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ARTICLE

Predictive biomarkers for survival benefit with
ramucirumab in urothelial cancer in the RANGE
trial
Michiel S. van der Heijden 1✉, Thomas Powles 2, Daniel Petrylak3, Ronald de Wit4, Andrea Necchi5,

Cora N. Sternberg 6, Nobuaki Matsubara7, Hiroyuki Nishiyama 8, Daniel Castellano9, Syed A. Hussain 10,

Aristotelis Bamias 11, Georgios Gakis12, Jae-Lyun Lee13, Scott T. Tagawa 14, Ulka Vaishampayan15,

Jeanny B. Aragon-Ching 16, Bernie J. Eigl 17, Rebecca R. Hozak18, Erik R. Rasmussen19, Meng Summer Xia18,

Ryan Rhodes18, Sameera Wijayawardana18, Katherine M. Bell-McGuinn18, Amit Aggarwal18 &

Alexandra Drakaki 20

The RANGE study (NCT02426125) evaluated ramucirumab (an anti-VEGFR2 monoclonal

antibody) in patients with platinum-refractory advanced urothelial carcinoma (UC). Here, we

use programmed cell death-ligand 1 (PD-L1) immunohistochemistry (IHC) and transcriptome

analysis to evaluate the association of immune and angiogenesis pathways, and molecular

subtypes, with overall survival (OS) in UC. Higher PD-L1 IHC and immune pathway scores,

but not angiogenesis scores, are associated with greater ramucirumab OS benefit. Addi-

tionally, Basal subtypes, which have higher PD-L1 IHC and immune/angiogenesis pathway

scores, show greater ramucirumab OS benefit compared to Luminal subtypes, which have

relatively lower scores. Multivariable analysis suggests patients from East Asia as having

lower immune/angiogenesis signature scores, which correlates with decreased ramucirumab

OS benefit. Our data highlight the utility of multiple biomarkers including PD-L1, molecular

subtype, and immune phenotype in identifying patients with UC who might derive the

greatest benefit from treatment with ramucirumab.
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I
dentification of biomarkers to predict which subset of patients
will derive the most benefit from a particular therapy is needed
to optimize targeted therapies. One emerging biomarker for

urothelial carcinoma (UC) is expression of programmed cell death-
ligand 1 (PD-L1) which, together with its receptor, programmed
cell death protein (PD-1), are the targets of multiple immune-
checkpoint inhibitors1–7, which have been shown to improve
overall survival (OS) in the second-line (KEYNOTE-45)3 and
switch maintenance settings (JAVELIN 100)5. However, PD-L1
expression did not always correlate with efficacy outcomes. Patients
below the tumor PD-L1 expression cutoff could still respond to
immune-checkpoint inhibitors, suggesting that use of single-gene
biomarkers may not be representative of the complexity of UC8,9.

Urothelial carcinoma has been comprehensively genomically
characterized10,11. Along with single-protein biomarkers, this more
complex profiling may provide another useful way to study bio-
markers in UC and gain insight into disease biology and targets for
novel therapies. Several UC molecular classification schemes using
different genomic platforms and patient datasets have now been
described10–15. These schemes are based on “basal-like” and
“luminal-like” cellular phenotypes that are further refined into dis-
crete subclassifications. The Cancer Genome Atlas (TCGA) identi-
fied five expression subtypes: Basal Squamous, Luminal, Luminal
Infiltrated, Luminal Papillary, and Neuronal15. Seiler et al. developed
a single-sample genomic subtyping classifier (GSC) to predict four
consensus subtypes: Basal, (Basal) Claudin Low, Luminal, and
Luminal Infiltrated16. Recently, a single-sample consensus molecular
classifier derived by the Bladder Cancer Molecular Taxonomy
Group has been proposed. This ConsensusMIBC (muscle-invasive
bladder cancer) classifier groups tumor types into six subtypes:
Basal/Squamous, Luminal Papillary, Luminal Non-Specified, Lumi-
nal Unstable, Stroma-rich, and Neuroendocrine-like (NE-like)11.

While predictive UC biomarker characterization has mainly
occurred in the context of checkpoint inhibitors (IMvigor 210/
2116,17, CheckMate 2757, KEYNOTE-0452) and neoadjuvant
chemotherapy16, identification of predictive biomarkers for anti-
angiogenic therapy has been lacking in clinical trials to date.
Currently, the 2017 RANGE study is the only phase 3 trial to show
a significant progression-free survival (PFS) benefit with the use of
an angiogenesis inhibitor, ramucirumab, in combination with
docetaxel after platinum-based therapy in the advanced/metastatic
UC setting18. Follow-up analyses confirmed the PFS benefit,
without a significant improvement in OS, in the intent-to-treat
(ITT) population (OS 9.4 vs. 7.9 months, ramucirumab+
docetaxel vs. docetaxel only)19. Intriguingly, exploratory biomarker
analyses identified a strong association between higher baseline
PD-L1 expression (combined positive score [CPS] ≥ 10) and
increased OS with ramucirumab+ docetaxel (hazard ratio [HR]
0.519, p= 0.0048, in patients with a PD-L1 CPS ≥ 10 vs. HR 0.999,
p= 0.9955, in patients with a PD-L1 CPS < 10)19. These results
suggest a putative role for predictive biomarkers of response to
ramucirumab. Here, we report results from a retrospective analysis
of the RANGE study using a comprehensive biomarker approach
of PD-L1 status, tumor microenvironment gene expression sig-
natures, and molecular subtyping, to identify patients who may
optimally benefit from ramucirumab therapy for UC.

Results
The ITT analysis population of the RANGE trial included 530
randomized (1:1) patients. Of these, 462 patient tumor samples
were available to submit to Decipher Biosciences for gene
expression profiling. Of these samples, 394 met assay criteria for
gene expression profiling and 227 samples additionally met PD-
L1 immunohistochemistry (IHC) assay criteria. Therefore, two
cohorts comprised the translational research (TR) populations:

TR1 (gene expression profiling and PD-L1 IHC, n= 227) and
TR2 (gene expression profiling, n= 394). Baseline demographics
and disease characteristics of TR1/TR2 populations were repre-
sentative of the overall RANGE ITT population with the excep-
tion of a lower proportion of East Asian patients in the TR1 (PD-
L1) population (3.1% in the TR1 population vs. 20.8% in RANGE
ITT and 18.8% in TR2) (Table 1). Both TR populations had
significantly improved PFS for ramucirumab+ docetaxel vs.
placebo+ docetaxel but not for OS, consistent with previous
reports18,19 for the RANGE ITT population (Table 1, Efficacy
outcomes).

PD-L1, tumor microenvironment gene expression signatures,
and overall survival. Archival patient tumor tissue from the
RANGE trial was analyzed for PD-L1 IHC (22C3), according to
the PD-L1 IHC 22C3 pharmDx Interpretation Manual for UC20

(see Methods), to determine PD-L1 expression present in tumor
cells (TC), immune cells (IC), and the CPS, which accounts for
expression in both cell types. The CPS ≥ 10 cutoff was selected in
line with the threshold defined in the PD-L1 IHC 22C3 pharmDx
Interpretation Manual for UC20 (see Methods). Higher PD-L1
CPS was associated with longer OS in the ramucirumab arm
(CPS ≥ 10 vs. <10, median OS 9.03 vs. 7.92 months, Fig. 1a) of the
TR1 population. In addition, CPS ≥ 10 was predictive of OS
benefit for ramucirumab vs. placebo (stratified HR, 0.451, 95%
confidence interval [CI] 0.275 to 0.74; p= 0.002, Benjamini-
Hochberg [BH]-adjusted p= 0.047; Fig. 1a and Supplementary
Table 1) compared to CPS < 10 (stratified HR, 0.926, 95% CI
0.604 to 1.42; interaction p-value= 0.063). Examination of the
CPS ≥ 10 cutoff was also supported graphically with a sub-
population treatment effect pattern plot (STEPP), by the obser-
vation that the 95% CI of the HR consistently appears below 1
when the subpopulation median CPS was approximately above 10
(Supplementary Fig. 1a). Tumor samples scored by PD-L1
expression in TC or IC similarly revealed an association
between high-PD-L1 expression and longer OS in the ramucir-
umab arm (TC ≥ 1 vs. <1, 9.2 vs. 7.89 months, Fig. 1b; IC ≥ 4 vs.
<4, 9.2 vs. 7.92 months, Fig. 1c). TC ≥ 1 and IC ≥ 4 trended
towards OS benefit in the ramucirumab arm (Fig. 1b, c), although
the interactions with treatment arm were not significant.

We subsequently examined angiogenesis and immune/inflam-
mation pathways in the TR2 (n= 394) population. mRNA
expression profiling revealed higher scores for published
angiogenesis and immune signatures (see Methods) in tumor
samples with PD-L1 CPS ≥ 10 vs. CPS < 10 (Fig. 2a). High PD-L1
on IC and TC both had considerable overlap with CPS ≥ 10
grouping and increased expression of angiogenesis and immune
pathways. A significant proportion of the samples where PD-L1
status was not known were from the East Asia region and tended
to have lower expression of both angiogenesis and immune
signature.

Multiple angiogenesis and immune signature sets were summar-
ized as a mean signature score (see Methods) to explore associations
with both CPS and clinical outcomes. Higher angiogenesis and
immune mean signature scores were associated with CPS ≥ 10
compared to CPS < 10 (p < 0.01 and p < 0.0001, respectively)
(Fig. 2b). To analyze clinical outcomes associated with individual
angiogenesis/immune signatures from the heat map (Fig. 2a),
individual signature scores and mean signature scores were
dichotomized by median, and subgroups were created by patients
with scores >median or ≤median for each signature. Stratified HRs
of ramucirumab+ docetaxel vs. placebo+ docetaxel with 95% CI
were estimated using Cox regression models for each subgroup
(Fig. 2c, Supplementary Tables 1 and 2). High immune signature
scores provided OS ramucirumab benefit, with T-effector, T-cell
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inflamed, activated CD4, activated CD8, memory CD8, and mean
immune signatures showing OS treatment effect (HRs ranging from
0.574 to 0.699 [Supplementary Table 2], BH-adjusted p < 0.2;
Supplementary Table 1. Interactions between treatment and
immune signature scores (>median vs. ≤median) were significant
for the T-effector (p= 0.036) and activated CD4 T-cell (p= 0.022)
(Fig. 2c). However, there was no clear association between high
angiogenesis signature scores and ramucirumab benefit (Fig. 2c).
Additionally, to explore the association between ramucirumab
benefit and angiogenesis and immune mean signature score in a
continuous manner, the STEPP method was utilized (Supplemen-
tary Fig. 1b, c). The 95% CI of the HR was consistently below 1
when the subpopulation median immune signature score went
above 0.36 confirming the finding in dichotomized analysis that
high immune signature scores provided OS ramucirumab benefit.
However, no clear trend was observed for the angiogenesis mean
signature score.

Urothelial carcinoma molecular subtype, PD-L1 status, and
overall survival. We analyzed the mRNA dataset using three
different gene expression-based UC molecular classifiers11,21

(Supplementary Table 3). There was considerable overlap
between ConsensusMIBC Basal/Squamous and the Basal and
Claudin Low subtypes from Decipher Bioscience’s Genomic
Subtyping Classifier Bladder version 1 (GSCv1). The Con-
sensusMIBC classifier further refines the Basal subtype from
Decipher GSCv1 into an even split between Basal/Squamous and
Stroma-rich subtypes. Analysis of the association between mole-
cular subtype and PD-L1 CPS revealed that Basal tumor types of
classification schemes were more likely to be CPS ≥ 10: 52.2% of
Basal and 82.1% of Claudin Low subtypes using the Decipher
GSCv1 classifier21, 73.5% of the Basal/Squamous subtype using
the ConsensusMIBC classifier11 (Fig. 3a), and 76.9% of the Basal
Squamous subtype using TCGA were CPS ≥ 10. In contrast,
Luminal tumor types of UC classification schemes were more

Table 1 Demographics, baseline disease characteristics, and efficacy outcomes in the overall study ITT population compared to

TR1 and TR2.

Variable, n (%) ITT Populationa

N= 530
TR1 Populationb

N= 227
TR2 Populationc

N= 394

Ramucirumab
n= 263

Placebo
n= 267

Ramucirumab
n= 122

Placebo
n= 105

Ramucirumab
n= 198

Placebo
n= 196

Demographics and baseline disease characteristics
Gender
Male 213 (81.0) 215 (80.5) 105 (86.1) 88 (83.8) 166 (83.8) 156 (79.6)
Female 50 (19.0) 52 (19.5) 17 (13.9) 17 (16.2) 32 (16.2) 40 (20.4)

Age, median years (range) 65.0 (34–86) 66.0 (32–83) 64.5 (34–85) 66.0 (32–79) 65.0 (34–86) 66.0 (32–83)
Race group
White 203 (77.2) 204 (76.4) 116 (95.1) 101 (96.2) 159 (80.3) 155 (79.1)
Asian 54 (20.5) 61 (22.8) 4 (3.3) 4 (3.8) 36 (18.2) 40 (20.4)
Other 6 (2.3) 2 (0.7) 2 (1.6) 0 (0.0) 3 (1.5) 1 (0.5)

Regiond

North America 24 (9.1) 24 (9.0) 10 (8.2) 6 (5.7) 20 (10.1) 19 (9.7)
Europe/Other 186 (70.7) 186 (69.7) 109 (89.3) 95 (90.5) 143 (72.2) 138 (70.4)
East Asia 53 (20.2) 57 (21.3) 3 (2.5) 4 (3.8) 35 (17.7) 39 (19.9)
ECOG PS: %, 0 | 1d, e 46.0 | 52.9 46.8 | 53.2 45.1 | 54.9 43.8 | 56.2 44.9 | 55.1 46.4 | 53.6

Primary tumor site
Bladder 180 (68.4) 177 (66.3) 92 (75.4) 69 (65.7) 135 (68.2) 127 (64.8)
Non-bladderf 72 (27.4) 79 (29.6) 25 (20.5) 31 (29.5) 56 (28.3) 61 (31.1)
Otherg 11 (4.2) 11 (4.1) 5 (4.1) 5 (4.8) 7 (3.5) 8 (4.1)

Histology
Pure transitional cell 205 (77.9) 217 (81.3) 93 (76.2) 81 (77.1) 156 (78.8) 156 (79.6)
Mixed 55 (20.9) 49 (18.4) 29 (23.8) 24 (22.9) 42 (21.2) 39 (19.9)
Missing 3 (1.1) 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.5)

Baseline hemoglobin: %,
<10 g/dL | ≥10 g/dLh 12.9 | 85.2 13.5 | 85.8 10.7 | 89.3 17.1 | 82.9 10.6 | 89.4 15.8 | 83.2

Bellmunt risk factorsi

0 88 (33.5) 93 (34.8) 40 (32.8) 31 (29.5) 65 (32.8) 63 (32.1)
1 105 (39.9) 109 (40.8) 51 (41.8) 42 (40.0) 81 (40.9) 80 (40.8)
2 64 (24.3) 57 (21.3) 26 (21.3) 30 (28.6) 46 (23.2) 47 (24.0)
3 6 (2.3) 8 (3.0) 5 (4.1) 2 (1.9) 6 (3.0) 6 (3.1)

Visceral metastasesd

Yes 182 (69.2) 188 (70.4) 87 (71.3) 83 (79.0) 137 (69.2) 147 (75.0)
No 78 (29.7) 79 (29.6) 35 (28.7) 22 (21.0) 61 (30.8) 49 (25.0)
Missing 3 (1.1) 0 (0) 0 (0.0) 0 (0.0) 0 (0) 0 (0)
Liver metastases present 78 (29.7) 69 (25.8) 38 (31.1) 31 (29.5) 61 (30.8) 56 (28.6)

Prior platinum therapy
Cisplatin 161 (61.2) 189 (70.8) 73 (59.8) 70 (66.7) 125 (63.1) 137 (69.9)
Carboplatin 97 (36.9) 77 (28.8) 49 (40.2) 34 (32.4) 73 (36.9) 58 (29.6)
Other 2 (0.8) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Missing 3 (1.1) 1 (0.4) 0 (0) 1 (1.0) 0 (0) 1 (0.5)

Prior adjuvant therapy
Adjuvant 46 (17.5) 70 (26.2) 21 (17.2) 24 (22.9) 37 (18.7) 54 (27.6)
Neo-adjuvant 41 (15.6) 37 (13.9) 21 (17.2) 14 (13.3) 31 (15.7) 31 (15.8)
None 173 (65.8) 160 (59.9) 80 (65.6) 67 (63.8) 130 (65.7) 111 (56.6)
Missing 3 (1.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Efficacy outcomes
Median PFS, months (95% CI) 4.07 (3.29–4.83) 2.76 (2.60–2.89) 4.37 (4.01–5.32) 2.69 (1.54–2.83) 4.17 (3.65–5.22) 2.73 (1.97–2.89)
HR (stratified), (95% CI) 0.70 (0.58–0.86) 0.60 (0.44–0.81) 0.64 (0.51–0.81)
p-value (log-rank) Stratified <0.001 <0.001 <0.001
Median OS, months (95% CI) 9.40 (7.89–11.43) 7.85 (7.00–9.30) 8.48 (6.77–11.14) 6.11 (4.50–7.43) 8.80 (7.59–11.43) 7.06 (5.85–7.92)
HR (stratified), (95% CI) 0.88 (0.72–1.08) 0.75 (0.55–1.02) 0.83 (0.66–1.05)
p-value (log-rank) Stratified 0.212 0.068 0.130

CI confidence interval, ECOG PS Eastern Cooperative Oncology Group Performance Status, HR hazard ratio (of treatment effect), IHC immunohistochemistry, ITT intent-to-treat population, N total

number of patients in corresponding arm and population, n number of patients in specified category, OS overall survival, PD-L1 programmed cell death ligand 1, PFS progression-free survival, TR

translational research.
a ITT population consists of all randomized patients from the original RANGE study; baseline characteristics have been published previously18,19.
b TR1 population consists of patients in the ITT population from whom both PD-L1 IHC and valid Decipher Biosciences RNA results were obtained.
c TR2 population consists of patients for whom valid Decipher Biosciences RNAseq results were obtained.
d Stratification factors.
e ECOG PS data missing for 3 patients in the ramucirumab arm of the ITT population.
f Non-bladder primary tumor site refers to renal pelvis, ureter, or urethra.
g “Other” refers to tumors with more than one primary site.
h Baseline hemoglobin values missing for 5 and 2 patients in the ramucirumab and placebo arm respectively, of the ITT population.
i Bellmunt risk factors included liver metastases, hemoglobin <10 g/dL, and ECOG PS score > 0.
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Fig. 1 Biomarker association with clinical outcome: PD-L1 and signature pathways. a–c Kaplan–Meier curves depicting OS probability in

ramucirumab+ docetaxel or placebo+ docetaxel arms based on PD-L1 expression. PD-L1 scoring method and cutoffs scored by a CPS < 10 (n= 126

participants) vs. ≥10 (n= 101 participants), b TC < 1 (n= 127 participants) vs. ≥1 (n= 100 participants), and c IC < 4 (n= 124 participants) vs. ≥4 (n= 103

participants). ORR, median OS, and stratified/unstratified HRs are shown. Stratification was based on geographical region, baseline ECOG PS, and visceral

metastases. A two-sided Wald test was used in Cox regression models. p-values before BH-adjustment are shown in figures. p-values after BH-adjustment

are shown in Supplementary Table 1. For all models, the TR1 population (n= 227 participants) is used, and the number within each subset is reported

above. *Indicates proportional hazard assumption was violated with p= 0.04. Source data are provided as a Source Data file. BH, Benjamini-Hochberg; CI,

confidence interval; CPS, combined positive score; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HR, hazard ratio; IC, immune cell;

n, number of participants; ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death ligand 1; TC, tumor cell; TR, translational

research.
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Fig. 2 Molecular subtype association with PD-L1 status, angiogenesis/immune signatures, and clinical outcome. a Heatmap of angiogenesis and

immune gene signatures in the TR2 population (n= 394 participants). Columns (patient samples) are ordered by CPS PD-L1 group (CPS not measured,

CPS 0–9 and CPS 10–96) and by region (East Asia, Europe/Other, and North America). b Mean signature score for angiogenesis and immune pathways

in CPS < 10 (n= 126) vs. CPS≥ 10 (n= 101) samples from n= 227 participants in the TR1 population. For boxplots, the center line represents median,

box hinges represent first and third quartiles, whiskers represent minimum and maximum within 1.5x interquartile range, and red marker is mean.

Mean angiogenesis signature score, p= 0.009 (CPS < 10 vs. CPS≥ 10, two-sample t-test without multiplicity adjustment). Mean immune signature

score, p < 0.0001 (CPS < 10 vs. CPS≥ 10, two-sample t-test without multiplicity adjustment). c Forest plot of stratified OS HRs (95% CIs) of

ramucirumab+ docetaxel vs. placebo+ docetaxel for the subgroups defined by dichotomized individual angiogenesis and immune signatures, and

corresponding mean of angiogenesis and immune signature score. Data are presented as estimated HR with error bars indicating the 95% CI. Each

signature is dichotomized by the median. Citations for the angiogenesis signature pathways can be found in the Methods and Supplementary Table 2.

Stratification was based on geographical region, baseline ECOG PS, and visceral metastases. The proportional hazard assumption was not violated in any

instance. The TR2 population (n= 394 participants) was used; n= 197 participants within each subgroup. *Interaction p-value < 0.1 (0.055 for T-cell

inflamed; 0.063 for mean immune); **Interaction p-value < 0.05 (0.036 for T-effector; 0.022 for activated CD4). p-values were based on two-sided Wald

test without multiplicity adjustment. Source data are provided as a Source Data file. CI, confidence interval; CPS, combined positive score; CR, complete

response; HR, hazard ratio; IC, immune cell; n, number of participants; NE, not evaluable; PD, progressive disease; PD-L1, programmed cell death ligand 1;

PR, partial response; SD, stable disease; TC, tumor cell.
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often CPS < 10. For example, 80.3% of Luminal and 70.4% of
Luminal Infiltrated using the Decipher GSCv1 classifier and
91.7% (Luminal Papillary), 68.4% (Luminal Non-Specified), and
52.5% (Luminal Unstable) subtypes using the ConsensusMIBC
classifier were CPS < 10 (Fig. 3a). A chi-square test for CPS ≥ 10
vs. Decipher GSCv1 subtypes was significant (p < 0.0001). A
Fisher’s exact test for CPS ≥ 10 vs. ConsensusMIBC subtypes was
also significant (p= 0.0005). In addition, Basal and Claudin Low
of Decipher GSCv1 subtypes and Basal/Squamous of Con-
sensusMIBC classification were associated with higher CPS levels
when it was investigated as a continuous variable (Fig. 3a). With
respect to expression signatures, the Claudin Low and Basal
Decipher GSCv1 molecular subtypes had high mean angiogenesis
and immune signature scores, while the Luminal subtype had the
lowest scores (Fig. 3b, c). The Basal/Squamous subtype within the
ConsensusMIBC classification had the second highest mean
angiogenesis signature score and highest mean immune signature

score (Fig. 3b, c). The Stroma-rich subtype had the highest
angiogenesis score, while Luminal Papillary had the lowest score
for both mean angiogenesis (excluding n= 8 NE-like) and
immune signature score.

Analysis of OS outcomes based on Decipher GSCv1 molecular
subtype revealed that patients with Basal type tumors had longer
median OS with ramucirumab treatment over placebo (Basal,
10.48 vs. 7.75 months; Claudin Low, 8.48 vs. 5.65 months), with
the Claudin Low subtype exhibiting the strongest ramucirumab
treatment effect (stratified HR 0.508, 95% CI 0.259 to 0.994,
p= 0.048, BH-adjusted p= 0.226; Fig. 4 and Supplementary
Table 1). Of note, the Claudin Low subtype also had the highest
mean angiogenesis and immune signature scores (Fig. 3b, c).
Luminal subtypes, which had the lowest overall mean angiogen-
esis/immune signature scores, showed the least treatment benefit.
With the ConsensusMIBC classification scheme, the Basal/
Squamous subtype benefited most from ramucirumab (stratified

Fig. 3 Molecular subtype association with PD-L1 CPS and mean angiogenesis/immune signature scores. a Association of PD-L1 expression by CPS with

molecular subtypes as defined by the Decipher GSCv1 and ConsensusMIBC classification schemes in the TR1 population (n= 227 samples from n= 227

participants in the TR1 population). For boxplots, the center line represents median, box hinges represent first and third quartiles, whiskers represent

minimum and maximum within 1.5x interquartile range, and red marker is mean. Decipher GSCv1 F-test, p < 0.0001; ConsensusMIBC F-test, p < 0.0001.

p-values indicated are for one-way ANOVA, without multiplicity adjustment. The blue dotted line indicates CPS≥ 10 cutoff. Number and percent of

patients with CPS≥ 10 for each tumor subtype indicated below the plot. b Mean of angiogenesis signature scores relative to molecular subtypes of the

Decipher GSCv1 and ConsensusMIBC classification schemes in the TR2 population (n= 394 samples from n= 394 participants in the TR2 population).

Decipher GSCv1 F-test, p < 0.0001; ConsensusMIBC F-test, p < 0.0001, without multiplicity adjustment. p-values indicated are for one-way ANOVA. c

Mean of immune signature scores relative to molecular subtypes of the Decipher GSCv1 and ConsensusMIBC classification schemes in the TR2 population

(n= 394 samples from n= 394 participants in the TR2 population). Decipher GSCv1 F-test, p < 0.0001; ConsensusMIBC F-test, p < 0.0001. p-values

indicated are for one-way ANOVA, without multiplicity adjustment. For boxplots, the center line represents median, box hinges represent first and third

quartiles, whiskers represent minimum and maximum within 1.5x interquartile range, and red marker is mean. Decipher GSCv1 subtype prevalence (n/

group): Luminal (n= 131), Luminal Infiltrated (n= 55), Basal (n= 150), Claudin Low (n= 58). ConsensusMIBC subtype prevalence (n/group): Luminal

Papillary (n= 97), Luminal Non-Specified (n= 39), Luminal Unstable (n= 61), Stroma-rich (n= 75), Basal/Squamous (n= 114), Neuroendocrine-like

(n= 8). Source data are provided as a Source Data file. Ba/Sq, Basal/Squamous; CPS, combined positive score; Lum NS, Luminal Non-Specified; Lum Pap,

Luminal Papillary; Lum U, Luminal Unstable; NE-like, Neuroendocrine-like; PD-L1, programmed cell death ligand 1.
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HR 0.56, 95% CI 0.346 to 0.907, p= 0.018, BH-adjusted
p= 0.134) (Fig. 4 and Supplementary Table 1). The association
of OS with Basal/Squamous subtype was also consistent when
using a TCGA 2017 classification (Supplementary Fig. 2). The
Luminal Papillary subtype, which had the lowest overall mean
signature score for both angiogenesis (excluding n= 8 NE-like)

and immune signatures across Basal and Luminal subtypes
(Fig. 3b, c), showed reduced treatment benefit compared to the
Basal/Squamous subtype. The interaction between treatment and
Decipher GSCv1 subtypes (Claudin Low vs. others) was not
significant (p= 0.32), while the interaction between treatment
and ConsensusMIBC subtypes (Basal/Squamous vs. others) was
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Fig. 4 Molecular subtype association with clinical outcome. Kaplan–Meier curves representing OS probability in ramucirumab+ docetaxel or

placebo+ docetaxel arms based on Decipher GSCv1 molecular subtypes (Basal [n= 150 participants], Claudin Low [n= 58 participants], Luminal [n= 131

participants], and Luminal Infiltrated [n= 55 participants]) or ConsensusMIBC (Basal/Squamous [n= 114 participants], Stroma-rich [n= 75 participants],

Luminal Non-Specified [n= 39 participants], Luminal Papillary [n= 97 participants], and Luminal Unstable [n= 61 participants]) molecular subtype.

Neuroendocrine-like subtype was not analyzed due to low number of patient samples for this subtype (n= 8). ORR, median OS, and stratified/unstratified

HRs are shown. A two-sided Wald test was used in Cox regression. p-values before BH-adjustment are shown in figures. p-values after BH-adjustment are

shown in Supplementary Table 1. Stratification was based on geographical region, baseline ECOG PS, and visceral metastases. TR2 population (n= 394

participants) is used. The proportional hazard assumption was not violated in any instance. Source data are provided as a Source Data file. BH, Benjamini-

Hochberg; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HR, hazard ratio; n, number of participants; ORR,

objective response rate; OS, overall survival; TR, translational research.
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marginally insignificant (p= 0.058). Interestingly, while the
Stroma-rich subtype had the highest angiogenesis score, with
relatively lower immune scores, there was no differential
ramucirumab OS benefit. Supplementary Fig. 3a, b show the
angiogenesis/immune signature heatmap grouped by molecular
subtype and CPS. Figure 5 summarizes ramucirumab treatment
benefit for OS based on inferred cell type from both classification
schemes, confirming the greatest ramucirumab treatment benefit
is seen in Basal type tumors and least benefit in tumors with
Luminal characteristics. The Stroma-rich subtype from the
ConsensusMIBC classifier showed the least benefit overall. The
ConsensusMIBC Basal/Squamous grouping showed greater
benefit compared to Basal type tumors as defined by Decipher
GSCv1 (Fig. 5).

Multivariable analysis of clinical factors associated with
expression signatures, molecular subtypes, and ramucirumab
benefit. We examined multivariable analyses investigating the
association of OS outcomes with mean angiogenesis (> vs.
≤median) subtypes, mean immune (> vs. ≤median) subtypes,
(Decipher GSCv1 and ConsensusMIBC separately), and their
interactions with treatment, using stratified Cox regression with
stepwise selection. The interaction between mean immune sig-
nature and ramucirumab was selected and significant in the
model selecting variables with Decipher GSCv1 (Supplementary
Table 4a, p= 0.047). The interaction between ConsensusMIBC
and ramucirumab was selected and significant in the model
selecting variables with ConsensusMIBC (Supplementary

Table 4b, p= 0.035). We further explored the association between
mean angiogenesis and immune signature scores and clinical
covariates. Multivariable analysis showed significantly lower
scores for both angiogenesis and immune signature score for
patients from the East Asia geographic region vs. other regions
after adjusting for multiple clinical covariates (Fig. 6a, b; Sup-
plementary Table 5). We assessed whether this could be attrib-
uted to a higher fraction of luminal molecular subtypes in the
patients enrolled from East Asia. There were slightly higher
percentages (by ~9%) of participants with Luminal (Decipher
GSCv1) or Luminal Papillary (ConsensusMIBC) subtypes in the
East Asia geographic region compared to all other regions. This
small difference suggests that this discrepancy was not entirely
attributable to differences in proportion of molecular subtypes
(Fig. 6c). We further compared mean angiogenesis and immune
signature score across molecular subtypes, now in relation to
geographic region, and observed that the East Asia subgroup had
numerically lower mean immune and angiogenesis signature
scores across all bladder cancer molecular subtypes, as defined by
either Decipher GSCv1 or ConsensusMIBC (Fig. 7a, b). Together,
this suggests the existence of different tumor microenvironments
in patient subgroups within this trial, defined by geographic
location. The presence of lower mean angiogenesis and immune
signature score were also associated with reduced benefit of
ramucirumab+ docetaxel, as patients in the East Asian geo-
graphic subgroup did not show as much OS benefit with ramu-
cirumab+ docetaxel (Fig. 7c and Supplementary Table 1)
compared to other regions. This indicates that disease hetero-
geneity related to geographic region may have contributed to the
OS difference in this study. Finally, the presence of visceral
metastases (defined in this study as liver, lung, or bone) correlated
with a significantly higher mean angiogenesis signature score
(Fig. 6a; Supplementary Fig. 4).

Discussion
The RANGE trial randomized platinum-refractory UC patients to
receive ramucirumab+ docetaxel or placebo+ docetaxel without
biomarker or molecular subtype selection. While positive for PFS,
RANGE failed to show a significant OS impact for the overall
patient population. In the current study, we investigated PD-L1
expression, analyzed immune and angiogenesis pathways relevant
to the mechanism of action of ramucirumab, and correlated UC
molecular subtypes with OS outcomes in UC. We found that
high-PD-L1 expression in either tumor cells or tumor-associated
immune cells, upregulation of immune signatures, and Basal
molecular subtypes were associated with ramucirumab OS ben-
efit. It is important to note that, as described in the Results section
of this manuscript, the baseline disease and demographic char-
acteristics of the two translational research populations (TR1 and
TR2) were largely representative of the overall RANGE ITT
population.

Disparate methods used for assigning PD-L1 status, including the
use of different antibodies and staining platforms for IHC, different
PD-L1 scoring metrics (CPS2 vs. TC9 vs. IC17), and non-standardized
cutoffs for defining high vs. low, have complicated interpretation of
the role PD-L1 plays as a potential biomarker across UC studies22.
Here, we took the approach to examine PD-L1 expression present in
TC, IC, and CPS. Our results (Fig. 1a, b, c) suggest high-PD-L1
expression (in both the immune and tumor cell compartments) is
associated with greater ramucirumab benefit in UC. Therefore,
measuring PD-L1 in both cell types may be clinically justified, as
expression in both IC and TC are potential determinants of ramu-
cirumab+ docetaxel benefit.

The anti-angiogenic mechanism of ramucirumab as an antitumor
agent led us to examine gene expression pathways related to
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angiogenesis as potential markers for response. In addition, the
exploratory analysis from the RANGE trial19, showing that PD-L1
CPS ≥ 10 was associated with significant OS treatment effect,
prompted us to further investigate immune-related gene signatures.
Our analysis revealed that high-PD-L1 expression correlated with

upregulation of both angiogenesis and immune-related signatures
(Fig. 2a, b), but only high immune signature score was associated
with significant ramucirumab OS benefit (Fig. 2c).

We used two single-sample prediction methods for UC
molecular subtyping, Decipher GSCv1 and ConsensusMIBC, with
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similarities and differences noted across the reported molecular
subtypes, PD-L1 score, and immune and angiogenesis signatures.
This allowed us to provide a more comprehensive assessment of
the association of these factors with survival outcomes. We noted
that high PD-L1 (CPS ≥ 10) was differentially associated with
molecular subtypes, with a relatively higher number of cases in
Basal subtypes across both subtyping schemes. When comparing
outcomes with the Decipher GSCv1 classifier, patients with Basal
and Claudin Low subtypes (i.e., those with relatively higher mean
immune/angiogenesis signature scores and higher PD-L1
expression) had relatively larger improvement in median OS
with ramucirumab+ docetaxel vs. placebo+ docetaxel compared
to those with a luminal subtype, which displayed the lowest PD-
L1 and mean immune/angiogenesis signature scores. With the
ConsensusMIBC classification, it is notable that Basal/Squamous
and Stroma-rich subtypes (corresponding to Decipher GSCv1
Basal and Claudin Low) showed upregulated mean angiogenesis
signature scores, but only Basal/Squamous had a particularly high
mean immune signature score relative to the remaining subtypes.
This correlated with a relatively larger improvement in median
OS for the Basal/Squamous subgroup compared to the Stroma-
rich subtype with ramucirumab+ docetaxel, suggesting that
presence of immune cells in the tumor microenvironment may be
needed. Intriguingly, in renal cell carcinoma, an in-depth analysis
of the IMmotion150 study showed that the combination of bev-
acizumab and atezolizumab was particularly effective in the
T-effector high population compared to the atezolizumab
monotherapy or sunitinib arms23. This association was confirmed
in the phase 3 IMmotion151 trial, showing a better outcome for
the atezolizumab/bevacizumab arm compared to sunitinib in the
T-effector/proliferative subtype24. Thus, the molecular subgroups
found to respond well to ramucirumab in our study could be
particularly amenable to combinations of an anti-angiogenic and
immunotherapeutic treatment. Further work exploring anti-
angiogenic agents and their interactions with the immune and
stromal microenvironment in UC is needed. Overall, our results
suggest that PD-L1 expression, immune and angiogenesis sig-
natures, and molecular subtypes may predict for response to
ramucirumab.

In the last few years, there have been increasing efforts and
evidence building towards the use of molecular subtyping in UC
for potential use in clinical management; for example, prognostic
association of subtypes and predicting response to neoadjuvant
chemotherapy16 and genomic correlates of response to PD-1/PD-
L1 inhibitors (IMvigor21021, CheckMate 27525, and PURE-0121).
Some of this work has been hampered by a lack of standardiza-
tion of approach; the use of both Decipher and ConsensusMIBC
single-sample classifiers are a step towards filling that gap. The

results of the current study provide some unique insights; for
example, the Basal subtype (ConsensusMIBC), a subtype with
poor prognosis11, showed improved outcomes with ramucir-
umab+ docetaxel. Although not yet formally tested, Luminal
type tumors, which are enriched for fibroblast growth factor
receptor 3 (FGFR3) genomic alterations25, may respond better to
FGFR pathway inhibitors, such as erdafitinib26. Our multivariable
analysis of clinical covariates associated with angiogenesis and
immune pathways identified patients from the East Asia region as
having significantly lower scores for both pathways, which also
correlated with a lower ramucirumab treatment effect. Of note,
East Asian participants had a slightly higher proportion of
luminal type subgroups (Fig. 6c): 41% of patients (30 of 74) from
East Asia, vs. 32% of patients (101 of 320) from other regions.
Furthermore, East Asian participants had a significantly higher
proportion of non-bladder primary site of disease: 54.1% of
patients (40 of 74) from East Asia vs. 28.8% of patients (92 of 320)
from other regions.

Many anti-angiogenic approaches have been tested in UC
based upon promising initial data only to fail to meet endpoints
in later development27. RANGE was a phase 3 trial of an anti-
angiogenic agent in UC, achieving positive results for the primary
endpoint of PFS; however, a statistically significant improvement
in OS was not shown. This retrospective analysis provides pos-
sible explanations for the failure to demonstrate OS benefit in an
unselected population and suggests potential biomarkers to
inform patient selection in future UC anti-angiogenic therapy
trial designs. Almost half of the patients in this study had Luminal
type tumors. If extrapolated back to the RANGE ITT population,
this may have potentially diluted the therapeutic effect since we
have now shown data suggesting that patients most likely to
benefit from ramucirumab treatment are those with Basal tumor
types. Future studies could explore our findings in additional UC
trial datasets using anti-angiogenic therapy or anti-angiogenic/
PD-1 directed therapy combinations, such as CALGB 90601
(addition of bevacizumab to frontline platinum-based therapy)28

and the currently enrolling LEAP-011 trial29 (pembrolizumab
with or without lenvatinib in platinum-ineligible PD-L1 CPS-
high patients). Importantly, in CALGB 90601, PFS benefit was
reported, but no OS benefit was reported when anti-angiogenic
therapy was added to chemotherapy in a biomarker unselected
patient population28. Biomarker work in these trials may confirm
our findings and potentially lead to novel treatment strategies
involving anti-angiogenic and immune-modulating therapies in
selected populations.

Our study has several limitations. This was a retrospective
study and most tumor samples used in this analysis were archival
and not from biopsies taken immediately prior to enrollment in

Fig. 6 Identification of clinical covariates associated with angiogenesis- and immune- mean signature score and relation to clinical outcome. a The

coefficients estimated by a multivariable linear regression with indicated clinical covariates for the mean of angiogenesis or mean of immune signature

score, respectively. Data are presented as mean estimated coefficient with error bars indicating the 95% CI. For categorical covariates with two levels (i.e.,

gender, region, histology, primary tumor site, visceral or liver metastases, and prior therapy), the coefficient represents the expectation of the mean

signature score of the first category subtracted by the expectation of the second category as listed on the y-axis. For Bellmunt risk factor and age, the

coefficient represents the slope of the mean signature score per 1-point increase in number of risk factors or 10-years age, respectively, as noted on the y-

axis. Data are shown for n= 394 participants from the TR2 population. Significant associations are denoted by *, **, *** corresponding to *p= 0.01,

**p= 0.005, ***p < 0.001 (t-test in linear regression without multiplicity adjustment; exact p-values are shown in Supplementary Table 5). b Mean

angiogenesis and immune signature score in relation to geographic region (East Asia n= 74 vs. Other n= 320) in the TR2 population (n= 394

participants). Mean of angiogenesis signature score, p < 0.0001 (East Asia vs. Other, two-sample t-test, equal variance); mean of immune signature score,

p < 0.001 (East Asia vs. Other, Welch two-sample t-test, unequal variance). For boxplots, the center line represents median, box hinges represent first and

third quartiles, whiskers represent minimum and maximum within 1.5x interquartile range, and red marker is mean. c Proportion of molecular subtypes

from the Decipher GSCv1 and ConsensusMIBC classification schemes across geographic region (East Asia n= 74 vs. Other n= 320). Pie charts show

percentage of participants for indicated molecular subtype in the TR2 population (n= 394 participants). Source data are provided as a Source Data file. pt,

point; yr, year.
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RANGE. Thus, there could have been changes in molecular
subtype and/or PD-L1 status related to prior treatment. Addi-
tionally, heterogeneity of the tumor tissue sampled by the biopsy
and further by the macrodissection process may impact the
molecular subtype classification. Given the assay requirements of
PD-L1 and the age of the tumor samples (in some cases only
slides were available), only a subset of the RANGE tumors could

be assessed for PD-L1, leading to a smaller patient population in
TR1, as well as fewer East Asian samples with PD-L1 data. Fur-
thermore, because East Asian sites enrolled early, a dispropor-
tionate number of samples from that region were past the six-
month window for evaluation of PD-L1. As such, the interaction
of molecular subtypes and PD-L1 status in East Asian patients
with UC remains to be completely characterized. Decipher
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Fig. 7 Molecular subtype association with mean angiogenesis/immune signature scores and geographical region. a, b Mean of angiogenesis (a) and

immune (b) signature scores, by geographic region, relative to molecular subtypes of the Decipher GSCv1 and ConsensusMIBC classification schemes in

the TR2 population (n= 394 samples from n= 394 participants in the TR2 population). Decipher GSCv1 subtype prevalence (n/group; East Asia/Other):

Luminal (n= 131; n= 30/n= 101), Luminal Infiltrated (n= 55; n= 6/n= 49), Basal (n= 150; n= 28/n= 122), Claudin Low (n= 58; n= 10/n= 48).

ConsensusMIBC subtype prevalence (n/group; East Asia/Other): Luminal Papillary (n= 97; n= 24/n= 73), Luminal Non-Specified (n= 39, n= 4/

n= 35), Luminal Unstable (n= 61; n= 7/n= 54), Stroma-rich (n= 75; n= 14/n= 61), Basal/Squamous (n= 114; n= 24/n= 90), Neuroendocrine-like

(n= 8; n= 1/n= 7). For boxplots, center line represents median, box hinges represent first and third quartiles, whiskers represent minimum and maximum

within 1.5x interquartile range, and red marker is mean. c Kaplan–Meier curves representing OS probability in ramucirumab+ docetaxel or

placebo+ docetaxel arms based on geographic region. ORR, median OS, and stratified/unstratified HRs are shown. Two-sided Wald test was used in Cox

regression. p-values before BH-adjustment are shown in figures. p-values after BH-adjustment are shown in Supplementary Table 1. Stratification was

based on geographical region, baseline ECOG PS, and visceral metastases. TR2 population (n= 394 participants) is shown; there were n= 74 participants

included in the East Asia subgroup and n= 320 participants included in the other regions subgroup. The proportional hazard assumption was not violated

in any instance. Source data are provided as a Source Data file.BH, Benjamini-Hochberg; Ba/Sq, Basal/Squamous; CI, confidence interval; ECOG PS, Eastern

Cooperative Oncology Group Performance Status; HR, hazard ratio; Lum NS, Luminal Non-Specified; Lum Pap, Luminal Papillary; Lum U, Luminal Unstable;

n, number of participants; NE-like, Neuroendocrine-like; ORR, objective response rate; OS, overall survival; TR, translational research.
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GSCv1 and ConsensusMIBC subtype classifiers have not formally
been assessed in the context of differences related to geography or
non-bladder primary site tumor locations. Further work is needed
to understand this potential association.

While the results reported herein are hypothesis generating
and limited by sample size, they represent an important step in
linking OS response to anti-angiogenic therapy with biomarkers
in UC. Owing to the retrospective and exploratory nature of the
analyses presented, appropriate caution is warranted when
interpreting strength of associations. However, given the over-
lapping nature of the Basal molecular subtypes and PD-L1-high
status to predict sensitivity to ramucirumab, further exploration
of these signatures is warranted to identify patient subsets most
likely to benefit from anti-angiogenic therapy approaches, as well
as anti-angiogenic and PD-1/PD-L1 combination approaches in
UC and other tumor types.

Methods
Ethnics approval. The trial complied with the Declaration of Helsinki, the
International Conference on Harmonization Guidelines for Good Clinical Practice,
and applicable local regulations. The protocol was approved by the ethics com-
mittees of all participating centers (for a full list of investigators and participating
centers, see Supplementary Table 6), and all patients provided written informed
consent.

Study design. The RANGE trial (clinicaltrials.gov: NCT02426125) was a rando-
mized, double-blind, phase 3 study evaluating ramucirumab in combination with
docetaxel in patients with platinum-refractory advanced or metastatic UC. The
overall study design, protocol, and procedures have been reported18. Key eligibility
criteria included patients with cytologically or histologically confirmed transitional
cell UC originating from the bladder, urethra, ureter, or renal pelvis; locally
advanced, unresectable, or metastatic disease extent; and documented disease
progression 14 months or less after platinum-containing chemotherapy in the
adjuvant or first-line metastatic setting. Prior treatment with one immune-
checkpoint inhibitor was permitted. For these patients, ≤24 months from the end
of the platinum-containing regimen was allowed to accommodate the additional
immune-checkpoint inhibitor line of therapy. Patients were ineligible if they had
received more than one systemic chemotherapy regimen in the relapsed or
metastatic setting.

Study procedures. Eligible patients were randomized (1:1) to receive intravenous
ramucirumab 10 mg/kg or placebo, both in combination with intravenous doc-
etaxel 75 mg/m2 (60 mg/m2 in Korea, Taiwan, or Japan) on day 1 of a 21-day cycle
(i.e., every 3 weeks). Randomization was stratified by geographic region (North
America, East Asia, Europe/rest of the world), Eastern Cooperative Oncology
Group Performance Status (ECOG PS) at baseline (0 or 1), and visceral metastasis
(yes or no), with visceral metastases being liver, lung, and/or bone. Docetaxel was
limited to 6 cycles, with up to 4 additional cycles permitted upon approval by
sponsor; ramucirumab (or placebo) treatment continued until at least one dis-
continuation criterion was met. Dose modifications (reductions or delays) were
permitted according to protocol-defined criteria.

The post hoc, exploratory analysis of biomarker associations with clinical
outcomes examined OS, defined as the time from date of randomization to the date
of death from any cause. If the patient was alive at the data cutoff date for analysis
(or was lost to follow-up), OS data were censored for analysis on the last date the
patient was known to be alive.

Sample collection and immunohistochemistry. In the RANGE study, if pre-
treatment tumor tissue specimens were available, submission of archived tissue was
mandatory unless restricted by local regulations. For assessing PD-L1 status,
sample slides that were within 6 months from sectioning were processed using a
commercially available automated IHC assay (PD-L1 IHC 22C3 pharmDx, Agi-
lent/Dako; catalog number SK006)20, on the Dako Autostainer Link 48 platform.
The PD-L1 IHC 22C3 pharmDx primary antibody and visualization reagent are
prediluted in ready-to-use format. If more than 6 months had passed since sec-
tioning, those sample slides were considered out of the stability window and were
excluded from analyses for purposes of this exploratory biomarker study. Scoring
was performed by a blinded independent central lab (NeoGenomics Laboratories,
Inc) using the following three methods: (1) CPS score, as described in the PD-L1
IHC 22C3 pharmDx Interpretation Manual for UC20, assesses PD-L1 expression in
both tumor and immune cells. CPS is calculated by the number of PD-L1-stained
cells (tumor cells, lymphocytes, and macrophages) divided by the total number of
viable tumor cells then multiplied by 100. Specimens were categorized as PD-L1
high if CPS ≥ 10 and PD-L1 low if CPS < 10, in line with the threshold described in
the PD-L1 IHC 22C3 pharmDx Interpretation Manual for UC and the registration

for pembrolizumab in first-line cisplatin ineligible locally advanced or metastatic
UC20. The CPS ≥ 10 cutoff was additionally assessed graphically using the STEPP
method30. (2) Similar to the tumor proportion score, tumor cell (TC) score,
described in the PD-L1 IHC 22C3 pharmDx Interpretation Manual for non-small
cell lung cancer31, is the percentage of viable tumor cells showing partial or
complete PD-L1 membrane staining at any intensity relative to all viable tumor
cells present in the sample. Samples were categorized by median into TC ≥ 1 and
TC < 1. 3) Immune cell (IC) score, which is the percentage of tumor area occupied
by PD-L1-expressing immune cells32. Samples were dichotomized at the median IC
value into PD-L1 high and low. This was IC ≥ 4 for high and PD-L1 low if IC < 4,
closely reflecting a 5% IC cutoff used in the Roche Ventana PD-L1 (SP142) Assay.

Gene expression data generation. Tumor samples from 462 patients in the
RANGE phase 3 trial were submitted to Decipher Biosciences (previously Geno-
meDx) for tumor sample gene expression profiling and UC molecular subtyping. A
sufficient number of slides (N= 10) per tumor sample with 5 µM thick tissue
sections were provided to Decipher for expression profiling with n= 1 slide used
for H&E staining to assess tumor cellularity. H&E guided macrodissection was
done to achieve at least 0.5 mm2 with a tumor percent macrodissected area of
≥50% to control for tumor purity. Transcriptome analysis was performed on
formalin-fixed, paraffin-embedded tumor tissue with GeneChip® Human Exon 1.0
ST Array (Affymetrix) in a Clinical Laboratory Improvement Amendments-
certified laboratory. Expression data were generated on 410/462 samples with
32 samples failing for low tumor content, one failing due to low RNA quantity, and
19 failing at cDNA preparation stage. Of 410 samples, 394 passed microarray
quality control (16 failed) and were included in these analyses. Microarray data
were normalized using single-channel array normalization (SCAN)33 are accessible
through GEO Series accession number GSE198269.

Pathway signature and analysis. We used established relevant angiogenesis and
immune signature collections to better understand their association with the
expression profiles in the n= 394 population. These signatures were: (a) MSigDB
angiogenesis hallmark34; (b) VEGF-dependent vasculature genes associated with
response to anti-VEGF therapy35; (c) primary tumor angiogenesis signature36; (d)
endothelial-specific stromal phenotype signatures37; (e) molecular signatures of
microvascular endothelium; (f) core angiogenesis pathway genes23; and (g) sig-
natures related to immune-infiltration, effector function38–40 and activated/mem-
ory CD4/CD8 T cells41.

Gene signature scores were calculated as the mean of the log2 SCAN
normalized gene expression values for genes comprising the signatures, and
corresponding z-scores were generated for heatmaps. Signatures were selected
based on postulated related biology, and the seven angiogenesis and six immune
signatures showed significant, positive intercorrelations within each set (p < 0.001).
In addition, the average of each signature set showed significant, positive
correlations with the individual signatures comprising the set (angiogenesis r2

0.76–0.95, p < 0.001; immune r2 0.65–0.95, p < 0.001; Supplementary Fig. 5). The
signature set average was included for analysis as single angiogenesis and immune
score and evaluated relative to results obtained with individual signatures.

Urothelial carcinoma molecular subtype. Decipher Bioscience’s GSCv1 is a
consensus of pre-existing The Cancer Genome Atlas (TCGA)10,15,42 (2014 and
2017) and University of North Carolina (UNC)14,43 classifiers. It uses 149 markers
to assign tumor expression profiles to four main classes (Basal, Claudin Low,
Luminal Infiltrated, and Luminal)16,21. Decipher provided GSCv1 classifier derived
bladder cancer subtype calls and TCGA 2017 subtype calls42 on 394 samples for the
RANGE trial.

Additionally, a more recent consensus molecular classifier derived by the
Bladder Cancer Molecular Taxonomy Group was used11. ConsensusMIBC
(muscle-invasive bladder cancer) is based on consensus of six classification
schemes (Baylor44, UNC43, MD Anderson Cancer Center13, Lund45, Cartes
d’Identité des Tumeurs-Curie46, and TCGA15) and assigns tumor expression
profiles to six consensus classes: Basal/Squamous, Luminal Papillary, Luminal Non-
Specified, Luminal Unstable, Stroma-rich, and NE-like. Subtype calls on
394 samples were made using the ConsensusMIBC package (version 1.0) provided
by the authors (https://github.com/cit-bioinfo/consensusMIBC).

Complex heatmap. Heatmaps were generated using the ComplexHeatmap pack-
age (version 1.99.8)47. Heatmap annotations were organized into separate blocks of
related parameters including: study variables (treatment arm, best overall response,
region/geographical location, and primary tumor site); PD-L1 IHC scoring vari-
ables (PD-L1 CPS, IC, and TC); and UC molecular subtyping classification
schemes including TCGA 201410, ConsensusMIBC classifier11, and Decipher
GSCv121. SCAN normalized angiogenesis and immune signature z-scores were
plotted for the 394 expression cohort samples. Heatmap columns (i.e., patient
samples) were ordered by PD-L1 IHC CPS score groups (CPS not measured, CPS
0–9, CPS 10–96), region, and/or by Decipher GSCv1 or ConsensusMIBC molecular
subtype.
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Statistical analysis. In this post hoc, exploratory analysis, biomarker cohorts were
defined as follows: translational research 1 (TR1) cohort consisted of 227 patient
samples that had both expression profiling and valid PD-L1 IHC data, and TR2
cohort consisted of 394 patients for whom biomarker expression data were avail-
able. Demographics and baseline disease characteristics were summarized for the
ITT (n= 530) population and both TR populations (n= 227 and n= 394). Of
note, both TR populations are a subset of the ITT population, and TR1 is a subset
of TR2.

Overall survival by treatment arms was estimated with Kaplan–Meier curves for
each biomarker-defined subgroup. Subgroups were defined by patients with PD-L1
CPS ≥ 10 and CPS < 10; PD-L1 TC ≥ 1 and TC < 1; PD-L1 IC ≥ 4 and IC < 4;
immune/angiogenesis signature scores >median and ≤median; and Decipher
GSCv1 and ConsensusMIBC subtypes. For each of the specified subgroups, hazard
ratios and p-values were calculated for the ramucirumab arm relative to the placebo
arm using Cox regression. Proportional hazard assumptions were checked using
the score test based on weighted residual48 and reported for all Cox regression
models. When reporting results of stratified Cox regression, clinical trial
stratification factors, including geographical region, baseline ECOG PS, and
visceral metastases, were used to adjust for possible imbalance across treatment
arms within each biomarker subgroup or molecular subtype. Forest plots of
stratified HR were used to summarize the treatment effect for subgroups defined by
angiogenesis/immune scores or by subtypes. In addition, interaction p-values
between treatment arm and biomarkers (including PD-L1 CPS ≥ 10 vs. CPS < 10,
immune/angiogenesis signature scores >median vs. ≤median, and subtypes) were
calculated using stratified Cox regression models.

Continuous measurements for PD-L1 CPS, angiogenesis, and immune mean
signature scores were examined using the STEPP method30 to determine if the
magnitude of the treatment effect changed as a function of the values of these
biomarkers. STEPP analyses help determine whether the treatment effect changes
for subpopulations with different biomarker values. This is done by dividing the
total patient population into overlapping subpopulations based on different
biomarker thresholds (known as the sliding window approach), estimating the
treatment effect within each subpopulation, and plotting treatment effects against
biomarker values. In PD-L1 CPS analysis, 60 patients were included in each
window, and there were 40 patients in common between two consecutive windows.
In analyses of angiogenesis and immune mean signatures, 120 patients were
included in each window, and there were 60 patients in common between two
consecutive windows. HRs were plotted against median biomarker values in each
window.

Objective response rate was defined as the proportion of randomized patients
within each subgroup achieving a best overall response of complete response or
partial response per Response Evaluation Criteria in Solid Tumors (RECIST)
version 1.149. The association between clinical covariates and mean signature score
was assessed using a multivariable linear regression model for both angiogenesis
and immune signature, respectively. The coefficients of linear regression models
were estimated for all clinical covariates according to the following regression
model and reported:

Y i ¼ β0 þ β1IfGenderi ¼ Maleg þ β2I Regioni
�

¼ East Asiag þ β3Agei þ β4IfHistologyi ¼ Pure Transitional Cellg

þ β5IfPrimary Tumor Sitei ¼ Bladderg þ β6IfVisceralMetastasesi ¼ Yesg

þ β7IfLiverMetastasesi ¼ Yesg þ β8Bellmunti þ β9IfPrior Therapyi ¼ Neoadjuvantg

þ β10IfPrior Therapyi ¼ Noneg þ εi

where Yi represents angiogenesis mean signature score in the left panel and
immune mean signature score in the right panel of patient i (Fig. 6a); β0 ,…, β10 are
the coefficients; I{} represents the indicator function for categorical variables; and εi
denotes the random error of patient i.

For hypotheses with a single comparison, a two-sided 5% significance level has
been used. For the hypothesis of superior treatment effect from ramucirumab,
multiple comparisons were conducted in specified subgroups. BH-adjusted50

p-values were calculated and reported to account for multiple comparisons. Owing
to the post hoc, exploratory nature of the analyses, BH-adjusted p-values below
20% have been highlighted throughout the manuscript for interpretation purposes.
Statistical analyses of clinical data were performed using SAS 9.4 or R 4.1.0.

Data availability
The RANGE gene expression data generated in this study have been deposited in NCBI’s

Gene Expression Omnibus51 and are accessible through GEO Series accession number

GSE198269. The RANGE clinical-trial data generated in this study have been deposited

at www.vivli.org. RANGE clinical-trial data are available under restricted access to

protect patient privacy, and access can be obtained by submitting a request. For details

on submitting a request, see the instructions provided at www.vivli.org. For specific study

details, see here: https://search.vivli.org/?search=NCT02426125. Through www.vivli.org,

Eli Lilly and Company will provide access to all de-identified, individual-level participant

data collected during the trial except for pharmacokinetic or genetic data. Data are

available to request 6 months after the indication studied has been approved in the USA

and EU or after primary publication acceptance, whichever is later. No expiration date of

data requests is currently set once data have been made available. Access to data will be

provided after a proposal has been approved by an independent review committee

identified for this purpose and after receipt of a signed data sharing agreement. On

average, it takes 2–3 months to review a request to access data on the Vivli platform. This

is the time from request submission to approval by the Independent Review Committee.

Multiple factors can impact the timeline to access the data, including the number of data

contributors, the number of studies, the availability of the requestor to respond to

comments, the ability to align with the data use agreement, and if the data from the trial

have already been anonymized. Data and documents, including the study protocol,

statistical analysis plan, clinical study report, and blank or annotated case report forms,

will be provided in a secure data sharing environment. Source data for figures are

provided with this paper. Source data are provided with this paper.
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