performance, and the problem
of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of
selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning
approach. We show that it is possible to select encodings effectively using a standard set of features
for constraint problems; however we obtain better performance with a new set of features speciĄcally
designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when
selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when
using the same feature set. We discuss the relative importance of instance features to the task of
selecting the best encodings, and compare several variations of the machine learning method.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint programming, SAT encodings, machine learning, global constraints,
pseudo-Boolean constraints, linear constraints

Digital Object Identifier 10.4230/LIPIcs.CP.2022.4

Funding Felix Ulrich-Oltean: Supported by grant EP/R513386/1 from the UK Engineering and
Physical Sciences Research Council

Acknowledgements We are very grateful to Nguyen Dang for helpful conversations about portfolio

approaches. The experiments were undertaken on the Viking Cluster, which is a high performance

compute facility provided by the University of York. We are grateful for support from the University

of York High Performance Computing service, Viking and the Research Computing team.

1 Introduction

Many constraint satisfaction and optimisation problems can be solved effectively by encoding

them as instances of the Boolean Satisfiability problem (SAT). Modern SAT solvers are

remarkably effective even with large formulas, and have proven to be competitive with (and

often faster than) CP solvers (including those with conflict learning). However, even the

simplest types of constraints have many encodings in the literature with widely varying

performance, and the problem of predicting suitable encodings is not trivial.

We explore the problem of selecting encodings for constraints of the form
∑n

i=1 qixi ⋄ k

where ⋄ ∈ ¶<, ≤, =, ≠, ≥, >♢, q1 . . . qn are integer coefficients, k is an integer constant and xi

are decision variables. We separate these constraints into two classes: pseudo-Boolean (PB)

when all xi are Boolean variables or integer variables with two values; and linear integer (LI)

when there exists an xi variable with more than two possible values. We treat these two

classes separately, selecting one encoding for each class when encoding an instance.

© Felix Ulrich-Oltean, Peter Nightingale, James Alfred Walker;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fvuo500@york.ac.uk
 https://orcid.org/0000-0001-5162-5826
mailto:peter.nightingale@york.ac.uk
 https://orcid.org/0000-0002-5052-8634
mailto:james.walker@york.ac.uk
 https://orcid.org/0000-0003-2174-7173
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Selecting SAT Encodings for PB and LI constraints

We select from a set of state-of-the-art encodings, including all four encodings of Bofill et

al [8, 9, 7] which are extensions of the Generalized Totalizer [16], Binary Decision Diagram [1],

Global Polynomial Watchdog [6], and Sequential Weight Counter [14]. All four of these

encodings are for pseudo-Boolean constraints with at-most-one (AMO) sets of terms (where

at most one of the corresponding xi variables are true). The AMO sets come from an integer

variable or are detected automatically [5] as described in Section 2.1. We also use Savile

Row’s Tree encoding, which we describe briefly in this paper.

The context for this work is Savile Row [21], a constraint modelling tool that takes

the modelling language Essence Prime and can produce output for various types of solver,

including CP, SAT, and recently SMT [12]. When encoding a constraint to SAT, two different

approaches may be taken depending on the type of constraint. Some constraint types are

decomposed into simpler constraints prior to encoding (e.g. allDifferent is decomposed into

a set of at-most-one constraints, stating that each relevant domain value appears at most

once). Other constraint types are encoded to SAT directly, in which case Savile Row will

apply the encoding chosen on the command-line (or the default if no choice is made).

We use a supervised machine learning approach, trained with a corpus of 615 instances

from 49 problem classes (constraint models). We show that it is possible to select encodings

effectively, approaching the performance of the virtual best encoding (i.e. the best possible

choice for each instance), using an existing set of features for constraint problem instances.

Also we obtain better performance by adding a new set of features specifically designed for

the pseudo-Boolean and linear integer constraints, especially when selecting encodings for

unseen problem classes.

1.1 Contributions

In summary, our contributions are as follows:

We address the problem of selecting SAT encodings for instances of unseen problem

classes, which we argue is a realistic version of the encoding selection problem. To our

knowledge, all previous approaches (such as [15, 24]) train and test their machine learning

models on instances drawn from the same set of problem classes.

We describe a machine learning approach that produces very good results, and that per-

forms much better than the mature, self-tuning algorithm selection tool AutoFolio [19].

We present a new set of features for pseudo-Boolean and linear integer constraints, and

show improved overall performance and robustness when using them.

We evaluate our machine learning method thoroughly, and present an analysis of feature

importance.

1.2 Preliminaries

A constraint satisfaction problem (CSP) is defined as a set of variables X, a function that

maps each variable to its domain, D : X → 2Z where each domain is a finite set, and a set

of constraints C. A constraint c ∈ C is a relation over a subset of the variables X. The

scope of a constraint c, named scope(c), is the set of variables that c constrains. A constraint

optimisation problem (COP) also minimises or maximises the value of one variable. A solution

is an assignment to all variables that satisfies all constraints c ∈ C. Boolean Satisfiability

(SAT) is a subset of CSP with only Boolean variables and only constraints (clauses) of the

form (l1 ∨ · · · ∨ lk) where each li is a literal xj or ¬xj . A SAT encoding of a CSP variable

x is a set of SAT variables and clauses with exactly one solution for each value in D(x).

A SAT encoding of a constraint c is a set of clauses and additional Boolean variables A,

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:3

where the clauses contain only literals of A and of the encodings of variables in scope(c).

An encoding of c has at least one solution corresponding to each solution of c. Generalised

arc consistency (GAC) for a constraint c means that for a given partial assignment, all

values are removed from the domain of each variable in scope(c) if they cannot appear in

any extended assignment satisfying c. A SAT encoding of c has the property UP maintains

GAC iff unit propagation of the SAT encoding of c results in the following correspondence:

for each variable xi ∈ scope(c), the set of solutions of the encoding of xi corresponds to the

set of values in D(xi) after GAC has been enforced on c.

2 Learning to Choose SAT Encodings

First we describe the palette of encodings for PB and LI constraints, then our approach to

selecting encodings using instance features and machine learning.

2.1 SAT Encodings

Recall that we are considering constraints of the form
∑n

i=1 qixi ⋄ k where ⋄ ∈ ¶<, ≤, =, ≠, ≥

, >♢, q1 . . . qn are integer coefficients, k is an integer constant and xi are decision variables

(of type integer or Boolean). We use five encodings and each can be applied to either PB or

LI constraints, giving 25 configurations in total.

2.1.1 PB(AMO) Encodings

The first four are encodings of PB(AMO) constraints [8, 9, 7], which are pseudo-Boolean

constraints with non-intersecting at-most-one (AMO) groups of terms (where at most

one of the corresponding xi variables are true in any solution). Encodings of PB(AMO)

constraints can be substantially smaller and more efficient to solve than the corresponding

PB constraints [8, 9, 5, 7]. For the four PB(AMO) encodings the constraints must be placed

in a normal form where all coefficients are positive, only ≤ is allowed, and each xi must be

Boolean. We exactly follow the normalisation rules of Bofill et al [7].

When encoding LI constraints, each integer CSP variable xi in the constraint (where

♣D(xi)♣ > 2) is required to have a direct encoding. When an integer variable (with ♣D(xi)♣ > 2)

appears in an LI constraint it is replaced with an AMO group of ♣D(xi)♣−1 terms representing

each value except the smallest (which is cancelled out). In the case where xi is an integer

variable with two values, Savile Row encodes xi with a single Boolean variable that is true

iff xi takes its larger value. Also, automatic AMO detection [5] (which applies constraint

propagation to find AMO groups among the Boolean terms of the original constraint) is

enabled in our experiments. Automatic AMO detection has been shown to substantially

improve solving time in some cases [5].

Equality constraints are decomposed into two inequalities (≤) prior to encoding. Disequal-

ity constraints and any constraints that are not top-level (i.e. are nested in another expression

such as a disjunction) are encoded with the Tree encoding, described in Section 2.1.2. Full

details of the conversion of integer terms and normalisation for PB(AMO) encodings are

given elsewhere [5]. The PB(AMO) encodings are as follows:

MDD The Multi-valued Decision Diagram encoding [8] (a generalisation of the BDD encoding

for PB constraints [1]) uses an MDD to encode the PB(AMO) constraint. Each layer of

the MDD corresponds to one AMO group. BDDs and MDDs are a popular choice for

encoding sums to SAT since they can compress equivalent states in each layer.

CP 2022

4:4 Selecting SAT Encodings for PB and LI constraints

GGPW The Generalized Global Polynomial Watchdog encoding [9] (generalising GPW [6])

is based on bit arithmetic and is polynomial in size.

GGT The Generalized Generalized Totalizer [9] encodes the PB(AMO) constraint with a

binary tree, where the leaves represent the AMO groups and each internal node represents

the sum of all leaves beneath it. GGT compresses equivalent states at its internal nodes.

It extends the Generalized Totalizer [16].

GSWC The Generalized Sequential Weight Counter [9] (based on the Sequential Weight

Counter [14]) encodes the sum of each prefix sub-sequence of the AMO groups.

Unit propagation on the MDD, GGT, and GSWC encodings enforces GAC on the original

constraint c when c is a PB(AMO) ≤ constraint [9] but not when c contains integer terms or

is an equality. GGPW does not have this property.

2.1.2 Tree Encoding

The Tree encoding is related to GGT, however it is not a PB(AMO) encoding. Tree does not

require the constraint to be an inequality, nor to have positive coefficients.

Tree Given a constraint c, each term is shifted such that its smallest value becomes 0, and k

is adjusted accordingly. A binary tree is constructed from the sum, with each term (integer

or Boolean) attached to a leaf. Internal nodes represent the sum of the leaves beneath

them. The order encoding is required for integer leaf nodes (Savile Row generates

the direct or order encoding for variables as required [20]) and is also used for internal

nodes. Each internal node is connected to its two children using the order encoding of

linear constraints [25]. The root node represents the entire sum, and its set of values

is restricted to those satisfying the constraint c. Tree can directly encode constraints

with integer terms, equality and disequality, but does not benefit from automatic AMO

detection.

Unit propagation on Tree enforces GAC on the original constraint c when c is not an

equality or disequality.

The set of 5 encodings is diverse but not exhaustive. Abío et al proposed a BDD-

based encoding for linear constraints [3], however it has been directly related to the MDD

encoding [10]. In addition to MDD-based encodings, Abío et al propose two further encodings

for linear constraints [2]: one based on sorting networks (SN), which is related to the GPW

encoding, and another log-based encoding BDD-Dec. Other log encodings such as the one

used by Picat-SAT [27] may also be more effective in some cases.

For our experiments we use an extended version of Savile Row 1.9.1 [20]. All constraints

other than PB and LI use the default encoding as described in the Savile Row manual.

2.2 Instance Features

f2f We use the fzn2feat tool [4] to extract 95 static instance features relating to the

number and types of variables and their domains, the types and sizes of constraints and

features of the objective in optimisation problems. The full list of features can be found

at https://github.com/CP-Unibo/mzn2feat; some features were not applicable, e.g.

there are no float variables in Essence Prime and Savile Row does not produce all the

same annotations.

f2fsr We also re-implement these features as closely as possible in Savile Row, applied to

the model directly before encoding to SAT.

https://github.com/CP-Unibo/mzn2feat

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:5

lipb We introduce a new set of 45 features describing the PB constraints in a problem

instance. We also extract these for LI constraints, giving 90 new features in total. These

features are listed in Table 1.

combi We combine the f2fsr and lipb features.

Table 1 New features for pseudo-Boolean and linear integer constraints. For each aspect of
a constraint listed in the left column, we calculate the aggregates in the right column. In the
aggregation functions, IQR means inter-quartile range, skew refers to the non-parametric skew and
ent is ShannonŠs entropy. The identiĄer for each aspect is given in brackets.

Aspect of constraint Aggregate

Number of (PB or LI) constraints count
Number of terms (n) min, max, mean, median, IQR,

skew, ent, sum
Sum of coefficients (wsum) sum, skew, IQR
Minimum coefficient (q0) min, mean
Maximum coefficient (q4) max, median, mean
Median coefficient (q2) median, skew, ent
IQR of coefficients (iqr) median, skew
CoefficientsŠ quartile skew (skew) mean, min, max, ent
Distinct coefficient values (sep) mean, max
Ratio of distinct coeff. values to number of coeffs. (sepr) mean, max
Number of At-Most-One groups (AMOGs) (amogs) mean
Mean size of AMO group (asize_mn) mean
Mean AMOG size ÷ number of terms (asize_r2n) mean
Mean maximum coeff. size in AMOGs (amaxw_mn) mean
Skew of maximum coeff. in AMOGs (amaxw_skew) mean, ent
Upper limit (k) (k) mean, median, max, IQR, ent,

skew
k × number of AMOGs (k_amo_prod) mean, IQR, ent

2.3 Problem Corpus

We use the 65 constraint models with a total of 757 instances from a recent paper [12] in

order to work with a wide variety of problem classes. An added advantage is that the models

are written in Essence Prime, Savile Row’s input language. Unfortunately this collection

has a very skewed distribution of instances per problem class, ranging from just 1 to 100. We

address this by limiting the number of instances per class to 50 (a random sample) and by

adding instances to existing classes where it is easy, such as when instance parameters are

just a few integers. We also add two problem classes from recent XCSP3 competitions [18].

More details of the corpus after cleaning are given in Section 3.2 and Table 2.

2.4 Training

We evaluated several classifier models from the scikit-learn library [22], including decision

trees and forests of extremely randomised trees. We also investigated training various

regressors to predict runtime. We find that random forest classifier performs best for our

purposes. The scikit-learn implementation is based on Breiman’s random forests [11], but

uses an average of predicted probabilities from its decision trees rather than a simple vote.

We follow the method of Probst et al. [23] who investigated hyperparameter tuning for

random forests and concluded that the number of estimators should be set sufficiently high

(we use 200) and that it is worth tuning the number of features, maximum tree depth, and

sample size. We use randomised search with 50 iterations and 5-fold cross-validation to tune

CP 2022

4:6 Selecting SAT Encodings for PB and LI constraints

the hyperparameters. We experimented with more tuning iterations but it did not lead to

improved prediction quality.

If a classifier makes a poor prediction, the consequences vary. It is possible that the

chosen encodings lead to a running time which is very close to that of the ideal choice; the

opposite is also true and misclassification can be very expensive. To address this issue, we

follow a similar approach to the pairwise classification used in AutoFolio [19]: we train a

random forest model for each of the possible pairs of encoding configurations. When making

predictions, each model chooses between its two candidates. The configuration with most

votes is chosen; if two or more configurations have equal votes, we select the one which

produced the shortest total running time over the training set. This approach effectively

creates a predicted ranking of configurations from the features and leads to better prediction

performance than using a single random forest classifier.

To facilitate the pairwise training and prediction approach, we reduce our selection of

encoding combinations from 25 (5 PB encodings × 5 LI encodings) to a portfolio of 5, thus

needing to train just 10 models (rather than 300 if we had used all 25 choices). We seek to

retain performance complementarity as described in [17] from a much reduced portfolio size.

The portfolio is built from the timings in the training set using a greedy approach as follows.

We begin with a single encoding configuration in the portfolio and then successively add the

remaining configuration which would lower the virtual best PAR2 time (PAR2 is defined in

Section 3.2) by the biggest margin. We do this until we have a portfolio of 5. We repeat

the process using each of the 25 configurations as the starting element and finally select the

best-performing portfolio from these 25. Figure 1 shows that this portfolio reduction has a

small impact on the virtual best performance across our corpus – the virtual best time for a

portfolio of size 5 is within 15% of the time achievable with all configurations.

0 5 10 15 20 25
Portfolio size

1.0

1.5

2.0

2.5

3.0

PA
R2

 /
VB

GGPW_Tree (3.23)
GGPW_GGPW,Tree_MDD (1.82)

GGPW_Tree,GGPW_GGPW,Tree_GGPW (1.43)
GGPW_Tree,GGPW_GGPW,Tree_GGPW,GSWC_GGPW (1.26)

GGPW_Tree,GGPW_GGPW,Tree_GGPW,GSWC_GGPW,GGT_MDD (1.14)

Figure 1 The virtual best PAR2 run-time on our corpus for all portfolio sizes as a multiple of
the overall virtual best; the resulting portfolios (of li_pb conĄgurations) are shown for sizes 1 to 5.

In addition to the pairwise voting scheme, we implement two further customisations when

training the classifiers. Firstly we apply sample weights to give more importance to harder

instances (those with a longer virtual best runtime) during training. Each instance is given

a positive integer weight w according to w = ⌊log10 (10(1 + tvb))⌋, where tvb is the virtual

best running time for the instance. Secondly, we provide a custom loss function for the

cross-validation used during hyperparameter tuning. The loss function simply returns the

difference in time between the runtime of the chosen encoding configuration and the virtual

best for that instance.

To conduct a more complete comparison we also implement two additional alternative

setups. Firstly we use a single classifier with a portfolio of 5 configurations (combining PB

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:7

problem instances
(.eprime models, .param Ąles)

Savile Row ex-
tract features

Savile Row solve
with SAT backend

Savile Row

output Ćatzinc

fzn2feat

feature extrac-
tion times

featuressolving times

drop instances without PB/LI
or where all encodings time out;

apply PAR2

cleaned dataset
calculate reference

and prediction times

train/test split

training set test set

select best 5 encoding
conĄgurations

portfolio

train classiĄers

trained classiĄers predict and vote

predicted encoding
conĄgurations

aggregated prediction
data for analysisfor each splitting method and setup,

perform 50 cycles with different seeds

Figure 2 An overview of the steps involved in our experimental investigation. The boxes with
solid borders represent data; the grey boxes represent processes.

and LI encodings) and allow it the same number of hyperparameter tuning iterations as the

total used by the pairwise classifiers (i.e. 50 × 10). Secondly we modify the pairwise setup

to make a separate prediction for PB and LI constraints – this approach has its difficulties

because when labelling the dataset with the best encoding for one type of constraint, the

other constraint must be chosen somehow. We address this by setting the other constraint

to the single best for the training set; however this process is not easily scalable in the same

way as the other setups we present. In both of these setups we use sample weighting and the

custom loss function for cross-validation.

3 Empirical Investigation

We provide an overview of our experimental process in Figure 2.

3.1 Solving Problem Instances and Extracting Features

We run Savile Row on each instance in the corpus with each of the 25 encoding configurations.

The CNF clause limit is set to 5 million and the Savile Row time-out to 1 hour. We switch

on automatic detection of At-Most-One constraints [5]. We choose Kissat as our SAT solver

CP 2022

4:8 Selecting SAT Encodings for PB and LI constraints

Table 2 Number of instances (#), mean number of PB constaints (PBs) and mean number of
linear integer constaints (LIs) per instance for each problem class in the eventual corpus.

Problem Class # PBs LIs Problem Class # PBs LIs

killerSudoku2 50 1811.2 129.9 carSequencing 49 435.7 0.0
knights 44 170.5 336.9 langford 39 146.2 0.0
opd 38 21.7 74.8 knapsack 30 1.0 1.0
sonet2 24 10.0 1.0 immigration 23 0.0 1.0
bibd-implied 22 410.6 0.0 handball7 20 705.0 1206.0
mrcpsp-pb 20 90.0 45.7 n_queens 20 1593.0 0.0
efpa 20 156.6 0.0 bibd 19 338.7 0.0
n_queens2 16 309.0 0.0 briansBrain 16 0.0 1.0
life 16 0.0 438.9 molnars 15 0.0 4.0
bpmp 14 14.0 0.0 blackHole 11 202.2 0.0
pegSolitaireTable 8 59.9 0.0 pegSolitaireState 8 59.9 0.0
pegSolitaireAction 8 59.9 0.0 peaceArmyQueens1 7 0.0 1008.0
peaceArmyQueens3 6 0.0 4.0 golomb 6 59.2 38.7
quasiGrp5Idem 6 586.7 0.0 magicSquare 6 118.3 34.0
quasiGrp7 6 410.7 0.0 quasiGrp6 6 410.7 0.0
quasiGrp4NonIdem 4 1067.5 208.0 quasiGrp3NonIdem 4 1067.5 208.0
quasiGrp5NonIdem 4 389.0 0.0 quasiGrp4Idem 4 416.0 208.0
bacp 4 0.0 25.0 quasiGrp3Idem 4 458.0 208.0
waterBucket 4 0.0 46.0 discreteTomography 2 240.0 0.0
solitaire_battleship 2 72.0 16.0 plotting 1 1.0 28.0
nurse 1 27.0 42.0 grocery 1 0.0 2.0
farm_puzzle1 1 0.0 2.0 diet 1 0.0 6.0
sokoban 1 0.0 24.0 sonet 1 3.0 1.0
contrived 1 0.0 4.0 sportsScheduling 1 166.0 64.0
tickTackToe 1 6.0 14.0

as it formed the basis of the top three performers in the 2021 SAT competition [13]. We

use the latest release available at the time, sc2021-sweep [26], with default settings and

separate time limit of 1 hour. The experiment is run on a research cluster [name removed for

anonymity] with Intel Xeon 6138 20-core 2.0 GHz processors; we set the memory limit for

each job to 8 GB. We carry out 5 runs (with distinct random seeds) for each configuration

to average out stochastic behaviour of the solver.

To extract the features we run each problem instance once with the Savile Row feature

extractor and once to generate standard FlatZinc (using the -flatzinc flag) followed by

fzn2feat [4]. We record the time taken to extract the features.

3.2 Cleaning the Dataset

We calculate the median runtime over 5 runs for each instance and encoding configuration,

and filter the corpus as follows. We mark a result as timed out if the total runtime (Savile

Row + Kissat) exceeds 1 hour. We use PAR2 times, i.e. assigning 2 hours to any result

which takes longer than our time-out limit. We choose PAR2 rather than PAR10 as used in

some literature [15, 19, 24] because when choosing between our encodings the worst encoding

for an instance tends to be around 2 times slower – the median worst:best runtime ratio

is 1.85 for instances which don’t time out. We drop instances if they contain no PB or LI

constraints. We exclude instances for which all configurations time out, as well as instances

which end up requiring no SAT solving – Savile Row can sometimes solve a problem in

pre-processing through its automatic re-formulation and domain filtering. At this point, 615

instances of 49 problem classes remain in the corpus; Table 2 shows the number of instances

for each problem class and the mean number of PB and LI constraints per instance.

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:9

3.3 Splitting the Corpus, Training and Predicting

For each of our classifier setups and our four featuresets, we run a split, train, predict cycle

50 times. We use seeds 1 to 50 to co-ordinate the splits so that we compare the prediction

power of the different feature sets and setups using the same training and test sets.

For each cycle, we obtain an 80:20 train to test split using two approaches. The split-

by-instance approach simply selects instances at random with uniform probability – with

this approach, instances of a problem class are usually found in both the training and test

sets. The split-by-class approach also splits problems randomly but ensures that all instances

relating to a problem class end up either in the training or the test set, ensuring that

predictions are being made on unseen problem classes. This second method can lead to the

test set being slightly larger than 20%.

Prior to training the classifiers, the portfolio of available configurations is built based

on the runtimes of the training set. The training instances are labelled for each pairwise

classifier with the configuration which has the fastest runtime. For each pairwise classifier,

we search the hyperparameter space and fit the model to the training set. Finally, we make

predictions using the test set ready for evaluation.

3.4 Evaluating the Performance of Predicted Encodings

To evaluate the impact of using the learnt encoding choices, we calculate two benchmarks

commonly used in algorithm selection [17]: the Virtual Best (VB) time is the total time taken

to solve the instances in a test set if we always made the best choice from our portfolio of

configurations; the Single Best (SB) time is how long it would take using the one configuration

from the portfolio which performs fastest on our training set. In addition we refer to: the

time taken using Savile Row’s default (Def) configuration, which is the Tree encoding for

both PB and LI constraints, and finally the Virtual Worst (VW) time to indicate the overall

variation in performance of the encoding configurations in the portfolio.

In Table 3 we report the total PAR2 runtime across all 50 test sets for the predicted

encoding configurations from each of the six classifier setups, four feature sets and two

splitting methods. The predicted runtimes include the time taken to extract the features.1

For ease of comparison, we report the runtime as a multiple of the virtual best time. For

example, a figure of 2 in Table 3 means that the predictions across the 50 test sets led to a

total runtime which was twice as long as the runtime achieved if we always chose the best

available encoding combination from each portfolio (as determined from the training set in

each cycle).

3.5 Results and Discussion

We found that the machine learning predictors work well, clearly outperforming the SB

and Def configurations. These performance improvements can be achieved with predictions

based on the generic CSP feature sets f2f and f2fsr, but are even better when using the

new specialised features (lipb). Sometimes the best results are obtained by the combined

featureset combi. This seems particularly true when predicting for unseen problem classes.

We argue that the split-by-class approach is both a more difficult challenge and closer to

a real-world deployment, where a new instance to solve may belong to an unseen problem

1 For features extracted directly from Savile Row (f2fsr, lipb, combi), the feature extraction time added
a median of 9% (mean 23%) to the overall running time. The features extracted via fzn2feat added
68% (median), 73% (mean).

CP 2022

4:10 Selecting SAT Encodings for PB and LI constraints

0 200 400 600 800
Mean Time (sec)

VB
SB

Def
f2f

f2fsr
lipb

combiSp
lit

 b
y

in
st

an
ce

0 2 4 6 8 10 12
of timeouts

0 500 1000 1500
Mean Time (sec)

VB
SB

Def
f2f

f2fsr
lipb

combi

Sp
lit

 b
y

cla
ss

0 10 20 30
of timeouts

Figure 3 Prediction performance using different featuresets against reference times. We show
mean runtime (left) and number of timeouts (right) per test set, when using our preferred setup
(pairwise combined + sample weights + custom loss).

0 20 40 60 80 100
Accuracy (%)

f2f

f2fsr

lipb

combi

Fe
at

ur
es

Split by instance

0 20 40 60 80 100
Accuracy (%)

Split by class

Phase
test
train

Figure 4 Prediction accuracy per cycle using our preferred setup.

f2f f2fsr lipb combi VB
Selector

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Split by instance

f2f f2fsr lipb combi VB
Selector

Split by class

GGPW_Tree
GGPW_GGPW
Tree_GGPW
GGT_MDD
GSWC_GGPW
MDD_Tree
Tree_Tree
GGPW_GGT
GSWC_GSWC
MDD_GGT
GGT_Tree
Tree_GGT
GGPW_GSWC

Figure 5 Frequency of each conĄguration (li_pb) selected across the 50 test sets when using
each feature set with our preferred setup. We also show the virtual best (VB) conĄguration for
comparison.

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:11

Table 3 Total PAR2 times over the 50 test sets as a multiple of the virtual best conĄguration
time. We show the reference times for virtual best (VB), single best (SB), default (Def), and virtual
worst (VW) conĄgurations followed by the timings using predictions made using our four feature
sets, our six machine learning setups and two splitting strategies. In the setups, sw means sample
weighting is used and cl is when custom loss is used in cross-validation. The best time for each
combination of setup, features and split is shown in bold. The predicted runtimes include feature
extraction time.

Reference Times

Split VB SB Def VW

by instance 1.00 3.55 4.61 9.75

by class 1.00 5.06 4.53 9.49

Predicted Times

Split by instance Split by class

Setup f2f f2fsr lipb combi f2f f2fsr lipb combi

pairwise combined 2.62 2.57 2.41 2.51 3.88 3.92 3.75 3.90

pairwise combined + sw 2.49 2.46 2.28 2.37 3.70 4.12 3.86 3.52

pairwise combined + cl 2.62 2.43 2.36 2.41 3.97 3.98 3.58 3.66

pairwise combined + sw + cl 2.45 2.37 2.18 2.23 4.24 3.66 3.56 3.53

single combined + sw + cl 2.43 2.43 2.33 2.36 4.23 4.43 3.89 3.74

pairwise separate + sw + cl 2.35 2.26 2.24 2.18 4.01 3.90 4.36 3.95

class. However, both approaches are realistic, so we choose pairwise combined +sw +cl as

our preferred setup for the rest of this paper. For split-by-class it is very close to the best,

and for split-by-instance is has a sizeable advantage.

In a recent survey, Kerschke et al. state that “State-of-the-art per-instance algorithm

selectors for combinatorial problems have demonstrated to close between 25% and 96% of

the VBS-SBS gap” [17]. In these terms, our preferred setup using combi features closes 38%

of the VB-SB gap for unseen classes and 52% for seen classes using the combi features (rising

to 54% if we use just lipb features). Because the distribution of runtimes in the split-by-class

trials is skewed, we use a non-parametric statistical test to report on the significance of the

improvement achieved by using our classifier. We apply the Wilcoxon Signed-Rank test for

paired samples on the mean times from the SB selector choices and our preferred selector

using the combi features. We obtain a p value of 4.3×10−5 (well below even a 1% significance

level) and an effect size of −0.67 using the rank-biserial correlation method, or −0.58 using
z

√

n
which would usually be interpreted as a medium to large effect.

Figure 3 summarises the performance for our preferred setup, showing the distribution of

mean predicted times per test. The mean values are marked with diamonds and correspond

to the numbers reported in Table 3, albeit not scaled. We note that when splitting by

instance, the performance across test sets is fairly symmetrical, with very similar means and

medians. However, when it comes to splitting by class, the distribution shows positive skew –

this likely comes from test sets where there are many instances from an unseen problem class

for which the classifier struggles to make the best choices. It is interesting to consider that as

we move from the f2fsr features to lipb and finally to combi, the mean remains roughly the

same, whereas the median time is increasing. This suggests that the generic f2fsr features

perform better in the “easier” 50% of test sets, but that good work is undone by costly

CP 2022

4:12 Selecting SAT Encodings for PB and LI constraints

Table 4 Comparison of our systemŠs performance with AutoFolio. As before, the overall
runtimes for all test instances are reported as multiples of the virtual best (VB) and the best result
for each setup is shown in bold. The Ąrst entry is our system with the preferred setup which
includes sample weighting (sw) and custom loss (cl); to match AutoFolio we use a 10% test split
and PAR10 timings. The Ąnal two entries show the timings for AutoFolioŠs predictions after 1
and 2 hours of training. All predicted timings include feature extraction time.

Reference Times

Split VB SB Def VW

by instance 1.00 10.14 18.60 41.41

by class 1.00 21.91 18.99 43.65

Predicted Times

Split by instance Split by class

Setup f2f f2fsr lipb combi f2f f2fsr lipb combi

pairwise combined + sw + cl 5.68 5.95 5.18 5.41 14.39 14.58 13.75 12.45

AutoFolio (1hr) 20.33 19.90 19.28 21.21 21.82 20.01 20.01 21.87

AutoFolio (2hrs) 20.01 18.79 19.48 18.33 22.99 25.19 17.17 21.57

misclassification in harder test sets. This observation is also echoed by the distribution of

timeouts, also shown in Figure 3. Again, f2fsr seems to avoid more timeouts in the easier

half of tests; however, when considering the entire distribution, the lipb features lead to the

fewest timeouts, offering more robust protection against a bad choice of encoding.

A further insight is provided by Figure 4 which shows the accuracy of predictions across

the 50 training and test sets – in this figure we see how often the pairwise classifier ends up

making exactly the “right” decision. In the split-by-instance scenario the prediction accuracy

is fairly consistent across feature sets; however, for unseen classes we see once again that the

generic feature sets can spot the very best encoding on more occasions (they have a higher

average accuracy on the test sets) but they lead to more costly misclassification as shown by

the evaluation of overall runtimes above.

In Figure 5 we show the frequency with which different encoding configurations are

predicted. Recall that although we use a portfolio of 5 encodings, this is generated from the

training set; consequently the portfolios are different across the 50 sets. One notable finding

is that the GGPW_Tree and GGPW_GGPW appear to be low-risk choices that often

perform well, and consequently are favoured by our classifiers. For both split-by-class and

split-by-instance, all four selectors choose GGPW_Tree or GGPW_GGPW more frequently

than the VB. Other choices such as Tree_GGPW are chosen less often than the VB. Another

case in point is the GSWC_GGPW encoding: in the split-by-class trials the oracle (VB)

uses this configuration in a few hundred cases, but our most successful feature sets (lipb and

combi) eschew it almost entirely. This is likely due to the fact that the GSWC encoding can

grow very large and perform badly in some cases; so our predictors seem to choose safer

options, being encouraged by the PAR2 penalty to avoid timeouts.

3.6 Comparison with AutoFolio

To further assess the value of our approach, we compare with AutoFolio [19], a sophisticated

algorithm selection approach which automatically configures algorithm selectors and “can be

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:13

applied out-of-the-box to previously unseen algorithm selection scenarios.” We use the latest

version of AutoFolio (the 2020-03-12 commit which adds a CSV API to the 2.1.2 release)

with its default settings. To compare as fairly as possible, we run our system with a similar

setup to AutoFolio, namely a 10% test sample and PAR10 times. Our system takes less

than 5 minutes to train using 8 cores on the cluster, so we allow AutoFolio 1 hour on

one core. We also run it with a more generous budget of 2 hours to see if its performance

improves. The results of these runs are shown in Table 4.

Our system’s predictions lead to better runtimes than AutoFolio’s. AutoFolio is

designed to be a good general algorithm selection and configuration system able to make

good predictions when choosing between different solvers. It is likely that AutoFolio’s

sophisticated decision-making is better suited to problems that run much longer or to

algorithms for which the likelihood of timeouts or non-termination is more of an issue. It is

interesting to note that AutoFolio performs better with the lipb features than the generic

instance features. Allowing AutoFolio more time for tuning led to marginal improvement

with some feature sets, but in some cases actually led to worse performance, for example

with split-by-class and the f2fsr features.

3.7 Feature Importance

We investigate the relative importance of instance features by computing the permutation

feature importance. Breiman [11] calculates “variable importance” in random forests by

recording the percentage increase in misclassification when each variable (feature) has its

values randomly permuted compared to when all features are used. Permuting the values

means that the distribution is preserved but the feature effectively becomes noise. This

method is applied at prediction time to the test set, unlike the Gini (entropy) feature

importance measure which is calculated during training. We implement this analysis but

record the mean increase in PAR2 time when each feature is permuted, effectively giving us

the extra runtime cost when the feature is lost. Each feature is randomly permuted 5 times

and the mean PAR2 time increase recorded. The distribution of feature importance thus

calculated is shown in Figure 6. We report on the lipb features and on the combi feature set

which additionally contains the generic features from f2fsr.

We can see for both feature sets that the median feature importance in the majority of

cases is close to zero, but the mean importance is substantial. This suggests that there are no

features which are dominant on their own – most of the time a missing feature incurs no loss

of prediction performance. Indeed sometimes removing a feature can improve performance,

as shown by some negative costs in most box plots. However, the means of the distributions

show that there are cases where each of the features shown is able to prevent a costly wrong

choice.

Notice that in the top 20 combi features we find a roughly equal mix of generic features

and features specific to PB/LI constraints (the names of these features have prefixes pb_

and li_). This is in keeping with the similar performance of the f2fsr and libp feature sets

as shown previously in Table 3.

We suspect that when splitting by instance the system is, to a large extent, recognising

problem classes rather than picking out traits of PB/LI constraints. Even when we predict

for unseen problem classes, the proportion of PB/LI to generic features in the top 20 is

roughly equal. Although we are keeping problem classes apart in this second case, there may

be similarities in the constraint models between some problem classes. These similarities

might extend beyond the characteristics of PB/LI constraints so the classifier can make a

choice of PB/LI encoding on the basis of a choice which worked well in a problem class

CP 2022

4:14 Selecting SAT Encodings for PB and LI constraints

500 0 500

li_sepr_mn
pb_n_ent

li_iqr_skew
li_n_sum

li_asize_r2n_mn
li_k_mn

li_amo_mn
pb_asize_mn_mn

li_n_mn
li_k_amo_prod_mn

pb_skew_ent
li_sep_mn
li_n_max

pb_k_amo_prod_ent
li_q4_med

li_wsum_iqr
pb_skew_mn
pb_wsum_iqr

li_amaxw_skew_mn
li_sepr_max

lipb, split by instance

0 1000 2000 3000

pb_n_med
li_amo_mn

pb_n_ent
pb_amo_mn
li_wsum_iqr

li_asize_r2n_mn
li_iqr_skew

pb_wsum_iqr
li_k_iqr
li_k_mn

li_amaxw_skew_mn
li_n_min

li_amaxw_mn_mn
pb_count

li_q4_max
pb_skew_max

li_q4_med
li_skew_mn

li_amaxw_skew_ent
li_sepr_max

lipb, split by class

200 100 0 100 200 300
Cost (seconds)

li_iqr_med
pb_k_med

d_bool_cons
li_k_max

v_sum_domdeg_vars
d_ratio_int_vars

o_dom_std
v_num_vars

pb_skew_mn
d_ratio_bool_vars
pb_asize_mn_mn

c_num_cons
d_ratio_array_cons

pb_n_med
v_logprod_deg_vars
v_min_domdeg_vars

li_q2_skew
li_n_skew
pb_k_mn

c_max_deg_cons

combi, split by instance

1000 500 0 500 1000 1500
Cost (seconds)

pb_n_sum
d_ratio_bool_vars

v_num_vars
li_wsum_skew

d_ratio_int_vars
li_asize_r2n_mn

o_deg_std
pb_asize_mn_mn
v_ent_dom_vars

pb_count
o_deg

c_cv_deg_cons
pb_amaxw_mn_mn

li_n_skew
d_int_vars

li_amaxw_mn_mn
li_q2_skew
li_sep_mn
li_q4_med

c_max_domdeg_cons

combi, split by class

Figure 6 Permutation feature importance: increase in PAR2 time (mean from 5 trials) over 50
split, train, predict cycles. We show the top 20 features ordered by mean importance and we do not
plot outliers (beyond 1.5 × IQR away from the box). The mean is shown by a diamond. Features
beginning li_ or pb_ refer to our LI/PB features as introduced in Table 1; the other feature names
refer to the generic instance features from the combi feature set.

with similar generic features. This interpretation is also supported by the fact that the lipb

feature set is sometimes matched or even outperformed by combi in split-by-class predictions

as shown in Table 3.

Of the PB/LI-specific features, the ones extracted from LI constraints feature more

strongly – this may reflect the fact that in our corpus the average number of LI constraints

per instance is considerably higher than the number of PB constraints, so getting the LI

choice right is more important.

There are limitations to how much we can read into the permutation feature importance,

especially when we have quite a substantial number of features; a feature may be discrimin-

ating but masked by another feature with which it is highly correlated. We have shown that

the features in libp and f2fsr can give comparable prediction performance even though they

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:15

consider different aspects of a CSP.

4 Related Work

In recent work, new or improved SAT encodings of linear constraints [2] and pseudo-Boolean

constraints (combined with AMO constraints) [9, 7] have been devised and their performance

compared on several benchmark problems. The scaling properties of encodings are studied,

and it is suggested that smaller encodings should be used when coefficients or values of

integer variables are large. However, to the best of our knowledge the problem of selecting

an encoding (particularly for a previously-unseen problem class) has not been systematically

addressed for LI or PB constraints. We use the full set of encodings from one recent paper [9]

combined with automatic AMO detection [5].

MeSAT [24] and Proteus [15] both select SAT encodings using machine learning. MeSAT

has two encodings of LI constraints: the order encoding [25]; and an encoding based on

enumeration of allowed tuples of values (which uses a direct encoding of the CSP variables).

It is not clear whether high-arity sums are broken up before encoding. MeSAT selects from

three configurations using a k-nearest neighbour classifier using 70 CSP instance features.

They report high accuracy (within 4% of the virtual best configuration), however the single

best configuration is only 18% slower than the virtual best. Proteus makes a sequence of

decisions: whether to use CSP or SAT; the SAT encoding; and the SAT solver to use. The

portfolio contains three SAT encodings: direct, support, and a hybrid direct-order, however

the encoding of LI constraints is not specified [15]. Proteus generates each candidate SAT

encoding and extracts features of the SAT formula to inform its selection – scaling this

approach would be difficult when several constraint types are involved, each with many

encoding choices. Results show that the choice of encoding (combined with the choice of SAT

solver) is important and that machine learning methods can be effective in their context.

5 Conclusions and Future Work

We have shown that it is possible to close much of the performance gap between the single best

and virtual best SAT encodings by using machine learning to select encoding configurations

based on instance features. We have studied the problem of selecting encodings for instances

of previously-unseen classes, a problem that is more challenging and arguably more realistic

than the usual setting where training and test instances are drawn from the same set of

problem classes. General instance features such as those provided by fzn2feat [4] perform

well; however the introduction of features specific to linear integer and pseudo-Boolean

constraints has enabled us to improve the quality of predictions. We present a machine

learning method that performs well, and investigate several variations of it. We have also

presented a thorough experimental analysis of the method, a comparison with AutoFolio,

and an analysis of feature importance.

We intend to build on these results by considering other constraint types for which

multiple SAT encodings exist. It may also be beneficial to expand the problem corpus to

have a more even distribution of problem instances per class and to broaden the range of

constraint models represented.

References

1 I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and V. Mayer-Eichberger. A
New Look at BDDs for Pseudo-Boolean Constraints. Journal of Artificial Intelligence Research,

CP 2022

4:16 Selecting SAT Encodings for PB and LI constraints

45:443Ű480, November 2012. doi:10.1613/jair.3653.

2 Ignasi Abío, Valentin Mayer-Eichberger, and Peter Stuckey. Encoding Linear Constraints into
SAT. arXiv:2005.02073 [cs], May 2020. arXiv:2005.02073.

3 Ignasi Abío, Valentin Mayer-Eichberger, and Peter J Stuckey. Encoding linear constraints
with implication chains to CNF. In International Conference on Principles and Practice of

Constraint Programming, pages 3Ű11. Springer, 2015. doi:10.1007/978-3-319-23219-5_1.

4 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor
for a portfolio of constraint solvers. In Proceedings of the 29th Annual ACM Symposium on

Applied Computing, SAC Š14, pages 1357Ű1359, New York, NY, USA, March 2014. Association
for Computing Machinery. doi:10.1145/2554850.2555114.

5 Carlos Ansótegui, Miquel BoĄll, Jordi Coll, Nguyen Dang, Juan Luis Esteban, Ian Miguel, Peter
Nightingale, András Z Salamon, Josep Suy, and Mateu Villaret. Automatic detection of at-
most-one and exactly-one relations for improved SAT encodings of pseudo-boolean constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
20Ű36. Springer, 2019. doi:10.1007/978-3-030-30048-7.

6 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New Encodings of Pseudo-Boolean
Constraints into CNF. In Oliver Kullmann, editor, Theory and Applications of Satisfiability

Testing - SAT 2009, Lecture Notes in Computer Science, pages 181Ű194, Berlin, Heidelberg,
2009. Springer. doi:10.1007/978-3-642-02777-2_19.

7 Miquel BoĄll, Jordi Coll, Peter Nightingale, Josep Suy, Felix Ulrich-Oltean, and Mateu Villaret.
SAT encodings for Pseudo-Boolean constraints together with at-most-one constraints. Artificial

Intelligence, 302:103604, January 2022. doi:10.1016/j.artint.2021.103604.

8 Miquel BoĄll, Jordi Coll, Josep Suy, and Mateu Villaret. Compact MDDs for Pseudo-Boolean
Constraints with At-Most-One Relations in Resource-Constrained Scheduling Problems. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages
555Ű562, Melbourne, Australia, August 2017. International Joint Conferences on ArtiĄcial
Intelligence Organization. doi:10.24963/ijcai.2017/78.

9 Miquel BoĄll, Jordi Coll, Josep Suy, and Mateu Villaret. SAT encodings of pseudo-boolean
constraints with at-most-one relations. In International Conference on Integration of Constraint

Programming, Artificial Intelligence, and Operations Research, pages 112Ű128. Springer, 2019.
doi:10.1007/978-3-030-19212-9.

10 Miquel BoĄll, Jordi Coll, Josep Suy, and Mateu Villaret. An MDD-based SAT encoding
for pseudo-Boolean constraints with at-most-one relations. Artificial Intelligence Review,
53(7):5157Ű5188, 2020. doi:10.1007/s10462-020-09817-6.

11 Leo Breiman. Random Forests. Machine Learning, 45(1):5Ű32, October 2001. doi:10.1023/A:

1010933404324.

12 Ewan Davidson, Özgür Akgün, Joan Espasa, and Peter Nightingale. Effective Encodings of
Constraint Programming Models to SMT. In Helmut Simonis, editor, Principles and Practice

of Constraint Programming, Lecture Notes in Computer Science, pages 143Ű159, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-58475-7_9.

13 Marijn Heule, Matti Jarvisalo, Martin Suda, Markus Iser, Tomáš Balyo, and Nils Froleyks.
SAT competitions. URL: https://satcompetition.github.io/ [cited 22.02.2022].

14 Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A Compact Encoding of Pseudo-
Boolean Constraints into SAT. In Birte Glimm and Antonio Krüger, editors, KI 2012:

Advances in Artificial Intelligence, Lecture Notes in Computer Science, pages 107Ű118, Berlin,
Heidelberg, 2012. Springer. doi:10.1007/978-3-642-33347-7_10.

15 Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry OŠSullivan. Proteus: A Hierarchical
Portfolio of Solvers and Transformations. In Helmut Simonis, editor, Integration of AI and OR

Techniques in Constraint Programming, Lecture Notes in Computer Science, pages 301Ű317,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-07046-9.

16 Saurabh Joshi, Ruben Martins, and Vasco Manquinho. Generalized Totalizer Encoding for
Pseudo-Boolean Constraints. In Gilles Pesant, editor, Principles and Practice of Constraint

https://doi.org/10.1613/jair.3653
http://arxiv.org/abs/2005.02073
https://doi.org/10.1007/978-3-319-23219-5_1
https://doi.org/10.1145/2554850.2555114
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.1007/978-3-642-02777-2_19
https://doi.org/10.1016/j.artint.2021.103604
https://doi.org/10.24963/ijcai.2017/78
https://doi.org/10.1007/978-3-030-19212-9
https://doi.org/10.1007/s10462-020-09817-6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-030-58475-7_9
https://satcompetition.github.io/
https://doi.org/10.1007/978-3-642-33347-7_10
https://doi.org/10.1007/978-3-319-07046-9

F. Ulrich-Oltean, P. Nightingale, J.A. Walker 4:17

Programming, Lecture Notes in Computer Science, pages 200Ű209, Cham, 2015. Springer
International Publishing. doi:10.1007/978-3-319-23219-5_15.

17 Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated
Algorithm Selection: Survey and Perspectives. Evolutionary Computation, 27(1):3Ű45, March
2019. doi:10.1162/evco_a_00242.

18 Christophe Lecoutre and Olivier Roussel. XCSP3 Competition, 2019. URL: http://www.cril.

univ-artois.fr/XCSP19/ [cited 22.02.2022].
19 Marius Lindauer, Holger H. Hoos, Frank Hutter, and Torsten Schaub. AutoFolio: An

Automatically ConĄgured Algorithm Selector. Journal of Artificial Intelligence Research,
53:745Ű778, August 2015. doi:10.1613/jair.4726.

20 Peter Nightingale. Savile Row 1.9.0 Manual. URL: https://savilerow.cs.st-andrews.ac.

uk/index.html [cited 22.02.2022].
21 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick

Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35Ű61, October 2017. doi:10.1016/j.artint.2017.07.001.

22 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825Ű2830, 2011.
23 Philipp Probst, Marvin N. Wright, and Anne-Laure Boulesteix. Hyperparameters and tuning

strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3):e1301, 2019.
doi:10.1002/widm.1301.

24 Mirko Stojadinović and Filip Marić. meSAT: Multiple encodings of CSP to SAT. Constraints,
19(4):380Ű403, October 2014. doi:10.1007/s10601-014-9165-7.

25 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling Ąnite lin-
ear CSP into SAT. Constraints, 14(2):254Ű272, June 2009. doi:10.1007/s10601-008-9061-0.

26 Helsinki Institute for Information Technology University of Helsinki, Tomáš Balyo, Nils
Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Proceedings of SAT
Competition 2021 : Solver and Benchmark Descriptions. In Proceedings of SAT Competition

2021. Department of Computer Science, University of Helsinki, 2021.
27 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.

In International Conference on Principles and Practice of Constraint Programming, pages
671Ű686. Springer, 2017. doi:10.1007/978-3-319-66158-2_43.

CP 2022

https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1162/evco_a_00242
http://www.cril.univ-artois.fr/XCSP19/
http://www.cril.univ-artois.fr/XCSP19/
https://doi.org/10.1613/jair.4726
https://savilerow.cs.st-andrews.ac.uk/index.html
https://savilerow.cs.st-andrews.ac.uk/index.html
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1002/widm.1301
https://doi.org/10.1007/s10601-014-9165-7
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/978-3-319-66158-2_43

	1 Introduction
	1.1 Contributions
	1.2 Preliminaries

	2 Learning to Choose SAT Encodings
	2.1 SAT Encodings
	2.1.1 PB(AMO) Encodings
	2.1.2 Tree Encoding

	2.2 Instance Features
	2.3 Problem Corpus
	2.4 Training

	3 Empirical Investigation
	3.1 Solving Problem Instances and Extracting Features
	3.2 Cleaning the Dataset
	3.3 Splitting the Corpus, Training and Predicting
	3.4 Evaluating the Performance of Predicted Encodings
	3.5 Results and Discussion
	3.6 Comparison with AutoFolio
	3.7 Feature Importance

	4 Related Work
	5 Conclusions and Future Work

