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Large Eddy Simulation of Microbubble Dispersion and Flow Field  

Modulation in Vertical Channel Flows 

Kenneth S. Asiagbe, Michael Fairweather, Derrick O. Njobuenwu, Marco Colombo1 

School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK 

Abstract 

Turbulent liquid-gas vertical channel flows laden with microbubbles are investigated using 

large eddy simulation (LES) two-way coupled to a Lagrangian bubble tracking technique. 

Upward and downward flows at shear Reynolds numbers of 𝑅𝑒𝜏 = 150 and 590 are analysed 

for three different microbubble diameters of 110 μm, 220 μm and 330 μm. Predicted results 

are compared with published direct numerical simulation results although, with respect to 

comparable studies available in the literature, the range of bubble diameters and shear Reynolds 

numbers considered herein is extended to larger values. Microbubble concentration profiles are 

analysed, with the microbubbles segregating at the wall in upflow conditions and moving 

towards the channel centre in downflow. The various forces acting on the bubbles, and the 

effect of the flow turbulence on the bubble concentration, are considered and quantified. 

Overall, the results suggest that the level of detail achievable with LES is sufficient to predict 

the fluid structures impacting bubble behaviour. Therefore, LES coupled with Lagrangian 

bubble tracking shows promise for enabling the reliable prediction of bubble-laden flows that 

are of industrial relevance. 

Keywords 

Eulerian-Lagrangian, large eddy simulation, microbubbles, turbulence modulation, vertical 

channel flows 

Introduction 

Bubbly flows, where gaseous bubbles are dispersed in a continuous liquid flow, are widely 

encountered in many industrial and natural processes. Bubbly flows with engineering 

applications include the transfer and processing of oil and gas1, cooling devices in nuclear 

reactors and steam generators2 bubble column reactors, and the evaporation and condensation 

of refrigerants in air conditioning equipment, to name but a few. Natural occurrences of bubbly 

flows can be found, for example, in the mass transfer between the oceans and the atmosphere3-
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5. In engineering applications, such flows need to be predicted with accuracy and reliability in 

order to successfully design, optimise and maintain systems that incorporate, and rely on, 

bubbly flows6.  

Bubbly flows are highly complex as it is necessary to understand the effect of the continuous 

phase on the bubbles’ spatial and velocity distributions. In turn, the presence of the bubbles 

affects the continuous liquid flow and pressure drop in any system, particularly in the near-

wall region7. Understanding and accurately predicting these behaviours is therefore 

problematic, particularly given that the flow is sensitive to the number of bubbles present, 

including their size and shape, and to the fluid and bubble velocities. It is also further 

complicated in many flows by the occurrence of bubble-bubble collisions, and bubble 

coalescence and break-up, and the local and instantaneous, and frequently evolving, 

distribution of bubble sizes. The behaviour of bubbly flows has also been demonstrated to 

depend on many other factors, including the flow direction of the liquid8. 

Physical and numerical modelling of bubbly flows has been performed extensively9-11, 

although experimental work has generally been limited to the measurement of bubble and 

liquid velocity fields, and bubble size distribution. Although these measurements are useful 

and of value both in increasing our understanding of such flows and in providing data for the 

validation of numerical models, they generally require large length scale test rigs and high-

resolution measurement techniques to provide accurate data, with associated high costs. It is 

also challenging to track in detail the behaviour of individual bubbles in such experiments. 

Numerical modelling, therefore, has a complementary role in understanding the dynamics of 

bubbly flows. Normally, the carrier fluid is treated as the continuous phase, with the bubbles 

considered as the dispersed or discrete phase, with Eulerian-Eulerian12,13, Eulerian-

Lagrangian14-16, and fully-resolved17 approaches adopted. Discussions of the relative merits 

and disadvantages of each of these approaches are available elsewhere18-20. In this work, an 

Eulerian-Lagrangian approach based on large eddy simulation (LES) is adopted as it provides 

useful and detailed insights into both the fluid and bubble behaviour, whilst having 

significantly lower computational costs than a fully-resolved approach. 

In recent years, bubbly flows have been the subject of numerous investigations14,15,21,22. A 

number of these, such as the experiments presented by Hosokawa et al.23 and the numerical 

simulations of Ervin and Tryggvason24 and Pang et al.25, focused on the dispersion of bubbles 

and their complex interactions with the turbulent flow structures. Pang et al.26 investigation of 

a channel flow demonstrated that the liquid phase turbulence is intensified near the walls and 

slightly weakened in the central region due to bubble addition. Giusti et al.14 used one-way 
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coupled numerical simulations to study the effect of the lift force on the behaviour of non-

deformable microbubbles dispersed in a turbulent vertical channel flow. Delnoij et al.27 and 

Lain et al.28 investigated the enhanced turbulent mixing of dispersed reagents promoted by 

buoyant bubbles in devices such as bubble columns. Santarelli and Fröhlich29 also applied 

direct numerical simulation (DNS) and the immersed boundary method to a dilute and a denser 

swarm of bubbles rising in a vertical channel flow configuration. This work investigated the 

interaction between bubbles and the fluid phase and provided instantaneous visualizations of 

the flow and a detailed analysis of single-point statistics, two-point correlation functions and 

pair correlation functions for both phases. 

Wall-bounded bubbly flows exhibit interesting bubble dynamics. During flow against the 

direction of gravity (upflow), the bubbles move faster than the liquid and, as long as their shape 

remains close to spherical, they are pushed towards the wall by the lift force. In regions very 

close to the wall, the flow of liquid between the bubbles and the wall generates a wall 

lubrication force that tends to prevent the bubbles from touching the wall. Conversely, for flows 

with the direction of gravity (downflow), the bubbles move slower than the liquid and are 

pushed by the lift force towards the centre of the flow. Both of these two phenomena have been 

experimentally observed9-11. In addition, when the diameter of the bubbles increases above a 

certain value, deformation of the bubbles by the inertia of the surrounding liquid can alter the 

fluid circulation around them, changing the sign of the lift force that consequently starts to push 

the bubbles, in upflow conditions, towards the centre of the flow24. Complementing previous 

knowledge, an extensive study of the mutual interactions between microbubbles and turbulence 

in a vertical channel flow, performed using an Eulerian-Lagrangian approach based on direct 

numerical simulation, was undertaken by Molin et al.15. Four diameters of microbubble were 

subjected to gravity, drag, added mass, pressure gradient, Basset history and lift forces. The 

authors observed different bubble distributions in the two flow configurations considered, with 

lift segregating bubbles at the wall in upflow and preventing bubbles from reaching the near-

wall region in downflow conditions. In addition, they observed significant increases, and 

decreases, of both the wall shear and liquid flow rate in upflow, and downflow, respectively, 

due to local momentum exchange with the carrier fluid and to the differences in the bubble 

distribution.  

Although DNS resolves all the scales of a flow14,25,29, and provides results comparable to those 

available from experimental studies, its computational cost means that it is still restricted to the 

simulation of relatively few bubbles, particularly when coupled with interface tracking 

techniques to resolve bubble motion, and low Reynolds number flows. Even when coupled to 
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a Lagrangian methodology that allowed the tracking of significant numbers of bubbles (~ 

several hundred thousand), DNS studies in closed ducts have been mostly limited to 150 – 200 

shear Reynolds number flows14,15,21,26. Instead LES, where the large scales of turbulent motion 

are resolved while the subgrid turbulent scales and their effect on the mean flow are modelled, 

allows complex flows with industrial relevance to be predicted more readily. In a liquid-gas 

turbulent flow, the large-scale turbulent structures interact with the bubbles and are responsible 

for the macroscopic bubble motion, whilst small-scale turbulent structures only τcaptured in 

LES, and the less energetic small scales are approximated using a subgrid-scale (SGS) model, 

coupling of bubble tracking technique and LES can in principle reproduce the large scale 

motion responsible for the bubble motion. In our previous works, an LES Eulerian-Lagrangian 

model was successfully applied to horizontal channel flows16,30 and its initial application to a 

vertical channel flow was investigated31. In these studies, LES was demonstrated to achieve a 

level of detail sufficient to predict bubbly flows with accuracy. Moreover, because of the less 

demanding computational requirements, LES was applied to significantly higher Reynolds 

number with respect to comparable DNS studies, closer to the bubbly flows of relevance in 

industry. 

In this work, the LES Eulerian-Lagrangian model is applied to the study the flow of air 

microbubbles in water in vertical upward and downward channel flows. A full-validation of 

the model is provided, starting from the single-phase flow and subsequently comparing 

predictions with the bubbly flow DNS-based results of Molin et al.15 at a shear Reynolds 

number Reτ = 150. With respect to our previous work31, the range of microbubble diameters is 

extended to db = 330 μm to provide additional details with respect to the complex mutual 

interactions between turbulence and the bubbles at various bubble sizes, particularly near the 

channel walls. Extension of the modelling approach to the higher Reynolds number Reτ = 590 

was initially demonstrated elsewhere31. Here, the effect of higher levels of turbulence on the 

bubble distribution and the modifications, induced by the presence of these bubbles, to the 

continuous phase flow field are investigated in detail. It is demonstrated how at this higher 

Reynolds number, due to the enhanced turbulent dispersion, the preferential concentration of 

bubbles diminishes and lift is no longer the dominant mechanism that drives the bubble lateral 

distribution. These results, as well as providing meaningful insight into the mechanisms of 

interfacial momentum transfer, are also of value in support of the development of improved 

closures for macroscopic averaged models, such as Eulerian-Eulerian two-fluid methodologies. 
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Mathematical Modelling 

Large eddy simulation  

The LES equations can be obtained by applying a spatial filter to the equations of motion. The 

filtered continuity and momentum equations are then given as: 

 𝜕𝑢𝑖𝜕𝑥𝑖 = 0, (1) 𝜕𝑢𝑖𝜕𝑡 + 𝑢̅𝑗 𝜕𝑢𝑖𝜕𝑥𝑗 = − 1𝜌 𝜕𝑝̅𝜕𝑥𝑖 − 𝜕𝜕𝑥𝑗 (𝜎𝑖𝑗 + 𝜏𝑖𝑗) + ∆p̅̅̅̅𝜌𝐿𝑧 𝛿𝑖3 + 𝑓2𝑤,𝑖𝜌 . (2) 

  

The overbar identifies filtered quantities, 𝜌 represents the fluid density, 𝑢 is the fluid velocity 

and 𝑝 is the pressure. The last two terms on the right hand side (RHS) of Eq. (2) represent the 

mean pressure gradient, ∆𝑝̅̅̅̅ /𝐿𝑧, required to drive the flow and the action on the fluid of the 

bubbles, 𝑓2𝑤,𝑖, given by the summation of all the hydrodynamic forces acting on the bubbles 

apart from gravity and buoyancy. The mean pressure gradient, taking into account gravity and 

buoyancy forces, is given as32: 

 ∆𝑝̅̅ ̅̅𝐿𝑧 =  − 𝜌𝑢𝜏2ℎ ± 𝛼𝑏(𝜌𝑙 − 𝜌𝑏)𝑔, (3) 

 

where 𝑢𝜏 is the fluid shear velocity, 𝛼𝑏 is the bubble volume fraction, ℎ is the channel half-

height, 𝜌𝑏 is the bubble density, 𝑔 is acceleration due to gravity and the ± depends on the 

direction of gravity. 

In Eq. (2), 𝜎𝑖𝑗 is the viscous stress, given by: 

 𝜎𝑖𝑗 = −2𝜈𝑆𝑖̅𝑗 = −𝜈 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖), (4) 

 

where 𝜈 is the fluid kinematic viscosity and 𝑆𝑖𝑗 is the strain-rate tensor. 𝜏𝑖𝑗 in Eq. (2) is the SGS 

stress tensor arising from the filtering operation:  

 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢̃̅𝑖 𝑢̃̅𝑗 . (5) 

 

This term is required to close the system of equations and it is approximated by the product of 

an SGS turbulent kinematic viscosity, 𝜈𝑠𝑔𝑠, and the resolved part of the strain-rate tensor. The 
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SGS kinematic viscosity is taken as the product of the filter width ∆ and an appropriate velocity 

scale: 

 𝜈𝑠𝑔𝑠 = (𝐶∆̅)2‖𝑆̅‖, (6) 

 

where ||𝑆̅|| = √2𝑆𝑖̅𝑗𝑆𝑖̅𝑗. The anisotropic part of the SGS stress tensor is given by: 

 𝜏𝑖𝑗𝑎 = −2(𝐶∆̅)2‖𝑆̅‖𝑆𝑖̅𝑗. (7) 

 

The SGS kinematic viscosity is calculated from the dynamic Smagorinsky model33,34, in which 

the model coefficient 𝐶 is dynamically determined by applying a second filter, usually called 

the test filter. The test filtered SGS stresses result: 

 𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̃ − 𝑢̃̅𝑖 𝑢̃̅𝑗 . (8) 

 

In this equation, the tilde represents the test filter operation. The parameters 𝑇𝑖𝑗 and 𝜏̃𝑖𝑗 are 

unknown, but are related by Germano’s identity33 through the small resolved scales: 

 𝐿𝑖𝑗 = 𝑇𝑖𝑗 − 𝜏̃𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̃ − 𝑢̃̅𝑖 𝑢̃̅𝑗 .  (9) 

 

To derive the required expression for C, some form of relationship between the model constant 

values C and 𝐶2(̃) at the grid- and test-filter levels must be specified and, based on the 

hypothesis that the cut-off length falls inside the inertial sub-range, 𝐶2 = 𝐶2(̃)2. However, 

such a sub-range is not guaranteed to occur in wall bounded or low Reynolds number flows, 

with the largest deviation from universality of the SGS motions expected to occur in the regions 

of weakest resolved strain. Based on this, the two values of the model parameter at two different 

filter levels are liable to differ. To account for this, di Mare and Jones35 proposed the following: 

 𝐶2(̃) = 𝐶2 (1 + 𝜀2√2̃2 ∥ 𝑠̃̅ ∥∥ 𝑠̃̅𝑎 ∥2), (10) 
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where 𝜀 is the assumed turbulence energy dissipation rate, such that 𝜀 ≈ 𝑣3 𝑙⁄ ;  𝜈 and 𝑙 are the 

velocity and length scales, respectively. 

Eq. (10) is based on the assumption that the scale invariance of C can only be invoked if the 

cut-off falls inside an inertial sub-range, and when this occurs, the modelled dissipation should 

represent the entire dissipation in the flow. Conversely, in the high Reynolds number limit, the 

dissipation is only determined by 𝜈 and 𝑙 so that the ratio of 𝜀 to ̃
2‖𝑆̃‖3

measures how far the 

flow is from scale preserving conditions. Eq. (10) represents a first-order expansion of other 

scale dependent expressions for C , e.g. that of Porté-Agel et al.36, which also uses a single 

length and velocity scale. Equations (9) and (10) with contraction of both sides with the tensor 𝑠̃̅ then give: 

 

𝐶2 = [2√2(𝐶∗2∆)2 ∥ 𝑠̅ ∥∥ 𝑠̃̅𝑖𝑗𝑎 ∥ 𝑠̃̅𝑖𝑗𝑎 − 𝐿𝑖𝑗𝑎 𝑠̃̅𝑖𝑗𝑎 ]𝜀 + 2√2̃2 ∥ 𝑠̃̅ ∥∥ 𝑠̃̅𝑎 ∥2 , (11) 

 

where 𝐶∗2 is a provisional value for the field 𝐶2, e.g. its value at the previous time step34. The 

dependence embodied in Eq. (11) gives a simple correlation for 𝐶2. The main advantage of this 

method is that it is well-conditioned and avoids the spiky and irregular behaviour exhibited by 

some implementations of the dynamic model and, as the resolved strain tends to zero, 𝐶2 also 

tends to zero, while 𝐶2(̃)2 remains bounded. The dissipation term also yields smooth 𝐶2 fields 

without a need for averaging, and the maxima of 𝐶2 are of the same order of magnitude as 

Lilly37 estimates for the Smagorinsky model constant. Negative values of the model parameters 

are not prevented, with such values set to zero to prevent instability. Negative values of the 

SGS viscosity are similarly set to zero. Test filtering was performed in all space directions, 

with no averaging of the calculated model parameter field. The ratio ̃/∆ was set to 2 and the 

filter width determined from ∆= (∆𝑥∆𝑦∆𝑧)1 3⁄
, where ∆𝑥, ∆𝑦, and ∆𝑧 denote the physical grid 

spacing in the three coordinate directions. 

 

Lagrangian tracking of bubble motion 

Bubble motion in a turbulent flow field is obtained by solving Newton’s second law for each 

individual bubble38. The density of the microbubbles is much lower than the density of the 

carrier fluid resulting in a density ratio 𝜌𝑏/𝜌𝑙 = 1.3 x 10−3. The microbubbles are subjected to 

drag, lift, gravity, buoyancy, pressure gradient and added mass forces, and a stochastic 
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contribution arising from SGS velocity fluctuations. The Basset history force is negligible in 

comparison with the other forces and has been neglected39,40. Therefore, the motion of 

microbubbles obeys the following Lagrangian equation written per unit mass: 

 d𝐯d𝑡 = (1 − 𝜌𝑙𝜌𝑏) 𝑔 + 𝐮 − 𝐯𝜏𝑏 𝐶𝑆𝑁 + 𝐶𝐿 𝜌𝑙𝜌𝑏 [(𝐮 − 𝐯) × 𝛚] + 𝜌𝑙𝜌𝑏 d𝐮d𝑡 + 𝜌𝑙2𝜌𝑏 (d𝐮d𝑡 − d𝐯d𝑡) + 𝛘𝒔𝒈𝒔. (12) 

 

The terms on the right-hand side of Eq. (12) represent the gravity-buoyancy, drag, shear-lift, 

pressure gradient and added mass forces per unit mass, respectively, while the last term 𝛘𝒔𝒈𝒔 

represents the effect of SGS velocity fluctuations on the bubble motion. Subscripts 𝑙 and 𝑏 

represent the liquid and bubbles, respectively. 𝛚 = 0.5 × ∇𝐮 is the fluid vorticity and 𝜏𝑏 is the 

bubble relaxation time, corrected to account for added mass effects to give 𝜏̌𝑏 =𝜏𝑏(1 + 𝜌𝑙 2𝜌𝑏⁄ ). The bubble position vector 𝐱𝑏 can be obtained by further differentiation of 

Eq. (12). The coefficient 𝐶𝑆𝑁 represents the non-linear41 drag coefficient written, with respect 

to the bubble Reynolds number 𝑅𝑒𝑏 = |𝐮 − 𝐯|𝑑𝑏/𝜈, as: 

  𝐶𝑆𝑁 = (1 + 0.15𝑅𝑒𝑏0.687). (13) 

 

The lift coefficient 𝐶𝐿 is also a function of 𝑅𝑒𝑏 and the dimensionless shear rate 𝑆𝑟𝑏 and it is 

computed from the correlation of Legendre and Magnaudet42: 

 𝐶𝐿 = √(𝐶𝐿𝑙𝑜𝑤𝑅𝑒)2 + (𝐶𝐿ℎ𝑖𝑔ℎ𝑅𝑒)2, (14) 

𝐶𝐿𝑙𝑜𝑤𝑅𝑒 = 6𝜋2 (𝑅𝑒𝑏𝑆𝑟𝑏)−0.5 [ 2.255(1 + 0.2𝜉−2)1.5], (15) 

𝐶𝐿ℎ𝑖𝑔ℎ𝑅𝑒 = 12 (1 + 16 𝑅𝑒𝑏⁄1 + 29 𝑅𝑒𝑏⁄ ), (16) 

 

with 𝑆𝑟𝑏 = |𝛚|𝑑𝑏/(2|𝐮 − 𝐯|) and 𝜉 =  √𝑆𝑟𝑏 𝑅𝑒𝑏⁄ . 

The last term in Eq. (12) is determined using a stochastic Markov model43 in order to represent 

the influence of unresolved SGS velocity fluctuations on bubble acceleration, and is evaluated 

from: 𝛘𝒔𝒈𝒔 = 𝐶0 (𝑘𝑠𝑔𝑠𝜏𝑡 ) d𝐖𝑡/d𝑡, (17) 
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where 𝑘𝑠𝑔𝑠 is the unresolved kinetic energy of the liquid phase, 𝐶0 is a model constant taken 

as unity and d𝐖𝑡 represents the increment of the Wiener process. During the simulation, d𝐖𝑡 

is represented by 𝜉𝑖 × √∆𝑡, where 𝜉𝑖 is a random variable sampled from a normal distribution 

with zero mean and a variance of unity, and which is independent for each time step and for 

each velocity component. 𝜏𝑡 is a sub-grid time scale which affects the rate of interaction 

between the bubble and turbulence dynamics, defined as: 

 𝜏𝑡 = 𝜏𝑏1.6(∆ 𝑘𝑠𝑔𝑠0.5⁄ )0.6. (18) 

 

The SGS kinetic energy is obtained from 𝑘𝑠𝑔𝑠 = (2∆𝜈𝑠𝑔𝑠𝑆𝑖̅𝑗𝑆𝑖̅𝑗)2 3⁄
, an expression derived 

using equilibrium arguments43. 

 

Two-way coupling effects 

When the bubble volume fraction 𝛼𝑏 in a flow becomes greater than 10-6, the momentum 

transfer from the bubble suspension is large enough to modify the structure of the turbulence 

in the continuous phase and the flow is referred to as two-way coupled44. The coupling effect 

is enforced by the addition of the source term 𝑓2𝑤,𝑖, which represents the force per unit volume 

exerted by the bubbles on the fluid, in the fluid momentum balance (Eq.(2)): 

 𝑓2𝑤,𝑖 = 1
Δ3 ∑ 𝑓𝐻,𝑖𝑗𝑛𝑏𝑗=1 , (19) 

 

where the summation is defined over the number of bubbles 𝑛𝑏 in the finite-volume cell under 

consideration, 𝑓𝐻,𝑖𝑗
 is the source term arising from the 𝑗𝑡ℎ bubble in the 𝑖𝑡ℎ direction and the 

subscript 𝐻 represents the hydrodynamic force terms. In Eq. (19), the force contribution is 

scaled with the volume of the cell. In view of the number of bubbles employed (181,272 

maximum), the number of cells (more than 2 million) used ensures a high resolution of the 

two-way coupling field, with only a few bubbles simultaneously present in the same cell. 

Therefore, no significant dependencies of the two-way coupling term on the mesh are expected. 

In the present case, the relevant source term used in the momentum equation is the summation 

of all the hydrodynamic forces (drag, shear-lift, pressure gradient and added mass), with the 

body forces (gravity and buoyancy) included in the pressure gradient term: 
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 𝑓𝐻,𝑖𝑗 = −𝑚𝑏 [d𝑣𝑖d𝑡 − (1 − 𝜌𝑙𝜌𝑏) 𝑔𝑖], (20) 

 

where 𝑚𝑏 is the mass of a bubble and 𝑔 is gravitational acceleration, with 𝑔 = −9.81 and 𝑔 =9.81 m s-2 for upflow and downflow, respectively. 

Table 1: Non-dimensional wall shear stress, shear velocity and Reynolds number for the 

single-phase and the two-way coupled simulations at nominal shear Reynolds of 150 and 590. 

 

Unladen flow 

Two-way coupled flow 

Upflow Downflow 𝑅𝑒𝜏 = 150 𝑅𝑒𝜏 =  172 𝑅𝑒𝜏 =  122 𝜏𝑤+ = 1 𝜏𝑤+ =  1.31 𝜏𝑤+ =  0.66 𝑢𝜏 = 7.5  10−3ms−1 𝑢𝜏 =  8.58  10−3ms−1 𝑢𝜏 =  6.11  10−3ms−1 

Unladen flow Upflow Downflow 𝑅𝑒𝜏 = 590 𝑅𝑒𝜏 =  612 𝑅𝑒𝜏 =  562 𝜏𝑤+ = 1.00 𝜏𝑤+ =  1.07 𝜏𝑤 + =  0.91 𝑢𝜏 = 2.95  10−2ms−1 𝑢𝜏 =  3.06  10−2ms−1 𝑢𝜏 =  2.81  10−2ms−1 

 

As already shown in Eq. (3), to account for the effect of microbubbles on the fluid, the pressure 

gradient is modified from the single-phase flow definition with an additional pressure 

difference induced by the presence of the microbubbles. In other words, the sum of 

gravitational and frictional pressure losses is kept constant. Therefore, in upflow, the presence 

of the lighter mixture allows the fluid to flow faster. In a similar way, in downflow, the flow is 

slower because of the reduced gravitational pressure gain induced by the lighter mixture. This 

suggests the introduction of new definitions for the shear velocity and the shear Reynolds 

number for upflow and downflow (𝑢𝜏 = (𝜏𝑤 𝜌𝑙⁄ )1 2⁄  and 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈), where the value of the 

wall shear stress is obtained from 𝜏𝑤,2𝑤 =  [∆𝑃𝐿𝑧  ± 𝛼(𝜌𝑙 − 𝜌𝑏)𝑔 ] 𝐿𝑥2 15. In this work two shear 

Reynolds numbers, 𝑅𝑒𝜏 = 150 and 590, were investigated, and the single-phase and two-way 

coupled values of the wall shear stress, shear velocity and Reynolds number for these cases are 

summarized in Table 1. 
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Numerical Solution 

The computational domain employed was a channel bounded by two infinite flat parallel walls, 

as illustrated in Fig. 1, with the x, y, and z axes pointing in the wall-normal, spanwise and 

streamwise directions, respectively. The dimensions of the computational domain were set to 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2ℎ × 2𝜋ℎ × 4𝜋ℎ and discretised using 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 129 × 128 × 128 

grid points. The grid nodes were uniformly distributed along the 𝑦 and 𝑧 axes, and non-

uniformly using a hyperbolic function45 in the wall-normal direction. The no-slip boundary 

condition was imposed at the channel walls and periodic boundary conditions were imposed in 

the streamwise and spanwise directions, with the flow being driven by the imposed streamwise 

fixed pressure gradient. The BOFFIN (Boundary Fitted Flow Integrator) code43 was used to 

solve the governing flow equations. This uses a second-order-accurate finite-volume method, 

based on an implicit low-Mach-number pressure-based formulation with a co-located storage 

arrangement and pressure smoothing according to the approach of Rhie and Chow46. For the 

momentum equation convection terms an energy-conserving discretisation scheme is used, and 

all other spatial derivatives are approximated by second-order central differences. For time 

discretization, a fully implicit scheme is employed with a two-step second-order time accurate 

approximate factorization method to ensure mass conservation. The code has been applied 

extensively in the LES of reacting47,48 and non-reacting turbulent flows43,49. For further details 

of the numerical methods used in BOFFIN, readers are referred to those publications and 

relevant references therein. 

 

 

Figure 1: Coordinate system and channel geometry. 
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Air bubbles with a density 𝜌𝑏  = 1.3 kg m−3 were uniformly introduced into fully-converged 

single-phase flow solutions at shear Reynolds numbers 𝑅𝑒𝜏 = 150 and 590, with the initial 

velocity of the bubbles equal to the fluid velocity at the bubble location, obtained by 

interpolation. Water was used as the continuous phase, with a kinematic viscosity 𝜈 = 10-6 m2s−1 and a density 𝜌𝑙 = 1000 kg m−3. Three bubble sizes, with diameters 𝑑𝑏 = 110, 220 and 

330 µm, were selected, and the bubble volume fraction was chosen as 𝛼𝑏 = 1.0 × 10−4, high 

enough for the microbubbles to affect the continuous fluid flow field but, at the same time, low 

enough to ensure negligible bubble-bubble interactions. This corresponds to a total number of 

181,272 microbubbles for the 𝑑𝑏= 110 μm case, 22,700 for 𝑑𝑏= 220 μm and 6,714 for 𝑑𝑏= 330 

μm. Simulations were made for both upward and downward vertical channel flows. 

The flow direction of individual microbubbles was obtained from integration of the Lagrangian 

tracking equation, Eq. (12), using a fourth-order Runge-Kutta scheme. Perfectly elastic 

collisions were assumed at the wall when the microbubble centre was at a distance from the 

wall equal to the bubble radius. Even though this is a simplistic assumption for bubbles, which 

may deform when approaching and hitting a wall, a reliable and robust modelling framework 

for such interactions is not yet available. Therefore, the simple hard sphere collision assumption 

has been adopted. The time-step for the bubble tracker was chosen to be equal to the fluid flow 

solver time-step, this corresponding to roughly one-quarter of the bubble response time (𝜏𝑏 = 𝜌𝑏𝑑𝑏2 18𝜇⁄ ) for both Reynolds numbers considered. The total simulation time, expressed 

in wall units and determined from 𝑡+ = 𝑡𝑢𝜏2 𝜐⁄  (where t is the computational time in seconds), 

was 1500 for the upflow and 2000 for the downflow cases at 𝑅𝑒𝜏 = 150, and 1200 for the 

upflow and 1400 for the downflow cases at 𝑅𝑒𝜏 = 590, with averaging carried out after 1000 𝑡+. Further details of relevant liquid and bubble parameters used in the simulations are given 

in Table 2. 

 

Table 2: Fluid and bubble computational parameters for the two flow Reynolds numbers 

considered. 

 𝑅𝑒𝜏 = 150 𝑅𝑒𝑏 = 2272 𝑢𝜏(ms−1) = 7.5  10-3 𝑢𝑏𝑢𝑙𝑘 = 0.114 𝑑𝑏(𝜇𝑚) 𝑑𝑏+ 𝜏𝑏(𝜇𝑠) 𝜏𝑏+ 𝜏̃𝑏(𝑠) 𝜏̃𝑏+ 𝑛𝑏 

110 0.83 0.87 4.89  10-5 3.37  10-4 0.02 181,272 

220 1.65 3.50 1.97  10-4 1.35  10-3 0.07 25,400 

330 2.48 7.87 4.42  10-4 3.03  10-3 0.17 6,714 
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 𝑅𝑒𝜏 = 590 𝑅𝑒𝑏 = 11033 𝑢𝜏 = 2.95 x 10-2 𝑢𝑏𝑢𝑙𝑘 = 0.552 𝑑𝑏 (μm) 𝑑𝑏+ 𝜏𝑏(μs) 𝜏𝑏+ 𝜏̃𝑏(𝑠) 𝜏̃𝑏+ 𝑛𝑏 

110 3.25 0.87 7.61  10-4 3.37  10-4 0.29 181,272 

220 6.49 3.50 3.04  10-3 1.35  10-3 1.17 25,400 

330 9.74 7.87 6.84  10-3 3.03  10-3 2.64 6,714 

 

Results and Discussions 

In this section, simulation results are discussed, with particular emphasis on the velocity fields 

of both the fluid and the microbubbles, as well as the microbubble concentration profile. First, 

the single-phase LES predictions are validated against DNS results for the 𝑅𝑒𝜏 = 15050 and 

the 𝑅𝑒𝜏 = 59051 flows. Bubbly flows in both upflow and downflow are then validated, in part, 

against the predictions of Molin et al.15 for bubble sizes 𝑑𝑏 = 110 and 220 µm. Simulations are 

then extended to the cases of db = 330 µm and 𝑅𝑒𝜏 = 590, for which no predictions are 

currently available in the literature. Finally, the role and importance of the different forces 

acting on the bubbles in the wall-normal direction, and their effect on bubble concentration 

profiles, are considered. 

 

Single-phase flow 

Figure 2 shows the mean streamwise velocity and the root mean square (r.m.s.) of the velocity 

fluctuations for the single-phase flows at shear Reynolds numbers of 150 and 590. At 𝑅𝑒𝜏 =150, the LES results are compared against the DNS of Marchioli et al.50 at the same shear 

Reynolds number. As shown, both the mean streamwise velocity and the turbulent normal 

stresses are in good agreement with the DNS predictions, although there is some 

underestimation in the peak normal stresses in the spanwise and wall-normal directions, and in 

all normal stress values close to the centre of the flow. For the 𝑅𝑒𝜏 = 590 case, the LES 

predictions remain in acceptable agreement with the DNS results, even if these are again 

slightly under-predicted near the wall in the spanwise and wall-normal directions, and near the 

centre of the channel, particularly in the streamwise direction. The grid resolution used by 

Moser et al.51 in their DNS was 384257384, whereas for the LES a grid resolution of 

129×128128, as used for the 150 shear Reynolds number case, was maintained, with the latter 

comparing with a maximum resolution of 192×192×192 used in the DNS computations50. 
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Therefore, the LES may be considered relatively highly resolved at 𝑅𝑒𝜏 = 150, compared to 

the DNS used for comparison purposes, whilst at 𝑅𝑒𝜏 = 590 this is less the case. Despite this, 

however, the predictions demonstrate the ability of LES to resolve the main characteristics of 

the turbulent flow while requiring a significantly less refined computational grid compared to 

DNS. In the context of the multiphase flows considered subsequently, this confirms the ability 

of LES to resolve those scales of turbulence that are mainly responsible of fluid-bubble 

interactions.  

 

 

 

Figure 2: Single-phase velocity statistics: (a, c) mean streamwise velocity and (b, d) turbulent 

normal stresses for (a, b) 𝑅𝑒𝜏 = 150 and (c, d) 𝑅𝑒𝜏 = 590 flows. 

 

Two-phase flow 

The influence of bubbles on the continuous phase flow, and the bubble velocity and 

concentration fields, are investigated in this section. In Fig. 3, the mean fluid velocity profiles 

in the wall-normal direction are shown. More specifically, two-way coupled LES predictions 

are compared against the DNS of Molin et al.15 at 𝑅𝑒𝜏 = 150 and for 𝑑𝑏 = 110 μm and 220 μm 

in both upward and downward flow directions. To these predictions, the accuracy of which for 
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mean fluid and bubble velocity was previously demonstrated in Asiagbe et al.31, additional 

LES-based results are added for 𝑑𝑏 = 330 μm. In Fig. 4, the same profiles and comparisons are 

shown for the mean bubble streamwise velocity. Overall, the LES results for the mean fluid 

and bubble velocities are in good agreement with the DNS-based predictions, where available, 

for both the upflow and downflow cases. Moreover, the effect of the different flow 

configuration is clearly visible in each of the plots by comparison with the single-phase profile. 

More specifically, there is a distinct difference between the velocity profiles, with fluid and 

bubbles travelling faster in upflow and slower in downflow with respect to the single-phase 

flow. This difference, which follows from the boundary condition used where the total pressure 

loss across the channel was kept constant rather than using a fixed mass flow rate, is a function 

of the bubble diameter, with the difference increasing with bubble diameter for the bubble 

velocity, which becomes progressively higher in upflow and lower in downflow, whilst 

decreasing for the fluid velocity. This is due to the increase, with bubble diameter, of the role 

of the buoyancy force, which is proportional to bubble volume, with respect to the drag force, 

which is instead proportional to the bubble surface area. This means that the relative velocity 

between the bubbles and the fluid increases due to the increasing influence of buoyancy with 

bubble size, whereas the liquid mean velocity becomes more similar to that of the single-phase 

since the predicted drag from the bubbles, relative to the buoyancy force, reduces with their 

size. 

 

   

Figure 3: Bubble affected mean fluid streamwise velocity for the three bubble sizes at Reynolds 

number 𝑅𝑒𝜏 = 150: (a) db = 110 μm; (b) db = 220 μm; and (c) db = 330 μm. 
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Figure 4: Mean bubble streamwise velocity for the three bubble sizes at Reynolds number 𝑅𝑒𝜏 = 150: (a) db = 110 μm; (b) db = 220 μm; and (c) db = 330 μm. 

 

 

Figure 5: Mean fluid streamwise velocity rescaled with the effective shear velocities at 

Reynolds number 𝑅𝑒𝜏 = 150: (a) upflow; and (b) downflow (--- LES, 𝑑𝑏 = 110 µm; — LES, 𝑑𝑏 = 220 µm;  DNS, db = 110 µm; ○ DNS, 𝑑𝑏 = 220 µm;  LES single-phase). 

 

In Fig. 5, the mean fluid streamwise velocity for bubble sizes 𝑑𝑏 = 110 and 220 μm is rescaled 

using the effective upflow and downflow shear velocities after the introduction of the bubbles, 

and compared against rescaled DNS-based predictions. As noted by Molin et al.15, the 

difference that is observed in the results of Fig. 3 is reduced when the upflow and downflow 

shear velocities are used to scale the velocity profiles. More specifically, the LES profiles are 

almost superimposed and remain close to the single-phase profile in both flow configurations. 

As already noted, the total pressure drop is kept constant in these simulations, but the 

gravitational loss in upflow, and gain in downflow, is modified by the introduction of bubbles. 

Therefore, because of the reduced gravitational loss, the upflow is almost equal to a single-

phase flow driven by an increased pressure gradient. In a similar way, the downflow is 
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equivalent to a flow driven by a reduced pressure gradient because of the reduced gravitational 

gain. 

 

 

 

 

Figure 6: Fluid statistics scaled with effective upflow and downflow shear velocity compared 

with DNS data (where available) for (a, b) 𝑑𝑏 = 110 µm, (c, d) 𝑑𝑏 = 220 µm and (e, f) 𝑑𝑏 =330 µm. Upflow left hand and downflow right hand plots. 

 

The r.m.s. of the fluid velocity fluctuations, scaled using the upflow and downflow shear 

velocities, are given in Fig. 6 for the three bubble sizes considered. Shear stresses are also given 

for the largest bubble case for which DNS predictions are not available, although for the 110 
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and 220 µm bubbles comparisons are made with the results of Molin et al.15. In both upflow 

and downflow, the bubbles alter not only the mean flow velocity, as noted above, but also the 

fluid turbulence, and this effect is well reproduced by the LES which shows good agreement 

with DNS-based predictions, where available. When scaled using the actual shear velocities, 

r.m.s. values in Fig. 6 look similar to those in the single-phase flow given in Fig. 2. Therefore, 

not only for the mean velocity, but also for the turbulence in the fluid, the upflow is equivalent 

to a single-phase flow with a slightly higher mass flow rate, and the downflow to a flow with 

a lower mass flow rate. Overall, an increase in flow rate results in corresponding increases of 

the turbulence in upflow (r.m.s. scaled using a higher shear velocity), whereas the reduction in 

downflow produces lower turbulence fluctuations. In addition, there is also an effect of the 

bubble diameter on the fluid turbulence since the largest deviations with respect to the single-

phase flow are for the 330 µm case. 

The r.m.s. of the velocity fluctuations of the bubbles is given in Fig. 7 for bubble sizes db = 110 

and 220 µm, for which LES results are compared with those based on DNS from Molin et al.15, 

and, for LES only, at db = 330 µm, in both upflow and downflow configurations. In these plots, 

r.m.s. values are scaled using the fluid-only, single-phase shear velocity. As is clearly shown, 

in upflow conditions the turbulent fluctuations are considerably higher than in the downflow 

case, and enhanced with respect to those of the continuous phase (Fig. 6).  In contrast, in 

downflow the turbulence levels are decreased with respect to the single-phase fluid. These 

effects, noted in Molin et al.15, are well-reproduced by the LES, with results in good agreement 

with the DNS-based solutions, and with similar trends found in the LES alone for a bubble 

diameter db = 330 µm. It should be noted that, in downflow, and in particular for bubble 

diameters of 220 and 330 µm, the turbulence profiles are not defined in the very near-wall 

region. This is due, as will be discussed in more detail below, to the small number of bubbles 

in this region due to bubble interaction with the fluid phase. 

 



19 

 

  

 

 

Figure 7: Bubble statistics scaled with single-phase shear velocity compared with DNS (where 

available) for (a, b) 𝑑𝑏 = 110 μm, (c, d) 𝑑𝑏 = 220 μm and (e, f) 𝑑𝑏 = 330 µm. Upflow left hand 

and downflow right hand plots. 

 

For microbubble flows, and for bubbly flows in general, of significant interest is how the 

distribution and concentration of the bubbles are affected by the fluid phase, and in particular 

by the levels of turbulence within the flow. As a consequence of their interaction with the 

continuous phase, bubbles may concentrate in specific regions of the flow and leave other areas 

depleted. In pipes and channels, it has been observed how small bubbles, that tend to remain 

spherical, concentrate near the wall in upflow and in the centre of the flow in downflow9,14. 
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This effect has been generally attributed to the action of the lift force, which pushes the bubbles 

perpendicularly to the direction of the main fluid motion, and in the direction of the negative, 

in upflow, and positive, in downflow, fluid velocity gradient31. 

The time evolution of the bubble concentration in the wall-normal direction in both upflow and 

downflow is shown in Figs. 8 to 10 for the three bubble sizes considered. In these figures, both 

the full cross-channel profiles across the whole vertical channel width is shown, together with 

details in the wall region. To compute the bubble concentration, a number of divisions in the 

wall-normal direction was used, with the average number of bubbles within each region, 𝑛𝑏, 

determined and divided by the volume of that region, 𝑉, to obtain the local concentration 𝐶 =𝑛𝑏/𝑉. The local concentration was then normalized by its initial value 𝐶0. The ratio 𝐶 𝐶0⁄  is 

therefore the normalized bubble number density which is greater than unity in flow regions 

were bubbles tend to segregate and smaller than unity in regions depleted of bubbles. The plots 

show concentration profiles averaged over the time intervals noted in the figures. 

 

 

Figure 8: Time evolution of microbubble concentration in the wall-normal direction for shear 

Reynolds number 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 110 µm. Upflow: (a) whole channel profile; (b) near-

wall region. Downflow: (c) whole channel profile; (d) near-wall region. 
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Figure 9: Time evolution of microbubble concentration in the wall-normal direction for shear 

Reynolds number 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 220 µm. Upflow: (a) whole channel profile; (b) near-

wall region. Downflow: (c) whole channel profile; (d) near-wall region. 

 

The results show symmetric profiles of bubble concentration under all conditions. Starting from 

a uniform distribution at the beginning of a run, in upflow the bubbles tend to accumulate near 
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bubble depletion in these regions also increasing with bubble diameter. To investigate this 

phenomenon, and the resulting form of the concentration profiles obtained, the magnitude of 

the forces acting on the bubbles in the wall-normal direction is analysed in the following 

section. 

 

 

 

Figure 10: Time evolution of microbubble concentration in the wall-normal direction for shear 

Reynolds number 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 330 µm. Upflow: (a) whole channel profile; (b) near-

wall region. Downflow: (c) whole channel profile; (d) near-wall region. 

 

Force analysis in the wall-normal direction 

The forces acting on the bubbles (force per unit mass in N kg-1) are shown for both upflow and 

downflow in Fig. 11, with results only given for the 𝑑𝑏 = 220 μm case as the other bubble sizes 

showed similar trends. Overall, the drag and lift forces tend to be dominant, with the lift force 

pushing bubbles closer to the wall in upflow and towards the centre of the channel in downflow. 

This is confirmed by the change in sign in the lift force between the upflow to downflow cases. 

The lift force is also always opposed and balanced by the drag force31. Clearly, both gravity 

and buoyancy do not play a significant role in the wall-normal direction, with their effect acting 

0 50 100 150 200 250 300
0.1

1

10

100

C
/C

0

x
+

 t+ = 0.0

 t+ = 700 - 900

 t+ = 1300 - 1500

 t+ = 1600 - 1800

 t+ = 1800 - 2000

0 5 10 15 20
0.1

1

10

100

C
/C

0

x
+

 t+ = 0.0

 t+ = 700 - 900

 t+ = 1300 - 1500

 t+ = 1600 - 1800

 t+ = 1800 - 2000

0 50 100 150 200 250 300
0.001

0.01

0.1

1

C
/C

0

x
+

 t+ = 0.00

 t+ = 700 - 900

 t+ = 1000 - 1200

 t+ = 1300 - 1500

 t+ = 1600 - 2000

0 5 10 15 20
0.01

0.1

1

C
/C

0

x
+

 t+ = 0.0

 t+ = 1250 - 1400

 t+ = 1450 - 1600

 t+ = 1650 - 1800

 t+ = 1850 - 2000

(c) (d) 

(b) (a) 



23 

 

in the vertical direction. There is also a not insignificant effect of the added mass and pressure 

gradient forces, although they are an order of magnitude less than the lift and drag forces. Both 

of these forces are directed towards the centre of the flow near the wall and, to a lesser extend, 

towards the wall in the centre of the channel. Therefore, in the near-wall region, they oppose 

the lift force in upflow and, in contrast, they support the lift force in downflow.  

The role of the lift force is also addressed in Fig. 12, where its magnitude for the three different 

bubble sizes is compared for the upflow and downflow cases. In both flow configurations, the 

magnitude of the lift force increases with bubble diameter, as would be anticipated. This is in 

agreement with earlier results (Figs. 8-10) where, in the wall region, the concentration peak 

near the wall in upflow, and the extent of the depleted region in downflow, were found to 

increase with the bubble diameter.  

 

 

 

Figure 11: Forces acting in the wall-normal direction on 𝑑𝑏 = 220 µm bubbles for 𝑅𝑒𝜏 = 150: 

(a, b) upflow; (c, d) downflow. Plots (b) and (d) show an expanded ordinate scale to show 

relative magnitude of smaller forces (FD = drag force, FGB = gravity-buoyancy force, FSL = 

shear lift force, FAM = added mass force, FPG = pressure gradient force). 
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Figure 12: Wall-normal component of the lift force acting on different sizes of bubble; (a) 

upflow; and (b) downflow. 

 

Effect of Reynolds number 
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magnitude is significantly reduced, and hence the magnitude of the differences between the 

upflow and downflow profiles is likewise decreased. 

 

  

  

Figure 13: Fluid and bubble statistics for 𝑅𝑒𝜏 = 590 and 𝑑𝑏 = 220 𝜇𝑚, in comparison with 

single-phase: (a) bubble affected mean fluid streamwise velocity; (b) bubble affected fluid 

normal and shear stresses; (c) mean bubble streamwise velocity; and (d) bubble normal and 

shear stresses. 
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levels of the turbulence enhance bubble mixing, generating more homogeneous concentration 

profiles and partially overwriting the effect of other forces. 

 

 

 

Figure 14: Time evolution of microbubble concentration in the wall-normal directions for shear 

Reynolds number 𝑅𝑒𝜏 = 590 and 𝑑𝑏 = 220 𝜇𝑚: a, upflow; b, downflow; and (c, d) 

concentration profiles for two reference Reynolds numbers for upflow and downflow, 

respectively at 𝑡+ = 1500. 
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here, gave pressure gradient and added mass forces of a magnitude intermediate between those 

observed for the 𝑅𝑒𝜏 = 150 and 590 cases. The forces analysis plots in Fig. 15 agree 

qualitatively with those of Spelt and Sangani54 who demonstrated that at high Reynolds number 

the liquid phase pressure force increases from zero, attains a maximum value, and subsequently 

decreases with distance from the wall. To balance these effects, the drag force changes sign in 

the upflow case, with respect to the 𝑅𝑒𝜏 = 150 case, apart from very close to the wall where it 

acts against the lift force, whilst it remains acting in opposition to the lift force at all locations 

in downflow. 

 

 

Figure 15: Forces acting in the wall-normal direction on 𝑑𝑏 = 220 µm bubbles for 𝑅𝑒𝜏 = 590: 

(a) upflow; and (b) downflow (FD = drag force, FGB = gravity-buoyancy force, FSL = shear 

lift force, FAM = added mass force, FPG = pressure gradient force). 

Conclusions 

In the work described, the behaviour of microbubbles in a vertical turbulent channel flow of 

water was investigated using LES coupled with a Lagrangian bubble tracking routine. Both 

upflow and downflow configurations were simulated, and the effect on the fluid of the bubbles 
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150 and with bubble diameters of 110 and 220 µm. At Reτ = 150, simulations at a bubble 

diameter of 330 μm were also carried out. This extends the range of bubble diameters 

previously considered in the literature and allowed the generation of additional understanding 

on the role of the bubble size on the coupled interactions between the bubble and the fluid, and 

fluid-driven bubble preferential concentration. Overall, the presence of the microbubbles 

strongly influences the fluid flow which becomes similar to a single-phase fluid flow at a higher 

mass flow rate in upflow and at a lower mass flow rate in downflow. Fluid turbulence is 
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enhanced in upflow and reduced in downflow, and the velocity fluctuations of the bubbles are 

higher in upflow and lower in downflow with respect to the fluid phase. A different bubble 

distribution is found in the two flow configurations, with bubbles segregating at the wall in 

upflow and moving towards the centre of the channel in downflow. In the wall-normal 

direction, the lift force is dominant at a shear Reynolds number of 150 and is largely responsible 

for the observed bubble distributions.  

The use of LES also allowed the simulation of a higher shear Reynolds number flow, with Reτ 

= 590, considerably higher than comparable DNS-based studies available in the literature. The 

increased turbulence dispersion at this Reynolds number reduced the peak value of the bubble 

concentration in upflow, and to a lesser extent the width and magnitude of the bubble depleted 

region in downflow. The lift force remained dominant only in regions very close to the wall. 

In the remainder of the channel, however, the pressure gradient and the added mass forces 

become more influential.  

Overall, the LES-based results provide insight into the mechanisms of interfacial momentum 

transfer and turbulence modulation, and support the development of improved closures in 

macroscopic averaged models. With respect to DNS, the less demanding computational 

requirements of LES promises to enable the prediction of bubbly flows at Reynolds numbers 

of industrial and engineering interest. At the same time, the accuracy obtained suggests that the 

level of detail obtained from this technique is sufficient to describe the fluid structures that 

affect bubble behaviour, as well as the influence of bubbles on the continuous flow. In this 

context, the present model will be used in future as a starting point for further investigations of 

practically-relevant flows by extending the physical description to accommodate four-way 

coupling able to account for bubble collisions, coalescence and break-up.  
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