
This is a repository copy of Power and area efficient cascaded effectless GDI approximate
adder for accelerating multimedia applications using deep learning model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185829/

Version: Published Version

Article:

Nagarajan, M., Muthaiah, R., Teekaraman, Y. orcid.org/0000-0003-4297-3460 et al. (2 
more authors) (2022) Power and area efficient cascaded effectless GDI approximate adder
for accelerating multimedia applications using deep learning model. Computational 
Intelligence and Neuroscience, 2022. 3505439. ISSN 1687-5265 

https://doi.org/10.1155/2022/3505439

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Research Article

Power and Area Efficient Cascaded Effectless GDI Approximate
Adder for Accelerating Multimedia Applications Using Deep
Learning Model

Manikandan Nagarajan ,1 Rajappa Muthaiah ,1 Yuvaraja Teekaraman ,2

Ramya Kuppusamy ,3 and Arun Radhakrishnan 4

1School of Computing, SASTRA Deemed University, �anjavur 613 401, India
2Department of Electronic and Electrical Engineering, �e University of Sheffield, Sheffield S1 3JD, UK
3Department of Electrical and Electronics Engineering, Sri Sairam College of Engineering, Bangalore 562 106, India
4Faculty of Electrical & Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Correspondence should be addressed to Yuvaraja Teekaraman; yuvarajastr@ieee.org and Arun Radhakrishnan;
arun.radhakriahnan@ju.edu.et

Received 10 January 2022; Revised 3 February 2022; Accepted 10 February 2022; Published 18 March 2022

Academic Editor: Vijay Kumar

Copyright © 2022 Manikandan Nagarajan et al. +is is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Approximate computing is an upsurging technique to accelerate the process through less computational effort while keeping
admissible accuracy of error-tolerant applications such as multimedia and deep learning. Inheritance properties of the deep
learning process aid the designer to abridge the circuitry and also to increase the computation speed at the cost of the accuracy of
results. High computational complexity and low-power requirement of portable devices in the dark silicon era sought suitable
alternate for Complementary Metal Oxide Semiconductor (CMOS) technology. Gate Diffusion Input (GDI) logic is one of the
prompting alternatives to CMOS logic to reduce transistors and low-power design. In this work, a novel energy and area efficient
1-bit GDI-based full swing Energy and Area efficient Full Adder (EAFA) with minimum error distance is proposed. +e proposed
architecture was constructed to mitigate the cascaded effect problem in GDI-based circuits. It is proved by extending the proposed
1-bit GDI-based adder for different 16-bit Energy and Area Efficient High-Speed Error-Tolerant Adders (EAHSETA) segmented
as accurate and inaccurate adder circuits. +e proposed adder’s design metrics in terms of delay, area, and power dissipation are
verified through simulation using the Cadence tool. +e proposed logic is deployed to accelerate the convolution process in the
Low-Weight Digit Detector neural network for real-time handwritten digit classification application as a case study in the Intel
Cyclone IV Field Programmable Gate Array (FPGA). +e results confirm that our proposed EAHSETA occupies fewer logic
elements and improves operation speed with the speed-up factor of 1.29 than other similar techniques while producing 95% of
classification accuracy.

1. Introduction

+e basic building blocks of any computational system are
arithmetic circuits. In recent days, resource-constrained
sensor-enabled less power-consuming devices such as mo-
bile phones and embedded processors are used in various
real-time machine and deep learning applications. Gener-
ally, our human visual and hearing system can tolerate some
errors. Hence, for some of the signal processing applications,
namely, speech, audio, image, and video processing, exact

computation is not necessarily required. Moreover, inte-
grated circuits for multimedia applications, particularly
image and video processing which uses deep learning, take a
large circuit area and high power due to the size of the data
and computational complexity. Approximate computing is
one of the most straightforward solutions to reduce circuit
complexity and power consumption [1]. +erefore, this kind
of inexact computing circuit is beneficial in low-power,
resource-constrained devices, particularly for IoTand error-
resilient applications such as multimedia and deep learning

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 3505439, 15 pages
https://doi.org/10.1155/2022/3505439

mailto:yuvarajastr@ieee.org
mailto:arun.radhakriahnan@ju.edu.et
https://orcid.org/0000-0003-2031-8940
https://orcid.org/0000-0002-6659-1961
https://orcid.org/0000-0003-4297-3460
https://orcid.org/0000-0002-1249-906X
https://orcid.org/0000-0003-3700-2491
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


applications where exact computation is not that much
significant. In addition to area and power, the delay is also
reduced by using inexact computational circuits. Based on
the idea, there are varieties of approximate adders (inexact
adders) [2–9], and multiplier circuits [10–15] have been
described in the literature for signal processing, image
processing, and deep learning applications.

Carry-free arithmetic initiated with modified XoR-
based approximate adder is presented in [2], and it is
applied in image processing. Approximate mirror adders
[3] of various configurations and truncated adders [4] are
developed and used for image compression applications to
verify their performance. Other similar types of inexact
adders such as Significance Approximation Error-Tolerant
Carry Select Adder (SAET-CSLA) based on Approximate
Full Adder (AFA) [5], Modified Full Adder- (MFA-) based
High-Speed Error-Tolerant Adder (HSETA) [6], and
MUX-based High-Performance Error-Tolerant Adder
(HPETA) [7] are designed, and better performance is
demonstrated with image blending applications. Carry
Truncate Adder (CTA) [8] is deployed in Convolution
Neural Network (CNN) structure for accelerating the
computation of the softmax layer. Generic Accuracy
Configurable Adder (GeAr) is modified and implemented
in the CNN-based Caffe network to accelerate the image to
column conversion process [9].

Inexact adders are extended to form multipliers for the
variant applications. Bioinspired Imprecise Computational
(BIC) block adders and multipliers [10] are implemented for
soft computing-based face recognition. Some of the other
types of multipliers, namely, dynamic segmented multiplier
[11], partial product perforated multiplier [12], compressor-
based approximate multiplier [13], and truncation-based
multiplier [14], are developed and evaluated for a variety of
multimedia applications. +e possible extent of loss of ac-
curacy in the multiplier for neural network accelerator is
analyzed by considering energy consumption in [15].

Most of the works mentioned above are extended for 16-
bit operation. Fixed-point 16-bit arithmetic suits well for
multimedia and deep learning applications. Optimized
circuit structure for 16-bit arithmetic is of more interest.
Generally, inexact computation uses a segmented approach.
A 16-bit adder for the 16-bit word inexact computation can
be divided into two halves such as 8-bit Least Significant Bit
(LSB) portion and 8-bit Most Significant Bit (MSB) portion.
As per the design convention, the LSB part where less weight
information resides is designed using the approximate adder
circuits, and the MSB part is designed using an accurate
adder [5–7, 11, 16–19]. +is segmented methodology
minimizes the error and improves the circuit’s performance
in terms of area, power, and speed.

+ere is a limitation in attaining the area, power, and
speed performances for deep learning systems in CMOS
dark silicon era. Hence, a new technology that will trade off
and achieve those performances is the need of the hour [20].

One such promising technology that we propose in this
work to satisfy all the requirements of the real-time portable
deep learning systems is Gate Diffusion Input (GDI) logic.
+e GDI logic is popular because it produces full swing

output, which reduces the power consumption in digital
circuits [21]. Hence, Gate Diffusion Input-based logic cells
are trending and suitable alternate for the CMOS-based cells,
especially for the low-power application. Also, the GDI
logic-based design reduces the number of transistors used in
the circuits [22] compared to the conventional CMOS logic
design. Using GDI logic, many functions, including logic
gates circuits, can be realized.

+e primary GDI cell, which is shown in Figure 1, can
perform six operations that include four fundamental and
two special functions with the two MOSFET transistors, as
listed in Table 1 [21].

GDI cells can be used to construct full adder circuits.
However, while cascading multiple GDI cells to produce the
sum and carry, the full swing problem is inevitable. To
overcome this, a few more MOS transistors should be ac-
companied for having a full swing effect [22] at the expense
of area and power.

One-bit adders are the building blocks of the 16-bit
High-Speed Error-Tolerant Adders. Plenty of configurations
of GDI-based full adders (1-bit adder) for low-power
computing are found in literature [23–26]. GDI-based full
adder for inexact computing is presented in [27]. +e
performance of an inexact full adder depends on its erro-
neous output and error distance [5–7]. Inexact circuit with
minimal error and minimal error distance (ED) while using
a smaller number of resources is challenging, and that meets
the purpose of inexact computation. Our research con-
tributes to a novel architecture that mitigates cascaded ef-
fects and addresses those challenges. Significant
contributions in this work are as follows:

(i) It presents the architecture to address the cascading
effect in GDI logic circuits.

(ii) It proposes two full swing transistor-level EAFA
architectures, namely, EAFA Design 1 with 10
transistors and EAFA Design 2 with 6 transistors.

(iii) +e proposed 1-bit EAFA is extended for 16-bit
HSETA as Energy and Area efficient HSETA
(EAHSETA), and two configurations of EAHSETA
are proposed.

(iv) +e proposed EAHSETAI and EAHSETAII use
GDI-based 4-bit CSLA and 4-bit Ripple Carry
Adder (RCA) for its 8-bit MSB accurate part. For
the inaccurate 8-bit part, the proposed full swing
EAFA Design 1-based 8-bit adder and proposed full
swing EAFA Design 2-based 8-bit adders are used,
respectively.

(v) +e proposed EAHSETA logic is implemented in
the CNN-based Light Weight Digit Detector
(LWDD) for accelerating handwritten digit classi-
fication application.

(vi) FPGA implementation of the proposed logic-based
accelerator is done on Intel Cyclone IV FPGA to
verify the practicability of the proposed EAHSETA,
and its performance as an accelerator is validated by
comparing resource utilization, power, and speed of
operation with other similar adders.

2 Computational Intelligence and Neuroscience



+e rest of the manuscript is organized as follows. +e
methods and materials are given in Section 2. +e design
procedure of the proposed approximate adder circuits is
detailed in Section 3. Experimental results and the perfor-
mance comparison of the proposed design over other similar
recent methods are presented in Section 4. Section 5 de-
scribes the proposed adder logic as the CNN accelerator.
Section 6 concludes the paper.

2. Methods and Materials

+ere are numerous Approximate Full Adder circuits pre-
sented in the literature. Out of several inexact adders, more
recent and minimum error distance-based adders are
considered for discussion and comparison. An inexact ad-
der, namely, Significance Approximate Error-Tolerant Ad-
der (SAETA), is proposed to minimize the number of logic
gates [5]. +e proposed approximate adder circuit produces
two errors in sum output and no error in carry output. +e
proposed SAETA is used to design a 16-bit error-tolerant
circuit that uses common CSLA for accurate part and
SAETA in inaccurate part. +e performance of the adder in
terms of area, power, and delay is compared with that of
common and other inexact adders. In addition, the designed
adder was tested using image processing applications.

In [6], the authors proposed a 1-bit Modified Full Adder
(MFA) with less error distance. +e one-bit MFA is extended
to design a 16-bit HSETA that uses common CSLA for
higher-order 8 bits (i.e., for 8 MSB bits) and their MFA for
lower-order 8 bits (i.e., for 8 LSB bits). +e presented design
is justified and compared experimentally with the standard
and recent related works based on area, power, and delay
performance. +ough it confers better results compared to
others, its normalized error distance is more.

Recently, to overcome the voltage swing problem of
CMOS logic in [27], the author presented a Modified Full
Adder [6] with GDI logic using 14 and 12 transistors designs.
It claims better area and power performances compared to a
common adder at the cost of increased error distance. +e
circuit is simulated in the Cadence Design suite, and logic is
realized in FPGA.

+e hybrid method has been deployed by combining
multithreshold voltage transistor logic with GDI logic to
overcome the full swing issue [28]. +e presented full adder
uses 14 transistors to produce accurate results, and the
proposed full adder is extended to the 32-bit adder. Even
though the adder’s accuracy is much better, the area oc-
cupied by design is still higher than that of other recent
works.

In order to compare our proposed full swing inexact
adder results with accurate adder results, the low-power full
adder circuit presented in [22] with GDI logic is taken along
with AFA and MFA. +e truth table of the same is listed in
Table 2, and the injected errors are highlighted. In this work,
initially, primary gate circuits such as AND, Multiplexer,
and OR using two different functions based on GDI logic are
designed and are shown in Figures 2–4, respectively. Later
two different full swing full adder circuits have been
designed based on the primary blocks with a lesser number
of transistors.

3. Proposed GDI-Based Adders

In this section, two proposed error-tolerant EAFA designs
featuring GDI with full swing logic are discussed with the
aim of reducing the circuit area and power and attaining
speed at multibit addition operation. +e proposed EAFA
design minimizes the error distance with reduced circuit
area (less transistor count), power, and delay compared to
the similar work presented in [5, 6] with two errors.

In Table 3, Boolean terms of common and 1-bit Error-
Tolerant Adders with two errors are listed. From the ex-
pressions, it is evident that a sum expression of the common
adder, AFA, and MFA uses cascaded logic gates for the adder
logic realization. +e cascaded logic gates reduce the voltage
swing level in GDI logic implementation. +is eventually
needs full swing implementation for the proper sum output,
and interns increase the area of implementation through
transistor count.

Except MFA, the remaining existing adders carry ex-
pression also uses the cascaded logic gates and leads to the
aforesaid problem. Our proposed full swing EAFA adder
carefully avoids cascaded logic, and it uses the AND, OR,
and Multiplexer (MUX) functionalities of the GDI logic cell

G OUT

P

VDD

0

N

Figure 1: Basic GDI cell.

Table 1: Truth table of basic GDI cell.

N P G Out Function

“0” B A A’B F1
B “1” A A’ +B F2
“1” B A A+B OR
B “0” A AB AND
C B A A’B+AC MUX
“0” “1” A A’ NOT

Computational Intelligence and Neuroscience 3



to realize the sum and directly takes input A as the carry
output. +is design implements the same kind of 1-bit adder
of two errors with minimal transistor delay and power
compared to others. Here, Multiplexer plays a vital role in all
the minimization.

EAFA Design 1 is implemented with 10 transistors using
full swing AND and OR gates, as shown in Figure 5. EAFA
Design 2 is deployed with 6 transistors, which uses standard
AND and OR gates along with Multiplexer to produce the
full swing output. +is ability of full swing with a smaller
number of transistors is achieved by the noncascaded
structure of the proposed circuit, which is presented in
Figure 6.

3.1.SegmentedApproximateAdders. Approximate adders are
the core and essential part of any approximate circuits used
for processing the signals or data. Segmented approximate
addition is the most widely used method for its accuracy and
error trade-off [5–7, 11, 16–19]. In segmented approximate
adders, half of the binary data from the MSB and half of the
binary data from the LSB are segmented separately. Upper
MSB segment data is added by the accurate adder to preserve

the quality of the results, and lower LSB segment data is added
by an inaccurate adder, which aids in the speed and energy
efficiency of computation. In the existing 16-bit GDI High-

Table 2: Truth table of proposed error-tolerant design with minimal error distance.

Inputs
Accurate

output [18]

Adder [5] Adder [6] Proposed adder

AFA MFA EAFA

A B Cin Cout S Cout S ED Cout S ED Cout S ED

0 0 0 0 0 0 1 +1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 1 0 0 1 0 0 1 0
0 1 1 1 0 1 0 0 0 0 −2 0 1 −1
1 0 0 0 1 0 1 0 1 1 +2 1 0 +1
1 0 1 1 0 1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 0 0 1 0 0 1 0 0
1 1 1 1 1 1 0 -1 1 1 0 1 1 0

0

Input 1

Input 2

Logic 1

OUT= Input1 OR Input2

VDD

Figure 2: GDI-based OR gate.

Input 1

Input 2

SELECT

0

OUT

VDD

Figure 3: GDI-based MUX.

Input 1

0

Logic 0

Input 2

OUT= Input1 AND Input2

VDD

Figure 4: GDI-based AND gate.

4 Computational Intelligence and Neuroscience



Speed Error-Tolerant Adder (GDI-HSETAI and II) [27],
authors suggested the 8-bit CSLA for the 8-bit accurate part
and inaccurate adders for lower 8 bits.

3.2. Proposed Segmented Approximate Adders. In our work,
we proposed two 16-bit GDI Energy and Area Efficient
High-Speed Error-Tolerant Adders (GDI-EAHSETA) as
described in Figure 7 based on our 1-bit adder EAFA Design
1 and EAFA Design 2. In the proposed 16-bit adder, we
modified the accurate 8-bit adder, which uses a combination
of 4-bit CSLA and 4-bit RCA [29–32] for the upper MSB 8-
bit segment. Lower 8-bit LSB segment uses our proposed
EAFA designs.

From the detailed proposed block diagram presented in
Figure 8, it is evident that our proposed architecture has
only 12 numbers of common full adders and 5 multiplexers
in the accurate 8-bit adder, and the optimized design
portion is highlighted in the same diagram. Our modified

accurate 8-bit adder in the 16-bit GDI-EAHSETA uses 25%
less number of FAs and 50% less number of multiplexers
compared to the existing 16-bit GDI-HSETA. EAFA De-
signs 1 and 2 used in the inaccurate 8-bit adder consist of 10
and 6 transistors, respectively. +ose proposed EAFA
designs occupy 16.67% and 50% less area, respectively, in
comparison with the efficient existing MFA Design 2 in-
accurate 8-bit adders.

4. Experimental Results and Discussion

All the circuits presented in this work have been simulated
with the Cadence EDA tools with 90 nm PTM.

4.1. Proposed 1-Bit Full Swing EAFA. Both the proposed full
adders exhibit full swing performance. In the EAFA Design
1, full swing AND and OR GDI logic gate is used to maintain

Table 3: List of Boolean expressions to implement the accurate and error-tolerant full adder designs.

Type Sum Carry

Common adder [18]
Design 1 Sum � Cin (AXORB) + Cin(AXORB) COut � (AXORB)Cin + (AXORB)
Design 2 Sum � AXORBXORCin COut � Cin(AANDB) + Cin(AORB)
Design 3 Sum � AXORBXORCin COut � AANDB + (AXORB)Cin

AFA [5]
Design 1 Sum � NOT(COut) COut � (AXORB)Cin + (AXORB)
Design 2 Sum � NOT(COut) COut � Cin(AANDB) + Cin(AORB)
Design 3 Sum � NOT(COut) COut � AANDB + (AXORB)Cin

MFA [6]
Design 1 Sum � Cin(AXORB) + Cin(AXORB) COut � A

Design 2 Sum � AXORBXORCin COut � A

EAFA (proposed adder)
Design 1 Sum � A(BORCin ) + A(BANDCin) COut � A

Design 2 Sum � A(BORCin ) + A(BANDCin) COut � A

0

M6

MbreakN

M7

MbreakP

0

B

M8

MbreakN

M9

MbreakP

0

M10

MbreakN

M11

MbreakP

0

A

SUM

VDD

CARRY

VDD

VDD

M12

MbreakP

Cin

VDD

M13

MbreakN

0

B

0

Cin

M1

MbreakN

M2

MbreakP

Cin

VDD

Figure 5: GDI-based full swing EAFA Design 1 with 10 transistors.

Computational Intelligence and Neuroscience 5



the voltage level, and it is given through the GDI MUX for
selecting the proper sum value of the given input.

Full swing structure of AND and OR there itself manages
the signal levels not to go down below and above the specific
voltage level to represent logic 0 and 1. MUX simply passes
the logic value through it to the sum output. Its simulated
results for all the input combinations are shown in Figure 9.
From simulation results of Figures 9 and 10, it is evident that
there are no voltage level moderations in the sum and carry

outputs of both the adders. Our proposed 6-transistor EAFA
Design 2 itself generates full swing output without any extra
transistors for modifying the voltage levels at par with the
common adder, AFA, MFA, and EAFA Design 1.

4.2. Power Consumption and Delay. +e average power
consumption is computed through the measurement tool in
the SPICE simulation. +e maximum of the average power is

M6

MbreakN

M7

MbreakP

0

Cin

VDD

B

M8

MbreakN

M9

MbreakP

0

Cin

B

M10

MbreakN

M11

MbreakP

0

A SUM

0

VDD

VDD

VDD

CARRY

Figure 6: GDI-based full swing EAFA Design 2 with 6 transistors.

B15-B8

4-BIT
CSLA

4-BIT
RCA

A15-A8 B7-B0

Cin (A7)

COUT S15 – S8

ACCURATE PART

S7 – S0

16 BIT GDI-EAHSETA

INACCURATE PART

GDI EAFA Design 1/
GDI EAFA Design 2

A7-A0

Figure 7: Block diagram of the proposed 16-bit GDI-EAHSETA.

6 Computational Intelligence and Neuroscience



calculated and taken as a consumed power of the adder
circuits [27].

+e delay of all the adders is measured by calculating the
time difference between the time taken by the input voltage
swing to rise or fall from its 50% of the maximum value. +e
maximum delay got from various input and output com-
binations is taken as the worst-case delay [24]. +e power
and delay results of the various simulated adders are pre-
sented in Table 4.

From the simulated results of all the 1-bit full adders, it is
prompted that our proposed EAFA Design 1 has consumed
47.62% less power compared to best among common adders
(Design 1) and 46.15% less power compared to best among
AFA adders (Design 2) and 44.42% less power compared to
best among MFA adder (Design 2).

In the same way, our proposed EAFA Design 2 out-
performs other adders with 99.99% less power consumption.
+is power performance has been achieved in our proposed

PROPOSED INACCURATE 8 BIT ADDERMODIFIED ACCURATE 8 BIT ADDER

EAFA Design 1 (10 T)/ EAFA Design 2 (6 T)
4 BIT RCA

A
15

B
15

S1
5

FA

Cout

FA

A
14

B
14

S1
4

FA

FA
A

13
B

13
S1

3

FA

FA

A
12

B
12

S1
2

S1
1

S1
0 S9 S8

FA

A
11

B
11

FA

A
10

B
10

FA

A
9

B
9

FA

A
8

B
8

FA

FA
1

0

S7
B

7
A

7

EAFA

S6
B

6
A

6

EAFA

S5
B

5
A

5

EAFA

S4
B

4
A

4

EAFA

S3
B

3
A

3

EAFA

S2
B

2
A

2

EAFA

S1
B

1

C
1

C
2

C
3

C
4

C
5

C
6

C
7

A
1

EAFA

S0
B

0 C
in

=
0

A
0

EAFA

4 BIT CSLA

FA: Common Full Adder

EAFA: Energy and Area E�cicient Full Adder

CSLA: Carry Select Adder

T: Transistors

Figure 8: Detailed block diagram of the proposed 16-bit GDI-EAHSETA.

Sum

Carry

Input Cin

Input B

Input A
EAFA I Outputs

0s

0v

-5v

1.0v

0v

-5v

1.0v

0v

-5v

1.0v

0v

-5v

1.0v

0v

V(FS_EAFA:B)

V(FS_EAFA:A)

V(FS_EAFA:Cin)

V(FS_EAFA:CARRY)

V(FS_EAFA:SUM)

-5v

1.0v

2us 4us 6us 8us

Error Outputs

Time

10us 12us 14us 16us

Figure 9: Simulation results of the proposed 10-transistor 1-bit full swing EAFA Design 1 for various input combinations.

Computational Intelligence and Neuroscience 7



structure by means of handling switching activity involved
in producing the sum and carry terms. For any combination
of input, in a given time, only three transistors are in ON
state for producing a sum output, and for generating carry,
transistors need not spend energy since it is directly taken
from one of the inputs. +e speed performance of the
proposed EAFA adders is good with a minimal delay
compared to other simulated adders. Our EAFA Design 1
has reduced the delay of 38.79%, 41.16%, and 30.66%,
compared to corresponding best performing adders in their
groups, namely, common adder Design 1, AFA Design 2,
and MFA Design 2, respectively. +e worst-case delay of
459.447 ps is measured between the sum and the input A
value. +e proposed EAFA Design 2 has 86.7%, 87.21%, and
84.93% less delay compared to the common adder Design 1,
AFA Design 2, and MFA Design 2, respectively, and the
same is illustrated in Figure 11.

+e worst-case delay of the adder has arrived between
the input A and the sum output, and its value is 99.866 ps.
+e reason behind the minimal delay is that both the
proposed designs need not spend time in carry calculation,
and hence carry does not have an effect over the delay. +e
sum output is the dominant player in the delay. In our
proposed Design 2, to generate the sum for any combination
of input, the signal has to travel through two numbers of
transistors only. +is makes sense for the speed of operation
of our proposed circuit architecture.

4.3. Performance Evaluation of 16-Bit Adders. In order to
prove the cascaded effectless operation of the proposed
adder, 1-bit EAFA Design 1 and Design 2 are extended to
form 16-bit adders and are compared with various config-
urations of 16-bit adders of different types as listed in

0s

0v

-5v

1.0v

0v

-5v

1.0v

0v

-5v

1.0v

0v

-5v

1.0v

0v
SEL>>

-5v

1.0v

2us 4us 6us 8us

Error Outputs

Time

10us

Sum

EAFA II Outputs

Carry

Input Cin

Input B

Input A

12us 14us 16us

V(EAFA:A)

V(EAFA:B)

V(EAFA:Cin)

V(EAFA:CARRY)

V(EAFA:SUM)

Figure 10: Simulation results of proposed 6-transistor 1-bit full swing EAFA Design 2 for various input combinations.

Table 4: Simulation results of various types of 1-bit FA cells.

Sl. no. Types Power dissipation (W) Delay (ps) No. of transistors

1
Common adder

Design 1 649.966µ 750.649 18
2 Design 2 811.491µ 983.811 22
3 Design 3 988.816µ 992.583 23
4

AFA
Design 1 812.450µ 850.435 14

5 Design 2 632.276µ 780.870 16
6 Design 3 1057.88µ 810.526 21
7

MFA
Design 1 649.966µ 724.348 14

8 Design 2 612.572µ 662.609 12
9 Proposed EAFA Design 1 340.476µ 459.447 10
10 Proposed EAFA Design 2 175.336p 99.866 6

8 Computational Intelligence and Neuroscience



Table 5. +e total area occupied by each type in terms of
transistor count and power consumed by the corresponding
adders is also listed. GDI Common Multibit Adders (GDI-
CMBA) I to III use the accurate adders, and GDI Ap-
proximate Multibit Adders (GDI-AMBA) I to III are formed
by combining accurate adder for MSB 8 bits and inaccurate
AFA for LSB 8 bits. GDI-HSETAI and II are created by an 8-
bit accurate adder and 8-bit inaccurate MFA adder. In the
first three types, GDI-CMBA occupies less area and con-
sumes less power. From type 4 to type 8 adders, GDI-
AMBAII performs well among AFA-based designs, and
GDI-HSETAII performs well among MFA-based designs.

Among the listed adders in Table 5, our proposed 16-bit
GDI-EAHSETAI occupies 12×18� 216 transistors for 12
common full adder Designs 1, 5× 6� 30 transistors for 5
multiplexers, and 8×10� 80 transistors for inaccurate 8-bit
adder based on EAFA Design 1. All put together, it occupies
326 transistors (216 + 30+ 80) only. +at is less than 33.74%,
31.51%, and 26.57% area of relatively well-performing adders,
namely, GDI-CMBAI, GDI-AMBAII, and GDI-HSETAII
adders, respectively. Similarly, our proposed 16-bit GDI-
EAHSETAII occupies a total of 294 transistors which are
summed up from 12×18� 216 transistors for common full
adders, 5× 6� 30 transistors for multiplexers, and 8× 6� 48
transistors for inaccurate EAFA Design 2-based inaccurate
adder. +e area occupied by the GDI-EAHSETAII adder is
40.24%, 38.23%, 33.78%, and 9.8% less than the area needed to
implement the GDI-CMBAI, GDI-AMBAII, GDI-HSETAII,
and GDI-EAHSETAI, respectively. A comparison of the area
occupied by the proposed high-speed adder with other adders
is illustrated in Figure 11.

+e average power has been measured for all the 16-bit
adders using Cadence SPICE. +e substantial reduction in
the number of transistors and the circuit structure aids
less power consumption of our proposed 16-bit GDI-
EAHSETAI and II. In comparison with other 16-bit ad-
ders proposed, GDI-EAHSETAI consumes 87.5%,
78.92%, and 75.78% less power, GDI-EAHSETAII con-
sumes 88.31%, 80.27%, and 77.34% less power than GDI-
CMBAI, GDI-AMBAII, and GDI-HSETAII, respectively,
and this is illustrated in Figure 12. Our proposed GDI-
EAHSETAII outperforms all the types of listed adders by
means of area and power while producing distortion-free
outputs.

4.4. Performance Evaluation of the Adders in FPGA. For the
practicability and to evaluate the proposed logic perfor-
mance, we have implemented the best inaccurate-based 16-
bit adder logic among all ten types, which are synthesized
using Quartus Prime 18.0 tool for the Intel Cyclone IV
FPGA platform, and parameters are listed in Table 6. In this
hardware platform also, our proposed adder outperforms
other adders by occupying fewer LUTs, consuming less
power, and with improved speed of operation.

4.5. Error Characteristic of Approximate Adders.
Approximate adders are characterized by their nonconfor-
mity of calculated results from the precise results. Various
error parameters such as error distance (ED) and mean error
distance (MED) are used to properly characterize the ap-
proximate adders for practical applications. Error distance is
the absolute difference of the added results with definite
results. Mean error distance is calculated as the average of all
the error distances of an inaccurate adder circuit, and it is
given in equation (1). In order to make an additional
comparison with similar adders, one more parameter is
derived from MED called normalized mean error distance
(NMED). NMED is calculated as in equation (2) as the ratio
of MED to the maximum error value (D) of that specific
adder.

MED �
1

22n 
22n

i�1

EDi, (1)

NMED �
MED

D
. (2)

Error characteristics are useful to validate the approxi-
mate adders for their suitability for application deployment.
Idea MED of accurate adder is “0.” So, an approximate adder
produces the MED value nearing the ideal value, which is
measured as good for use in computation applications.
Similarly, NMED is the derived parameter from MED to
sense the overall error distribution with respect to the
maximum possible error in the designed approximate adder.

Based on equations (1) and (2), error metrics have been
calculated and tabulated in Table 7. From this, our proposed
added adder exhibits better error characteristics compared
to other existing adders, and it is very well suited for real-

G
D

I-
C

M
B

A
I

G
D

I-
C

M
B

A
II

G
D

I-
C

M
B

A
II

I

G
D

I-
A

M
B

A
I

G
D

I-
A

M
B

A
II

G
D

I-
A

M
B

A
II

I

G
D

I-
H

SE
T

A
I

G
D

I-
H

SE
T

A
II

P
ro

p
o

se
d

 I

P
ro

p
o

se
d

 I
I

0

200

400

T
ra

n
si

st
o

r 
co

u
n

t

600

800

Adder Type

Figure 11: Comparison of the area of various 16-bit adders with the proposed GDI-EAHSETA adders in terms of transistor count.

Computational Intelligence and Neuroscience 9



Table 5: Comparison of various 16-bit adder configurations in terms of transistor count and power dissipation.

Sl.
no.

Type

16-bit adder configurations Count of adder cells and transistors Multiplexers

Total
(1) + (2)

Power
dissipation

(mW)
Accurate (8-
bit MSB part)

Inaccurate
(8-bit LSB

part)

Accurate
(8-bit MSB

part)

Inaccurate
(8-bit LSB

part)

Total no. of
transistors

(1)

No. of
2 :1

MUX

Total no. of
transistors

(2)

1 GDI-CMBAI
Common
Design 1
(CSLA)

Common
Design 1

16 8 432 10 60 492 24.8

2 GDI-CMBAII
Common
Design 1
(CSLA)

Common
Design 2

16 8 528 10 60 588 74.4

3
GDI-

CMBAIII

Common
Design 1
(CSLA)

Common
Design 3

16 8 552 10 60 612 121.4

4 GDI-AMBAI
Common
Design 1
(CSLA)

AFA Design
1

16 8 400 10 60 460 15.95

5 GDI-AMBAII
Common
Design 1
(CSLA)

AFA Design
2

16 8 416 10 60 476 14.7

6
GDI-

AMBAIII

Common
Design 1
(CSLA)

AFA Design
3

16 8 456 10 60 516 16.54

7 GDI-HSETAI
Common
Design 1
(CSLA)

MFA
Design 1

16 8 400 10 60 460 14.0

8
GDI-

HSETAII

Common
Design 1
(CSLA)

MFA
Design 2

16 8 384 10 60 444 12.8

9
(Proposed)
GDI-

EAHSETAI

Common
Design 1 (4-

bit
CSLA+ 4-bit
RCA)

EAFA
Design 1

12 8 296 5 30 326 3.1

10
(Proposed)
GDI-

EAHSETAII

Common
Design 1 (4-

bit
CSLA+ 4-bit
RCA)

EAFA
Design 2

12 8 264 5 30 294 2.9

GDI-CMBAI

GDI-CMBAII

GDI-CMBAIII

GDI-AMBAI

GDI-AMBAII

GDI-AMBAIII

GDI-HSETAI

GDI-HSETAII

Proposed I

Proposed II

Figure 12: Comparison of power consumption of various 16-bit adders with the proposed GDI-EAHSETA adders.

10 Computational Intelligence and Neuroscience



time error-resilient applications such as deep learning-based
image processing.

5. Convolutional Neural Network
Accelerator for the Handwritten Digit
Classification Inference: A Case Study

Convolutional neural networks are drawing major attention
in deep learning-based applications, especially classification
and detection [33, 34]. Even CNN is also used to predict
high-frequency details lost in low-resolution images to
create superresolution images [35].

CNNs are inheriting error tolerance through their
learning and updating process of weights by random ini-
tialization. In this work, we took the privilege of the error-
resilient property of CNN and focused on developing the
most common block, which is used in the convolution
computation. +e fundamental block frequently involved in
all the computation processes of CNN is the adder. Adder
contributes to the whole system’s performance and influ-
ences the total energy consumption. +us, introducing the
inexactness in the addition process curtails the power, area,
and delay while improving the whole system’s performance
[8, 9].

Since CNN is the most commonly used method in any
deep learning process, we attempted to accelerate the
computationally intensive convolutional blocks in it. In this
work, an accelerator to accelerate the CNN for handwritten
digit classification application is developed through dedi-
cated fixed-point approximate arithmetic blocks for the
convolution operation. A similar kind of accelerator work
can be found in the literature, but for accelerating softmax
regression [8] and image to column operation [9] alone.

5.1. CNN System Architecture for Digit Classification. A
CNN is a multilayer filter specially designed to visualize data
information through preprocessing operations. In CNN, the
input parameter size has been decreased layer by layer at the
same time the size of the filter increases. +e general system
architecture of CNN for digital identification is shown in

Figure 13. As the depth of the network increases, that is, the
number of layers in between the input and the output increases,
the accuracy of the digit classification also increases [36].

5.2. VGG Net. In this work, we have concentrated only on
VGG-based Low-Weight Digit Detector (LWDD) CNN
system architecture, which is deployed in real-time hand-
written digit recognition applications to detect digits from 0
to 9 [37].

In LWDD, authors optimized various layers and made
the weights as a 16-bit fixed-point to minimize the total size
and count of the weight parameters. +ese modifications
have greatly reduced the storage requirements of the pa-
rameters, which made them easily fit in the FPGA. Different
layers structure and the corresponding sizes of the images
and parameters of the same in the LWDD are given in
Table 8.

+is LWDD architecture gets 28× 28 size handwritten
digit images as input and classifies it as a number between 0
and 9. Handwritten digit images from the open MNIST
dataset are used for training the network, and the trained
parameters are used for inferencing digit classification.

5.3. Performance of Evaluation of the Proposed Adder in CNN
Accelerator. In order to accelerate the real-time handwritten
digit recognition process, we replaced conventional adders
used in the convolution layers of the LWDD architecture
with our proposed GDI-EAHSETA approximate adder logic
and evaluated.

For a fair comparison of the acceleration process, the
existing competing adders GDI-AMBA and GDI-HSETA
are also implemented in the accelerator. +e hardware
complexity for processing convolution layer is much simpler
in our proposed architecture, the comparison of time taken
for calculation at different layers in terms of clock cycles is
listed in Table 9, and its graphical representation is presented
in Figure 14.

From the comparison, it is evident that our proposed
GDI-EAHSETAII greatly reduces the number of clock cycles
needed for the convolution compared to conventional ac-
curate adder GDI-CMBAI and speeds up the process by the
factor of 1.29. In comparison with related approximate
adders, the proposed adder exhibits relatively better per-
formance by taking a smaller number of clock cycles.
Comparison of clock cycles taken by the different levels of
convolution layers for the various LWDD system deployed
different approximate adders.

FPGA implementation of LWDD accelerator system
based on various adders is done in Intel Cyclone IV
EP4CE22F17C6N FPGA, and the resources utilized for
the deployment of the accelerator are listed in Table 10
along with the digit classification accuracy. GDI-AMBAII
utilizes more resources compared to other approximate
adders with the speed-up factor of 1.04, but still, it
produces moderate accuracy of 88%. GDI-HSETAII
consumes moderate resources while showing very little
accuracy of 80% among others, even though it speeds up
the computation process by the factor of 1.23. +e

Table 6: Synthesized results of the existing and proposed ap-
proximate adders.

16-Bit adder design Logic cells
Power
(mW)

Delay (ns)

GDI-CMBAI 32 113.22 19.351
GDI-AMBAII 32 113.22 18.904
GDI-HSETAII 24 111.71 15.758
Proposed GDI-
EAHSETAII

20 108.54 14.755

Table 7: Error characteristics of existing and proposed approxi-
mate adders.

16-bit adder design MED NMED

GDI-AMBAII 0.0064 4.88×10−8

GDI-HSETAII 0.0095 7.25×10−8

Proposed GDI-EAHSETAII 0.0048 3.66×10−8

Computational Intelligence and Neuroscience 11



Input N1_Channels N2_Channels

Approximate
Convolution

Pooling Approximate
Convolution

Pooling

N2_Units

Outputs

0

1

2

9

Fully Connected
Neural Network

Figure 13: Proposed approximate convolution in the typical CNN architecture.

Table 8: Low-Weight Digit Detector network architecture.

Layer (type) Output shape Parameter

Input_1 (inputLayer) (28, 28, 1) 0
Conv1 (conv2D) (28, 28, 4) 36
Activation_1 (activation) (28, 28, 4) 0
Conv2 (conv2D) (28, 28, 4) 144
Activation_2 (activation) (28, 28, 4) 0
Pool1 (maxpooling2D) (14, 14, 4) 0
Conv3 (conv2D) (14, 14, 8) 288
Activation_3 (activation) (14, 14, 8) 0
Conv4 (conv2D) (14, 14, 8) 576
Activation_4 (activation) (14, 14, 8) 0
Pool2 (maxpooling2D) (7, 7, 8) 0
Conv5 (conv2D) (7, 7, 16) 1152
Activation_5 (activation) (7, 7, 16) 0
Conv6 (conv2D) (7, 7, 16) 2304
Activation_6 (activation) (7, 7, 16) 0
Global_max_pooling2d_1 (global) (16) 0
Dense_1 (dense) (11) 176
Activation_7 (activation) (11) 0

Table 9: Comparison of clock cycles taken for computation by the convolution layers in the LWDD network.

Stage of processing

Number of clock cycles
Speed-up factor

LWDD system based on different adders

GDI-
CMBAI

GDI-
AMBAII

GDI-
HSETAII

Proposed GDI-
EAHSETAII

GDI-
AMBAII

GDI-
HSETAII

Proposed
GDI-

EAHSETAII

Convolution layer
1

12605 12120 10245 9771 1.04 1.23 1.29

Convolution layer
2

50416 48470 40990 39112 1.04 1.23 1.29

Convolution layer
3

25569 24587 20789 19977 1.04 1.23 1.29

Convolution layer
4

51136 46171 41560 39609 1.04 1.23 1.29

Convolution layer
5

27009 25976 21956 20885 1.04 1.23 1.29

Convolution layer
6

52016 50015 42290 40320 1.04 1.23 1.29

12 Computational Intelligence and Neuroscience



proposed GDI-HSETAII utilizes a smaller resource while
producing 95% accuracy; it speeds up the computation
process by 1.29 factors. Since the proposed adder is
outperforming all other adders in terms of resource
utilization, speed, and accuracy, it is best suited for the
CNN inference accelerator.

6. Conclusion

In this work, we designed and evaluated the transistor-level
16-bit Energy and Area Efficient High-Speed Error-Tolerant
Adders based on the proposed GDI-based full swing energy
and area efficient error-tolerant full adders for handling the
cascading effect. In comparison with the similar kind of
inexact full adders, the proposed EAFA Design 1 and EAFA
Design 2 have a lesser area, consuming less power and better
speed of operation while giving better reliability with the
minimum error distance. +e efficiency of the proposed
EAHSETA is compared with the various multibit adders
based on common CSLA designs, AFA, MFA, and HSETA.
+e improvements in the speed, area, power of EAHSETAI
and EAHSETAII are achieved through the cascaded
effectless architecture of the EAFA designs. +e proposed
EAHSETAII has a relatively lesser area and consumes
88.31%, 80.27%, and 77.34% lesser power than in-group best
performing GDI-CMBAI, GDI-AMBAII, and GDI-HSE-
TAII, respectively. +ese features of EAHSETAII satisfy the
area and power requirements of resource-constrained high-
speed, low-power deep learning applications. +e proposed
EAHSETAII, AMBAII, and HSETAII logics are deployed to
accelerate the convolution computation of the LWDD
network, which is used in real-time handwritten digit rec-
ognition. All the systems are implemented in the Intel

Cyclone IV FPGA, and performance has been evaluated. +e
proposed EAHSETAII outperforms other similar logics by
producing 95% classification accuracy with the speed-up
factor of 1.29 while consuming fewer resources. Experi-
mental results also confer that AMBAII is able to produce
moderate accuracy with less speed and HSETAII logic ex-
hibits poor accuracy with the moderate speed-up factor. In
the future, the proposed logic can be extended to an inexact
multiplier design for the multiply and accumulate unit for
further acceleration.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

References

[1] S. Dutt, S. Nandi, and G. Trivedi, “Analysis and design of
adders for approximate computing,” ACM Transactions on
Embedded Computing Systems, vol. 17, pp. 1–28, 2017.

[2] N. Zhu, L. G. Wang, W. Zhang, K. S. Yeo, and Z. H. Kong,
“Design of low-power high-speed truncation-error-tolerant
adder and its application in digital signal processing,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 18,
pp. 1225–1229, 2009.

[3] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-
power digital signal processing using approximate adders,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 1, pp. 124–137, 2013.

Convolution
Layer 1

N
u

m
b

er
 o

f 
C

lo
ck

 C
yc

le
s

Convolution
Layer 2

Convolution
Layer 3

Convolution
Layer 4

Layer of Different LWDD System

Convolution
Layer 5

Convolution
Layer 6

0

10000

20000

30000

40000

50000

60000

GDI-CMBAI

GDI-AMBAII

GDI-HSETAII

Proposed GDI-EAHSETAII

Figure 14: Clock cycles taken by different levels of convolution layer for different systems.

Table 10: Resource utilization by the LWDD system and accuracy of classification.

LWDD system Logic elements Memory Embedded multiplier 9-bit elements
Critical path delay

(ns)
Classification accuracy

(%)

GDI-CMBAI 3750 232111 25 21.840 96
GDI-AMBAII 3722 232111 25 21.720 88
GDI-HSETAII 3410 200700 23 20.570 80
Proposed GDI-
EAHSETAII

3275 200221 23 20.332 95

Computational Intelligence and Neuroscience 13



[4] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Ap-
proximate DCT image compression using inexact comput-
ing,” IEEE Transactions on Computers, vol. 67, no. 2,
pp. 149–159, 2018.

[5] R. Jothin and C. Vasanthanayaki, “High performance sig-
nificance approximation error tolerance adder for image
processing applications,” Journal of Electronic Testing, vol. 32,
no. 3, pp. 377–383, 2016.

[6] S. Geetha and P. Amritvalli, “High speed error tolerant adder
for multimedia applications,” Journal of Electronic Testing,
vol. 33, no. 5, pp. 675–688, 2017.

[7] R. Jothin and C. Vasanthanayaki, “High performance error
tolerant adders for image processing applications,” IETE
Journal of Research, vol. 0, pp. 1–11, 2018.

[8] N.-C. Huang, S.-Y. Chen, and K.-C. Wu, “Sensor-based ap-
proximate adder design for accelerating error-tolerant deep-
learning applications,” in Proceedings of the IEEE DATE19
2019, pp. 692–697, Florence, Italy, March 2019.

[9] J. Castro-Godinez, D. Hernandez-Araya, M. Shafique, and
J. Henkel, “Approximate acceleration for CNN-based appli-
cations on IoT edge devices,” in Proceedings of the 2020 IEEE
11th Lat. Am. Symp. Circuits Syst. LASCAS, pp. 4–7, San Jose,
Costa Rica, February 2020.

[10] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas,
“Bio-inspired imprecise computational blocks for efficient
VLSI implementation of soft-computing applications,” IEEE
Trans. Circuits Syst. I Regul. Pap.vol. 57, pp. 850–862, 2019.

[11] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and
N. S. Kim, “Energy-efficient approximate multiplication for
digital signal processing and classification applications,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 23,
no. 6, pp. 1180–1184, 2015.

[12] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and
K. Pekmestzi, “Design-efficient approximate multiplication
circuits through partial product perforation,” IEEE Transac-
tions on Very Large Scale Integration Systems, vol. 24, no. 10,
pp. 3105–3117, 2016.

[13] S. Venkatachalam and S.-B. Ko, “Design of power and area ef-
ficient approximate multipliers,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 25, no. 5, pp. 1782–1786, 2017.

[14] H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power ap-
proximate unsigned multipliers with configurable error re-
covery,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 66, no. 1, pp. 189–202, 2019.

[15] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and
C. Wu, “Leveraging the error resilience of neural networks for
designing highly energy efficient accelerators,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 8, pp. 1223–1235, 2015.

[16] N. Zhu, W. L. Goh, G. Wang, and K. Yeo, “Enhanced low-
power high-speed adder for error-tolerant application,” in
Proceedings of the 2010 Int. SoC Des. Conf. ISOCC, pp. 323–
327, Singapore, December 2010.

[17] R. Jothin and C. Vasanthanayaki, “High speed energy ef-
ficient static segment adder for approximate computing
applications,” Journal of Electronic Testing, vol. 33, no. 1,
pp. 125–132, 2017.

[18] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate
adder with carry skip for error resilient neuromorphic VLSI
systems,” in Proceedings of the IEEE/ACM Int. Conf. Comput.

Des. Dig. Tech. Pap. ICCAD, pp. 130–137, San Jose, CA, USA,
November 2013.

[19] A. B. Kahng and S. Kang, “Accuracy-configurable adder for
approximate arithmetic designs,” vol. 820, 2012.

[20] H. Esmaeilzadeh, “Approximate acceleration: a path through
the era of dark silicon and big data,” in Proceedings of the Int.
Conf. Compil. Archit. Synth. Embed. Syst. CASES 2015,
pp. 31-32, Amsterdam +e Netherlands, October 2015.

[21] A. Morgenshtein, A. Fish, and I. A. Wagner, “Gate-diffusion
input (GDI): a power-efficient method for digital combina-
torial circuits,” IEEE Transactions on Very Large Scale Inte-
gration Systems, vol. 10, no. 5, pp. 566–581, 2002.

[22] M. Shoba and R. Nakkeeran, “GDI based full adders for
energy efficient arithmetic applications,” Engineering Science
and Technology, an International Journal, vol. 19, no. 1,
pp. 485–496, 2016.

[23] A. Morgenshtein, V. Yuzhaninov, A. Kovshilovsky, and A. Fish,
“Full-swing gate diffusion input logic-case-study of low-power
CLA adder design,” Integration, vol. 47, no. 1, pp. 62–70, 2014.

[24] V. Foroutan, M. Taheri, K. Navi, and A. A. Mazreah, “Design
of two Low-Power full adder cells using GDI structure and
hybrid CMOS logic style,” Integration, vol. 47, no. 1,
pp. 48–61, 2014.

[25] R. Uma and P. Dhavachelvan, “Modified gate diffusion input
technique: a new technique for enhancing performance in full
adder circuits,” Procedia Technology, vol. 6, pp. 74–81, 2012.

[26] P. M. Lee, C. H. Hsu, and Y. H. Hung, “Novel 10-T full adders
realized by GDI structure,” in Proceedings of the 2007 Int.
Symp. Integr. Circuits, ISIC, Singapore, September 2007.

[27] S. Geetha and P. Amritvalli, “Design of high speed error
tolerant adder using gate diffusion input technique,” Journal
of Electronic Testing, vol. 35, no. 3, pp. 383–400, 2019.

[28] K. Sanapala and R. Sakthivel, “Ultra-low-voltage GDI-based
hybrid full adder design for area and energy-efficient com-
puting systems,” IET Circuits, Devices and Systems, vol. 13,
no. 4, pp. 465–470, 2019.

[29] T.-Y. Chang and M.-J. Hsiao, “Carry-select adder using single
ripple-carry adder,” Electronics Letters, vol. 34, p. 2101, 2002.

[30] B. Ramkumar and H. M. Kittur, “Low-power and area-effi-
cient carry select adder,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 20, no. 2, pp. 371–375, 2012.

[31] B. K. Mohanty and S. K. Patel, “Area-delay-power efficient
carry-select adder,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 61, no. 6, pp. 418–422, 2014.

[32] B. Sivasankari, A. Ahilan, R. Jothin, and A. J. G. Malar,
“Reliable N sleep shuffled phase damping design for ground
bouncing noise mitigation,” Microelectronics Reliability,
vol. 88-90, pp. 1316–1321, 2018.

[33] J. Li, X. Long, S. Hu, Y. Hu, Q. Gu, and D. Xu, “A novel
hardware-oriented ultra-high-speed object detection algo-
rithm based on convolutional neural network,” J. Real-Time
Image Process, vol. 23, 2019.

[34] C. Yao, J. Hu, W. Min, Z. Deng, S. Zou, and W. Min, “A novel
real-time fall detection method based on head segmentation
and convolutional neural network,” J. Real-Time Image
Process, vol. 14, 2020.

[35] X. Li, Y. Wu, W. Zhang, R. Wang, and F. Hou, “Deep learning
methods in real-time image super-resolution: a survey,”
J. Real-Time Image Process, vol. 21, 2019.

14 Computational Intelligence and Neuroscience



[36] M. Nagarajan et al., Fixed Point Multi-Bit Approximate Adder
Based Convolutional Neural Network Accelerator For Digit
Classification Inference, Right Publishers, Paris, France, 1 Jan
2020.

[37] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov, and
A. Kalinin, “Fixed-point convolutional neural network for
real-time video processing in FPGA,” in Proceedings of the
2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng.
ElConRus, pp. 1605–1611, Saint Petersburg and Moscow,
Russia, January 2019.

Computational Intelligence and Neuroscience 15


