
This article was downloaded by: [129.11.89.136] On: 04 May 2022, At: 07:43
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Voxel-Based Solution Approaches to the Three-
Dimensional Irregular Packing Problem
Carlos Lamas-Fernandez, Julia A. Bennell, Antonio Martinez-Sykora

To cite this article:
Carlos Lamas-Fernandez, Julia A. Bennell, Antonio Martinez-Sykora (2022) Voxel-Based Solution Approaches to the Three-
Dimensional Irregular Packing Problem. Operations Research

Published online in Articles in Advance 04 May 2022

. https://doi.org/10.1287/opre.2022.2260

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022 The Author(s)

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2022.2260
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Methods

Voxel-Based Solution Approaches to the Three-Dimensional
Irregular Packing Problem
Carlos Lamas-Fernandez,a,* Julia A. Bennell,b Antonio Martinez-Sykoraa

aCentre for Operational Research, Management Science and Information Systems (CORMSIS), Southampton Business School, University of
Southampton, Southampton, SO17 1BJ, United Kingdom; bCentre for Decision Research, Leeds University Business School, University of
Leeds, Leeds, LS2 9JT, United Kingdom
*Corresponding author
Contact: c.lamas-fernandez@soton.ac.uk, https://orcid.org/0000-0001-5329-7619 (CL-F); j.bennell@leeds.ac.uk,

https://orcid.org/0000-0002-5338-2247 (JAB); a.martinez-sykora@soton.ac.uk, https://orcid.org/0000-0002-2435-3113 (AM-S)

Received: December 2, 2019
Revised: May 25, 2021
Accepted: December 14, 2021
Published Online in Articles in Advance:

Area of Review: Optimization

https://doi.org/10.1287/opre.2022.2260

Copyright: © 2022 The Author(s)

Abstract. Research on the three-dimensional (3D) packing problem has largely focused on
packing boxes for the transportation of goods. As a result, there has been little focus on
packing irregular shapes in the operational research literature. New technologies have
raised the practical importance of 3D irregular packing problems and the need for efficient
solutions. In this work, we address the variant of the problem where the aim is to place a
set of 3D irregular items in a container, while minimizing the container height, analogous
to the strip packing problem. In order to solve this problem, we need to address two critical
components; efficient computation of the geometry and finding high-quality solutions. In
this work, we explore the potential of voxels, the 3D equivalent of pixels, as the geometric
representation of the irregular items. In this discretised space, we develop a geometric tool
that extends the concept of the nofit polygon to the 3D case. This enables us to provide an
integer linear programming formulation for this problem that can solve some small instan-
ces. For practical size problems, we designmetaheuristic optimisation approaches. Because
the literature is limited, we introduce new benchmark instances. Some are randomly gener-
ated and some represent realistic models from the additive manufacturing area. Our
results on the literature benchmark data and on our new instances show that our meta-
heuristic techniques achieve the best known solutions for a wide variety of problems in
practical computation times.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
work as “Operations Research. Copyright © 2022 The Author(s). https://doi.org/10.1287/opre.2022.
2260, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by/4.0/.”

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2022.2260.

Keywords: 3D irregular packing • open dimension problem • voxel • metaheuristics

1. Introduction
The three-dimensional (3D) irregular packing problem
consists of the efficient placement of arbitrary 3D items
within a designated volume without overlapping.
Although 3D packing of regular shapes (boxes) such as
the container loading problem and two-dimensional
(2D) irregular packing problems have received a lot of
attention in the literature, the 3D irregular variants
have not. This problem is of great interest to researchers
because of the maturity of the field, making this prob-
lem the next significant frontier, and also because of the
rise in new applications, most notably those motivated
by additive layer manufacturing and 3D printing.

Problems in which the space available is scarce so not
all the items can be packed are equivalent to the well-
known knapsack problem. For example, prioritizing

items to be carried for emergency services, such as an
ambulance or for humanitarian aid by helicopter.

Alternatively, the space may not be constrained but
using more space increases the cost, so the problem is to
pack all the items using the least space. One example
arises when packaging customer orders for delivery,
when the sender needs to decide what is the most suit-
able box or set of boxes to pack a given set of items.
Fueled by e-commerce, the business to customer deliver-
ies are increasing. In this context, efficient packaging nat-
urally plays a financial role, but also a sustainable one
(Mangiaracina et al. 2015). In 2019, the worldwide parcel
traffic increased to over 21 billion parcels from 12 billion
parcels delivered in 2015 (Mazareanu 2020); being able to
reduce the waste generated would have an economic
benefit and a significant positive environmental impact.

1

OPERATIONS RESEARCH
Articles in Advance, pp. 1–20

ISSN 0030-364X (print), ISSN 1526-5463 (online)http://pubsonline.informs.org/journal/opre

May 4, 2022

mailto:c.lamas-fernandez@soton.ac.uk
https://orcid.org/0000-0001-5329-7619
mailto:j.bennell@leeds.ac.uk
https://orcid.org/0000-0002-5338-2247
mailto:a.martinez-sykora@soton.ac.uk
https://orcid.org/0000-0002-2435-3113
https://doi.org/10.1287/opre.2022.2260
https://doi.org/10.1287/opre.2022.2260
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/opre.2022.2260
https://orcid.org/0000-0001-5329-7619
https://orcid.org/0000-0002-5338-2247
https://orcid.org/0000-0002-2435-3113
http://pubsonline.informs.org/journal/opre

A major industry that benefits from efficient pack-
ing algorithms in three dimensions is the additive
manufacturing (AM) industry. AM is the process of
generating physical objects from computer designs,
usually by adding layers of a certain material. Among
other techniques, it includes 3D printing. If more than
one item is printed in a single print run, a packing
software is needed to generate a layout that ensures
items do not overlap and that the layout is contained
within the print area. AM is a flourishing industry
that had an estimated worth of $4 billion in 2014 and
is expected to grow to over $21 billion by 2020
(Thompson et al. 2016). The resulting configuration of
the printing layouts plays an important role in the esti-
mation of the material cost and production time for
additive manufacturing (Baumers et al. 2013). One of
the issues being addressed in recent studies is focused
on managing the 3D printers efficiently, which
involves making decisions about minimizing the extra
support required, the height of the build, and other
aspects that depend on the materials being used (see
Attene (2015) or Griffiths et al. (2019) for examples).

The main reason for not having efficient algorithms
available for solving problems that consider 3D irreg-
ular items is the lack of geometric tools available in
the literature to find good placements and ensure the
feasibility of the layouts, that is, the nonoverlapping
condition of the items.

In this article, we examine the problem of packing
all items, referred to as small items, into a single box-
shaped container, referred to as the large object, with
a fixed width and length but undetermined height.
The small items are of an irregular shape and have a
fixed orientation. The objective is to place all the items
within the container in nonoverlapping positions,
while minimizing the height of the layout. According
to the typology in Wäscher et al. (2007), this is an
irregular three-dimensional open dimension problem
(I3DODP). This problem is also commonly called the
strip packing problem.

The earliest papers tackling 3D packing are moti-
vated by additive manufacturing applications and use
a polygonal mesh for the item representation. An
early example is by Ikonen et al. (1997) who proposes
a genetic algorithm to pack arbitrary shaped items.
Their algorithm places items according to a certain
order, selecting one of a given finite set of orientations
and “attachment” points. These points are the points
where one item might make contact with another item,
and they are provided as part of the input data. This
problem is also tackled by Dickinson and Knopf
(1998), who propose a constructive algorithm (CA)
where each item is packed in a position that is selected
with the aim of maximizing the density of the packing.

Egeblad et al. (2007, 2009) also use a polygonal mesh
representation in what they call a general purpose

algorithm. The heuristic works with an initial layout
and explores the solution space by translating items
either vertically or horizontally. Items are permitted to
lie in overlapping positions during the search. A more
specific application is presented in Egeblad et al. (2010),
where a combination of preprocessing techniques and
bespoke heuristics is proposed to solve a practical
knapsack problem appearing in the furniture industry.
Also based on polygonal mesh, Liu et al. (2015) devel-
ops an efficient constructive algorithm that allows the
rotation of items based on a minimal potential energy
placement. More recently, Ma et al. (2018) consider a
slightly different problem where the container has a
fixed size and the objective is to maximize its utilization
by selecting and packing a subset of items from a collec-
tion. Their approach consists of shrinking items to a
small percentage of their original size and placing them
in a starting nonoverlapping position; then they define
a nonoverlapping space for each item and allow them
to grow, move, and rotate within that space until all
objects achieve their original size.

A different line of research is the one explored in
Stoyan et al. (2005), where they use phi-objects to rep-
resent the geometry (Stoyan 1983, Scheithauer et al.
2005, Bennell et al. 2010). Analogous to the two-
dimensional case, the phi-objects are mathematical
descriptions based on parametric functions. In princi-
ple, this approach can accurately represent the irregu-
lar item including curved surfaces. The theory is
based on a few simple basic shapes called primary
phi-objects. These have formal mathematical descrip-
tions, which are combined into parametric functions
(called phi-functions) that describe the interaction of the
items given a position and orientation. As a result, they
can test for overlap efficiently in any orientation. More
complex items are constructed through combining pri-
mary phi-objects and the associated phi-functions, which
form nonlinear constraints in their model. Deriving these
models is complex and can be simplified by using quasi-
phi-functions, described in Romanova et al. (2018). With
this representation, it is possible to formulate most
packing problems as nonlinear programs. The strength
of this approach relies on their precise analytical
description of the objects. However, items may need
many primary phi-objects to be represented and the
complexity of the resulting models makes them hard
to solve. In general, for the instances available in the
literature, the model can only find a local optimum
and the resulting packing is not very successful com-
pared with other simpler metaheuristic approaches, as
we will see in Section 5.1.1.

Phi-objects and polygonal mesh representations both
suffer from increasing complexity with the irregularity
of the item. For phi-objects, complicated shapes require
the combining of many primary objects to represent
the final shape, whereas the polygonal mesh approach

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
2 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

needs more faces and vertices with the more features
one object has (irregularities, holes, etc.) in order to
provide a good representation. Both, the number of
primary objects in a phi-object and the number of verti-
ces or faces in a mesh have a direct impact in the com-
putational cost of the packing algorithms using them.
To overcome this, some researchers opt for approxi-
mating the three-dimensional models by discrete sets
of smaller regular shapes. One frequently adopted way
of discretizing the shapes is to approximate them by
cubes, usually referred to as voxels.

Approximating the small items using voxels is used
in Hur et al. (2001), where the authors develop a
bottom-left approach for cylinder containers, and use a
genetic algorithm to search over the space of packing
sequences. Also using voxels, Jia and Williams (2001)
propose a simulation-based packing algorithm moti-
vated by particle packing. In their algorithm, particles
can randomly move and rotate as long as they do not
overlap with each other. In a later work, this algorithm
was made more computationally efficient by Byholm
et al. (2009). They take advantage of the discretized
space to employ some computational tricks with the
shape representation. This includes, for example,
removing some voxels that are not going to play a role
in the final packing result, resulting in reduced compu-
tational time. de Korte and Brouwers (2013) also deal
with particle packing in their investigation of the pack-
ing of spheres, which they approximate by voxels.

One important parameter affecting the decomposi-
tion or discretization is the resolution or the size of the
basic units used to approximate the item. If it is too
large, the fidelity of the approximation will be poor
and some geometrical aspects can be lost. For exam-
ple, holes or concavities smaller than a voxel cannot
be represented. On the other hand, if the resolution is
small, giving high fidelity, the model will require a
large amount of computer memory and the packing
algorithms will be very slow because of more opera-
tions being performed. Some approaches (Cagan et al.
1998, Edelkamp and Wichern 2015) use tree structures
as a way to overcome this problem. The tree structure
has very coarse representations at the top but can be
made finer later in the tree if the features require it. If
the basic volume units used are cubes, these trees are
called octrees and each cube is divided in eight identi-
cal smaller cubes at each level.

In Edelkamp and Wichern (2015), they approximate
shapes by spheres that are organised in a tree struc-
ture. This representation is then used in a simulated
annealing algorithm that finds 3D printing layouts of
irregular objects. The algorithm takes advantage of
the use of spheres to allow free rotation of items.
Cagan et al. (1998) use rectangular solids (not neces-
sarily cubes) for the decomposition and develops a
simulated annealing solution method based on simple

movements and rotations in order to find efficient
component layout for various industrial designs (e.g.,
a car engine or a heat pump).

Voxelization and octrees are used in a variety of
applications because of their power for dealing with
complicated shapes and are an active topic of research
in their own right (Schwarz and Seidel 2010, Baert et al.
2014), including closely related variations, such as chain
codes (Sánchez-Cruz et al. 2014, Lemus et al. 2015).

Our chosen approach is discussed in Section 2,
where we introduce the problem formally, describe
our geometric approach, and introduce an integer lin-
ear programming (ILP) model. Because this model is
too complex for practical use, we also investigate meta-
heuristic approaches. In Section 3, we provide the build-
ing blocks for developing metaheuristic algorithms,
including a constructive algorithm and different local
search neighborhoods. These neighborhoods explore
two different problem representations, one based on an
item sequence that is decoded by different placement
rules and one based on the item position in the layout.
Based on these building blocks, we develop three differ-
ent packing algorithms that are presented in Section 4.

Along with the lack of previously published work
on the problem, there is also a lack of benchmark
data. We have gathered together the main data sets
found in the literature and added instances found in
online 3D printing data sets. Furthermore, we devel-
oped an instance generator to provide a wide range of
data sets with specific characteristics. The generator
and the benchmark instances are described in Section 5
along with a full discussion of the results of our com-
putational experiments.

The contributions of this work are the following. We
explore the potential of voxels to represent irregular
items for 3D packing problems. We develop effective
solution methods for the I3DODP that can solve large
problems. We address the lack of data by providing a
rich set of benchmark data sets and an instance genera-
tor. In adopting a voxel representation of the items to
be packed, we develop a new geometric tool analo-
gous to the nofit polygon (NFP) for two-dimensional
irregular packing, called the nofit voxel. Finally, we
provide a new mathematical programming formula-
tion for the I3DODP and test its capabilities.

2. Voxelised Three-Dimensional Packing
In this section, we introduce formally the optimization
problem we are solving, based on a discrete voxel
space. We also discuss geometric considerations and
introduce tools for handling the nonoverlap constraints.

2.1. Problem Description
We have a set of n small items I � {p1,p2, : : : ,pn} that
need to be placed inside a large object C (the container).

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 3

The container has a rectangular base and a variable
height (z-coordinate), and our objective is to find a set
of n placements L � {l1, l2, : : : , ln} ⊂ Z

3 for all the items
in I ensuring that no two items overlap and that all
items lay within the container, while minimizing the
container height. The orientation of the items is fixed.

2.2. Voxel Representation
In order to represent the irregular items from I , we
divide their bounding box into identical small cubes,
which are called voxels, and use a binary code to distin-
guish which ones are part of the item and which ones
are not. Having a rectangular shape (bounding box) as
a support enables us to encode this information in a
structure analogous to a binary matrix. For each item,
the voxel in the bottom-left-back corner of its bounding
box is called the reference voxel. To locate the items in
the container, it is sufficient to determine the position
of the reference voxels. In Figure 1, we show an exam-
ple of an item and its reference voxel. We also consider
the bottom-left-back corner of the container as the ori-
gin of the coordinate system, so all the points inside the
container have positive coordinates.

2.3. Constraint Handling
There are two main constraints for the strip packing
problem; the containment of small items within the
boundary of the container (containment constraints)
and no overlap between small items (no-overlap con-
straints). In this case, we also add the constraint of
fixed orientation of the items. Because the containers
we use are rectangular, the containment constraints are
trivial. The reference voxel of each item has a maxi-
mum permitted x and y position, which corresponds to
the size of the container in the x or y dimension minus
the magnitude of the item along that dimension. For

convenience, we set a maximum value for z that is
large enough to easily contain all the small items. We
denote the positions that lay inside the container for
the item pi ∈ I as the set IFVpi ,C, the inner-fit voxel of
the item pi and the container C. Note that this is a simi-
lar concept to the inner-fit rectangle in two dimensions,
see Gomes and Oliveira (2006) for details.

Nonoverlapping constraints between items are, how-
ever, more difficult to model, as both of their shapes
are arbitrary. If we look at the two-dimensional litera-
ture, the nofit polygon (NFP) is a concept that has been
consistently used in 2D irregular packing problems
since it was first developed in the sixties by Art (1966)
who described it as the envelope. Informally, the NFP
is derived from two polygons and represents the rela-
tive positions of these polygons in terms of whether
they overlap, represented by the interior of the NFP,
touch, represented by the boundary of the NFP, or are
separated, represented by the outside of the NFP. A
more in-depth definition and a review of various algo-
rithms for calculating the NFP can be found in Bennell
and Oliveira (2008). It is worth noting that NFPs have
a close relationship with Minkowski sums. For two
arbitrary polygons A and B, it can be shown that A �

−B � {a− b : a ∈ A, b ∈ B} �NFPAB (see, for example,
Milenkovic et al. (1992) or Bennell et al. (2000)).

To test the overlap between items, we define the
nofit voxel (NFV), which is analogous to the union of
the NFP and its interior. In general, dividing items
into discrete cubes allows us to perform very quick
intersection tests to identify overlap between items.
Before formally defining the NFV, we first describe the
simple overlap test for items represented by voxels.

Given two items p,q ∈ I , with their reference voxels
located at lp � (px,py,pz) and lq � (qx,qy,qz), respec-
tively, we say that they are in a nonoverlapping posi-
tion if either:

1. Their bounding boxes do not intersect.
2. In the intersection of their bounding boxes, no two

voxels from the items coincide in the same position. For
a binary matrix where an entry is positive if it is a voxel
of an item, this is equivalent of saying no two positive
values of their binary matrices are in the same position.

The second condition can be simply tested by
checking the corresponding elements of the matrices
that represent the voxels of the two items and stop-
ping at the first coincidence. Testing overlap in this
order leads to an efficient implementation as, unless
two items are very close in the layout, the first condi-
tion, which is very simple to test, will be sufficient to
conclude that there is no overlap between them.

Building on this idea, it is trivial to see that if lp and
lq lead to feasible positions for p and q, then for any
α � (αx,αy,αz) ∈ Z

3, the points lp +α � (px + αx,py + αy,
pz +αz) and lq + α � (qx + αx,qy + αy,qz +αz) also lead
to feasible positions for p and q.

Figure 1. Example of an Irregular Item Represented by Vox-
els with Its Reference Voxel Highlighted (Solid Black)

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
4 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

In other words, a nonoverlapping position is main-
tained as long as the relative position of the items
does not change. Following this idea, we define the
NFV for two items p and q, which are represented by
voxels, as a set of the overlapping relative positions of
the items p and q. More formally,

Definition 1. The Nofit voxel of p and q is a set
NFVp,q ∈ Z

3 with the property that, if lp � (0, 0, 0) and
lq ∈NFVp,q, p and q intersect.

In Figure 2, we illustrate the nofit voxel of two
irregular items.

If the NFV of two items is known, it can be used to
determine if two items overlap by testing whether the
reference point of q is inside the NFV. However, in Def-
inition 1, we require that the location of p is fixed at the
origin. Let us now consider the case where p is located
at an arbitrary point l′p and q is located at l′q. We can still
use the NFV to test for overlap. In this case, they inter-
sect only if l′p − l′q ∈NFVp,q. This test is more efficient
than the simple overlap test described above. Because
this is a recurrent test, during the remainder of the
paper, we introduce the simplified notation NFVp,q

(px,py,pz) for it, defined in Equation (1).

(qx,qy,qz) ∈NFVp,q(px,py,pz)⇐⇒ (qx − px,qy − py,qz − pz)
∈NFVp,q (1)

To compute the NFV of two items p and q, NFVp,q,
we can simply keep p fixed at the origin and perform
an overlap test between p and q in all of their possible
overlapping positions (i.e., the positions where the
bounding boxes of p and q overlap). When a test is
positive, the point is added to theNFVp,q and the pro-
cess continues until all points are tested.

Note that, if NFVp,q is known, it is trivial to calcu-
lateNFVq,p using the following property:

NFVq,p(i, j, k) � {−a : a ∈NFVp,q(i, j, k)}: (2)

Thanks to the property in Equation (2), the calculation
of NFVs only needs to be done once for each pair of
item types. Once the NFVs are available, the overlap
checks are merely a matter of checking if the reference

voxel is in a set, provided the orientation of the items
remains unchanged.

2.4. ILP Formulation
In this section, we describe an integer linear program-
ming model for the problem stated in Section 2.1. The
model uses binary variables to determine the refer-
ence voxel of the items and defines constraints based
on the NFV information to ensure nonoverlapping.

For each item p, we define a region, B(p) ⊆ IFVp,C

where it can be placed. This region is a discrete set of
voxels that are identified in the model by the follow-
ing binary variables:

xpijk � 1, if p isplaced in (i, j,k)
0, otherwise:

{
(3)

We mean placed in the sense that, if xpijk is set to one,
the reference voxel of the item p is located at (i, j, k).
As mentioned earlier, the reference voxel is chosen to
be the corner voxel of the item’s bounding box with
smallest coordinates.

The full model is as follows:

minimizeH, (4)

subject to∑
(i, j, k)∈B(p)

xpijk(hp + k) ≤ H ∀p ∈ I , (5)

∑
(i, j, k)∈B(p)

xpijk � 1 ∀p ∈ I , (6)

xpijk +
∑

(l,m, n)∈
NFVp,q(i, j, k)⋂B(q)

xqlmn ≤ 1 ∀p, q ∈ I ,

p ≠ q, ∀(i, j, k) ∈ B(p), (7)
H ∈ N, (8)

xpijk ∈ {0, 1} ∀p, ∈ I , ∀(i, j, k) ∈ B(p), (9)

where hp is the height of item p. The first Constraint
(5) sets the value of the variable H, which is the total
height of the container in voxels. It is defined as being
higher than the highest point of any of the placed
pieces (which is their reference voxel position plus
their height). In Equation (6), we make sure that all
items are placed. The sum of the placement variables
for each item p is restricted to the set B(p); thus, this

Figure 2. (Color online) TwoArbitrary Items, p and q and Their Nofit VoxelNFVp,q

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 5

constraint also guarantees containment. Finally, Equa-
tion (7) uses the NFV of two items to ensure that there
is no overlap between each pair of items. There is a
constraint for each position (i, j,k) where p can be
placed. Then for all other items, q, we constrain the
sum of the binary variables of the position of p with
the binary variables for the position of q that belong to
the NFVp,q(i, j, k). In principle, these would be the
points of NFVp,q(i, j,k); but we concern ourselves only
with the ones that are also part of B(q), which also
ensures containment. Constraint (8) restricts the
domain of H to natural numbers, and Constraints (9)
defines the placement variables as binary.

This model is an extension of the Dotted Board Model
from Toledo et al. (2013) for the two-dimensional prob-
lem; to the best of our knowledge, it is the first integer
linear programming model available for the discretized
I3DODP.

If we define the regions B(p) to be B(p) � IFVp,C for
all items, the optimal solution of the model would be
the optimal solution of the discretized packing prob-
lem. Unfortunately, solving such a model requires a
very high computational effort, which makes solving
reasonable sized instances impractical, as we will show
in Section 5.2, where we provide some computational
experiments evaluating the capabilities of the model.

However, we can reduce the number of variables
by constraining the placement options for each item.
Given a starting layout, bounds on the number of vox-
els an item can move away from its current position
provide an easier-to-solve model. This is a common
strategy known as compaction and separation, which
has been used successfully in the past in 2D irregular
packing literature in conjunction with metaheuristics
(see, for example, Bennell and Dowsland 2001 or Gomes
and Oliveira 2006). Models that use phi-functions follow
a similar approach, see, for example, Stoyan et al. (2005).

In order to use this approach to compact the layout,
the model needs to be given an initial solution and a
region B(p) for each item p that bounds the move-
ment, which is substantially smaller than IFVp,C.
Given B(p), the next step is to solve Model (4)–(9) to
optimality. If the height is reduced, the procedure has
been successful. At this point, new B(p) regions can be
defined again, with the aim to further reduce the over-
all height (H).

As a separation procedure, the initial solution must
be infeasible (contain overlap). In this case, the height
of the container is fixed at H thus removing the con-
straints in (5). The regions B(p) are defined to respect
the fixed height and the objective function is to remove
overlap and find a feasible solution. This separation
procedure is used as one of our neighborhoods in the
variable neighborhood search (VNS) presented in Sec-
tion 4.3.

3. Building Blocks of the Three-
Dimensional Packing Heuristics

In this section, we examine a number of components
that are the building blocks for the solution algorithms
we design to solve the I3DODP. We first describe a
constructive procedure to generate initial solutions.
Because the procedure represents the solution as a
sequence of items, and determines an item’s position
using placement rules, we are able to use sequence-
based neighborhoods within a search heuristic. Given
an initial solution, an alternative approach is to define
neighborhoods that work with a solution representa-
tion that uses the position of the items in a layout.
This approach usually requires a relaxation of the
overlap constraint or containment constraint. For this
case, we describe neighborhoods that work on the lay-
out of complete solutions, where a strategic oscillation
technique and a new objective function related to
overlap guide the search.

The two approaches that we investigate align with
the strategies presented in Bennell and Oliveira (2009)
for 2D irregular packing, working with sequence rep-
resentations and with layout representations.

3.1. Constructive Algorithm
We propose a constructive algorithm based on a bot-
tom-left-back strategy. The idea is to place the items
one at a time, ensuring their placement minimizes first
the z coordinate, followed by the x and then the y
coordinates. For a packing problem with a collection
of items I � {p1,p2, : : : ,pn} and a container C, let S �
{s1, s2, : : : , sn} be an ordered sequence of the items to
be placed. This sequence could be a random permuta-
tion of I , or a specific sorting of the items, for example
by decreasing volume.

The algorithm starts by placing the first item in the
sequence, s1, at location l1 � (0, 0, 0). This placement is
always feasible because of our definition of the refer-
ence points and the coordinate system of the con-
tainer. Then, the next item in the sequence, si, is placed
in the bottom left back position li � (x,y, z) such that
the item lays within the container, that is, li ∈ IFVsi,C

and it does not overlap with any other placed item,
that is, li ∉NFVsj ,si(lj), ∀j < i. To find position li, the
algorithm tests points from IFVsi,C until it reaches a
valid placement. If an item of the same type has been
placed earlier, the search starts from the last valid
placement to avoid retesting the same points of
IFVsi,C previously found to be infeasible.

The points are evaluated starting from the lowest z
values, followed by the lowest x and the lowest y, so
the first valid position found is the one that lays at the
bottom-left-back-most possible position. This step can
be modified easily if the x or y position are sought in
reverse order (i.e., from highest value to lowest); in

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
6 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

that case, the algorithm rule would be called right
instead of left or front instead of back. In fact, each
item in the sequence can be packed using a different
rule. To acknowledge this, we introduce the notation
R � {ri} for a set of rules, where ri represents one of
the following: left-back, left-front, right-back, or right-
front. A solution of the algorithm is then given by
L � CA(S,R), where items have been placed in the
order determined for the sequence S, in the bottom-
most possible position and according to the corre-
sponding rule from R.

Although the algorithm is deterministic, different
sequences S and different placement rules R can result
in different packing layouts. This opens the possibility
to search over the sequence of items to be placed. We
explore this possibility in the next section with the
sequence-based neighborhoods.

3.2. Sequence-Based Neighborhoods
Searching over the sequence of items has been a com-
mon topic of research in 2D irregular packing prob-
lems; see, for example, Gomes and Oliveira (2002),
who implement a two-exchange (swap) heuristic to
search over an item sequence. Dowsland et al. (1998)
and Abeysooriya et al. (2018) use a technique called
Jostle that constructs solutions iteratively and extracts
the placement sequence from the layout generated on
the previous step.

In this work, we identify two types of sequence-
based neighborhoods, the sequence swap neighbor-
hood, and the rule change neighborhood. In Section
4.1, we describe a procedure to exploit them in an iter-
ated local search algorithm.

The sequence swap neighborhood consists of all the
solutions obtained by swapping two items of a differ-
ent type in the sequence S. If L � CA(S,R) and S � {s1,
si, : : : , sj, : : : , sn}, i < j

NS(L) � {{CA(S′,R)} : S′ � {: : : , sj, : : : , si, : : : }∀si,
sj ∈ S, si ≠ sj, i < j}: (10)

The rule change neighborhood consists in changing of
one rule for one item in the packing sequence. More
formally, if L � CA(S,R), then the neighborhood is
defined by

NR(L) � {{CA(S,R′)} :R′ �{: : : , ri−1, r′i , ri+1, : : : } : r′i ∈ R \ ri}
(11)

Each rule is effectively creating a different construction
heuristic, and this space of solutions can be searched
algorithmically. This kind of search is sometimes
referred to as a hyperheuristic; see, for example, Burke
et al. (2010) and Terashima-Marı́n et al. (2010) for
examples in 2D irregular packing using a polygonal

representation or Mundim et al. (2018) for a framework
using a discretized approach.

3.3. Layout-Based Neighborhoods
A layout-based neighborhood of a solution L is a set
of solutions N(L) that are reachable from L by apply-
ing a perturbation or move. This movement is no lon-
ger in the sequence or in the set of rules but a change
of position of one or more items in the packing layout.
As opposed to the sequence-based neighborhoods, the
solutions in these neighborhoods might not always be
feasible, as some moves might introduce overlap
between items.

We distinguish two types of layout-based neighbor-
hoods. The first type involves moving an item to a
nearby position and is called single item neighborhoods.
The second type involves more dramatic changes,
such as swapping the positions of two items in the
layout and is called full solution neighborhoods. The rea-
son for this distinction is that the single items neigh-
borhoods are usually quicker to evaluate and provide
solutions of similar quality to the current one because
only one item is moved. However, the full solution
neighborhoods are necessary to create kicks in the
solution that help to escape local optima.

3.3.1. Axis Aligned Direction Neighborhood. The axis
aligned neighborhood of an item p, NA(L,p,δ) includes
all the solutions of the form L � {l1, l2, : : : ln} where the
reference point of the item p, lp, is substituted by
another point from IFVp,C that is reachable by trans-
lating lp by a fixed amount of voxels between zero and
δ, in an axis aligned direction. More formally,

NA(L,p,δ) �
{
{l1, : : : , lp−1, l′p, lp+1, : : : } : l′p

∈ ⋃δ
d�−δ

⋃3
i�1

{lp + dei}
⋂

IFVp,C

}
, (12)

where ei denotes the vectors of the standard basis in
R

3. The parameter δ determines the number of voxels
the reference point can be displaced. The special case
where we consider all the points within the container
in any axis aligned direction is denoted by δ � δmax. In
this case, the neighborhood is similar to the transla-
tion neighborhood proposed by Egeblad et al. (2007,
2009) for polyhedral items. The axis aligned direction
neighborhood is illustrated in Figure 3.

Note that the neighbors of a feasible solution might
be infeasible with respect to the overlap constraint,
but they will not violate the containment constraint,
as we impose the condition that items can only move
within their inner-fit voxel.

3.3.2. Enclosing Cube Neighborhood. The enclosing
cube neighborhood contains all the valid points in a

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 7

cube centred at the reference point and with sides of
2δ+ 1 voxels, as shown in Figure 4. More formally,

NC(L,p,δ) �
{
{l1, : : : , lp−1, l′p, lp+1, : : : } : l′p

∈ ⋃
d∈{−δ,: : : ,δ}3

{lp + d}⋂IFVp,C

}
: (13)

For a large δ, this is equivalent to the complete inner-
fit voxel of the item. In this case, the neighborhood
can be seen as an insert move. We denote this situa-
tion by δ � δmax.

3.3.3. Item Swap Neighborhood. The swap neighbor-
hood of an item is a full solution neighborhood. It

represents all the possible swaps the item can make
with other items. Some of the swaps might violate the
containment constraint, because the swapped items
could end up with parts outside the container. If this
happens, the item is moved inwards along the axis
(one voxel at a time) until the point is in its inner-fit
voxel. This position, denoted by l(q)p (the resulting
position of p after swapping with q), is defined as fol-
lows,

l(q)p � argmin
l′∈IFVp,C

||lq − l′||1 ∀p, q ∈ I ; p≠ q: (14)

Then, the neighborhood contains all the possible
swaps of a item pwith others,

Nswap(L, p) � {{: : : , lp−1, l(p)q , lp+1, : : : , lq−1, l
(q)
p , lq+1, : : : } :

q ∈ I , q ≠ p}: (15)

3.4. Strategic Oscillation
A search algorithm using a layout-based neighbor-
hoods is likely to produce solutions that contain over-
lap. Although allowing overlap helps navigate the
solution space, it makes the problem effectively a bi-
objective problem, because the overlap constraint is
relaxed and added to the objective function. Solutions
containing overlap are not feasible with respect to the
original problem so we need to produce solutions with
zero overlap without compromising on solution quality.
Strategic oscillation (Glover and Marti 2013), has been
used extensively in the two- and three-dimensional irreg-
ular packing literature; see, for example, Bennell and
Dowsland (1999), Umetani et al. (2009), Imamichi et al.
(2009), or Egeblad et al. (2009) to navigate this problem.
The idea is that the algorithm oscillates between focusing
primarily on completely removing the overlap and then
primarily on reducing the height of the layout. Certain
criteria allow the switch in focus during the course of the
algorithm.

In each iteration of the strategic oscillation the algo-
rithm works on an overlapping layout with fixed
height, and tries to remove overlap. Once this has been
achieved or the maximum number of local search iter-
ations is reached, the height is modified as follows. If
the solution still has overlap, the height will increase
by one voxel and the algorithm will try to resolve the
overlap with more space. If it succeeds, the height is
reduced by a certain percentage (controlled by the
parameter dec_p in our computational experiments)
and the algorithm is run again, with the aim of finding
nonoverlapping positions at a lower height.

Because the reduction of height leaves some items
protruding above the top of the container, their posi-
tion needs to be adjusted. We have implemented two
strategies to achieve this: move down and random rein-
sert. With the move down strategy, protruding items

Figure 3. (Color online) Neighborhood of Axis Aligned
Directions, δ � 1 (Left) and δ > 1 (Right)

Note. The point in the centre is the original reference point lp, and the
surrounding points are the possible reference points in the
neighborhood.

Figure 4. Neighborhood of Enclosing Cube, δ � 1

Note. The visible points are the reference points in the neighbors,
whereas the original reference point is located in the centre of the cube.

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
8 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

are simply moved downward the minimum amount
until they fully fit inside the new container. Instead,
with the random reinsert protruding items are removed
from the layout and inserted in a random position of
their inner-fit voxel. In the computational experi-
ments, the strategy is selected by means of the algo-
rithm parameter SO_mode.

3.5. Objective Function
While our objective is to minimize the height of the
final layout, if we search over the layout and use stra-
tegic oscillation, intermediate solutions will have over-
lap. For this case, we propose an objective function
whose main goal is to understand when a solution is
better than another, in terms of leading to a nonover-
lapping solution. In the nesting literature, typical
objective functions include measuring the penetration
depth of a pair of items (Bennell and Dowsland 1999,
Imamichi et al. 2009, Umetani et al. 2009) or the exact
amount of overlap (area in 2D or volume 3D) for each
pair of items (Egeblad et al. 2009), among others. Our
objective function is calculated based on the volume of
the overlap of the bounding boxes,

F(I , l1, l2, : : : , ln) � 1 − 1
n
2

() ∑
i, j∈I, , i<j

Vol(B(i, li)⋂B(j, lj))
Vmax

, (16)

where B(i, li) is the bounding box of item i located in
position li and Vol() is a function that returns the voxel
volume (number of voxels) of its argument. The cons-
tant Vmax �maxi∈I Vol(B(i)) is the maximum volume
of any bounding box present in the instance and is
used to scale the function value between zero and
one. Dividing the sum by (n=2), the number of pairs
of items in the solution is used to average the overlap
of the items. This function is very quick to evaluate
and provides an intuitive idea of how difficult it is to
separate a pair of overlapping items.

4. Search Algorithms
Using the building blocks described in the last section,
we propose three different metaheuristic algorithms.
The first is an iterated local search, which is based on
searching over the item sequence and generating the
layout by applying the constructive algorithm. The
next two approaches are a tabu search (TS) and a vari-
able neighborhood search, which are based on search-
ing over the layouts of complete solutions.

4.1. Iterated Local Search
Iterated local search is a metaheuristic algorithm that
iteratively searches neighborhoods, accepting improv-
ing moves, to find local optima. At each local optima,
the search moves to a different part of the solution
space by performing a kick (Lourenço et al. 2010).

We implement this algorithm to take advantage of
the different rules that can be used in our constructive
algorithm. The initial solution starts with a sequence
of items sorted in order of decreasing height and the
solution is constructed using the left-back placement
rules to place all of the items. For the local search, we
use the rule change neighborhood, NR(L), that
involves changing one of the two placement rules
(left/right or back/front) of an item and repacks using
the constructive algorithm.

The kicks consist of performing a number of posi-
tion swaps in the item order sequence (and their
placement rules) at random. The number of swaps to
be performed is controlled by an algorithm parameter,
nswaps, which is determined in Section 5.3.

Although searching over the sequence can produce
quick, efficient layouts, the solution space does not
contain all possible solutions and some good layouts
might be unreachable using these techniques. To over-
come this, we propose two other algorithms that work
on the layout of full solutions.

4.2. Tabu Search
Tabu search, introduced by Glover (1989), is one of the
first metaheuristic and has been successfully applied
to various combinatorial optimization problems,
including irregular packing (Błazewicz et al. 1993, Ben-
nell and Dowsland 1999). It uses neighborhoods to
search the solution space by testing all solutions in the
neighborhood of the current solution and moving to
the best neighbor, whether it improves the objective
function value or not. The solution resulting from the
move is added to a tabu list so it cannot be revisited
for a certain number of moves. In practice, an attribute
of the move is stored as this is more efficient and
achieves the desired outcome.

TS lends itself to the layout representation because the
voxel neighborhoods are finite and can be evaluated in
full with a low computational effort. Maintaining a tabu
list is an effective way to prevent items moving back and
forth to the same positions. Our TS works within the stra-
tegic oscillation framework searching for nonoverlapping
solutions between each adjustment of the height con-
straint. Each height oscillation occurs after a predefined
maximum number of accepted neighborhoodmoves or if
a zero overlap solution is found by the TS.

The initial solution, L0, is produced using the con-
structive algorithm (Section 3.1) as L0 � CA(S0,R0),
where S0 is the sequence of items from the instance
ordered by decreasing volume and R0 is the set of
rules that assigns left-back to all the items. In the first
step, the algorithm oscillates to create some overlap,
as described in Section 3.4. In each iteration, the algo-
rithm explores the axis aligned neighborhood of the
solution, with parameter δ � d_axis, whose value is
determined in the computational experiments. When

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 9

a movement is performed, the opposite direction of
the movement for that item is added to the tabu list to
avoid the same item moving backward. The length of
the tabu list, TL is also a parameter of the algorithm.

Note that to evaluate each move it is not necessary
to calculate the objective function from Equation (16).
Instead, it is sufficient to perform an update to evalu-
ate the effect of the change in the solution quality.
This test is very quick to perform, because it only
involves recalculating the overlap terms for the item
that has moved. The efficiency of this step allows for
the testing of a large number of movements in a rea-
sonable computational time.

To control the height, the tabu search will run on a
given solution for a number movements (determined
by parameter nMoves) or until it completely removes
the overlap and then perform the oscillation.

4.3. Variable Neighborhood Search
Having designed a number of neighborhoods, it is
natural to consider implementing a variable neighbor-
hood search algorithm. This metaheuristic, introduced
by Mladenović and Hansen (1997), makes use of a list
of neighborhoods that are explored in order and
works on the assumption that a local optimum for a
neighborhood might not be a local optimum in an
alternative neighborhood. VNS is implemented with
strategic oscillation in the same way as TS.

The algorithm starts from an initial solution (cre-
ated in the same way as in the previous section) that
contains some overlap and searches the first neighbor-
hood in the list. In our implementation, we apply a
steepest descent rule; therefore, all the solutions in the
neighborhoods are evaluated before moving to the
best improving solution.

If there are no improving neighbors, the incumbent
solution is labelled as a local optima for the current
neighborhood. Then, VNS selects the next neighbor-
hood in the list and explores it until it is again stuck in
a local optima. If an improvement is found, the
incumbent solution moves to it and VNS returns to
the first neighborhood and continues the search.

When a solution is a local optima for all the neigh-
borhoods, the algorithm applies a kick (or a shake)
and returns to the first neighborhood in the sequence.
After a certain number of kicks (parameter nK), the
algorithm performs strategic oscillation in order to
increase or decrease the maximum allowed height
and the process is repeated.

We have implemented VNS with three neighbor-
hoods that are searched in this order:

• Enclosing cube neighborhood,NCwith δ � d_cube
•Axis aligned neighborhood,NAwith δ � d_axis
• ILPmodel, with Bp �NC and a small δ value
The first two neighborhoods are explored for all the

overlapping items. We have chosen to use the cube

neighborhood with a small delta first, as it can pro-
vide very similar solutions by moving only one item
by one voxel. The axis aligned neighborhood has the
capacity to reach further away points and can often
provide more dissimilar solutions, especially at early
stages of the algorithm. Our experiments found this
order of the first two neighborhood definitions to be
more efficient because it finds the best local optima
through comprehensively searching a small local
neighborhood of the current solution before searching
more widely. When the second neighborhood finds a
better solution, the search returns to the focused opti-
mization using the first neighborhood. If these neigh-
borhoods cannot improve the solution, we run the ILP
Model (3)–(9). The δ values used for the cube neigh-
borhoods of the model are a parameter of the algo-
rithm. We use a different parameter for the items that
are overlapping (δ � Ov_d) and for the items that are
not overlapping (δ � NOv_d). Both of these values are
determined in Section 5.3. To avoid spending exces-
sive computational time running the model, and tak-
ing into account that is only practical when using only
small δ values, we have restricted its use to only once
per strategic oscillation and only in layouts where
there is at most one pair of overlapping items. The
running time of the model is restricted to a maximum
of 300 seconds.

Once we have hit a local optimum for all the neigh-
borhoods and before oscillating, we disrupt the solution
with the aim of exploring a different part of the solution
space. This disruption, also called a kick, is performed in
two steps: a shaking of the layout and an item swap.

To perform shaking, we move all overlapping items
to a random location within a neighborhood NC. The
number of voxels, δ, that defines the size of the neigh-
borhood is set such that it increases linearly with the
number of disruptions used so far in the search. This
technique allows us to have smaller disruptions in the
early stages in order to guide the algorithm quickly to
good solutions. However, in later stages of the algo-
rithm, the disruptions are larger, allowing the search
to escape from local optima. The parameter will vary
between a minimum value of δmin, which is the size of
the starting neighborhood, and a maximum value of
δmax. The actual parameter used in the iteration is cal-
culated as δ �max(δmin,
ρ(δmax + 1)�), where ρ is the
ratio between the kicks performed and the maximum
kicks allowed for the current height. Suitable values
for δmin and δmax are explored and selected in the com-
putational experiments in Section 5.3.

The second step of the kick consists of swapping two
overlapping items. To avoid the costly procedure of test-
ing all possible swaps, we limit the amount of tests. We
test the swap of each item in the layout with a number of
items from the overlap list, determined by the parameter
test_swaps. The overlapping items are chosen at

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
10 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

random and avoiding items of the same type. In total,
we test a number between one and n × test_swaps
swaps and perform the one that returns the best objec-
tive function, even if it does not improve the incumbent
solution.

These two steps complement each other. The shak-
ing part creates many overlapping positions and ena-
bles the search to explore movements of items that
might otherwise stay in nonoverlapping positions and
prevent the solution improving. The swap part produ-
ces a larger change in the layout, which might be diffi-
cult to obtain with moving items one at a time. Note
that creating many overlaps will create a greater
opportunity for swapping items to succeed than if we
apply these two steps in an opposite order.

Each iteration of the VNS consists of a number of
local searches followed by a kick. Therefore, in each
iteration, we will find many local optima, possibly all of
them containing overlap, for the same container height.
Because the kick involves swapping one or more pairs
of items, there is a risk that these swaps might not be
beneficial in the long term. To avoid this situation, the
kick is not always applied to the incumbent solution
but to the best of the local optima found for the current
height. By doing this, item swaps that do not lead to an
improvement are not carried forward in the search.

5. Computational Experiments
In this section, we evaluate the performance of the pro-
posed voxel-based algorithms. In Section 5.1, we describe
the instances used for testing. In Section 5.2, we
explore the limits of the ILP model to solve instances
to optimality. In Section 5.3, we describe how we have
performed the parameter configuration for the meta-
heuristic algorithms, along with the best configuration
for each algorithm. Finally, in Section 5.4, we compare
the performance between the algorithms and also
against the state of the art in the literature.

5.1. Test Instances
We test our algorithms across a range of different
instances to compare their performance in different sce-
narios. We found that in the 3D literature, researchers
mainly use simple shapes, such as convex polyhedra
(Pankratov et al. 2015, Stoyan et al. 2005), or nonconvex
shapes that are defined by very few vertices (Stoyan
et al. 2004, Egeblad et al. 2009, Liu et al. 2015). In our
experiments, we solve some of these instances and
adapt one popular instance from the two-dimensional
literature with similar properties, shapes0 from Oliveira
et al. (2000). In order to test our algorithms more thor-
oughly, we also propose a set of randomly generated
instances, called blobs, and two examples of complex
realistic instances. Unlike standard academic instances,

the blobs data sets are designed to include more chal-
lenging shapes, such as “smooth” surfaces or holes.

In Table 1, we summarise some of the key differ-
ences of these instances

5.1.1. Instances from the Literature. To test our algo-
rithms, we have collected the available instances from
the literature, which tend to be simpler shapes. The
first instance is a set of convex polyhedra that has
been introduced by Stoyan et al. (2005) and later used
in Egeblad et al. (2009). It consists of seven convex
shapes of similar volume that are repeated a number
of times each. Stoyan et al. (2005) defined three sets of
items Example1, Example2, and Example3; but we only
solve the latter two because Example1 contains one
item that has a dimension coinciding exactly with the
width of the container and it becomes infeasible with
our voxelization parameters. We call these instances
Stoyan2 and Stoyan3.

In order to find more challenging instances, Egeblad
et al. (2009) mixed this set with some items available in
the work of Ikonen et al. (1997), creating the Mergedi
instances, that we solve as well.

The other instances we consider are a set of noncon-
vex polyhedra from Stoyan et al. (2004) (Experiment2
to Experiment5), which has been later solved by Liu
et al. (2015) and a similar set of polyhedra proposed
by Liu et al. (2015), Experiment1. However, in the origi-
nal work, Experiment1 has been solved only when
allowing rotation; therefore, we do not solve exactly
the same problem, because our orientations are fixed.

These instances are originally represented using the
polygonal mesh approach; therefore, it is necessary to
convert them to voxels before applying our algo-
rithms. To perform this process, we have used the bin-
vox software package (Nooruddin and Turk 2003,
Min 2019), where we apply the exact setting to ensure
the voxelized representation overestimates the origi-
nal one; therefore, our solutions are always feasible.
One important parameter used in the conversion is
the resolution, that is, the size of the voxels used in
the converted shapes. In order to solve each instance
with the same resolution, we have chosen a voxel size

Table 1. Instances Solved and Their Features

Instance Source Convex Holes Items (types)

Stoyan2 Stoyan et al. (2005) � � 12 (7)
Stoyan3 Stoyan et al. (2005) � � 25 (7)
Mergedi Egeblad et al. (2009) � � 15–75 (15)
Experiment1 Liu et al. (2015) � � 36 (5)
Experimenti Stoyan et al. (2004) � � 20–50 (10)
Blobsi Generated � � 20 (10)
Shapes_3D Adapted � � 43 (4)
Engine Realistic � � 97 (56)
Chess Realistic � � 32 (6)

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 11

such that the largest side of the container is voxelized
with 150 voxels. Where there are several instances
containing common items, we chose the largest side
of the largest container among the instances so that
the items have a common voxelization. This means
that the smaller containers in the group of instances
might not get an exact voxelization; therefore, we
round the dimensions down, ending up with a
slightly smaller container. One hundred fifty voxels
are chosen, as it seemed a reasonable compromise
between accuracy and solving speed. Nevertheless, as
it will be shown in Section 5.4, the resolution chosen
plays a key role in both the solution time and the qual-
ity of the results.

5.1.2. A Simpler Instance. To complete the tests with
simpler shapes, we have also adapted a classical
instance from the two-dimensional irregular packing
literature, the set shapes0 from Oliveira et al. (2000).
This set consists of four simple distinct shapes (one
convex and three nonconvex) and has been widely
used in the research of the strip packing problem. To
adapt these figures to 3D, we maintained the original
proportions of the original shapes and voxelized them
in a grid of one unit. For two of the shapes, we pre-
served their symmetry along the third axis. For the
remaining two, we extruded the shape along the third
axis so they had a size of six voxels. We call our
instance Shapes_3D, and the final result can be seen in
Figure 5. The container for this set has sides 20 × 20,
and we maintained the same item description (43
items in total) and fixed the orientation.

5.1.3. Realistic Instances. We also solve two instances
based on models downloaded from a popular 3D
printing online community. In order to solve a mean-
ingful problem, we chose two designs that have shapes
with a certain complexity and that are themselves a
collection of different parts. We chose a realistic model
of an engine by Harrell (2015) (see Figure 6 for an
example of an item already voxelized) and a chess set
by Edwards (2014).

Both of these instances were available as triangular
mesh files. We converted them using the same process
as described in Section 5.1.1; but as there was no con-
tainer size provided, we chose the resolution differ-
ently. Based on the size of the items and because they
were available in different scales, we decided to pack
the Engine in a container with a base of 500 × 500 vox-
els, where one voxel represents six units, and the
Chess set in a container of size 50 × 50, where one
voxel is mapped to one unit of the original model.

5.1.4. Randomly Generated Instances. Our random
instance generator extends to three dimensions the
shape generation approach presented in Robidoux
et al. (2011). We illustrate some of its steps in Figure 7
in an example to generate a 2D shape, because it is
easier to appreciate in two dimensions. The following
steps describe the method for a 3D item:

Step 1. Start with a three-dimensional matrix of
zeros, which will be the container of the future item.

Figure 5. (Color online) Instance Shapes_3D

Figure 6. (Color online) Example Item from the Engine
Instance

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
12 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

Step 2. Randomly assign one to the value of some
elements in the matrix (Figure 7(a)).

Step 3.Connect the points in a random order with dis-
cretized lines of a certain thickness. The last point is con-
nectedwith the first in order to create a loop (Figure 7(b))

Step 4. Apply a Gaussian blur to the matrix. This
step changes the values of the elements so they are
between zero and one (Figure 7(c))

Step 5. To convert to binary values again, apply a
threshold, where values less than a parameter (around
0.005) are set to zero and values over that parameter
are set to one (Figure 7(d)).

There are a few parameters that can be controlled in
this method. The first of them is the size of the matrix
where the points are drawn. A larger size will mean
a smoother shape but more costly to compute. We
also need to decide how many and how to select the
random elements that are initially set to one. More
points give more opportunities for the shape to have
irregularities; but too many will fill up the space of
the shape too much and it can lose some interesting
features, such as holes. For sampling the points, we
have chosen a random uniform distribution in a cube;
but there are other possible distributions. Robidoux
et al. (2011) suggest using distributions in a disc (uni-
form or normal) if one wishes to get rotation invariant
shapes, but this is not relevant for our purposes.

The way the points are connected can also impact
the shape. In our case, we use straight lines; but other
methods, such as splines, could give more smooth
results. Another decision is how to add thickness to
these lines. Looking again at Figure 7(b), we see that
the lines in that case have more than one pixel in
thickness. To explain this, let us think about the
matrix as a grid of squares (or cubes, in 3D). When
connecting two points, we first paint the squares of
the grid intersected by the segment that connects the
centre of the two points. By painting here we mean
setting to one the corresponding matrix elements. To
add thickness, we also paint the squares surrounding
this initial line, if they are within a certain distance
from it in any axis aligned direction. This distance is
another parameter, which we call the thickness param-
eter. This results in painting with a kind of cross-hairs,
the same concept as depicted in the neighborhood
from Figure 3. Finally, both the standard deviation of
the Gaussian blur and the threshold also have an
impact on the outcome.

Following this technique, we have generated nine
instances in total, with three different sizes and three
shape styles for each size. We handpicked the parame-
ters in order to define the three different styles, which
we have called round, where items are closer to
spheres or ellipsoids; peaked, where shapes have more

Figure 7. Example of the Steps to Generate a Blob in Two Dimensions

Note. In (a), nine points are drawn randomly; in (b), they are connected in a closed loop; in (c), a Gaussian blur is applied (the values between
zero and one are represented by a shade of grey); and in (d), values are set to either zero or one, depending on a threshold value.

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 13

pronounced concavities and more frequently holes;
and neutral, which is somehow a middle ground
between the two. In Figure 8, we show one item repre-
senting each different style. The full description of the
parameters used is reported in Table 2, where inter-
vals indicate that the parameter has been randomly
chosen in that interval.

The matrix size in Table 2 is indicative, as applying
the Gaussian blur might set to positive some values
outside the original cube where the points were sam-
pled (this happens, for example, if one of the points
was in the corner of the cube). To acknowledge this
fact and ensure the shapes remained smooth, we
allowed a maximum size of 100 × 100 × 100 for any
shape, which seemed sufficient to avoid such cases.

Based on the size of the largest item from each set,
we chose the size of the container base to be (in vox-
els) 78 × 78 for the small instances, 84 × 84 for the
medium instances, and 90 × 90 for the large instances.

5.2. Testing the ILP Model
The model presented in Section 2.4 can provide an
optimal solution if solved to optimality. However, the
large number of variables for the proposed instances
makes it often impractical to solve. In order to test its
boundaries, we have chosen the four items from
the Shapes_3D instance and generated all of the 155

instances that feature each item type repeated between
zero and three times and whose total number of items
is between four and seven. The container size was set
to 20 × 20 voxels. We have then solved them for a
maximum of 10 hours of computational time, using
IBMVR ILOGVR CPLEXVR 12.6.1 and providing the bot-
tom-left-back upper bound.

In eight of the instances, the bottom-left-back algo-
rithm found a solution such that the height used corre-
sponds to the height of the largest item and, therefore,
the solution is optimal. In Table 3, we can observe that
the percentage of solved instances clearly decreases
when adding items, to the point that only 43% of the
instances with seven items can be solved in the given
time. In Figure 9, we show one instance with seven
items solved to optimality. The gap obtained when the
instances were not solved to optimality is usually
large, which suggests that the difficulty of solving the
derived models increases quickly.

5.3. Metaheuristic Algorithms Configurations
In this section, we describe the parameters we have
used to configure our algorithms for the computa-
tional experiments. The configuration was done by
using the software package “irace” (López-Ibáñez
et al. (2016)) with a budget of 1,000 one-hour runs for
each method. The single parameter tested for ILS is
reported in Table 4.

In Tables 5 and 6, we report the tests performed for
TS and VNS, respectively. Note that the parameters
for strategic oscillation (SO_mode and dec_p) have
been tested independently for both methods, as they
could (although they do not, in this case) differ on
their best value for different search strategies.

The large value of test_swaps suggests that it is
beneficial testing as many swaps as possible during
the kick in VNS. The values of the parameters found
by irace are the ones we use in the remainder of the
computational experiments.

5.4. Algorithm Comparison
We have implemented all our algorithms in C++ and
run them in a single 2.6 GHz core with 16 GB of

Figure 8. (Color online) Three Items from theMedium Instan-
ces with Style Round (Left), Neutral (Centre), and Peaked
(Right)

Table 2. Parameters Used to Generate the Blobs Instances

Name Size Style Matrix size Points Thickness Filter σ Threshold

blobs1 Small Round 25 × 25 × 25 [2,20] 3 [3,5] 0.05
blobs2 Small Neutral 25 × 25 × 25 [2,15] [1,3] [1,2] 0.01
blobs3 Small Peaked 25 × 25 × 25 [3,7] 1 [1,2] 0.005
blobs4 Medium Round 35 × 35 × 35 [4,30] [4,5] [4,5] 0.05
blobs5 Medium Neutral 35 × 35 × 35 [4,25] [3,4] [2,3] 0.01
blobs6 Medium Peaked 35 × 35 × 35 [3,10] [1,3] [1,2] 0.005
blobs7 Large Round 45 × 45 × 45 [4,40] [4,5] [4,5] 0.05
blobs8 Large Neutral 45 × 45 × 45 [4,3] [3,4] [2,3] 0.01
blobs9 Large Peaked 45 × 45 × 45 [3,14] [1,3] [1,2] 0.005

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
14 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

memory, part of the IRIDIS High Performance Com-
puting Facility. All of our experiments allow one hour
of computational time, and we report both the best
and the average results obtained after 10 runs.
Because all the methods tested use nofit voxels, they
have been precalculated and the generation and load-
ing time is not included in the reported time of the
algorithms.

It is worth noting that as a result of the voxelization
of items, we may be packing slightly larger items into
a slightly smaller container. This has two consequen-
ces. First, some configurations of the items that may be
feasible in a mesh representation may not be feasible
in the voxel representation with a given fidelity, which
may include the best layout in the literature. Second,
comparing solutions with the literature on the basis of
volume utilisation no longer makes sense as the total
volume of the items is not the same. For example, for
the instanceMerged1, the total volume of our voxelized
version of the items is 15% larger than the original. To
address the second point, all our experiments compare
the height of the packing layout.

The results for the blobs instances are shown in
Table 7. We can observe that VNS obtains on average
the best results. The average height is 162.64 voxels,
which is 1.7% better than the TS and 8% better than
the ILS. As for the best results, in seven out of nine
instances, the VNS obtained the best solution. This
pattern is also observed in the Experiment set (Table 9),
where VNS is again superior to all the other methods.

All three voxel-based methods obtain the best result in
the literature for these instances. The same trend is
repeated on the realistic instances and the adapted
Shapes, reported in Table 8. All methods here obtain the
same value for Shapes_3D, although ILS seems to be
more consistent. For the realistic instances Chess and
Engine, VNS obtains both the best and most consistent
results.

In Figure 10, we show some of the best results
found for this group of instances; in Table 9, we report
the results for the Experiment instances.

All voxel-based methods perform better than both
HAPE3D (Liu et al. 2015) and the phi-function based
methods (Stoyan et al. 2004). Among them, VNS has
the best and most consistent results. In Table 10, we
report the results for the Stoyan andMerged instances.

Although the voxel-based methods obtain better
results than the phi-functions, the algorithm 3DNest,
based on a polygonal mesh, obtains slightly better
results for all instances but one. We note that the
3DNest algorithm permits a small overlap between
items (0.1%). In order to distinguish whether the dif-
ferences in quality for the Merged instances could be
linked to the resolution chosen when voxelizing the
items, we performed another set of tests where VNS
uses finer resolutions and longer search times. We
considered two extra resolutions, fine and extrafine,
where the largest side of the largest container base is
voxelized with 200 and 250 voxels, respectively, and
allowed a maximum time computational of four
hours. The results for these extended tests are shown
in Table 11.

These illustrate how increasing the accuracy of the
representation closes the gap between 3DNest and
VNS, and with finer resolutions VNS is able to improve
the average solution quality by 1.4%. As a result, we
are finding the best known solutions for the largest
instances (60 and 75 items) while being within less than
1% of the height in the three smaller instances. Because
VNS does better on larger problems, this suggests our
approach is more scalable.

Table 3. Summary of the Results Achieved by Solving the
ILP Model on Instances with Between Four and Seven
Items

Items Instances Opt Percentage

4 31 27 87%
5 40 30 75%
6 44 26 59%
7 40 17 43%
Total 155 100 65%

Note. Opt, the number of instances solved to optimality in each set.

Figure 9. (Color online) Initial Solution from Bottom Left Back (Left, 16 Voxels Height) and Optimal Solution (Right, 12 Voxels
Height) for One Instance with Seven Items

Note. Solving time was 78 seconds.

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 15

Table 5. Parameters Tested for the TS Algorithm and the Best Values Found by irace

Parameter Description Tested values Best

nMoves Number of tabu search movements performed before strategic oscillation 10i, i � 2, 3, 4, 5, 6 104

d_axis Parameter δ used for the axis aligned neighborhood (NA) 1, 3, 5, 10, ∞ ∞
TL Length of the tabu list [1, 30] ⊂ N 13
SO_mode Strategy used to relocate protruding items during strategic oscillation MD, RR MD
dec_p Percentage of height reduced in strategic oscillation [1, 25] ⊂ R 7%

Note. In strategic oscillation,MD stands formove down and RR stands for random reinsert.

Table 6. Parameters Tested for the VNS and the Best Values Found by irace

Parameter Description Tested values Best

nK Number of kicks before strategic oscillation [1, 100] ⊂ N 78
K_dmin Value of δmin in VNS kicks [1, 3] ⊂N 1
K_dmax Value of δmax in VNS kicks [2, 10] ⊂ N 8
SO_mode Strategy used to relocate protruding items during strategic oscillation MD, RR MD
dec_p Percentage of height reduced in strategic oscillation [1, 25] ⊂ R 7%
test_swaps Number of swaps tested for each item during the kick [1, 50] ⊂ N 48
d_cube Parameter δ used for the cube neighborhood (NC) [1, 10] ⊂ N 5
d_axis Parameter δ used for the axis aligned neighborhood (NA) 1, 3, 5, 10, ∞ ∞
Ov_d When running the model, δ value used for the cube neighborhood of overlapping items [1, 4] ⊂N 1
NOv_d When running the model, δ value used for the cube neighborhood of nonoverlapping items [1, 2] ⊂N 2

Note. In strategic oscillation,MD stands formove down and RR stands for random reinsert.

Table 7. Comparison of Results (Final Height, in Voxels) for the Blobs Instances

Instance
ILS TS VNS

Best Avg Best Avg Best Avg

blobs1 79 79.64 75 76.90 74 74.90
blobs2 64 65.91 59 60.90 59 59.60
blobs3 47 47.73 44 45.20 44 44.50
blobs4 211 214.18 202 205.60 187 191.70
blobs5 221 228.91 206 211.30 202 205.00
blobs6 91 94.82 88 89.10 86 88.00
blobs7 337 343.36 309 323.40 312 323.50
blobs8 357 368.82 329 338.10 330 340.50
blobs9 146 149.36 136 138.60 133 136.10
Av. 176.97 165.46 162.64

Note. Best solutions are highlighted in bold.

Table 8. Comparison of Results (Final Height, in Voxels) for the Shapes_3D and Realistic Instances

Instance
ILS TS VNS

Best Avg Best Avg Best Avg

Shapes_3D 52 52.73 52 53.00 52 53.20
Engine 78 79.36 77 78.70 75 78.10
Chess 144 145.55 139 141.40 131 135.10

Note. Best solutions are highlighted in bold.

Table 4. Parameter Tested for the ILS and the Best Values Found by irace

Parameter Description Tested values Best

n_swaps Number random item swaps performed between iterations [1, 25] ⊂ N 4

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
16 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

Table 9. Comparison of Results (Final Height) for the Instances Found in St04 (Stoyan et al. 2004) and HAPE3D (Liu et al.
2015)

Instance
ILS TS VNS St04 HAPE3D

Best Avg Best Avg Best Avg Best Best

Exp1 36.40 38.58 34.13 35.12 34.27 35.37 — 31.2a

Exp2 29.40 31.10 28.47 30.17 28.47 29.40 32 36.9
Exp3 42.70 46.05 41.77 43.54 41.30 42.65 49 55.6
Exp4 62.30 65.35 56.23 59.62 54.83 59.52 63.21 71.8
Exp5 77.00 81.41 74.20 76.16 72.33 76.81 78.7 92

aThe result of 31.2 for the instance Exp1 is obtained by allowing eight different rotations, which are not allowed in the other algorithms.
Note: Best solutions are highlighted in bold.

Figure 10. (Color online) Best Result Obtained by ILS for Shapes_3D (Left, Height of 52 Voxels); by TS for Engine (Centre, Height
of 77 Voxels); and by VNS for Chess (Right, Height of 131 Voxels)

Table 10. Comparison of Results (Final Height) for the Instances Found in St05 (Stoyan et al. 2005) and 3DNEST (Egeblad
et al. 2009)

Instance
ILS TS VNS St05 3DNEST

Best Avg Best Avg Best Avg Best Best

Example2 22.72 23.30 21.33 21.60 21.23 21.70 30.92 19.83
Example3 34.99 35.65 30.93 32.35 29.76 31.53 45.86 29.82
Merged1 20.52 21.19 18.47 19.72 18.30 18.67 — 16.99
Merged2 24.62 25.58 22.40 23.27 22.40 22.64 — 21.97
Merged3 28.73 29.48 27.02 28.16 24.62 26.26 — 24.04
Merged4 30.61 31.86 28.73 30.27 28.56 29.44 — 27.80
Merged5 34.20 35.65 30.61 31.70 30.61 31.12 — 30.13

Note. Best solutions are highlighted in bold.

Table 11. Extended Results for the Merged Instances, Using More Time and Finer Resolutions for VNS

Instance VNS-Standard VNS-Fine VNS-Extrafine 3DNest

Merged1 18.30 17.95 17.13 16.99
Merged2 22.40 22.19 22.06 21.97
Merged3 24.62 24.24 24.32 24.04
Merged4 28.56 28.21 26.47 27.80
Merged5 30.61 30.27 29.24 30.13
Av 24.90 24.57 23.84 24.17

Note. Av and Avg both stand for Average.

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 17

The best layouts obtained for each resolution for the
instanceMerged5 can be seen in Figure 11.

6. Conclusion
In this article, we explore the potential of voxel-based
approaches for solving the three-dimensional irregu-
lar open dimension problem. We develop the concept
of nofit voxel, in which we base our algorithms. The
usage of voxels and the nofit voxel allow for a quick
and robust way of dealing with complex items in
packing problems.

With these tools at hand, we formulate the problem
as an ILP model that is solved to optimality for small
instances but can also be used with a compaction/sep-
aration strategy. We propose a constructive algorithm
and an iterated local search that extends the quality of
the constructive algorithm. To further improve the
packing quality, we propose two metaheuristic tech-
niques that search over the space of solutions contain-
ing overlap. We collected a set of instances from the
literature and added our own to create a benchmark
set of instances with different characteristics where
we could test our algorithms. We show that both
metaheuristic techniques are very competitive, even
when compared with more complex and accurate geo-
metrical representations, such as the polygonal mesh
or the phi-functions. The choice of voxels and the nofit
voxel to represent and pack the items is backed by our
computational experiments, where we show that our
results outperform most of the preexisting literature.
The only exception is the algorithm 3DNest, which
finds similar quality solutions than a variable neigh-
borhood search with a fine resolution. This also shows,
however, that the ability of voxels to use different rep-
resentation accuracy depending on the quality/speed
of packing required makes voxel-based approaches
more suitable for real-world problems, where the
items to be packed might be of higher complexity than
the standard academic instances. Finally, we are able
to solve efficiently real-life instances containing com-
plex geometries as typically used in the 3D printing

industry, where we show that both the tabu search
and the variable neighborhood search algorithms can
find competitive results, with significant improvement
over our constructive-based iterated local search.

Acknowledgments
The authors acknowledge the use of the IRIDIS High Per-
formance Computing Facility, and associated support
services at the University of Southampton, in the comple-
tion of this work.

References
Abeysooriya RP, Bennell JA, Martinez-Sykora A (2018) Jostle heuris-

tics for the 2D-irregular shapes bin packing problems with free
rotation. Internat. J. Production Econom. 195:12–26.

Art R (1966) An approach to the two dimensional irregular cutting
stock problem. Unpublished thesis, Sloan School of Manage-
ment, Massachusetts Institute of Technology, Cambridge, MA.

Attene M (2015) Shapes in a box: Disassembling 3D objects for effi-
cient packing and fabrication. Comput. Graphics Forum 34(8):64–76.

Baert J, Lagae A, Dutré P (2014) Out-of-core construction of sparse
voxel octrees. Comput. Graphics Forum 33(6):220–227.

Baumers M, Tuck C, Wildman R, Ashcroft I, Rosamond E, Hague
R (2013) Transparency built-in: Energy consumption and cost
estimation for additive manufacturing. J. Indust. Ecology 17(3):
418–431.

Bennell JA, Dowsland KA (1999) A tabu thresholding implementa-
tion for the irregular stock cutting problem. Internat. J. Produc-
tion Res. 37(18):4259–4275.

Bennell JA, Dowsland KA (2001) Hybridising tabu search with opti-
misation techniques for irregular stock cutting. Management Sci.
47(8):1160–1172.

Bennell J, Oliveira J (2008) The geometry of nesting problems: A
tutorial. Eur. J. Oper. Res. 184(2):397–415.

Bennell Ja, Oliveira JF (2009) A tutorial in irregular shape packing
problems. J. Oper. Res. Soc. 60:S93–S105.

Bennell JA, Dowsland KA, Dowsland WB (2000) The irregular
cutting-stock problem: A new procedure for deriving the no-fit
polygon. Comput. Oper. Res. 28(3):271–287.

Bennell J, Scheithauer G, Stoyan Y, Romanova T (2010) Tools of
mathematical modeling of arbitrary object packing problems.
Ann. Oper. Res. 179(1):343–368.

Błazewicz J, Hawryluk P, Walkowiak R (1993) Using a tabu search
approach for solving the two-dimensional irregular cutting
problem. Ann. Oper. Res. 41(4):313–325.

Burke E, Hyde M, Kendall G, Woodward J (2010) A genetic pro-
gramming hyper-heuristic approach for evolving 2-D strip

Figure 11. (Color online) Best Layouts Found for theMerged5 Instance with Three Different Resolutions: Standard (Left, Height
of 30.61), Fine (Centre, Height of 30.27), and Extrafine (Right, Height of 29.24, Best KnownValue for This Instance)

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
18 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

packing heuristics. IEEE Trans. Evolutionary Comput. 14(6):942–
958.

Byholm T, Toivakka M, Westerholm J (2009) Effective packing of
3-dimensional voxel-based arbitrarily shaped particles. Powder
Tech. 196(2):139–146.

Cagan J, Degentesh D, Yin S (1998) A simulated annealing-based algo-
rithm using hierarchical models for general three-dimensional
component layout. Comput.-Aided Design 30(10):781–790.

de Korte A, Brouwers H (2013) Random packing of digitized par-
ticles. Powder Tech. 233:319–324.

Dickinson JJK, Knopf GKG (1998) Serial packing of arbitrary 3D
objects for optimizing layered manufacturing. Proc. SPIE 3522:
130–138.

Dowsland KA, Dowsland WB, Bennell JA (1998) Jostling for posi-
tion: Local improvement for irregular cutting patterns. J. Oper.
Res. Soc. 49(6):647–658.

Edelkamp S, Wichern P (2015) Packing irregular-shaped objects for
3D printing. Hölldobler S, Krötzsch M, Peñaloza R, Rudolph S,
eds. KI 2015: Adv. Artificial Intelligence: 38th Annual German
Conf. AI, Lecture Notes in Computer Science, vol. 9324
(Springer International Publishing, Cham, Switzerland), 45–58.

Edwards T (2014) Classic chess set from glChess. Accessed Decem-
ber 1, 2019, https://www.thingiverse.com/thing:322616.

Egeblad J, Nielsen BK, Brazil M (2009) Translational packing of arbi-
trary polytopes. Comput. Geometry 42(4):269–288.

Egeblad J, Nielsen BK, Odgaard A (2007) Fast neighborhood search
for two- and three-dimensional nesting problems. Eur. J. Oper.
Res. 183(3):1249–1266.

Egeblad J, Garavelli C, Lisi S, Pisinger D (2010) Heuristics for con-
tainer loading of furniture. Eur. J. Oper. Res. 200(3):881–892.

Glover F (1989) Tabu search-part I. ORSA J. Comput. 1(3):190–206.
Glover F, Laguna M (2013) Tabu Search* In: Pardalos P, Du DZ, Gra-

ham R, eds. Handbook of Combinatorial Optimization (Springer,
New York, NY), 3261–3362.

Gomes A, Oliveira JF (2002) A 2-exchange heuristic for nesting
problems. Eur. J. Oper. Res. 141(2):359–370.

Gomes AM, Oliveira JF (2006) Solving irregular strip packing prob-
lems by hybridising simulated annealing and linear program-
ming. Eur. J. Oper. Res. 171(3):811–829.

Griffiths V, Scanlan JP, Eres MH, Martinez-Sykora A, Chinchapat-
nam P (2019) Cost-driven build orientation and bin packing of
parts in selective laser melting (SLM). Eur. J. Oper. Res. 273(1):
334–352.

Harrell E (2015) Toyota 4 cylinder engine 22RE, complete working
model. Accessed December 1, 2019, http://www.thingiverse.
com/thing:644933.

Hur SM, Choi KH, Lee SH, Chang PK (2001) Determination of fabri-
cating orientation and packing in SLS process. J. Materials Proc-
essing Tech. 112(2-3):236–243.

Ikonen I, Biles W, Kumar A, Wissel J, Ragade R (1997) A genetic algo-
rithm for packing three-dimensional non-convex objects having
cavities and holes. Proc. 7th Internat. Conf. Genetic Algorithms
(Morgan Kaufmann Publishers, East Lansing, Michigan), 591–598.

Imamichi T, Yagiura M, Nagamochi H (2009) An iterated local
search algorithm based on nonlinear programming for the
irregular strip packing problem. Discrete Optim. 6(4):345–361.

Jia X, Williams R (2001) A packing algorithm for particles of arbi-
trary shapes. Powder Tech. 120(3):175–186.

Lemus E, Bribiesca E, Garduño E (2015) Surface trees–Representation
of boundary surfaces using a tree descriptor. J. Visual Comm.
Image Representation 31(C):101–111.

Liu X, Liu JM, Cao AX, Yao ZL (2015) HAPE3D–A new constructive
algorithm for the 3D irregular packing problem. Frontiers
Inform. Tech. Electronic Engrg. 16(5):380–390.

López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Birattari M,
Stützle T (2016) The irace package: Iterated racing for automatic
algorithm configuration. Oper. Res. Perspect. 3:43–58.

Lourenço HR, Martin OC, Stützle T (2010) Iterated Local Search:
Framework and Applications (Springer, Boston), 363–397.

Ma Y, Chen Z, Hu W, Wang W (2018) Packing irregular objects in 3D
space via hybrid optimization. Comput. Graphics Forum 37(5):49–59.

Mangiaracina R, Marchet G, Perotti S, Tumino A (2015) A review of
the environmental implications of B2C e-commerce: A logistics
perspective. Internat. J. Physical Distribution Logist. Management
45(6):565–591.

Mazareanu E (2020) Parcel traffic worldwide by sector 2015-2019.
https://www.statista.com/statistics/737418/parcel-traffic-
worldwide-by-sector/.

Milenkovic V, Daniels K, Li Z (1992) Placement and compaction of
nonconvex polygons for clothing manufacture. Proc. Fourth
Canadian Conf. Comput. Geometry (Memorial University of New-
foundland, St. John’s NL, Canada), 236–243.

Min P (2019) Binvox. http://www.patrickmin.com/binvox or
https://www.google.com/search?q=binvox.

Mladenović N, Hansen P (1997) Variable neighborhood search. Com-
put. Oper. Res. 24(11):1097–1100.

Mundim LR, Andretta M, Carravilla MA, Oliveira JF (2018) A gen-
eral heuristic for two-dimensional nesting problems with
limited-size containers. Internat. J. Production Res. 56(1-2):709–732.

Nooruddin FS, Turk G (2003) Simplification and repair of polygonal
models using volumetric techniques. IEEE Trans. Visualization
Comput. Graphics 9(2):191–205.

Oliveira JF, Gomes AM, Ferreira JS (2000) TOPOS–A new construc-
tive algorithm for nesting problems. OR Spectrum 22(2):263.

Pankratov AV, Romanova TE, Chugay AM, Problems E, Acad N
(2015) Optimal packing of convex polytopes using quasi-phi-
functions. Jixie Gongcheng Xuebao 18(2):55–64.

Robidoux N, Stelldinger P, Cupitt J (2011) Simple random genera-
tion of smooth connected irregular shapes for cognitive studies.
Proc. Fourth Internat. C* Conf. Comput. Sci. Software Engrg. (ACM
Press, New York), 17–24.

Romanova T, Bennell J, Stoyan Y, Pankratov A (2018) Packing of
concave polyhedra with continuous rotations using nonlinear
optimisation. Eur. J. Oper. Res. 268(1):37–53.

Sánchez-Cruz H, López-Valdez HH, Cuevas FJ (2014) A new rela-
tive chain code in 3D. Pattern Recognition 47(2):769–788.

Scheithauer G, Stoyan YG, Romanova TY (2005) Mathematical
modeling of interactions of primary geometric 3D objects.
Cybernetics Systems Anal. 41(3):332–342.

Schwarz M, Seidel HP (2010) Fast parallel surface and solid voxeli-
zation on GPUs. ACM Trans. Graphics 29(6):1–10.

Stoyan YG (1983) Mathematical methods for geometric design.
Advances in CAD/CAM, Proc. PROLAMAT82, Leningrad, USSR,
May 1982 (North-Holland, Amsterdam), 67–86.

Stoyan YG, Gil N, Pankratov A, Scheithauer G (2004) Packing non-
convex polytopes into a parallelepiped. Preprint MATH-NM-06-
2004: Technische Universität of Dresden.

Stoyan YG, Gil NI, Scheithauer G, Pankratov A, Magdalina I (2005)
Packing of convex polytopes into a parallelepiped. Optim. 54(2):
215–235.

Terashima-Marı́n H, Ross P, Farı́as-Zárate CJ, López-Camacho E,
Valenzuela-Rendón M (2010) Generalized hyper-heuristics for
solving 2D regular and irregular packing problems. Ann. Oper.
Res. 179(1):369–392.

Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gib-
son I, Bernard A, et al. (2016) Design for additive manufactur-
ing: Trends, opportunities, considerations, and constraints.
CIRP Ann. Manufacturing Tech. 65(2):737–760.

Toledo FM, Carravilla MA, Ribeiro C, Oliveira JF, Gomes
AM (2013) The dotted-board model: A new MIP model for
nesting irregular shapes. Internat. J. Production Econom. 145(2):
478–487.

Umetani S, Yagiura M, Imahori S, Imamichi T, Nonobe K, Ibaraki T
(2009) Solving the irregular strip packing problem via guided

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s) 19

https://www.thingiverse.com/thing:322616
http://www.thingiverse.com/thing:644933
http://www.thingiverse.com/thing:644933
https://www.statista.com/statistics/737418/parcel-traffic-worldwide-by-sector/
https://www.statista.com/statistics/737418/parcel-traffic-worldwide-by-sector/
http://www.patrickmin.com/binvox
https://www.google.com/search?q=binvox

local search for overlap minimization. Internat. Trans. Oper. Res.
16(6):661–683.

Wäscher G, Haußner H, Schumann H (2007) An improved typology
of cutting and packing problems. Eur. J. Oper. Res. 183:1109–1130.

Carlos Lamas-Fernandez is a lecturer in business analyt-
ics and management science in Southampton Business
School. He is interested in the research of combinatorial opti-
misation problems arising in cutting and packing, health
care, transportation and logistics.

Julia A. Bennell is the executive dean of Leeds Univer-
sity Business School and professor of operational research.

She is an expert in optimisation problems for cutting and
packing, scheduling and a range of transportation
problems.

Antonio Martinez-Sykora is an associate professor in
business analytics in Southampton Business School, where
he is also the current director of the Centre of Operations
Research, Management Science, and Information Systems
(CORMSIS). He is a coordinator of the Euro Working Group
on Cutting and Packing and his research interests are on
exploring new solutions methods on packing problems,
logistics and transportation, revenue management and
scheduling and timetabling.

Lamas-Fernandez, Bennell, and Martinez-Sykora: Irregular 3D Packing with Voxels
20 Operations Research, Articles in Advance, pp. 1–20, © 2022 The Author(s)

	s1
	s2
	s2A
	s2B
	s2C
	s2D
	s3
	s3A
	s3B
	s3C
	s3C1
	s3C2
	s3C3
	s3D
	s3E
	s4
	s4A
	s4B
	s4C
	s5
	s5A
	s5A1
	s5A2
	s5A3
	s5A4
	s5B
	s5C
	s5D
	TF1
	TF2
	TF3
	TF34
	TF4
	TF35
	TF36
	TF37
	s6

