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�e proposed research work focused on energy management strategy (EMS) in a grid connected system working in islanding mode
with the connected renewable energy resources and battery storage system. �e energy management strategy developed provides a
balancing operation at its output by utilizing perfect load sharing strategy.�e EMS technique using smart superficial neural network
(SSNN) is simulated, and numerical analyses are presented to validate the effectiveness of the centralized energymanagement strategy
in a grid connected islanded system. A SSNN prediction model is unified to forecast the associated household load demand, PV
generation system under various time horizons (including the disaster condition), EV availability, and status on EV section and
distance. SSNN is one the most reliable forecasting methods in many of the applications. �e developed system is also accounted for
degradation battery model and its associated cost. �e incorporation of energy management strategy (EMS) reduces the amount of
energy drawn from the grid connected system when compared with the other optimized systems.

1. Introduction

Energy storage and management play a vital role in the
installation of the smart grid system as they increase the
stability, resiliency, and efficiency of the grid connected
system. In today’s scenario, generating power using re-
newable energy resources needs to be balanced dynamically
with the dynamic changing load.�e smart grid operator has
limited resources and techniques to maintain stability in the
present changing atmospheric condition and load profiles.

�e power conversion system plays a prominent role in
the grid connected renewable energy resource system. �e
most challenging phenomenon in the power distribution
system is the loss occurring in the conversion system. �e
power conversion system is utilized when the power is re-
quired to transfer it from source to load; else the process
manages to store the energy in the connected storage system
[1]. Genetic algorithm is used for better system optimization,

and it has gained importance in reducing the cost of elec-
tricity [1]. In integrating the energy storage system with the
power generation system, an effective operating point on
storage capacity needs to be considered. Reinforcement
learning is incorporated in battery sizing and real-time EMS
[2].

Electric traction is the most prominent area for imple-
menting the energy storage and energy management
technique.

Model predictive control algorithm was utilized in
railway control activity to improve the system efficiency and
to reduce the operating cost of the system [3]. �e inte-
gration of RES like solar, wind, geothermal, and biomass
with the grid addresses many issues towards environmental
pollution and energy scarcity [4]. Decentralized control
strategy architecture is used for better energy management.
�e uncertainties in the RES connected system [5] are
handled by modeling the EMS at the level of individual grid
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and in turn can be configured for multistage systems. Energy
storage in the grid connected system provides larger benefits.
�e modeling of BESS along with BMS in [6] is categorized
based on time scale. �e study made by the authors in [6]
investigates the benefits of energy storage during power
generation, distribution, and power transmission. Due to
energy crisis, RES is integrated with the present conventional
sources system.

�e integrated grid allows the customer to use the load.
�e HEMS installed at home server collects all the data
pertaining to load usage, analyzes the collected data, and
develops the control strategy for reducing the cost of
electricity [7]. �e control strategy in [8] compares the grid
connected system with centralized and decentralized
control strategies. Implementing the CCS and DCS pro-
vides output comparative statement in terms of battery life
cycle, cost of electric energy, and battery size determina-
tion. Existing energy management techniques discussed in
[9] examine the effect of system level energy reduction
strategy in accordance with the energy consumption of RTS
which uses duplication for fault tolerance. �e comparative
analysis gives a key note to the researcher for deciding the
most appropriate energy storage and management strategy
for particular application. �e energy management strat-
egies installed in the grid connected system [10] ensure
complete system stability and economic level of operation.
�e multiagent HEMS (MAHEMS) includes the feature of
both CCS and DCS. �erefore, the MAHEMS is developed
as 3 levels of EMS framework that provides both local and
autonomous level of coordinated energy control in cen-
tralized grid operation. With the development of smart
grid, energy transition happens from passive energy con-
sumers to an active smart grid supplier [11]. �e inte-
gration of RES in [12] plays a vital role in future energy
system.�e use of RES as integrated resources reduces CO2

emission with the high-level penetration of RES in various
transmission system operators. Grid with an integrated
RES with energy storage and curtailable load and non-
curtailable load provides low-voltage distribution system
(LVDS). Smart grid is a novel approach that clusters the
small distributed generators. �e variable power genera-
tion, load profiles, and energy cluster parameters are
compared with decision tree approach under different
battery energy storage conditions. �e universal energy
storage and management strategy in [13] produce result as
reduction in energy saving as compared with the traditional
approach. �e present available PHEV in [14] is being
connected with battery as single energy storage system.�e
battery has limited power density due to its inherent
chemical characteristics, which affects the performance of
the PHEV system. �e objective focused in [14] minimizes
the usage of electricity in EV and increases the lifetime of
the battery. �e control strategy as two-level structure for
the integrated hybrid standalone system is discussed in
[15]. Due to continuous change in atmosphere, the un-
certainties occurring in RES are handled by the two-level
control strategy and provide perfect energy management,
power regulation, and load scheduling operation and
control.

2. System Architecture

�e grid connected system can be operated either by cen-
tralized control strategy (CCS) or by means of decentralized
control strategy (DCS). In the case of decentralized control
strategy (DCS), individual customer pertaining to the load
usage will deal all sort of energy transactions directly with
the grid, whereas it is not in the case of centralized control
strategy (CCS). �e fishbone diagram of centralized control
strategy is shown in Figure 1.�e centralized strategy shown
in Figure 1 is the aggregator which is responsible to make
energy transactions between the grid and various loads (EV
system, household loads, and industrial loads). �e grid
support services are provided by the individual customer in
DCS and the aggregator in CCS. �e fishbone shown in
Figure 1 acts as an aggregator which groups all the agents
connected in a power system and acts as a single object in
energy markets/grid operator services. �e fishbone as
aggregator performs demand response operation, monitors
various connected loads, and controls system equipment,
energy generation, and storage sources. �e developed
fishbone model for CCS reduces the electric tariff for an
individual customer and shared stakeholders and prepares
an augmented schedule for charging/discharging of EV and
connected stationary battery based on the most prominent
time of power generation by the PV system. �e fishbone
connected to the CCS completely owns and manages the
connected PV source, fuel cell power module, and the
battery connected system.

�e EV system owners send their augmented schedule
preferences for charging/discharging of EV to the aggre-
gator. �e fishbone as aggregator is a place for predicting the
power required to handle the connected load profiles based
on the weather condition. �e weather condition and the
time horizon (short term, midterm, and long term) develop a
series of dataset in solar PV generation. �e status of the
system components under various time horizons is shown in
Table 1. Based on this historical time series datasets, the
aggregator is having the access to towards the connected
loads, EV charging and discharging station, connected PV
source, grid connected power station, and the battery storage
system.

3. Energy Management Proposed Flow Model

�e energy management strategy’s process flow model
comprises the (i) optimization model, (ii) prediction model,
(iii) battery operation model, and (iv) validation model. �e
function hold by each of the process flow model is repre-
sented in Figure 2. �e proposed EM strategy bifurcates its
operation in terms of load sharing and managing by
scheduling the process of charging/discharging in daily basis
and governs the energy supply and demand to reduce the
tariff rate. �e proposed EMS model analyzes the connected
load, connected PV resources, and required power for EV
charging/discharging station based on time horizon. �e
fishbone aggregator model analyzes all the required loads
that are connected to the interconnected system and
communicates the charging/discharging schedule of EV
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based on the mixed-integer linear programming (MILP)
model subjected to grid constraints. �e load predictions for
the day are predicted and given as input to optimization
model in order to formulate the optimum schedule of
charging/discharging required for the EV station and other
connected battery storage systems.

F
loads
t � 􏽘n

j�1

Ljf W0j +􏽘x
i�1

WijF
loads
t−1

⎡⎣ ⎤⎦ +Rt + L0, (1)

4. Energy Prediction Model

A smart superficial neural network (SSNN) prediction
model is incorporated to predict the connected household
load demand, PV generation system from different time
horizons, EV availability, and status on EV section and
distance. SSNN is one the most reliable forecasting
methods in many of the applications. A commonly used
backpropagation algorithm (BPA) is utilized in feed-
forward mode.�e forecasted value in terms of connected
household load demand and PV generation system from
different time horizons can be expressed as follows:

where equation (1) refers to the forecasted value of the
demand with reference to connected load and the power
availability in PV generation system. �e forecasted value is
calculated using SSNN, in which the weight function and the
bias variable decide the amount of load to be handled in the
connected system.

F
loads
t -Forecasted value in terms of connected household

load demand and PV generation system, Lj and Wij-
Weights from the layer, n-Number of hidden layers in SSNN
model, L0 and W0j-Bias terms of SSNN model, Loads ∈Lt

Kt-Lt: household loads andKt : PV generation system, t-
Time.

�e next parameter in the prediction model is EV
availability. �e existing antique time series data for EV
travel pattern are utilized to extract probability distribution
function (PDF) for categorizing the EV availability with
reference to travel distance and range efficiencies. �e EV
availability for charging and discharging is represented in
terms of binary definition as “0” when EV is “not available”
and “1” when EV is “available.” �e EV availability as a
function of time “t” and day “d” of the week is expressed as in
equation (2) subjected to varying atmospheric temperature.
�e flow diagram showing the EV availability status is shown
in Figure 3.

EV t � f t SEV,t,PEV,t
����􏼐 􏼑 � SEV,t

PEV,t

􏼠 􏼡PEV,t 1 − PEV,t􏼐 􏼑 SEV,t− t( )
,

(2)
where EV t represents the EV availability w.r.t time, SEV,t
represents the number of scenarios available in EV w.r.t
time, and PEV,t represents the PDF of EV scenarios.

�e algorithm to find the EV availability status is shown
below.�e value given in the EV availability status algorithm
is calculated as a function of time, day of the week at varying
temperature as given in equation (2). At t� 12 noon, the EV
availability is measured in terms of insolation. �e available
insolation at 12 noon is 1000. From t� 8 am to t< 12 noon,
the insolation measured is 650, and it is applied in equation
(2), and the obtained EV status is 3 and 2, depending on the
variation occurring due to atmospheric condition. For t> 12
noon, the insolation measured varies from 700 to 990 and
the obtained EV status is 4 and 2 (Algorithm 1).

5. Battery Operation Mathematical Modeling

�e state of charge (SOC) and the state of health (SOH)
define the battery life. �e SOC on EV at any time t is
modeled by using equation (3) based on SOC on EV at time
t� t− 1, charging/discharging efficiency on EV battery,
charging/discharging power on EV, and maximum EV
battery capacity. By specification, each battery has its own
maximum and minimum SOC. Based on the specification
according to equation (4), the modeled system considers its
upper and lower limits of battery SOC and its distance
travelled when EV is away from the substation so as to
improve the effectiveness of battery SOH.

SOCEV
t � SOCEV

t−1 +
ηEVCPEVC,tAtFt

AHEV,max

−
PEV d,tAtFt

ηEV dAHEV,max

, ↔At � 1, t ∈ T, (3)

where SOCEVt represents the state of charge on EV battery at
time “t,” ηEVC represents the charging efficiency on EV
battery, ηEV d represents the discharging efficiency on EV
battery, SOCEVt−1 represents the state of charge on EV battery

at time “t− 1,” PEVC,t represents the maximum EV battery
charging power (kW), PEV d,t represents the maximum EV
battery discharging power (kW), At represents the avail-
ability matrix, AHEV,max represents the maximum battery
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Figure 1: Fishbone aggregator architecture diagram of centralized
strategy.
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capacity in ampere hour, ηEV represents the efficiency on EV
battery (KWh/km), and dEV represents the distance travelled
by EV.

SOCEVt � SOCEVt−1 −
ηEVdEV
AHEV,max

, ↔At � 0, t ∈ T. (4)

�e degradation phenomenon in EV battery is observed
in rechargeable batteries that reduce the lifetime of the
battery over the specific period of time.�is in turn increases

the operating cost. �erefore, while modeling the battery
degradation model, cost should be taken into account along
with all the services.

6. Optimization Model

�e main objective of developing the optimization model is
to minimize the electric tariff. �e process flow optimization
model is shown in Figure 4, and the objective function is

Table 1: Connected system status under various time horizons.

Scenario Status of PV system
Stationary battery

usage
Gas turbine

system
�ermal

storage system
Cost minimization Maximum CO2 emissions

Short-term
horizon

No No No No Yes No

Midterm
horizon

Yes Yes Yes No Yes No

Long-term
horizon

Yes Yes (discounted) Yes Yes Yes No

 EMS Process Flow

 Battery Operation Model 

Numerical Validation Model 

Validation 

Economic Analysis 
Results 

Installation and operation cost

Conclusion 

Optimization Model
Objective Function (Single & Multi Objective function) 

Load Constraints 

Prediction Model

Load demand at household 

PV Generation 

Availability of EV 

Status on EV Section and distance 

SOC and SOH model for EV 

Degradation model on EV 

Stationary Battery SOC and SOH Model 

Stationary Battery Capacity Degradation Model 

Input parameters 

Simulation Setup 

Proposed Strategies Comparison

1

2

3

4

5

Figure 2: Energy management strategy process flow.

EV AVAILABILITY STATUS if EV availability==1, then

if EV (availability-1)==0, then

if EV (availability-1)==1, then

AVAILABLE

FOR EV==3

FOR EV==2

NOT AVAILABLE

DECEASED

FOR EV==4

FOR EV==2

ATTAINED

1

2

Figure 3: Flow diagram of EV availability status.
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developed based on energy purchased, energy sold, and the
degradation cost.

�e expected operating cost of the asset is expressed as
follows:

OC � energy purchased + energy sold + degradation cost,

OC �􏽘
t∈T

αPtΔt( 􏼁$p + βPtΔt( 􏼁$S + $
EV
d + $

B
d􏼐 􏼑,

(5)
wherePt is the power flow to and from grid at any time “t,” α
and β are binary variables for power drawn and power
supplied to or from the grid, $p is the purchased energy
tariff, and $S is the energy sold tariff. Table 2 presents the
binary variable constraints and their status. Energy is pur-
chased to the grid, when α � 1 and β � 0; under this con-
dition, the power drawn from the grid is positive. Energy is
sold from the grid, when α � 0 and β � 1; under this con-
dition, the power drawn from the grid is negative.

7. Simulation Setup and Test Results

�e proposed strategy is developed for the given system
configuration as shown in Table 3, using MATLAB, and its
simulation set of energy management system with hybrid
sources is as shown in Figure 5. �e PV source is connected
to the grid connected system PCC point via the energy
storage systems like fuel cell, battery, and supercapacitor.
�e system is operated at discrete time interval with an
operating switching frequency of 10KHz. �e energy
management system (EMS) controls the power of the entire
energy source devices through reference signals.

for t ∈ T, perform
if EV availability EV t � 1, then
if EV (availability-1) EV t−1 � 0, then
EV Status� 3
Else
EV Status� 2 endif
else
if EV (availability-1) EV t−1 � 1, then
EV Status� 4 else
EV Status� 2 endif
endif
endfor

ALGORITHM 1: EV availability status algorithm.

Solar panels, CHP, Wind cogeneration �ermal, 
Storage batteries-Installment Cost 

GENERATION
hub outputs - electrical, cooling, and heating loads 

Operational Cost 

ENERGY HUB

OPTIMIZATION MODEL

Converter and Inverter Switching Cost 

CONVERSION 

Operational Cost 

STORAGE

MATHEMATICAL MODEL OF ENERGY HUB 

SIMULATION RESULT (Performance & Effectiveness) 

CONCLUSION 

Cost Analysis & Power Optimization

Cooling provisional cost

Figure 4: Process flow optimization model.

Table 2: Binary variable constraints and their status.

PCC status α β

Energy purchase Power drawn from the grid is positive 1 0
Energy sold Power drawn from the grid is negative 0 1
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�e subsystem of energy system modeling is shown in
Figure 6 which provides the state machine control strategy.
�e simulation of the grid connected islanding mode net-
work uses the ANN prediction model to generate the
household load and the details of solar PV generation. �e
nntool in MATLAB is utilized to develop feed-forward
backpropagation algorithm. It comprises the input layer
(time of the day), hidden layer (load schedule), output layer
(power gets distributed to the load according to the required
schedule). �e hidden layer neuron is assigned with the
membership function of tansig (hyperbolic tangential sig-
moidal), and the output layer is assigned with purelin (pure
linear function) membership function. �e SSNN showing
the details of the attributes towards the input layer, hidden
layer, and output layer is shown in Figure 6. �e prediction
model developed uses the three-layer network and is trained
by the Levenberg–Marquardt algorithm (LMA). LMA is one

of the most prominent algorithms as it is operative in
categorizing the least convex objective function. �e inte-
gration of the steepest descent method and the
Gauss–Newton quadratic convergence method makes it
possible in categorizing the least convex objective function.
Increasing the power availability in the systemmakes perfect
system load forecast schedule.

Load scheduling is done based on power generation in
the integrated grid system. Figure 7 shows the PV system
inclination angle analysis using fuzzy ANN. As shown in
Figure 7, the amount of solar irradiance falling on the solar
PV system is increased when the tilt angle is at 10.1°. During
this period of time, the amount of power generation is more.
Based on this sample, the PV dataset is taken and analyzed as
shown in Figure 8.

Since the irradiance is not constant throughout the day,
power generation will not be constant. To supply constant

Table 3: System configuration.

Parameter System rating

Solar panel Polycrystalline solar panel
Number of solar panels connected 70 nos.
Total number of stationary battery units 10 nos.
Battery AH 5AH
Household load capacity 6 kW
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Figure 5: Simulation of grid connected system with its energy storage.
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power to the load, energy storage system is incorporated.
Since the insolation is varied in nature based on time ho-
rizon, the designed model is considered to fall under
nonlinear system analysis and outstrips using gradient de-
scent and conjugate gradient methods. Based on sample PV
system data, 10 neurons were initiated in the hidden layer
and later the number of neurons in the hidden layer is
increased depending upon the load schedule. �e interpo-
lation of the PV system towards the forecasted load schedule
is shown in Figure 9. Peak power availability and its utili-
zation towards EV and stationary system load demand are
shown in Figure 9.

�e sample dataset shown in Figure 8 is utilized by the
prediction model. �e sample dataset is subclassified as
training set, validating set, and testing set, in which 70% of

data are considered as training set and remaining 30% are
considered as validating and testing sets.

�e output shown in Figure 10 shows SOC of V2G
service that regulates the frequency on the interconnected
grid system on 24-hour basic. �e V2G service has two main
functions which control the charging on to the connected
battery and use the available power to regulate the grid.

Figure 10 shows the battery SOC status at 5 different
profiles.

Profile #1: Figure 10(a) shows the status of battery
charging status. During this stage, the battery gets
charged to a maximum value of 95%. Most of the time,
the battery is connected to the system resources and
gets charged to a maximum value.

Profile #2: as shown in Figure 10(b), the battery is in the
charging state but is no longer used to supply load. In
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Figure 6: Smart superficial neural network attributes.

20
10

1 2 3 4 5 6
Time (Hrs)

PV Grid Inclination analysis

7 8 9 10 11 12
5

10
15

20

Solar T
ilt 

Angle (
Deg)25

30

35

Figure 7: PV grid inclination analysis.

8
Sample PV System Data Set

6

4

2

0

P
ow

er
 (

K
W

)

-2

-4

-6

-8

20
10

0 2 4 6 8 10

Time Horizon (Hours)

Load Scheduled

12 14 16 18 20 22 24
Sample value

Figure 8: Sample PV dataset.

8

PV System Irradiance Interpolation

6
4
2
0

P
ow

er
 a

va
il

ab
il

it
y

-2
-4
-6
-8

0
5

0

10

Time Horizon (Hours)
15 20

246810
Load Schedule (KW)

1214161820

Figure 9: PV system interpolation towards load schedule.

Mathematical Problems in Engineering 7



this condition, the PV system charges the battery but
does not supply power to load. From t� 2 to t� 6.5, the
battery power is drained and the SOC value is ap-
proximately 0%. Again from t� 6.5, the battery starts to
charge from the source.

Profile #3: as shown in Figure 10(c), the battery is
connected, but there is no possibility to charge.

Profile #4: as shown in Figure 10(d), the battery is in the
ideal state. During this condition, the range of SOC
varies between 89.998 and 90.002%.

Profile #5: as shown in Figure 10(e), during night time,
the solar PV system does not deliver any power, and at
that moment, the battery connected in the system
supplies power to the charging EV station.

8. Conclusion

A centralized energy management strategy is proposed in
this paper for EV system charging and discharging strategy,
so as to reduce the tariff rate. �e prediction models were
investigated using SSNN to predict the availability of solar
power at various time horizons. Based on the availability of
power, the load forecasting schedule is proposed for EV
charging/discharging and the stationary battery storage
system. �e SSNN-based EMS strategy is designed based on
weight adjustment, where in the simulation process, 70% of
data are considered as training set and the remaining 30%
are considered as validating and testing sets. �e weight
adjustment finds the exact EV availability status at different
atmospheric conditions as EV Status� 4 & 2 for EV
(availability-1) EV t−1 � 1 and EV status� 3 & 2 for EV
(availability-1) EV t−1 � 0.�e status of power drawn is given
in equation (5) when α � 1 and β � 0; under this condition,
the power drawn from the grid is positive. Energy is sold
from the grid, when α � 0 and β � 1, and under this con-
dition, the power drawn from the grid is negative. �e

modeling and simulation test results indicate that the
designed CEMS is more effective in terms of reducing the
tariff rate and load sharing. �e relevance of the proposed
work provides better V2G service and supplies high-quality
power to the scheduled EV load and stationary load. As
future enhancement, atmospheric disaster can be considered
and big data analysis can be incorporated to further enhance
the system security with effective load sharing in the grid
connected smart system. �e role of big data analysis in
optimization techniques can be applied to reduce the un-
certainty caused by the connected renewable energy re-
sources. �e power generation by nondispatchable energy
conversion technologies is highly variable and unpredict-
able; that leads to the technology of developing and planning
for an optimized operation tool in order to maximize the
economy with sustained performance.

Nomenclature

EMS: Energy management strategy
CCS: Centralized control strategy
DCS: Decentralized control strategy
DBM: Degradation battery model
MILP: Mixed-integer linear programming
SSNN: Smart superficial neural network
PDF: Probability distribution function
SOC: State of charge
SOH: State of health
PCC: Point of common coupling
ANN: Artificial neural network
LMA: Levenberg–Marquardt algorithm
V2G: Vehicle-to-grid
RTS: Real-time system
RES: Renewable energy source
HEMS: Hybrid energy management system
MAHEMS: Multiagent hybrid energy management system
LVDS: Low-voltage distribution system.

0

0

50

100
S

O
C

 (
%

)

1 2 3 4 5

Time (Hrs)

6 7 8

×104

(a)

0

0

50

100

S
O

C
 (

%
)

1 2 3 4 5

Time (Hrs)

6 7 8

×104

(b)

0

0

50

100

S
O

C
 (

%
)

1 2 3 4 5

Time (Hrs)

6 7 8

×104

(c)

0

89.998

90

90.002

S
O

C
 (

%
)

1 2 3 4 5

Time (Hrs)

6 7 8

×104

(d)

×104

0

-100

0

100

S
O

C
 (

%
)

1 2 3 4 5 6 7 8

Time (Hrs)

(e)

Figure 10: Battery SOC status at various profiles.
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