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Abstract

Astronomical imaging can be broadly classified into two types. The first type is amplitude
interferometry, which includes conventional optical telescopes and very large baseline
interferometry (VLBI). The second type is intensity interferometry, which relies on Hanbury
Brown and Twiss-type measurements. At optical frequencies, where direct phase measurements are
impossible, amplitude interferometry has an effective numerical aperture that is limited by the
distance from which photons can coherently interfere. Intensity interferometry, on the other hand,
correlates only photon fluxes and can thus support much larger numerical apertures, but suffers
from a reduced signal due to the low average photon number per mode in thermal light. It has
hitherto not been clear which method is superior under realistic conditions. Here, we give a
comparative analysis of the performance of amplitude and intensity interferometry, and we relate
this to the fundamental resolution limit that can be achieved in any physical measurement. Using
the benchmark problem of determining the separation between two distant thermal point sources,
e.g., two adjacent stars, we give a short tutorial on optimal estimation theory and apply it to stellar
interferometry. We find that for very small angular separations the large baseline achievable in
intensity interferometry can more than compensate for the reduced signal strength. We also
explore options for practical implementations of very large baseline intensity interferometry
(VLBII).

1. Introduction

Imaging takes a primary place in the instrumentarium of science. It has been responsible for some of the

most dramatic discoveries, from Galileo’s observations of the orbits of Jupiter’s moons that were essential in

overturning the Ptolemaic world view, to the imaging of the black hole in M87 by the Event Horizon

Telescope (EHT) Collaboration that provided direct evidence for the existence of black holes and a stunning

confirmation of Einstein’s general relativity [1]. In microscopy, imaging has revolutionised our

understanding of the natural world many times over, from Antonie van Leeuwenhoek’s discovery of

micro-organisms to superresolution imaging of large molecules.

It is well-known that the wave nature of light places a limit on the resolution that can be achieved in an

image. The maximum resolution for a direct imaging system is given by Abbe’s limit, which is determined

by the wavelength of the light divided by the numerical aperture of the imaging apparatus [2].

Consequently, much of the efforts in producing better images in stellar astronomy has been in creating

telescopes with larger numerical apertures. The Extremely Large Telescope (ELT) in Chile is currently the

largest optical and infrared telescope with a compound mirror of 39.3 m in diameter [3]. Moreover, the
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GRAVITY Collaboration at the Very Large Telescope (VLT) aims to collect and interfere optical signals from

a number of telescopes, achieving an effective numerical aperture on the order of 100 m [4]. The Center for

High Angular Resolution Astronomy (CHARA) collects coherently infrared light from six telescopes of 1 m

diameter, e.g., in the MIRC-X instrument, spanning an effective numerical aperture of 300 m [5, 6]. Even

more impressive, the EHT Collaboration used an array of existing telescopes all over the globe to create an

effective numerical aperture the size of the Earth, with a resolution better than 20 µas. However, the latter

method is restricted to lower frequency signals (the observed wavelength was 1.3 mm), since the telescopes

have to be phase synchronized, i.e., each telescope must make a phase measurement of the electromagnetic

field, in order to combine the many signals into a single coherent image [1]. At higher frequencies, detectors

are not phase stable and fast enough, and we must find alternative ways to improve the resolution.

Recently, Nair and Tsang discovered that Abbe’s diffraction limit is an artefact of the imaging system [7],

and that in principle one can construct an imaging apparatus (with a finite numerical aperture) that can

resolve two incoherent point sources at distances much lower than the wavelength of the light. Crucially,

this does not require manipulation of the object, as is common in many modern super-resolution

techniques [8]. The reason is that the quantum state of light contains the information about the separation

of the sources, but in the detection plane of the imaging system this information is enclosed in the phase

instead of the intensity. Changing the measurement configuration can unlock this information in principle.

It was subsequently shown by Lupo et al that imaging of N incoherent point sources can be achieved equally

optimally as in [7] using again only linear optics and phase sensitive interferometry [9].

Working towards a less involved and more general-purpose but still near-optimal imaging protocol for

objects emitting light incoherently, Pearce et al developed a method for estimating the complex degree of

coherence (CDC) of the light emitted by the object [10]. The CDC can be used to reconstruct the intensity

profile in the source plane via a simple Fourier transform—the well-known Van Cittert–Zernike

theorem—which for a thermal light source contains the complete information about the source

distribution. This method was demonstrated experimentally by Howard et al [11]. Technical challenges

remain, as for the protocol the fields have to be recorded at different positions and superposed phase

coherently during the detection, for which the detector positions must be known and kept fixed to within a

fraction of the wavelength of the light.

Circumventing the need for phase coherence over large distances at optical frequencies is another option

for beating the diffraction limit. Hanbury Brown and Twiss famously developed optical intensity

interferometry, using a pair of 6.5 m telescopes acting as light detectors separated by up to 188 m [12]. The

method is not sensitive to the absolute phase of the fields at the location of the detectors, so the effective

numerical aperture of the interferometer was on the order of 200 m. In this way, Hanbury Brown and Twiss

(HBT) successfully measured the diameter of Sirius A and many other stellar diameters [13, 14]. Yet, a

downside of HBT intensity interferometry is the low mode occupancy of thermal light, which means that

recording a two-photon event in a single optical mode is exceedingly more rare as compared to a

single-photon detection as in amplitude interferometry. The average photon number at frequency ω in a

single thermal mode characterized by a wave vector k and polarisation s is given by the degeneracy

parameter δ = (e!ω/kBT − 1)−1, where kB is Boltzmann’s constant and T is the temperature of the light

source [15]. For light at a wavelength of 600 nm from the surface of a star at a temperature of 5000 K we

have δ ≈ 8 × 10−3, whereas for near infrared wavelengths (900 nm) at the same temperature the degeneracy

parameter is δ ≈ 0.04. This value is important for both interferometric methods, with the signal scaling

linearly in δ for amplitude interferometry and quadratically in δ for intensity interferometry.

However, δ is not the only relevant factor in extracting the information about the source separation in

both interferometric methods. Of equal importance is the numerical aperture of the interferometer which

at optical frequencies can be larger by a factor of 100 and more for modern intensity interferometers with

respect to even today’s largest amplitude interferometers. As it turns out, this advantage can more than

compensate for the drawback of low degeneracy parameters in the optical domain, in particular considering

very small stellar separations.

Since δ is unfavourable for HBT interferometry, and because timing resolution and efficiencies of the

detectors at the time of the original HBT experiments were restricted, intensity interferometry was largely

abandoned in the 1970s in favour of amplitude interferometry [16]. Yet, modern detector technology has

considerably advanced efficiencies, timing capabilities, data processing, and synchronisation, and thus has

enabled a new resurgence of HBT experiments with the goal of achieving improved resolution in

astronomy. Recently, photon bunching, i.e., the temporal auto-correlation of photons, was measured with

good signal-to-noise ratio for light from an artificial black body and the Sun [17, 18], from well-controlled

laboratory sources [19, 20], as well as from distant stars [21–26], and first small baseline HBT experiments

were carried out aiming to resolve true stars by use of spatial single photon [27, 28] or intensity [29, 30]

cross-correlations. For a recent review of stellar intensity interferometry, see Dravins [31].

2



New J. Phys. 24 (2022) 043026 M Bojer et al

Figure 1. CDC in the far field of an incoherent source distribution S(r′). While the intensities P(r1) and P(r2) at each point r1

and r2 individually fluctuate randomly, the correlations of the field amplitudes at r1 and r2 reveal the shape of S(r′) since the
CDC γ(r1, r2) depends on the geometrical details of S(r′).

For thermal light sources like stars, one method of imaging the object of interest is knowing the CDC

γ(r1, r2), which measures the correlations between the electric field amplitudes at positions r1 and r2 in the

far field of the object [15]:

γ(r1, r2) =
〈E∗(r1) E(r2)〉

√

〈E|(r1)|2〉〈|E(r2)|2〉
, (1)

where 〈E∗(r1)E(r2)〉 = G(1)(r1, r2) is the first-order correlation function of the electric field at positions r1

and r2. The CDC is related to the source (intensity) distribution S(r
′
) via the Van Cittert–Zernike

theorem [32, 33]

γ(r1, r2) =
eik(r2−r1)

S0

∫

S

dr′ S(r′)e−ik(s2−s1)·r′ , (2)

where S0 denotes the integrated source intensity and k = 2π/λ, with λ the wavelength of the light (see

figure 1). Further, s1 and s2 denote the unit vectors in the direction of r1 and r2. Hence, estimating γ(r1, r2)

in the far field allows for the reconstruction of the source distribution S(r′). All of the methods we are about

to discuss in this paper rely on estimating γ. For the phase sensitive techniques based on amplitude

interferometry, which we call G(1) methods, one has access to the complex quantity γ. On the other hand,

for intensity interferometry, which we call G(2) methods, we have access only to the modulus of the CDC |γ|

via the normalized second-order correlation function g(2)(r1, r2) = 1 + |γ(r1, r2)|2 [15]. For simple objects

such as resolving the diameter of a star, no involved phase information is needed and it is sufficient to

measure the absolute value of the CDC. For more complex objects, however, the phase information of the

CDC is essential since it is required for the reconstruction of the source intensity distribution via the Van

Cittert–Zernike theorem in equation (2). The G(2) methods can in principle overcome this difficulty by

using well-established methods of phase recovery. There are several candidates, such as the

Cauchy–Riemann approach [34, 35], Gerchberg–Saxon algorithms [36–39], and ptychographical intensity

interferometry [40, 41].

In this paper, we analyse quantitatively the relative strengths of the different imaging methods described

above using the (quantum) Fisher information (FI). The latter is a well-established measure from

estimation theory to quantify the amount of information one can extract from the electromagnetic field

with a given (optimal) measurement. The measure takes into account both the limits induced by the wave

nature and the particle nature of light, i.e., the Abbe limit and shot-noise, and goes beyond a mere

signal-to-noise ratio analysis [42]. We distinguish between (i) direct (Galilean) imaging using traditional

phase interferometry by means of lenses and telescopes like the ELT, (ii) Tsang’s small numerical aperture

optimal imaging methodology [spatial mode demultiplexing (SPADE)], (iii) large aperture optimal

interferometry like GRAVITY or CHARA, and (iv) imaging based on intensity interferometry such as HBT.

The first three methods require access to the phase in the optical signal, including establishing a constant

phase across the entire mirror of a telescope using active and adaptive optics, while the latter does not. We

consider the theoretical limits to the resolution for the various interferometric methods taking into account

the different achievable detector sizes as well as detector separations. For an easier comparison of the

methods, we will consider the separation of two incoherent thermal point sources of potentially unequal

brightness as our benchmark problem. Other important problems such as diameter estimation require

more refined estimation techniques but do not lead to new bounds.
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The paper is organised as follows. In section 2 we present a short introduction to the (quantum) FI. In

section 3 we review the various phase-coherent imaging methods, including traditional imaging and the

new quantum imaging techniques, and examine some of their practical limitations. In section 4 we discuss

intensity interferometry for imaging, and compare it in section 5 to the amplitude interferometry

techniques of section 3. In section 6 we consider possible applications of intensity interferometry. We

present our conclusions in section 7.

2. Tutorial: Fisher information

We provide a brief tutorial on the use of estimation theory in imaging and how to apply this to optimal—in

a fundamental quantum mechanical sense—astronomical measurements. We can consider imaging

problems as multi-parameter estimation problems. For example, the CDC γ(r1, r2) for each pair of

positions r1, r2 in the imaging plane is given by two parameters (e.g., the modulus |γ| and its phase), and

estimation theory can tell us what is the physical limit on the error in the parameter, given a particular

measurement setup. This bound, the Cramér–Rao bound, is determined by the Fisher information (FI), i.e.,

the average information that is extracted in a measurement of the parameter. The quantum Fisher

information (QFI) is the FI of the optimal quantum measurement, and is an intrinsic quantity of the

quantum state (just like the entropy of a system is determined by its state and not how it is measured).

2.1. Fisher information

When we measure a physical quantity, we are interested not only in the value of that quantity, but also in

the expected error in the measurement, typically in the form of the mean square error. Moreover, the

quantity may not be measured directly, but rather is estimated indirectly based on the measurement of an

observable that is related to it. As an example, consider the estimation of a phase difference θ between two

arms of an interferometer. We cannot measure θ directly. Instead, we measure the photocurrent in the

detectors at the output of the interferometer, and the measured currents allow us to infer a value of θ. This

is done via an estimator θ̂(x), which is a function of the recorded data x. Here, the data consists of the N

different measured photocurrents x = (M1, . . . , MN). A nontrivial question is then how we determine the

mean square error σ2
θ̂

in θ. It will be related to the variance σ2
M in the measured photocurrents according to

the well-known error propagation formula

σ2
θ̂
=

σ2
M

|d〈M〉/dθ|2
, (3)

where 〈M〉 is the expectation value of the photocurrents. The quantity σ2

θ̂
may be difficult to calculate

directly due to the derivative d〈M〉/dθ, and considerable effort has been spent to derive attainable lower

bounds on σ2
θ̂
. To this end, we define the FI F(θ) as a functional of the probability distribution p(x|θ) over

the possible measurement outcomes x in the experiment

F(θ) =
∑

x

p(x|θ)

[

∂ log p(x|θ)

∂θ

]2

. (4)

It is useful to think of the FI as the average of the square of the so-called logarithmic derivative

∂ log p(x|θ)/∂θ. The logarithm translates products of probabilities of independent events into a sum

required to make the information additive: when we make two independent measurements of the system

the information gained should double. Furthermore, the derivative with respect to the parameter θ enters

because the more a probability distribution changes as we change θ, the more information we

expect to gain.

Given a model of the experiment, we can often determine p(x|θ) relatively easily, and by extension

calculate F(θ). The mean square error σ2
θ̂

is then bounded by the FI and the number N of statistically

independent, identical repetitions of the experiment via

σ2
θ̂
! [NF(θ)]−1. (5)

This is the celebrated Cramér–Rao bound (CRB) on the precision with which we can estimate θ. It assumes

that the estimator is unbiased. In imaging and stellar interferometry applications the parameter θ may be

the separation between two distant point sources, a stellar diameter, or the magnitude/phase of the CDC,

among many others. The bound is generally attainable for a single parameter θ using the maximum

likelihood estimator θ̂ML(x) [43]. If instead of a single parameter a parameter tuple θ = (θ1, . . . , θn)⊤ is to

4
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Figure 2. QFI of estimating the separation d of two equally bright thermal point sources (blue solid line, see equation (18)) and
classical FI obtained via direct imaging (yellow dotted line, see appendix A), as a function of d. The QFI remains constant,
whereas the classical FI of direct imaging drops off and finally vanishes for d → 0.

be estimated, the logarithmic derivatives in equation (4) are taken with respect to two of the n parameters.

The FI then becomes a matrix

[F(θ)]jk =
∑

x

p(x|θ)

[

∂ log p(x|θ)

∂θj

] [

∂ log p(x|θ)

∂θk

]

, (6)

and equation (5) becomes a matrix bound on the covariance matrix of the parameters

Cov(θ) * 1

N
[F−1(θ)], (7)

meaning that Cov(θ) − F−1(θ)/N is a positive semidefinite matrix. This leads directly to a bound on the

variances of the single parameters θj

Var(θj) = [Cov(θ)]j j !
1

N
[F−1(θ)]j j. (8)

Using, for example, a maximum likelihood estimator, this CRB can be saturated.

Given a particular form of the point spread function (PSF), one can calculate the FI of direct imaging

the separation d between two equally bright sources [44]. For a Gaussian PSF with variance x2
R it is

calculated in appendix A. The result is shown in figure 2 (yellow dotted curve). As can be seen from the

figure, for d ≫ xR the FI is a constant and equal to 1
4
x−2

R , however, it rapidly approaches zero as d drops

below xR. This phenomenon, dubbed the ‘Rayleigh curse’, means that estimation becomes increasingly

difficult when d becomes smaller than xR. Thus, estimation theory provides a rigorous foundation of the

well-known Rayleigh criterion for image resolution.

2.2. Quantum Fisher information

While the FI in classical estimation theory is a functional of the conditional probability distribution over the

measurement outcomes given the value of the parameter θ, in quantum estimation theory this becomes a

functional of the quantum mechanical density operator describing the state of light. Two things should be

noted: first, the density operator does not include any measurement outcomes, which instead are

determined by the Hermitian observable that is measured, and second, the logarithmic derivative of an

operator is not uniquely defined, giving rise to a certain amount of freedom in choosing the QFI.

To define the QFI, we replace the probability distribution p(x|θ) with the density operator ρ(θ), and we

construct the so-called symmetric logarithmic derivative operator Lθ by solving the Lyapunov equation

∂θρ =
1

2
(Lθρ+ ρLθ) , (9)

where ∂θρ is the derivative of ρ(θ) with respect to θ. The QFI then becomes

FQ(θ) = Tr
[

ρL2
θ

]

. (10)

Another way of arriving at equation (10) is by starting from the FI defined in equation (4), rewriting the

probability distribution via Born’s rule in terms of the measured observable and maximizing over all

5
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possible measurement observables. This means, the QFI is the maximum information about θ, gained with

an optimal measurement, such that FQ(θ) ! F(θ).

The difficulty in calculating FQ is typically due to finding a closed form of the symmetric logarithmic

derivative Lθ . The quantum CRB on the mean square error in θ becomes

σ2
θ ! [NF(θ)]−1

! [NFQ(θ)]−1, (11)

where the optimal measurement is constructed on the eigenbasis of Lθ . The bound is again attainable for a

single parameter. Note that the QFI gives the ultimate precision with which the parameter θ can be

estimated. It includes all sources of noise going along with the quantum state ρ, e.g., vacuum fluctuations or

shot-noise in the case of a quantized light field. However, sources of noise coming from the detection of the

quantum state ρ, e.g., detector imperfections are not included.

Imaging generally involves multiple parameters. For example, even the CDC for two positions in the

imaging plane has two independent parameters, e.g., the magnitude and the phase of γ. We therefore extend

the QFI to the symmetric matrix

[FQ(θ)]jk = Tr

[

1

2
ρ{Lj, Lk}

]

, (12)

where the parameters are given by {θj}, and each operator Lj is defined according to equation (9) with

respect to the corresponding parameter θj. An analytic expression for the quantum Fisher information

matrix (QFIM) reveals the dependency of estimation errors on different parameters, but is usually hard to

compute and relies on finding a closed form of the symmetric logarithmic derivatives Lj. Usual approaches,

relying on analytic matrix diagonalization, assume a representation of the density matrix in an orthogonal

basis [45] or even in its eigenbasis [46]. Recently, a nonorthogonal-basis approach [47, 48] was used to find

a general analytic expression for the QFIM, which relies on matrix inversion via determining the general

solution of the associated Lyapunov equations [49].

Once the QFIM is known, the quantum CRB is a matrix bound on the covariance matrix over the

parameters

Cov(θ) * 1

N
[F−1(θ)] * 1

N
[F−1

Q (θ)]. (13)

For the variances of the different parameters, the bound implies

Var(θj) = [Cov(θ)]j j !
1

N
[F−1(θ)]j j !

1

N
[F−1

Q (θ)]j j. (14)

Unfortunately, the matrix bound is no longer tight in general. It is easy to see that this must be the case

when the operators Lj and Lk are incompatible, i.e., do not commute. Then it is impossible to design a

measurement observable that is optimal for both θj and θk. This is a complication that we generally need to

take into account, since the optimal measurement observables for, e.g., the phase and magnitude of the

CDC are indeed incompatible. For a recent review on the QFI and the fundamentals of quantum estimation

theory, see Sidhu and Kok [50].

In their seminal work [44], Tsang, Nair and Lu showed that the Rayleigh limit for imaging can be

avoided if we exploit more general measurement strategies. They demonstrated that the QFI for the

separation between two weak thermal point sources with equal intensities is constant and independent of

the value of the separation, i.e., FQ(d) = 1
4
x−2

R (see equation (18) and blue solid line in figure 2), whereas

the classical FI of direct imaging vanishes as the separation between the point sources approaches zero (see

appendix A and yellow dotted line in figure 2). This means that there is still a finite amount of information

about the point source separation in the quantum state of light, even though the standard classical

measurement does not have access to it.

In what follows, we treat the optimal measurement in more detail. We consider two thermal point

sources emitting freely propagating photons into the far field. The sources are placed at positions z1 and z2

along the z-axis around a centroid position z0 and separated by a distance d (see figure 3). In the case of

thermal light sources, the average photon number per mode is usually very small, which allows us to

truncate the photonic state of appendix B after the one-photon state. Under the assumption that the overlap

function η(a) (see equation (46) in appendix B) is real and symmetric, the QFIM for estimating the

6
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Figure 3. Setup of two thermal point sources placed along the z-axis at positions z1 and z2 around the centroid position z0,
separated by a distance d. A position in the far field is defined by the azimuthal angle ϕ and the polar angle θ with respect to the
coordinate origin.

centroid z0, the separation d and the relative strength q can be calculated as [51]

FQ = 4

















p2 + 4q(1 − q)℘2

(

q − 1

2

)

p2 −iw℘
(

q − 1

2

)

p2 1

4
p2 0

−iw℘ 0
1 − w2

4q(1 − q)

















. (15)

Here, the different quantities entering the QFIM are

w = 〈ψ| exp(idP)|ψ〉 = η(d) = exp

(

− d2

8x2
R

)

,

p2 = 〈ψ|P2|ψ〉 = 1

4x2
R

,

℘ = 〈ψ| exp(idP)P|ψ〉 = id

4x2
R

exp

(

− d2

8x2
R

)

,

(16)

where |ψ〉 =
∫

dzψ(z)|z〉, P = −i∂z, and the analytical values were calculated using the Gaussian PSF of

equation (37). One can see that in case of q ,= 1
2
, i.e., sources of different strength, all three parameters z0, d

and q become intertwined, such that it is a non-trivial task to estimate either of the three parameters.

However, the precision in a particular parameter can be calculated by taking the inverse of the diagonal

elements of the inverse QFIM. In this way, the precision about the separation of the sources d is

found to be [51]

Hd = p2
D

2 ℘2 + p2(1 − w2)

D
2℘2 + p2(1 − w2)

, (17)

where D
2 ≡ 4q(1 − q).

In the special case of equally bright sources (q = 1
2
), one finds from equation (17) that

Hd = p2, (18)

i.e., a constant with respect to the separation d of the sources. This is the famous result found by Tsang et al

[44]. Intuitively, the outcome can be attributed to the amount of information extractable from the state

when we analyse the spatial distribution in the appropriate basis.

By contrast, for q ,= 1
2
, the precision Hd is not a constant as a function of the separation d. Indeed, in the

case of a Gaussian PSF, by substituting equation (16) into equation (17), Hd becomes

7
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Figure 4. Maximal precision of the separation d of two thermal point sources given by Hd in equation (19) (blue solid line), and
precision obtained via direct imaging (yellow dotted line, see appendix A) as a function of d. For the special case of equally bright
sources (q =

1
2

), the maximal precision remains constant, whereas direct imaging is not capable of achieving this precision in the
limit d → 0. However, for unequally bright sources (q ,= 1

2
) the ‘Rayleigh curse’ is unavoidable, meaning that even the maximal

precision Hd drops off to zero for d → 0, although it remains always higher than the precision obtained via direct imaging.

Hd =
k2NA2(1 − q)q

[

1
4
d2k2NA2 − exp

(

1
4
d2k2NA2

)

+ 1
]

d2k2NA2(1 − q)q − exp
(

1
4
d2k2NA2

)

+ 1
, (19)

where we have explicitly substituted xR = 1/kNA to highlight the dependence on the numerical aperture

NA. For large separations d ≫ xR = 1/kNA, i.e., dkNA ≫ 1, the exponentials in the denominator and the

numerator dominate and cancel each other, such that

Hd ≈ k2NA2(1 − q)q = constant. (20)

In the case of the other extreme, i.e., d → 0, we can expand equation (19) in a Taylor series, which gives to

lowest order

Hd ≈ k4NA4(1 − q)q

8(1 − 2q)2
d2. (21)

In this limit, the precision drops to zero quadratically in d. In between these limiting cases we can identify

the point at which Hd is reduced by 3 dB:

d ≃ 2
√

2 − 8q + 8q2

kNA
= 2

√

2 − 8q + 8q2xR, (22)

which is approximately 2.26xR for q = 0.1. Thus, the numerical aperture crucially determines the starting

point of the drop-off, i.e., for larger numerical apertures the drop-off starts only at smaller separations d.

This feature is the essential aspect in the comparison of amplitude versus intensity interferometry

accomplished in section 5.

In figure 4 we show the precision in equation (19) for q = 1
2

and q ,= 1
2
, together with the precision

obtained via the non-optimal measurement of direct imaging (see appendix A). As can be seen in figure 4,

the precision achievable by direct imaging remains always smaller than the one obtained via optimal

imaging, the former only approaching the optimal precision for d ≫ xR. Further, for q = 1
2
, the maximal

precision is a constant with respect to the separation of the two sources (see equation (18)), whereas for

q ,= 1
2

the ‘Rayleigh curse’ is unavoidable, even for the optimal case.

In this section we have given a broad outline for how to use the QFI in imaging situations, and applied

the theory to the estimation of the separation between two distant thermal point sources. The quantum

CRB places a limit on the precision with which such a parameter can be measured, but the bound does not

immediately tell us how this precision can be achieved. For that we need to either calculate the symmetric

logarithmic derivative operator Ld, or show that a given measurement saturates the quantum CRB. This will

be the subject of the next two sections.

8
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Figure 5. Illustration of the setup for SPADE: a multimode waveguide performs Hermite–Gaussian spatial mode sorting;
photons of different Hermite–Gaussian modes are separated out and sent to different photon counters. The centroid of the two
sources is assumed to be aligned with the center of the waveguide.

3. Amplitude interferometry

Next, we consider astronomical imaging methods that rely on amplitude interferometry, i.e., measuring the

G(1) correlation function in the far field. In other words, these are phase-sensitive measurements. We have

already considered direct (Galilean) imaging using traditional phase interferometry by means of lenses and

telescopes like the ELT in section 2.1 (see also appendix A). For a one-dimensional problem, the PSF of a

single point source is proportional to sinc2 x which can be approximated by the Gaussian function given in

equation (37). In that case, we showed the FI for the separation d between two thermal point sources for

two different values of the relative brightness q in figure 4. In the next two sub-sections, we consider the

method employed by Nair et al, called SPADE, providing an optimal measurement of the separation d

between two thermal point sources (section 3.1), and investigate two-mode interferometry that may be

easier to implement, yet achieves the same resolution as SPADE (section 3.2).

3.1. Optimal amplitude interferometry—SPADE

Assuming that the PSF is Gaussian, we can devise an optimal measurement for estimating the angular

separation between two sources. Rather than measuring the distribution of the photons on a screen, we

decompose the light into Hermite–Gaussian spatial modes. To achieve this, our imaging system is assumed

to consist of a multi-mode wave guide aligned such that the centroid of the two sources lies on the central

axis of the wave guide. The signal is then demultiplexed so that photons of different Hermite–Gaussian

modes in the wave guide are sent to different detectors (see figure 5). The Hermite–Gaussian spatial modes

can be formally denoted by the basis states {|Πm〉; m = 0, 1, 2, . . .}, with

|Πm〉 =
∫ ∞

−∞
dzΠm(z)|z〉, m = 0, 1, 2, . . .

Πm(z) =

(

1

2πx2
R

) 1
4 1√

2mm!
Hm

(

z√
2xR

)

exp

(

− z2

4x2
R

)

, (23)

where Hm is the Hermite polynomial of order m, and z is the transverse position in the imaging plane [52].

The mode profiles for the first four modes are shown in figure 6. The probability that the photon is

measured in mode m is given by the Born rule Tr(ρ|Πm〉〈Πm|), where ρ is the state of light in the

wave guide.

Next, we calculate the FI achieved by SPADE for equally bright sources and show that it is equal to the

QFI. For a Gaussian PSF the probability that a photon is detected in a particular mode Hm is [44]

p(m) = exp(−Q)
Qm

m!
, (24)

with

Q ≡ ζ2

16x2
R

, (25)

where we assume that the two distant point sources produce PSFs in the imaging plane centered at

z = ±ζ/2, i.e., ζ is the separation of the sources on the image screen. Using equation (4), the FI for the

parameter ζ is calculated as

F(ζ) ≈ Ns

∞
∑

m=0

p(m)

[

∂

∂ζ
ln p(m)

]2

≈ Ns

4x2
R

, (26)

where Ns is the mean photon number of the sources. This is the classical FI achieved by SPADE. Note that

in the limit Ns ≪ 1 and for q = 1
2
, it follows from equation (19) that the QFI is also equal to Ns/(4x2

R).

9
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Figure 6. Example of Hermite–Gaussian mode profiles, for m = 0, 1, 2, 3. The incoming signal excites different higher-order
Hermite–Gaussian modes, providing information on the separation.

Hence, the FI of SPADE achieves the theoretical maximum given by the QFI, i.e., SPADE corresponds to an

optimal measurement of the separation between the two sources.

Intuitively, SPADE works for the following reason: given that the two distant point sources produce PSFs

in the imaging plane centered at z = ±ζ/2, the wave function for small ζ can be approximated by

ψ

(

z ±
ζ

2

)

≈ ψ(z) ±
ζ

2

∂ψ(z)

∂z
. (27)

The function ψ(z) is proportional to the m = 0 Hermite–Gaussian mode, while ∂ψ(z)/∂z is proportional

to the m = 1 Hermite–Gaussian mode. Since these are orthogonal, they can be distinguished. The

fundamental m = 0 spatial mode is insensitive to the parameter ζ . The m = 1 mode, however, does contain

information about ζ, since Π1(z) is proportional to ∂ψ(z)/∂z. The relative probabilities p(m) for finding

photons in the different Hermite–Gaussian modes provide the optimal estimator for ζ, which can be related

directly to the angular separation θ = d/r, the parameter of interest. Here, d is the distance between the

sources, and r is the distance from the centroid to the imaging system.

SPADE can be compared to that of a nulling interference coronagraph [53], where a phase-sensitive

measurement is used in the analysis and also spatial mode-matching of the PSF is employed. In direct

imaging, the fundamental mode contains very little information on the two sources and contributes a

background to the spatial intensity measured, increasing the variance of the photon counts at each pixel

(shot-noise). By using Hermite–Gaussian modes, the fundamental mode effectively filters out this

background, thus substantially improving the signal-to-noise ratio. This method is similar to a nulling

interference coronagraph that filters out the background of a much brighter stellar source so that an

experimenter can extract information about nearby sources that may be much weaker.

Implementing SPADE is difficult, as different spatial modes need to be separated into different channels

before detection. Several physical devices has been proposed [54], and a series of experiments [55–63] has

confirmed the feasibility of SPADE-type measurements. The most accessible implementation remains an

open question.

3.2. Optimal two-mode interferometry

SPADE effectively uses only the lowest two Hermite–Gaussian modes m = 0 and m = 1. This suggests that

more generic two-mode interferometry may also provide optimal measurements of the source separation.

The advantage is that two-mode interferometry is a mature technology. In this section we discuss the

relative merits of two-mode interferometry for quantum imaging.

Let us consider two light-collecting fibers (collectors) that are separated by a distance |u1 − u2|.

Assuming two equally bright incoherent point sources separated by a distance d, the QFI for the angular

10
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Figure 7. Illustration of the setup for two-mode interferometry. Light is collected at positions u1 and u2 and fed into
single-mode wave guides. A variable phase α may be applied to one of the modes. A beam splitter mixes the incoming modes
before detection in photon counters.

separation θ can be calculated as [9]

FQ(θ) =
k2

4
(u1 − u2)2. (28)

This expression is independent of θ, i.e., the separation d of the point sources, and therefore the

measurement of the separation is in principle not limited by diffraction. A simple experimental scheme that

can achieve this precision is shown in figure 7.

In what follows, we calculate the FI for the setup of figure 7 and show as before that its classical FI is

identical to the QFI of equation (28). Therefore, like SPADE, the setup in figure 7 is an optimal

measurement of the source separation.

We can write the state of a single photon originating from the two sources as

ρ ≈ 1

2
|ψ1〉〈ψ1|+

1

2
|ψ2〉〈ψ2|. (29)

Equation (29) corresponds to an incoherent mixture of the photon originating from source 1 (denoted by

|ψ1〉) and source 2 (denoted by |ψ2〉). As the photons propagate towards the collectors at u1 and u2, the

single photon states evolve to a very good approximation into (see figure 7)

|ψ1〉 ≈
1√
2

(

|ψu1
〉+ eiφ+α|ψu2

〉
)

,

|ψ2〉 ≈
1√
2

(

|ψu1
〉+ e−iφ+α|ψu2

〉
)

, (30)

where |ψu1
〉 is the state of a photon collected in u1, |ψu2

〉 is the state of a photon collected in u2, and the

phase φ is given by

φ ≈ 1

2
(u1 − u2)kθ, (31)

to an excellent approximation. Setting the adjustable phase α = 0, the collected light is interfered at a 50:50

beam splitter, and the probabilities of finding the photon in detector 1 and detector 2, respectively,

are given by

p1 =
1

2
(1 + cos φ) and p2 =

1

2
(1 − cos φ). (32)

Substituting these probabilities into the expression for the FI in equation (4) yields

F(θ) =
∑

i=1,2

pi

[

∂

∂θ
ln pi

]2

=
k2

4
(u1 − u2)2, (33)

which is independent of θ and coincides with the QFI in equation (28). We note that for two-mode

interferometry a similar phenomenon occurs as with SPADE, i.e., equal brightness of the two sources leads

to a constant QFI, whereas unequal brightness gives rise to a drop-off of the QFI as the separation between

the sources approaches zero [9].

The two-mode interferometric scheme has essentially the same resolution as SPADE. However, it

removes the need for building a large system of lenses and mirrors for the telescope, as well as the

experimental complexity for the SPADE measurement. Yet, the former comes at the cost of a reduced

photon count rate by a factor of the ratio of the collecting areas. Also, in order to extract the angular

separation from the measurements, the entire interferometer needs to be phase-stabilised to the same

accuracy as any other G(1) measurement, i.e., to a fraction of a wavelength for the duration of the

measurement. In astronomy, such optimal quantum telescopes have been implemented, e.g., in the

GRAVITY interferometer as well as in CHARA.

11
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4. Intensity interferometry

Next, we investigate the precision obtained via G(2) intensity interferometry, which requires correlating

photons recorded at two detectors. Since the numerical aperture is defined by the distance between the two

detectors, e.g., two telescopes, and since the correlations are generated only electronically, sometimes even

only via post-processing, this setup allows for substantially larger numerical apertures than those achievable

with the G(1) methods discussed in the previous section. Moreover, the telescopes can be simple in design as

the photons have to be recorded only within their coherence time (or several coherence times, depending

on the time resolution of the detectors), given, e.g., by the bandpass of the filter used in the setup. This is in

contrast to amplitude interferometry where a phase-sensitive measurement of the electromagnetic field is

needed, more likely to be affected by small perturbations, e.g., optical imperfections of the detectors or

turbulences in the atmosphere. Eliminating such perturbations requires an elaborate design of the

telescopes such as adaptive or active optics, limiting the numerical aperture of amplitude interferometry to

typically < 500 m. Intensity interferometry on the other hand is not disturbed by detector imperfections or

atmospheric turbulences. Moreover, the signal only depends on the source separation d and the relative

strength q of the sources, but is insensitive to the centroid position z0 of the light sources. In total, intensity

correlation measurements appear simpler to implement while providing larger numerical apertures at

potentially lower costs. The question is whether these advantages can overcome the reduced signal strength

related to the small degeneracy parameter δ.

In what follows we investigate the precision of G(2) intensity correlation measurements using a lower

bound on the FI. Considering realistic numerical apertures and photon fluxes, we will see that G(2)

measurements indeed scale favorably in certain regions of the angular separation of the sources, in

particular at very small separations, even with respect to the QFI of optimal G(1) measurements.

In general, for the state given in equation (41), consisting of an infinite sum over different photon

numbers, the calculation of the FI for a particular measurement is challenging. We will thus compute only a

general lower bound on the FI to estimate an unknown parameter array and compare it to the various G(1)

methods discussed in the former section. However, for a fair comparison, we will consider different

numerical apertures for G(2) and G(1) interferometry, i.e., we will allow for the reasons described above for

the G(2) measurements much larger numerical apertures than for the G(1) measurements.

The intensity correlation function G(2)(r1, r2) at positions r1 and r2 is defined as

G(2)(r1, r2) = 〈E†(r1)E†(r2)E(r2)E(r1)〉
= 〈I(r2)I(r1)〉 − δ(r1 − r2)〈I(r1)〉, (34)

where E†(r) and E(r) are the negative and positive frequency parts of the electric field operator at position r.

Since the operators E†(r) and E(r) do not commute, an extra term appears in equation (34) for the case

that r1 = r2.

We suppose the detectors used for the G(2) measurements to have an area of A = 10 m × 10 m. This is a

reasonable size taking into account that the telescopes are only photon collecting detectors which neither

need adaptive nor active optics. The numerical aperture spanned by one detector is approximately
√

A/r,

with r the distance from the stellar sources to the detector on Earth. However, the numerical aperture of the

entire G(2) interferometer is given by the distance between the outermost detectors. In order to exploit

multiple correlations at different detector separations, we will consider an ensemble of altogether 100

detectors, located at D different positions. This number of telescopes equals the number of detectors used

for the system presently predominantly investigated for an implementation of G(2) intensity interferometry

in astronomy, the Cherenkov Telescope Array (CTA) [64–66]. The sizes of the telescopes used in CTA

(between 4 m and 23 m in diameter) span a similar range as assumed in our calculation and cover

approximately the same total area.

Let M1,M2 ⊂ {1, . . . , D} denote two subsets of detector positions. We define the G(2) observation

vector specified by M1,M2 as

G
(2)
M1,M2

=

(

I(2)
i,j

∣

∣

∣

i∈M1,j∈M2 ,i<j

)⊤
, (35)

where I(2)
i,j denotes the intensity correlation of detectors i and j. For the explicit calculation of the lower

bounds for the general observation vector (35) we refer the reader to appendix C. Here, we assume

D = 1000 available detector positions spanning a total length of 10 km. This is the maximum number of

distinct positions given the size A = 10 m × 10 m of an individual telescope.
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Figure 8. Sketch of the two different G(2) detection schemes described in the main text. The squares indicate the different
possible positions, colored squares correspond to positions at which detectors are located. The number next to a colored square
denotes the number of detectors located at this particular position. (a) In the first G(2)-two-50-scheme, 50 detectors are fixed to
position 1 of the 1000 possible positions spanning a length of 10 km, whereas the second 50 detectors move from position to
position. In the jth measurement the second 50 detectors are located at position j ( j = 1, . . . , 1000). (b) In the second
G(2)-array-5-scheme, the 100 detectors are split up into groups of five detectors at 20 different positions, distributed over the
entire range of possible locations.

In the following, we describe two different measurement schemes each utilizing the 100 detectors. In the

first scheme, called G(2)-two-50-scheme, we suppose that we fix 50 detectors to the position i = 1

(M1 = {1}), and the remaining 50 detectors move from measurement to measurement to the positions

j = 1 to j = 1000 (see figure 8(a)). In this case, for the jth measurement, the G(2) observation vector consists

of only one element reading G(2)
M1,M2

= I(2)
1,j . We further assume that the measurements are independent of

each other so that we can add the FI as well as the lower bounds of the individual measurements. In the

end, we divide the lower bound by the number of measurements to get an average precision per

measurement.

The second scheme, which we call G(2)-array-5-scheme, involves multiple positions within the array.

Here, we assume that the 100 detectors are placed at 20 different positions, i.e., five detectors at each

position in the array (see figure 8(b)). We denote the corresponding locations as

L1, L2, . . . , L20 ∈ {1, . . . , D}. In figure 8(b), for instance, these locations are L1 = 8, . . . , L20 = 995.

Considering all possible two-point correlations of the 20 positions L1, L2, . . . , L20 contained in the array, i.e.,

M1 = M2 = {L1, L2, . . . , L20}, the observation vector reads

G
(2)
Array =

(

I(2)
L1,L1

, I(2)
L1,L2

, . . . , I(2)
L20,L20

)⊤
. (36)

In this case, we divide the 1000 detector positions in intervals of 1000/20 = 50 positions, whereby in each

interval one detector position is populated with five detectors. We average the lower bound over five

realizations, where for each realization the populated detector position of each interval is randomly chosen.

In figure 9 we show for q = 0.2 for both G(2) detection schemes the calculated lower bound of the FI

matrix entry corresponding to the separation, directly related to the precision in estimating the separation

of the two sources. We find that both G(2) measurement schemes achieve approximately the same precision.

However, since the G(2)-array-5 scheme provides multiple two-point correlations at once, the curve is more

smooth compared to the G(2)-two-50 scheme, which only provides a single two-point correlation for each

shot giving rise to small oscillations.

5. Comparison of G
(1) and G

(2) methods

In this section, we compare G(2) intensity interferometry as discussed in section 4 with the various methods

for G(1) amplitude interferometry considered in section 3. For the comparison we use the four different

relative source strengths q = 0.1, 0.2, 0.3, 0.4. In figure 10 we display the results obtained for the

G(2)-array-5 scheme, i.e., using an array of 100 detectors distributed at 20 different positions with a possible

maximum baseline of 10 km, and the outcomes of the four different interferometric methods discussed in

section 3. The latter are: traditional G(1) amplitude interferometry using a single telescope with mirror size

39.3 m as realized at the ELT; optimal G(1) amplitude interferometry using the same ELT-sized telescope in

combination with SPADE; G(1) baseline amplitude interferometry using an array of telescopes the size

13
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Figure 9. Precision of the source separation utilizing the two different G(2) detection schemes for q = 0.2, calculated via the
lower bound given in appendix C. We find that both methods display approximately the same amount of information about the
separation of the two sources, leading to approximately the same precision. One can see that the G(2)-array-5 curve is more
smooth than the G(2)-two-50 curve, since the measurement scheme for the former delivers multiple two-point correlations at
once, whereas the measurement scheme for the latter only gives a single intensity correlation for each measurement.

Figure 10. Calculated precision for the five different stellar imaging methods investigated in this paper against the angular
separation d/r of a double star for four different relative intensities q = 0.1, 0.2, 0.3, 0.4. The solid (cyan) curve corresponds to
the precision achievable via G(2) intensity interferometry (G(2)-array-5 scheme) discussed in section 4; the dashed-dotted (red)
curve denotes the optimal G(1) method using a telescope of the size of ELT in combination with SPADE (equation (19)); the
dashed-squared (red) curve corresponds to direct (Galilein) intensity imaging (Dir. Imag.) employing a telescope of the size of
ELT (see appendix A); finally, the dashed (green) and the dashed-circle (yellow) curves correspond to the precisions obtained via
G(1) baseline amplitude interferometry (equation (19)) as implemented at CHARA and VLT, respectively. The plots show that
G(2) intensity interferometry is competitive to the different G(1) amplitude interferometric methods and even scales favourably
for very small angular separations d/r (for further details see main text).

8.2 m with a maximum baseline of 130.2 m as realized at the VLT; G(1) baseline amplitude interferometry

using an array of telescopes the size 1 m with a maximum baseline of 330 m as in CHARA. For all

interferometric methods we assume a photon flux from the double star system of 2 × 10−2 photons per

coherence time within an area of 10 km × 10 km at a wavelength of 600 nm; for equally bright sources

(q = 1
2
), this would mean that each source emits on average 10−2 photons per mode. The telescope sizes,

corresponding average photon numbers per telescope, baselines, corresponding numerical apertures, and

numbers of telescopes considered for each interferometer/telescope in figure 10 are listed in table 1.
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Table 1. Comparison of the different telescope sizes, average photon numbers per telescope, baselines, corresponding numerical

apertures, and numbers of telescopes used for the numerical calculations displayed in figure 10.

Method Diametertel Ns,tel Baseline NA #tel

G(2) 10 m 2 × 10−8 10 km 10−8 100

ELT 39.3 m 3.1 × 10−7 — 3.9 × 10−11 1

CHARA 1 m 2 × 10−10 330 m 3.3 × 10−10 2

VLT 8.2 m 1.3 × 10−8 130.2 m 1.3 × 10−10 2

Note that for the numerical simulations in figure 10 we used a small (relative to astronomical) distance

r (= 1012 m, ≈10−4 light years) to the two sources (and as such unrealistic large numerical apertures) to

avoid complications with very small numbers in the calculations; however we take the distance large enough

to be still in the far field regime. Note that this does not change the relative position of the curves in

figure 10. In the figure, the precision for direct imaging using the ELT telescope is calculated via the

procedure explained in appendix A for the corresponding PSF, and the precision of the G(2) method is

calculated via the lower bound given in appendix C.

From figure 10 we can see that for the parameters of table 1, G(2) intensity interferometry is indeed

competitive to G(1) amplitude interferometry. This is surprising, since G(2) measurements require two

photons to be measured coincidentally, whereas G(1) measurements only need single photon detection; the

precision of G(2) intensity interferometry depends thus quadratically on the average photon number per

mode, i.e., the degeneracy parameter δ, whereas for G(1) amplitude interferometry the precision scales

linearly with δ. However, in both cases the precision also scales quadratically with the numerical aperture

(see also the discussion in section 2.2 following equation (19)). As in G(2) intensity interferometry the

numerical aperture can exceed the numerical aperture of G(1) methods by a factor of 100 or larger, this can

indeed compensate for the lower number of two-photon coincident detection events. In particular, as

shown in figure 10, when considering very small stellar separations (or feature sizes), we find a regime of

angular separations d/r for which the precision of the G(2) method clearly outperforms the one of the G(1)

methods. Here, the advantage of the much larger numerical apertures achievable in G(2) intensity

interferometry compared to G(1) amplitude interferometry clearly overcomes the drawback of the quadratic

dependency on the small degeneracy parameter δ at optical frequencies. Yet, the slope of the G(2) precision

drop-off is steeper than the one of the G(1) precision as the latter depends only linearly on δ.

6. Possible implementations of VLBII

Currently, in astronomical imaging, both amplitude interferometry and intensity interferometry are

employed. Direct (Galilean) imaging is presently pushed to the limit with the ELT in Chile, having a

compound mirror of 39.3 m in diameter [3]. Baseline amplitude interferometry is realized by GRAVITY at

VLT and CHARA using baselines of 130.2 m [67] and 330 m [5], respectively. Recently, intensity

interferometry was implemented with four telescopes by the VERITAS collaboration at a maximum baseline

of 172.5 m [30]; already beforehand, spatial intensity correlations have been measured with starlight using

smaller baselines [27, 29]. While so far the baselines utilized in intensity interferometry have been of

reasonable size, interesting prospects arise at baselines of the order of 2 km or even 10 km. Both will allow

for sub-milli-arcsecond resolution. Presently, the CTA is studied for this purpose as a possible candidate for

VLBII aiming for a baseline of 2.4 km [64, 65, 68].

Intensity interferometry on stars as faint as apparent magnitude five are estimated to be possible with

G(2) setups using currently existing Cherenkov telescopes with diameters on the order of 4 m to 23 m [30].

The future CTA is projected to allow intensity interferometric observations of stars even as faint as apparent

magnitude 7 [69]. At these apparent magnitudes around 2700 (magnitude 5) and 25 000 (magnitude 7)

astronomical targets can be selected for observation [70], however not all of them will be observable from a

given location on earth or emitting into the required optical bands. Only about 2600 objects from the bright

star catalogue can be selected for VLBII observation when additionally including spectral limitations

[68, 71]. Also implementing third-order intensity interferometry at CTA seems possible, and would aid the

image reconstruction process [72].

At baselines of the order of 10 km, angular resolutions on the order of ∼5µas are possible for G(2)

setups at visible wavelengths. While such high angular resolutions are probably not required for diameter

measurements of main sequence stars brighter than apparent magnitude 8 (having typical angular

resolutions not far below ∼0.1 mas [73]) they can be utilized for a number of other interesting

astronomical measurements. Resolutions of ∼ 0.05 mas are required to image dark or bright spots of stars
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within the milky way [69], measure stellar deformities due to rotation [74], circumstellar disks and hot star

winds [31], or properties of interacting binary stars [66]. Even higher angular resolutions are beneficial if

stellar images should be reconstructed for small and faint stars. These ultra-high angular resolutions are also

needed if exoplanet transits at distant stars are to be studied, with exoplanets typically having an angular

extent 20 times smaller than the star [73]. Additionally, these high resolutions might facilitate the study of

otherwise unresolved features in distant galaxies or distant

supernovae.

Observations of pre-series stars in their formation and evolved stars up to planetary nebulae has been

proposed for amplitude interferometry [73]. According to our estimations, this should be achievable with

VLBII, yet utilizing presumably much simpler setups. This implies that nearly all stages in the life of a star

would be observable with VLBII at higher resolutions than with amplitude interferometry considering

realistic setups.

7. Conclusions

In conclusion, we have presented a quantitative comparison of the precision achievable in stellar astronomy,

using G(1) amplitude interferometry on the one hand and G(2) intensity interferometry on the other hand

for the benchmark problem of determining the separation between two adjacent stars. The comparison is

based on well-established measures from estimation theory, the Fisher and the quantum Fisher

information. The two quantities allow for the determination of the amount of information, i.e., the

precision, that one can achieve in a given measurement (FI) or even in an optimal measurement (QFI) of

the electromagnetic field for estimating the centroid z0, the separation d and the relative strength q of a

double star system. After a short introduction to the FI and the QFI in section 2, we investigated in

section 3 various imaging methods which make use of G(1) amplitude interferometry. The latter included

direct (Galilean) imaging as realized at the ELT in Chile, optimal imaging as could be implemented at the

ELT by use of SPADE, and another optimal imaging method using baseline G(1) interferometry as

implemented, e.g., in the GRAVITY Collaboration and at CHARA. In section 4, we determined the

precision which one can achieve via G(2) measurements by use of very large baseline intensity

interferometry (VLBII), employing real parameters as implemented, e.g., at the southern CTA in Chile.

In section 5, we compared the two methods and found that for realistic parameters VLBII can indeed be

competitive and even outperform G(1) amplitude interferometry. The reason is that even though G(2)

intensity interferometry scales quadratically with the small degeneracy parameter δ while G(1) amplitude

interferometry scales linearly with δ, both methods depend quadratically on the numerical aperture. Since

for VLBII the latter can be orders of magnitude larger compared to realistic G(1) systems, the precision in

G(2)-measurements can be of comparable value and even overcome the one of G(1) amplitude

interferometry, in particular when considering very small stellar separations or feature sizes of the object

of interest.

More precisely, calculating the QFIM and analyzing the corresponding analytic expression for the

precision about the separation of the two stars, we learned that for optimal G(1) measurements the precision

drops off to zero in the limit of infinitesimally small separations, depending on the numerical aperture. I.e.,

for larger numerical apertures the drop-off starts at smaller angular separations d/r (see the discussion

following equation (19)). This statement holds true in a similar fashion for G(2) measurements (even

though the detection involves two photons what steepens the slope of the drop-off). Figure 10 shows that

the different onsets of these reductions lead to a regime of very small separations of the double star system

for which the precision achievable with G(2) intensity interferometry is higher than that of G(1) amplitude

interferometry.

In the future, both optimal G(1) amplitude interferometry and VLBII can be pushed to increase

performance. For example, it is possible to use quantum entangled networks to further increase the

numerical aperture in G(1) amplitude interferometry by teleporting collected photons over large distances

[75–77]. Teleportation preserves the relative phase of the photons, and photon transmission losses can be

side-stepped by prior established photonic entanglement. VLBII with decent baselines was recently

established, but remain at the testing stage [27, 29, 30]. Larger arrays like CTA have been considered an

ideal implementation of VLBII, with prospective baselines of about ∼2 km and joint recovery of many

spatial frequencies, utilizing about 100 telescopes at once [65], which would enable the reconstruction of

conventional images [69, 74]. VLBII results might be further improved by exploring optimal detector array

geometries or exploiting higher-order spatial correlations [78]. Envisioning VLBII with 100 telescopes of

diameter ∼10 m and baselines on the order of ∼10 km, resolutions of ∼ 0.005 mas are possible, surpassing

the resolution of current and planned amplitude interferometers by a factor of 20 or more, and even

surpassing the resolution of the EHT Collaboration.
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Appendix A. Application of classical estimation theory to imaging two thermal point
sources—direct imaging precision

As an example of how to apply estimation theory to imaging two thermal point sources, first recall that

Rayleigh’s criterion [79] establishes the minimum separation between two incoherent point sources

required in order to resolve them. It arises from the diffraction of light through the finite aperture of an

optical system, even as large as the ELT. As a consequence, a point-like source will have a finite extension on

the image plane, known as the PSF [80, 81]. Two points that are closer together in the image plane than the

width of the PSF will be difficult to resolve due to the substantial overlap of their images. The size of the

PSF is of the order of the Rayleigh length xR = 1/kNA, where k is the wave number and NA is the

numerical aperture that characterizes the optical system.

For a Gaussian PSF with a width equal to the Rayleigh length, the image of a single point source at

position z0 (in the imaging plane) with unit intensity becomes

ψ(z − z0) =
1

4
√

2πx2
R

exp

[

− (z − z0)2

4x2
R

]

. (37)

The corresponding normalised intensity profile is given by |ψ(z − z0)|2, which is equal to the probability

distribution p(z|z0) of finding a photon at position z in the imaging plane given that the PSF is centered

around z0. Assuming now two thermal light sources at positions z1 and z2 the one-photon truncated state

(neglecting the vacuum) can be written as

ρ = q|ψ+〉〈ψ+|+ (1 − q)|ψ−〉〈ψ−|, (38)

where

|ψ±〉 =
∫

dz ψ±(z)|z〉. (39)

Here, q characterizes the relative source strength and z is the image plane coordinate. Assuming unit

magnification ψ−(z) = 〈z − z1|ψ〉 = ψ(z − z1) denotes the state of a photon originating from the source at

z1, ψ+(z) = 〈z − z2|ψ〉 = ψ(z − z2) denotes the state of a photon originating from the source at z2. The

probability to detect a photon at position z is then given by

p(z) = 〈z|ρ|z〉 = q|ψ+(z)|2 + (1 − q)|ψ−(z)|2. (40)

The multi-parameter FI matrix of equation (6) for direct imaging is then calculated with the Gaussian PSF

of equation (37) and the probability distribution of equation (40) with respect to the three parameters,

given by the centroid z0, the separation d and the relative source strength q. By numerically calculating the

inverse of the FI matrix and taking the inverse of the diagonal element corresponding to the separation we

find the precision bound for direct imaging in terms of equation (8).

Appendix B. Quantum state of two thermal light sources

The two thermal points sources illustrated in figure 3 can be described by a pair of complex amplitudes

A = (A−, A+)⊤ with respective photon numbers Ns,1 = EA[|A+|
2] = Nsq and

Ns,2 = EA[|A−|2] = Ns(1 − q) [15], where Ns is the total average photon number and q ∈ [0, 1] describes

the relative strength of the sources. Here, EA denotes the expectation value with respect to A. The density
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matrix of the light field produced by the two sources in the far field in the so-called Glauber–Sudarshan

P-representation is [15]

ρd =

∫

C2

d2A+d2A− PNs(A)|ψA,d〉〈ψA,d|, (41)

where the joint probability distribution is given by the product of the individual probability distributions as

PNs (A) = PNs,1
(A+)PNs,2

(A−) (42)

with

PNs,1/2
(A±) =

(

1

πNs,1/2

)

exp

(

− |A±|
2

Ns,1/2

)

. (43)

In equation (41), |ψA,d〉 represents a coherent state in the far field with mean number of photons Ns, which

is an eigenstate of the positive frequency field operator E(r)

E(r)|ψA,d〉 = ψA,d(r)|ψA,d〉, (44)

with eigenvalue

ψA,d(r) = A+ψ(r − z2) + A−ψ(r − z1), (45)

where z1,2 = z0 ∓ d/2, d = (0, 0, d)⊤, and ψ(r) denotes the photonic wave function in the far field.

An important quantity is the overlap between the wave functions for a given translation a

η(a) =

∫

d2r ψ∗(r)ψ(r − a). (46)

In general, η(a) is non-zero, which means that the wave-functions coming from the two sources are

non-orthogonal spatially, which is what makes estimation based on photon counting on a screen difficult.

Appendix C. Intensity interferometry precision

Consider a general vector random variable X = (X1, . . . , XM)⊤ ∈ R
M whose probability density p

X|Θ(x|θ)

depends on θ. The FI F(θ) of X on θ is bounded from below by [82]

F(θ) *
(

∂µ

∂θ

)⊤
C
−1

(

∂µ

∂θ

)

, (47)

where µ = (〈X1〉(θ), . . . , 〈XM〉(θ))⊤ is the mean observation vector of the random vector X and

C = 〈(X − µ)(X − µ)⊤〉(θ) is the covariance matrix of X. In what follows, we specify the random vectors

for second-order intensity correlation measurements and calculate the corresponding expectation values.

The correlation function G(2)(r1, r2) at positions r1 and r2 is defined as

G(2)(r1, r2) = 〈E†(r1)E†(r2)E(r2)E(r1)〉

= Tr[E(r2)E(r1)ρE†(r1)E†(r2)]

= EA

[

|ψA,d(r1)|2|ψA,d(r2)|2
]

,

(48)

where the optical equivalence theorem was used in the last line of equation (48). Here, EA[.] denotes the

expectation value with respect to the source amplitudes. Since the light is collected by detectors, the

positions r1 and r2 are replaced by two detector indices i and j with detector areas

Ai/j = {(ϕ, θ) : −ϕ̃ " ϕ < ϕ̃, li/j " θ " ri/j}, (49)

where |ri/j − li/j| = 2θ̃/D and θ̃ denotes the angle of the numerical aperture. Then the correlation function

of a single shot becomes an intensity correlation I(2)
i,j of detectors i and j. Thus the random vectors for the

second-order intensity correlation measurements are the ones specified in equation (35). We now evaluate

the corresponding expectation values.

We assume that the photons are freely propagating, i.e., their wave function can be described as a

spherical wave

ψ(r) =
1

√

4ϕ̃ sin θ̃

eikr

r
. (50)
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We then have for a displaced emission at point z the wave function

ψ(r − z) =
1

√

4ϕ̃ sin θ̃

eik|r−z|

|r − z|
. (51)

In the far field we can approximate |r − z| ≈ |r| = r in the denominator. In the phase we need a more

sensitive approximation as |r − z| ≈ r − rz/r = r − z cos θ. In what follows we neglect the 1/r dependence

and the constant phase coming from the first term in r − z cos θ. Therefore, the states can be written in

far-field approximation as

ψ(r − z1/2) =
1

√

4ϕ̃ sin θ̃

e−ik(z0∓d/2) cos θ. (52)

Now, considering the finite detector size equation (49) the mean values of the conditional intensity

correlations I(2)
i,j|A yield

µi,j|A =

∫

Ai

d2r1

∫

Aj

d2r2 |ψA,d(r1)|2|ψA,d(r2)|2

= ηi|Aηj|A

(53)

with

ηp|A :=

∫

Ap

d2r |ψA,d(r)|2

=|A+|
2
αp + |A−|

2
αp + A∗

+A−βp + A+A∗
−β

∗
p ,

(54)

where

αp :=

∫

Ap

d2r|ψ(r − z2)|2 (55)

=
1

2 sin θ̃

[

cos(lp) − cos(rp)
]

,

βp :=

∫

Ap

d2r ψ∗(r − z2)ψ(r − z1)

=
1

2 sin θ̃ikd

[

eikd cos(lp) − eikd cos(rp)
]

. (56)

Using equation (48) and the following identities, fulfilled by the source amplitudes A+ and A−

EA[A∗
+A−] = EA[A∗

−A+] = 0, (57)

EA[A+A−] = EA[A−A+] = 0, (58)

EA[|A+|
2
] = Nsq,EA[|A−|

2
] = Ns(1 − q) (59)

the expectation values µi,j = EA[µi,j|A] can be calculated, which can then be used to find the derivatives with

respect to the unknown parameters. Analogously the elements of the covariance matrix can be

calculated via

Ci,j,k,l = E[I(2)
i,j I(2)

k,l ] − µi,jµk,l. (60)

We are then able to compute numerically the lower bound equation (47) for the different measurement

schemes characterized in the main text.
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