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ABOUT THE SADC FUTURES 
PROJECT
In these highly uncertain and rapidly changing times, the SADC 
region, like many regions in Africa, remains fundamentally dependent 
on a resilient agricultural system and natural resource base. Climate 
change still poses the greatest threat to the agricultural system 
and therefore technical capacity is needed to address these future 
impacts and adapt plans, policies and programs. Taking into account 
alternative futures, the SADC Futures project has produced tailored 
supporting materials and documents as part of a wider approach for 
foresight training in the region. These documents and the associated 
foresight framework aim to equip users to practically apply the range 
of foresight tools and methods for innovative strategic planning and 
policy formulation for climate resilience. 

This SADC Futures Project is a joint initiative of the SADC Secretariat’s 
Food, Agriculture and Natural Resources (FANR) Directorate, the Centre 
for Coordination of Agricultural Research and Development for Southern 
Africa (CCARDESA), the International Livestock Research Institute (ILRI) 
through the CGIAR Research Program on Climate Change, Agriculture 
and Food Security (CCAFS) and German Development Cooperation 
facilitated through the SADC / Deutsche Gesellschaft fur Internationale 
Zusammenarbeit (GIZ) GmbH ‘Adaptation to Climate Change in Rural 
Areas’ program (ACCRA), funded by the German Federal Ministry for 
Economic Cooperation and Development (BMZ). 
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SADC FUTURES FORESIGHT FRAMEWORK 

Input
Understanding our context

Analysis
What is happening?

Interpretation
Why is it happening?

Plan
What do we want to experience in the future? What 
might get in our way? What might we do to get there?

Prospection
What might happen that we have not thought about?

Reflection
What might we want to do differently?

Strategy
What will we do differently?
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INPUT PLAN PROSPECTION REFLECTION STRATEGY

Context Why is it 
happening?

What will we do 
differently?

What might we do 
to get there?

ANALYSIS 

What is 
happening?

INTERPRETATION
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Theme or key 
topic

Geopolitical 
boundary

Structures & 
policies

Timeline

Stakeholder 
Mapping

Identify 
drivers 
and critical 
uncertainties 

Develop 
plausible 
future 
scenarios 

Systems 
Mapping

Cross 
sectoral 
and multi-
stakeholder 
approaches 

Visioning 

Causal Analysis

Stakeholder 
Analysis
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Pathway Development 
& Trade-offs 

Developing 
Scenarios
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Implications

Transforming 
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Transformational 
Change
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differently?
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way? 
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Evidence 

Horizon 
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INPUT
ANALYSIS INTERPRETATION

PLAN

PROSPECTION

REFLECTION

STRATEGY

Systems Analysis and Sectoral 
Linkages Impacting Climate Resilient 
Development in the SADC Region

Mega-trends in the Southern African region

Rapid Climate Risk Assessment for 
the Southern Africa Development 
Community (SADC) Region

Structures, Policies and Stakeholder Landscape 
Relevant to Climate Change and Agriculture in 
the SADC Region 

Climate Resilient Development Pathways 

Historical Analysis of Climate Change and 
Agriculture Events in the SADC Region 
1970 - 2020

Structures, Policies and 
Stakeholder Landscape 

Relevant to Climate 
Change and Agriculture 

in the SADC Region 

Historical Analysis of 
Climate Change and 
Agriculture Related 

Events in SADC 

Systems Analysis and 
Sectoral Linkages 
Impacting Climate 

Resilient Development 
in the SADC Region 

Mega-trends in the 
Southern African Region 

Rapid Climate Risk 
Assessment for the Southern 

Africa Development 
Community (SADC) Region

Climate Resilient 
Development Pathways 

Applying Foresight 
For Enhanced Climate  

Resilience and Agriculture 
Policy Development in the 

SADC Region

To expand on the foresight and futures capacity building the project has produced a series of accompanying knowledge products and sources. The 
knowledge series mapped to the SADC Futures foresight framework is shown below.

ABOUT THE SADC FUTURES KNOWLEDGE SERIES
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What Are Scenarios Telling Us About Developing 
Climate-Resilient Pathways in the Southern 
African Region? Applying Foresight For Enhanced 

Climate Resilience and Agriculture 
Policy Development in the SADC Region

What Are Scenarios 
Telling Us About 

Developing Climate-
Resilient Pathways in the 
Southern African Region? 

These can all be found on the SADC Futures webpage https://bit.ly/SADCFuturesForesight.

SADC Futures
Developing Foresight Capacity 
for Climate Resilient 
Agricultural Development

SADC Futures Foresight Training Toolkit
Developing Skills and Capacity in Applying Foresight 
to Climate Resilient Agricultural Development in the 
SADC Region

SADC Futures Foresight 
Training Toolkit
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Figure 2. Search, screening and coding process 
and results for the systematic literature review. 
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in RCP4.5 (2031–2059), as compared to the 
historical time period (1971–1999). 
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Figure 6. Multi-model ensemble mean 1-month 
droughts in mid-century in RCP8.5 (2031–2059). 
SPEI <= -1 used to indicated droughts, and SPEI 
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Figure 8. Multi-model ensemble mean of change 
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RCP8.5 (2031–2059), as compared to the historical 
time period (1971–1999).
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(2031–2059). 
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Figure 10. Multi-model ensemble mean 95th 
percentile of rainfall (R95) by mid-century in RCP8.5 
(2031–2059).
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Figure 11. Vulnerability status of districts and 
countries (inset) across the SADC region. Quartiles 
represent the combined (10 indicators) relative 
vulnerability levels, whereby quartile 1 (red) = more 
vulnerable, quartile 4 (blue) = less vulnerable.
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Figure 12. Bivariate map showing hotspots of 
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scenario.
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Figure 14. Bivariate map showing hotspots 
of vulnerability to and risk of extreme drought 
within the districts of each SADC region for the 
RCP4.5 scenario.
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Figure 15. Bivariate map showing the 
vulnerability and risk of extreme drought within 
the districts of each SADC region for the RCP8.5 
scenario.
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Summary
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This rapid climate risk assessment 
for the Southern Africa Development 
Community (SADC) uses the 
Intergovernmental Panel on Climate 
Change (IPCC) 2014 risk analysis 
framework to assess the distribution of 
climate hazards and social and biophysical 
vulnerability to those hazards in order to 
identify climate risk hotspots. 

The assessment uses regional climate 
models from CORDEX-Africa to map 
rainfall extremes and drought hazards to 
2031–2059. Ten social and biophysical 
vulnerability indicators are identified from 
across the capital assets (human, physical, 
social, financial, natural), using data from 
the Global Multidimensional Poverty Index 
(MPI), to develop a vulnerability index. The 
vulnerability index and distribution of climate 
hazards are mapped to identify hotspots. 

Hotspots of vulnerability to and risk of 
extreme rainfall are shown in northern 
Madagascar and in south west Tanzania, 
under both the RCP4.5 and 8.5 scenarios. 
Hotspots for drought under these scenarios 
are shown in Tanzania. However, it is 
clear that medium-high climate risk (high 
vulnerability, medium-high climate hazard) 
is widespread across Angola, Democratic 
Republic of the Congo (DRC), Tanzania, 
Mozambique, and Madagascar.

Photo: Kon Karampelas-unsplash

Seven Key Recommendations

1.

2.

3.

4.

5.

7.

6.

Hotspots of vulnerability to and risk of extreme rainfall and 
drought occur in northern Madagascar and south west Tanzania, 
under both medium and high greenhouse gas emission scenarios.

Areas of high vulnerability coupled with medium-high climate 
hazard are widespread across Angola, DRC, Tanzania, Mozambique 
and Madagascar.

There is a mismatch between locations with the highest future 
climate risk and where on-the-ground research on climate change 
impacts and adaptation is currently being undertaken, with potentially 
serious consequences for testing and implementation of appropriate 
and robust adaptation options. 

Population growth in these areas is projected to remain high 
to mid-century – robust targeting and implementation of on-the-
ground research for development is needed, based on national policy 
objectives.

National policy objectives are required that identify robust and 
climate resilient pathways for agricultural and economic development 
to prevent sub-optimal or maladaptive choices now, such as 
replacing crops like rice with maize in response to current climate 
change, which is likely to be unproductive under future climate 
conditions.

There is a role and need for participatory processes that bring 
together food system actors in high-risk locations to identify needs 
and design and implement responses that are tailored to the specific 
contexts of those locations, there is not a “one size fits all” that will 
work in all contexts within a country.

This work has identified a lack of data availability for 
other climate hazards (e.g. sea level rise), and for vulnerability 
measurement in small island states, which urgently needs to be 
addressed.



01Introduction
This report presents a rapid climate risk assessment for the Southern African Development Community (SADC) region. The goal is to identify climate risk hotspots – locations where climate hazards, exposure and 
vulnerability coincide to increase the risks of adverse impacts. The 2014 Intergovernmental Panel on Climate Change (IPCC) risk framework is used to structure this analysis (Figure 1) (IPCC 2014). 
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Hazards

Vulnerability

Exposure

RISK

CLIMATE SOCIOECONOMIC
PROCESS

Natural
Variability

Anthropogenic
Climate Change

Adaption and 
Mitigation 

Actions

Socioeconomic
Pathway

Governance

IMPACTS

EMISSIONS
and Land-use Change

Figure 1. IPCC climate risk framework (IPCC 2014)

KEY TERMS

Hazard - possible, future 
occurrence of natural or human 
induced physical events that may have 
adverse effects on vulnerable and 
exposed elements

Exposure – refers to the inventory 
of elements in an area in which hazard 
events may occur

Vulnerability – the propensity 
or predisposition of a system to be 
adversely affected by an event

Risk - intersection of hazards, 
exposure and vulnerability
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In this framework, natural variability and anthropogenic (human induced) climate 
change create climate hazards, which are geographically distributed. 

A climate hazard is defined as: 
“The potential occurrence of a natural or human-induced 
physical event that may cause loss of life, injury, or 
other health impacts, as well as damage and loss to 
property, infrastructure, livelihoods, service provision, and 
environmental resources” (IPCC 2012). Socio-economic processes 
(e.g., economic activities, livelihoods, decision-making) determine whether 
communities or economies are exposed to climate hazards and whether 
they are vulnerable. 

Exposure is defined as:
“The presence of people; livelihoods; environmental services 
and resources; infrastructure; or economic, social, or cultural 
assets in places that could be adversely affected” (IPCC 2012).

Vulnerability is defined as:

 “The propensity or predisposition to be adversely affected” 
(IPCC 2012). 

Climate risk 
Is where hazards, exposure and vulnerability intersect and interact, so that 
risk is not just about the natural hazard but also about the socio-ecological 
system where that hazard occurs. For example, the activity of an economy 
might lead to emissions that drive climate change, which in turn might 
increase the severity and occurrence of flooding. But an economic system 
that encourages building houses on higher ground, implements a variety of 
flood defence and mitigation measures, and invests in economic activities 
that are not impacted by flooding, can both reduce exposure to the climate 
hazard, and vulnerability of the economy and communities to flooding 
hazards, and hence have a lower climate risk. However, a different economy 
exposed to the same severity and intensity of hazard might face very 
different climate risks, because of differences in exposure and vulnerability.

Photo: Curioso Photography-unsplash



Future impacts on cereal productivity 

Ecological-economic models (Fischer et al. 2005)

Climate risk mapping has been widely used to 
understand the distribution of and interaction between 
climate and other stressors. Different studies use different 
approaches, models and indicators to understand current and future 
risks. For example, Fischer et al. (2005) used ecological-economic 
models that linked crops, climate and trade to estimate future 
impacts on crop production in Africa. 

They found that net cereal production potential will fall but with large 
variations between countries. Similarly, the yield response models 
produced by Schlenker and Lobell (2010) use crop and weather data 
alongside farmer responses (i.e. adaptations) to look at the impacts 
on four different crops (sorghum, millet, maize, groundnuts) across 
Africa. They found that the impacts on yields of these important and 
staple food crops are likely to be mostly negative. 

Net loss 
overall in 

agricultural 
potential in 

SSA
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Yield response models

4 staple crops are likely to decline

Yield response models (Schlenker & Lobell 2010)
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Coverage – whether global, regional or national level

Unit of analysis – extent to which data can be gathered 
at particular spatial scales (e.g. county/district, country)

Goal – to identify hotspots of climate risk, for risk reduction 
or adaptation targeting, for planning or monitoring and 
evaluation of interventions

Framing – selection of an appropriate framing of 
vulnerability and/or climate risks that is fit for purpose 

Indicators – selection of measurable socio-economic 
variables

Climate parameters – selection of climate variables, 
e.g. rainfall variability

Aggregation – whether weighting of indicators is applied

In this rapid assessment the climate risk assessment has been 
carried out for the SADC region, with the goal of identifying 
climate risk hotspots. Where possible the data is at district/county 
scale or disaggregated to that level. A total of 10 socio-ecological 
indicators have been selected as measures of vulnerability to 
natural hazards, and combined, equally weighted, into a single 
vulnerability index. The natural hazards selected are drought 
and extreme rainfall events because these are, and are likely to 
become, significant climate hazards in the SADC region. Hotspots 
are identified by the intersection between levels of vulnerability 
and climate hazards. 

De Sherbinin et al. (2019) identify four key limitations in many climate 
vulnerability/risk mapping exercises: a lack of future projections, data 
availability, uncertainty and policy relevance. We have used climate 
models from CORDEX-Africa to create climate hazard maps, and so our 
climate risk mapping does consider future climate projections. However, 
our vulnerability index is based on current/recent data and is not 
projected into the future. Projections of future vulnerability are a critical 
limitation in studies of this kind, but were beyond the scope of this study. 

Data availability is also a critical limitation for studies of this type.
Data for some countries was either not available or only available at a 
country level. Where this has been the case the data has been sourced 

from an alternative database (where possible) and some data has 
been downscaled to county/district level by assigning each county/
district the same value, making the assumption that the country data is 
representative of every county/district. As a result, these indicators will 
not differentiate between counties/districts. 

Uncertainty is an inherent feature of these studies. What is presented 
here is not a projection of the future, but presentation of possible futures, 
and it is unlikely to have identified all possible hotspots in the region. 
However, it can, in conjunction with other studies at country, region and 
global scale, contribute to discussions about and planning for climate 
impacts in the SADC region.
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A recent systematic review of 84 
studies mapping vulnerability to 
climate risks (de Sherbinin et al. 
2019) identifies key considerations 
in producing maps for climate risk 
assessment:

a.

b.

c.

d.

e.

f.

g.

Using climate risk assessment mapping

Key considerations Key limitationsCoverage/scale

Unit of analysis

Goals for analysis

Vulnerability framing

Social/ecological Indicators

Climate parameters

Aggregation

Lack of projections

Uncertainty

Data availability

Policy relevance

De Sherbinin et al. (2019) doi: 10.1002/wcc.600
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Introduction to climate hazards

Magnitude Rate of changeExtent

02Approach

The SADC region is currently adversely 
affected by several climate hazards, including 
heatwaves, unpredictable rainfall, strong winds, 
drought and extreme rainfall (Sonwa et al. 2017). 
Here the focus is on droughts and extreme rainfall, as 
between 1970 and 2020 these were the most common 
types of climate hazards in Africa (Centre for Research on 
the Epidemiology of Disasters 2020).

The region is highly sensitive to droughts due to a 
dependence on rainfed agriculture (Adejuwon and Olaniyan 
2019). Droughts adversely affect water supplies, crop 
and livestock production and cause food insecurity and 
conflicts among competing water users (Oguntunde et al. 
2017; Adejuwon and Olaniyan 2019). Some crops show 
more climate resilience than others, but the majority of 
projected impacts of climate change on rainfed agriculture 
are negative (Serdeczny et al. 2017). As well as being 
adversely affected by droughts, much of the SADC region is 
also negatively impacted by extreme rainfall (Tarhule 2005). 
Extreme rainfall can lead to landslides and soil erosion, and 
to floods that can cause direct injury and death to people 
and livestock, as well as damage infrastructure and fields 
(Chamani et al. 2018; Tarhule 2005; Tschakert et al. 2010; 
Sonwa et al. 2017). Extreme rainfall is a necessary but not 
sufficient condition for damaging floods; land use patterns, 
drainage and waste management infrastructure are also 
important, however, with increasing rainfall intensity flood 
risk increases (Tazen et al. 2019).

Climate change may exacerbate both of these hazards. 
Previous work has found that the occurrence and severity 
of droughts in Africa are likely to worsen with climate 

change due to increases in temperature and changes in rainfall (Adejuwon 
and Olaniyan 2019; Oguntunde et al. 2017; Gan et al. 2016). There is large 
uncertainty in the sign and magnitude of climate change impacts on mean 
rainfall for the region (Rowell and Chadwick 2018), however, extreme rainfall 
is expected to increase over large parts of the region (Kendon et al. 2019; 
Sonkoué et al. 2018; Amoussou et al. 2020), and so the associated risk of 
floods (Tazen et al. 2019). 

Previous analyses of climate hazards over Africa have focussed primarily 
on the CMIP5 ensemble of global climate models. Here we make use of the 
CORDEX-Africa ensemble of regional climate models, which improve on the 
representation of climate over global climate models, particularly when it 
comes to extreme events and precipitation (Paeth and Mannig 2013; Gibba 
et al. 2018; Diallo et al. 2015).

CLIMATE HAZARDS 

CLIMATE HAZARDS OF CONCERN 
IN SOUTHERN AFRICA

Droughts

Floods

Extreme weather events

Salinity intrusion

Sea level rise

Temperature changes

Changes to seasonal patterns

THINGS WE TRACK TO UNDERSTAND 
THE CLIMATE HAZARDS 
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An Example of Climate 
Hazards in the SADC Region

Tropical cyclones are intense circular storms that 
originate over warm tropical oceans, such as 
the Indian Ocean, and are characterised by low 
atmospheric pressure, high winds, and heavy rainfall. 
In comparison with other extreme weather events, 
storms (including tropical cyclones) result in the most 
human displacement. For example, in the SADC 
region approximately 1.7 million people were left 
homeless between 1980 and 2016 due to storms 
(Davis-Reddy and Vincent 2017). The associated 
flooding disproportionately affects communities with 
poor infrastructure and health services, often resulting 
in a loss of life, injury, damage to property and 
infrastructure as well as the spread of disease e.g. 
malaria and cholera.

CYCLONES 

Madagascar  was affected by five cyclones during the 1993-1994 
season. In 1994, Cyclone Geralda (category 5) destroyed more than 
90% of the port city of Toamasina. The damage was estimated at USD 
10 million (Davis-Reddy and Vincent 2017).

In 2000, Cyclone Eline caused severe flooding in Mozambique and 
to a lesser extent in South Africa, Zimbabwe, and Botswana. 
High winds, torrential rains and high river flows resulted in economic 
losses and damage to infrastructure, livelihoods, and agricultural crops. 
In Mozambique alone, around 700 people lost their lives and the GDP 
growth rate dropped from 10% to 2% (Davis-Reddy and Vincent 2017).

In 2004, Cyclone Gafilo (category 5) hit 
Madagascar. It was the most intense tropical 
cyclone worldwide in 2004. It was estimated that 
approximately 773,000 people were affected, and it 
cost USD 250 million in damages (ReliefWeb 2004).

In 2019, Cyclone Idai hit Beira in Mozambique 
and then continued moving across the region. Millions 
of people were affected in Malawi, Mozambique, 
and Zimbabwe. Cyclone Idai was the worst natural 
disaster to hit Southern Africa in around two decades. 

Six weeks later, Cyclone Kenneth made landfall in 
northern Mozambique. This was the first occurrence of two 
strong tropical cyclones hitting the country in the same season. 
The cyclones caused severe flooding, destroying infrastructure 
and more than 800,000 hectares of crop land over the three 
SADC member states (SADC 2019). Approximately, 3.3 million 
people were affected by the cyclones, requiring immediate 
humanitarian assistance, including food, shelter, clothing, 
potable water, sanitation, and medical support. The affected 
population also faced epidemic threats of cholera, other 
diarrheal infections, and malaria (UNICEF 2019).



In the second stage we characterised underlying social and biophysical vulnerability across the 
SADC region. Following the methodological approach of Thornton et al. (2008), we developed a 
set of vulnerability indicators based on the sustainable livelihoods framework capitals: 

Human			   Physical			   Social

Financial			   Natural	
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Methods

We used the regional climate models available from CORDEX-Africa to analyse climate hazards in the SADC region. The 
CORDEX-Africa models are available at a 0.44° x 0.44° resolution. The multi-model ensemble for RCP8.5 includes 6 RCMs 
(regional climate models) with 11 different GCMs (global climate models) providing initial and boundary driving conditions, 
and for RCP4.5 7 RCMs and 9 different GCMs. The matrix of GCM/RCM combinations is presented in Table 1. We used 
1971–1999 as the historical period, 2031–2059 as the mid-century period.

We examined the impact of extreme rainfall by looking at the 95th percentile of daily rainfall (R95 index), and drought by 
looking at the standardized precipitation evapotranspiration index (SPEI), as defined by Vicente-Serrano et al. (2010), which 
is a commonly used drought index that performs well compared to alternatives (Labudová et al. 2017) and has been used 
in Africa (e.g. Abiodun et al. 2018; Adejuwon and Olaniyan 2019; Ghebrezgabher et al. 2016; Oguntunde et al. 2017; Polong 
et al. 2019; Ujeneza and Abiodun 2015). We used 1955–1970 as the reference period, and looked at droughts over 1 month 
in duration and used the log-logistic distribution. We performed the calculation using the ‘SPEI’ package for R statistical 
software (Begueria and Serrano 2017; R Core Team 2013). Using SPEI, a value of -1 is classified as a drought, and -2 and 
below is classified as a severe drought.

GMC

RCM

SMHI-RCA4 CLMcom-
CCLM4-8-17 

MPI-CSC 
or GERICS 

REMO2009 
KNMI-

RACMO22T DMI-HIRHAM5 CCCma-
CanRCM4 UQAM-CRCM5 

HadGEM2-ES RCP8.5/4.5 RCP8.5/ 4.5 RCP8.5 RCP8.5/ 4.5   

EC-EARTH RCP8.5/4.5 RCP8.5/ 4.5 RCP8.5/ 4.5 RCP8.5/ 4.5 RCP8.5/ 4.5  

MPI-ESM-LR RCP8.5/4.5 RCP8.5/ 4.5 RCP8.5/ 4.5   RCP4.5 

CNRM-CM5 RCP8.5/4.5 RCP8.5/ 4.5     

MIROC5 RCP8.5/ 4.5  RCP8.5    

CSIRO-Mk3-6-0 RCP8.5/ 4.5     

IPSL-CM5A-MR RCP8.5/ 4.5     

IPSL-CM5A-LR  RCP8.5   

CanESM2 RCP8.5  RCP8.5/ 4.5 RCP4.5 

NOAA-GFDL-
ESM2M RCP8.5/ 4.5    

NorESM1-M RCP8.5/ 4.5   

Introduction to vulnerability indicators 

VULNERABILITY INDICATORS 

UNDERSTANDING REGIONAL VULNERABILITY 

10 vulnerability indicators 
(equally weighted)

Crops

Soils

 Access to Water

 Electricity

Distance to Markets

Gross Domestic Product (GDP)

Poverty

Gender Equality

Health

Education

Governance

Table 1. Available GCM/RCM combinations for CORDEX-Africa RCP8.5 and RCP4.5.

A total of 10 indicators were chosen based on data availability and where possible, we identified 
and used the most recent data sources (Table 2). Below, we give a summary of each indicator 
and briefly discuss their hypothesised relationships with vulnerability to climate hazards.

(Carney 1998)



Human capital Physical capital

The health poverty headcount indicator 
represents the percentage of the 
population considered poor. It measures 
deprivation of health standards within a 
given household where a household is 
considered poor if: a) any adult (under 70 
years old) or child within the household 
is considered undernourished, and b) 
any child (under 18 years) has died in 
the five years preceding the survey. The 
potential impacts from climate change 
on human health are complex and largely 
adverse, for example, exacerbating 
challenges with food and nutrition 
security (Wolski et al. 2020), manifesting 
through new distributions in disease 
vectors (Caminade et al. 2014; Moore 
et al. 2017) and aggravating underlying 
health problems (Kapwata et al. 2018). 
Higher poverty headcounts for health are 
therefore associated with higher levels of 
vulnerability. 

The education poverty headcount 
indicator represents two measures of 
education poverty, where a household 
is considered poor if: a) no household 
member above the age of ten has 
completed at least six years of 
schooling, and b) children of school age 
are not attending school up to Class 8. 
Education is a priority for development, 
can substantially reduce vulnerability 
to climate impacts (O’Neill et al. 2020), 
and is critical for improved adaptation 
to climate risks (Lutz et al. 2014). We 
therefore assume that higher poverty 
headcounts for education are associated 
with higher levels of vulnerability.

The standard of living indicator measures deprivation of living standards by combining 
six indicators. A household is considered poor if: 

The household cooks with un-improved fuel, e.g. dung, wood, charcoal or coal; 

Either their sanitation facility is not improved, in accordance with sustainable 
development goal (SDG) guidelines, or their sanitation facilities are improved but 
are shared with other households;

Either the household has no access to improved drinking water, in line with SDG 
guidelines, or the distance to safe drinking water exceeds a 30-minute round-trip; 

The household has no electricity; 

One or more of the three housing materials (for roof, walls and floor) are made of 
either rudimentary or natural materials and are therefore considered inadequate; 
and 

Household members do not own more than one listed asset (radio, TV, telephone, 
computer, animal cart, bicycle, motorbike, refrigerator), or a motorised vehicle.

A good standard of living is a prerequisite for human development and wellbeing (Rao 
and Min 2018). Sturdy infrastructure protects against inclement weather, access to 
potable water and safe sanitation protects against water-borne diseases, and the use 
of improved energy sources reduces health burdens (e.g. linked to indoor air pollution), 
especially for women and children. Thus, a lower standard of living equates to higher 
levels of underlying vulnerability. 

For countries lacking MPI data (i.e. Botswana, Mauritius and the Seychelles), a related 
measure of poverty was sought. This resulted in the combined use of World Bank 
indicators for percentage of people/homes living on less than USD 1.90, with access 
to clean cooking fuels, access to basic sanitation and drinking water, and access to 
electricity (N.B. rationale for the inclusion of these data is provided within the Section 
on Creating risk maps Page 19).The access to market indicator measures travel time to 
the nearest urban area in excess of 20,000 people. Markets are important for reducing 
vulnerability as they stimulate livelihood and income diversification, particularly into 
off-farm sectors (Haggblade et al. 2010). Households nearer markets also tend to have 
better access to services (e.g. education, health and extension). We therefore assume 
that better market access is associated with reduced vulnerability.

a.

b.

c.

d.

e.

f.

CAPITAL INDICATORS DESCRIPTORS DATA 
SOURCE

HUMAN Education The national poverty headcount for the 'education' 
dimension (MPI-1)a

OPHI 
(2019a)

Health The national poverty headcount for the 'health' 
dimension (MPI-2)a

OPHI 
(2019a)

PHYSICAL Standard of 
living

The national poverty headcount for the 'standard 
of living' dimension (MPI-3)a, b

OPHI 
(2019a)

Accessibility to 
markets

A continuous index based on travel time to urban 
areas with populations exceeding 20,000 IFPRI (2016)

SOCIAL
Gender 

inequality

National-level index based on gender inequalities 
across 3 aspects, namely: Reproductive health, 
Empowerment and Economic status, taken from 

the Human Development Index (HDI)

UNDP 
(2018)

Governance National-level data on voice and accountability, 
and government effectiveness

World Bank 
(2019)

FINANCIAL Per capita 
GDP National-level data for per capita GDP, in USD World Bank 

(2020)

Agricultural 
GDP

National-level data for agricultural GDP as 
percentage of total GDP 

World Bank 
(2020)

NATURAL Crop 
production 
suitability

Categorised from 1-8, where pixels scored 8 are 
considered areas with high crop suitability. FAO (2007)

Soil erosion An assessment of soil loss for 2012 (Pg yr-1), 
normalised for the SADC region into quantiles.

ESDAC 
(2019)

Table 2. Vulnerability indicators identified and used in the analysis (adapted from 
Thornton et al. 2008).

No data available for Botswana, Mauritius and the Seychelles.

All MPI data (for health (MPI-1), education (MPI-2) and standard of living 
(MPI-3) indices) were taken from the 2019 Global Multidimensional Poverty 
Index (MPI) and, due to a lack of district level data for South Africa and 
inconsistencies in district names between datasets, are at a national level 
(OPHI 2019b).

a.

b.
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Social capital

The gender inequality indicator measures disparities 
between men and women in three areas of development: 

Reproductive health, 

Empowerment, and 

Economic status. 

Reproductive health quantifies maternal mortality ratios and 
adolescent birth rate. Empowerment encompasses both the 
proportion of parliamentary seats occupied by women, and 
the percentage women and men (above the age of 25) with 
secondary education. Economic status measures the labour 
force participation rates of men and women over the age of 
15. The majority of the world’s poor are women1 and women 
typically experience the most severe impacts from climate 
change in situations of poverty. For example, in the aftermath 
of a disaster, women are more likely than men to be displaced 
and be victims of violence (Cutter 2017). Women have less 
access to, and control over, resources, which undermines their 
ability to cope with and adapt to climate impacts. Subsequently, 
women also have fewer capabilities than men, limiting their 
contributions to decision-making processes (World Bank 2009). 
Higher gender inequality therefore represents higher levels of 
vulnerability. 

The governance indicator uses data from the World Bank, based 
on a study by Kaufmann et al. (2005). Following (Thornton et al. 
2008), we use two of the six dimensions: 

Voice and accountability

Government effectiveness 

Because all six indicators cannot be meaningfully combined for 
a given country. Scores for the two indicators were normalised 
into quintiles at national level. Good governance creates 
enabling environments for investment, job creation and effective 
implementation of regulations, such as those related to climate 
adaptation, and is associated with higher adaptive capacity at 
the national level (Brooks et al. 2005). We therefore assume that 
better governance equates to lower levels of vulnerability. 

Financial capital

Natural capital

Per capita GDP provides a measure for estimating the economic prosperity of 
a country, where income is associated with access to resources. Whilst economic 
indicators such as GDP have been found to be poor indicators of mortality as a 
result of climate-related disasters (Brooks et al. 2005), losses in GDP have been 
used to measure national vulnerability to climate impacts (Formetta and Feyen 
2019), and per capita GDP has also been used as a measure for economic security 
(Li et al. 2019). We assume that higher per capita GDP is associated with lower 
levels of vulnerability, although we note that this also assumes that resources are 
distributed equally amongst the population. 

The agricultural sector is highly vulnerable to the effects of climate change (Mase et 
al. 2017), particularly in rainfed systems across much of the SADC region (Cooper 
et al. 2008). National economies more dependent on agriculture are therefore 
more susceptible to climate impacts and expected changes. Countries with higher 
economic dependency on agriculture may also be less diverse (Thornton et al. 
2008). Higher contributions of agricultural GDP to total GDP is therefore assumed to 
be associated with higher vulnerability.

The crop production suitability indicator considers the known and 
calculated rainfed pasture and crop requirements, the dominant soil conditions 
of a given area, and soil management practices used, under intermediate input 
scenarios, as stipulated by FAO (2007). Whilst rainfed agriculture is highly vulnerable 
to the effects of climate change, areas with higher crop suitability provide greater 
diversification options for rural populations (e.g. growing different, or a range of 
crops), offering opportunities for risk spreading, thus increasing resilience (Lin 2011; 
Speranza et al. 2014). We thus assume that higher cropping suitability is associated 
with lower vulnerability. 

The soil erosion indicator assesses human-induced soil erosion resulting from land 
use/land cover change. The modelled data do not include short-term impacts from 
land use (e.g. fire and wood harvesting), overgrazing and climate change effects. 
Soil erosion rates are divided into seven classes (ranging from 0–350 t/25km cell 
sample), according to the European Soil Bureau classifications. Soil degradation, 
which can be exacerbated by climate change and extreme events, undermines 
agricultural productivity and reduces water quality (FAO 2015). Extreme rainfall 
events and flooding can also trigger landslides. Areas with higher levels of soil 
erosion are therefore considered to be more vulnerable. 

a.

a.

b.

b.

c.

Photo: Dimitry-unsplash
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CREATING RISK MAPS

To further visualise and understand the vulnerability of each nation, indicator values 
were normalised to make them comparable before combining them into an index of 
average vulnerability. To achieve this, the separate map layers for each vulnerability 
indicator were combined into a single database and exported to Excel. Within Excel 
the quartile range for each indicator was determined and values were reassigned to 
a quartile depending on whether they fell within the 1st, 2nd, 3rd or 4th quartile of all 
values. 

The assignment of values, whether to the 1st or 4th quartile, was based on whether 
a high figure for a given indicator was deemed to be good or bad, and vice versa 
(e.g. for Soil Loss, high loss was deemed to be bad and was consequently assigned 
a value of 1, i.e. the 1st quartile; conversely high GDP was deemed to be good if 
falling within the upper 25% of values and assigned a value of 4, i.e. the 4th quartile). 
Following data processing each indicator quartile, within each nation, was summed 
and divided by the number of total indicators for each country to provide an average 
(mean) level of vulnerability on a continuous scale of 1.0–4.0 (representing each 
quartile), with 1.0 being highly vulnerable and 4.0 being less vulnerable.

To visualise the range of vulnerability indicators 
across the SADC region and to assist eventual 
identification of hotspots, all data were mapped 
using a Geographic Information System (GIS). 
Initially, all data were imported into the GIS (ArcGIS 10.6) 
either in its raw tabulated form (e.g. for the MPI data) or, 
where available, in its original GIS format (e.g. the Distance 
to Market and Soil Erosion data are provided as raster map 
layers by data authors).

To present data in the regional context, national 
boundaries for each of the member nations of the 
SADC and the respective first and second level district 
boundaries were also imported into the mapping 
environment. Using the Join – Relate function of the 
GIS, data for the Human, Physical, Financial and Social 
capital indicators was assigned to their respective national 
boundary. This duly produced a suite of ten maps for each 
vulnerability indicator at a national scale (not shown here).

The data gap for Botswana was filled using 
alternative data (section on Vulnerability 
indicators Page 16) before calculating 
the combined average vulnerability 
for each county. Representative World 
Bank indicators for physical capital were 
identified and used to represent ‘Living 
Standards’ within Botswana, as well as 
Mauritius and the Seychelles (albeit fewer 
comparable indicators were found for the 
latter two countries).

Though similar, it is acknowledged that the 
World Bank data is not a direct replacement 
for the MPI measures of standard of living. 
However, inclusion was deemed preferable 
to exclusion of countries without MPI data. 

The normalised indicator data for each country, and the combined 
average indicator value for each country, were imported back 
into the GIS as a data table and, using the Join – Relate function, 
reassigned to the boundary map of each SADC country. This 
facilitated the production of a choropleth (or ‘thematic’) map showing 
the vulnerability index for each country across SADC allowing direct 
comparisons to be made across the region (Section on Vulnerability 
maps Page 24), though not with other countries and regions.

To achieve greater resolution and accuracy within the vulnerability 
maps, the data allocation and normalisation exercise was repeated 
for each country’s first and second level districts. For the tabulated 
data, this involved reassigning national values to districts (district 
level data was not available for several countries and/or there were 
significant inconsistencies in names of districts). For the raster and 
vector vulnerability data (i.e. Crop Suitability, Soil Loss and Distance 
to Market), however, this involved converting the map layers to data 
points and assigning them individually to each district using the Join 
– Relate function (where multiple points existed within a geographic 
area, the mean of values was assigned to the district). Though this 
procedure effectively adds weighting to these latter indicators, it 
provides the combined vulnerability maps with greater nuance in 
terms of identifying potential ‘hotspots’ and lessens the impact of 
data for key indicators, such as roads to markets, being effectively 
lost in a large country’s national data (e.g. within the DRC) and Angola 
where there are fewer good quality roads to markets in the interior).

Simple raster layers were produced for each climate rainfall and 
drought scenario (RCP4.5 and RCP8.5) and overlaid onto the 
vulnerability map. Bivariate maps were also produced where 
the climate data raster layers were converted to data points and 
normalised in the manner described above for raster vulnerability 
data. The point data for climate risks was then assigned to the 
relevant districts (and averaged where multiple points fell within 
one district). As such, it should be noted that to produce the 
discrete figures required to produce a bivariate map (i.e. 1, 2, 3, 4 
rather than 1.0–4.0) both the average climate risk and vulnerability 
data was rounded up or down to its nearest significant figure. This 
serves to heighten the severity, good or bad, of indicators, which 
should be noted in respect to interpretation of the maps, but also 
brings greater resolution and emphasise to potential hotspots of 
risk (relative to the wider SADC).
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SYSTEMATIC EVIDENCE 
REVIEW 

A systematic literature review was undertaken 
to compile evidence about regional SADC climate 
risks, adaptation and vulnerability. Systematic 
reviews seek to synthesise existing knowledge 
about a topic through a review of the literature 
focussed on specific research questions. The 
approach increases methodological transparency 
and rigour in the process of synthesising research by 
requiring that methods used are explicitly outlined 
and reproducible, and that document selection and 
review meets pre-defined and defensible eligibility 
criteria (Cooper et al. 2019; Fink 2020). A number of 
methodological guidelines exist (Pullin and Stewart 
2006; Moher et al. 2009; Berrang-Ford et al. 2015), 
often tailored to particular disciplinary perspectives. 

Systematic reviews require similar 
specific components to be reported and 
generally include the following steps: 

Define the research question and scope of the 
study 

Select documents, including development of 
inclusion and exclusion criteria

Critically appraise study quality

Analyse and synthesise evidence 

Present results (Berrang-Ford et al. 2015)

We adhered to the general methodological guidelines 
for systematic reviews (Preferred Reporting Items 
for Systematic Review and Meta-Analysis Protocols 
(PRISMA-P) (Moher et al. 2009), and report below the 
items specified by Berrang-Ford et al. (2015), who 
tailor requirements to the epistemologically complex 
and methodologically diverse literature base that 
comprises climate research. 

Aim of the review 
and key questions Data source and document selection

Explicit aim/objectives 
and prevailing literature/
concepts: 

Our review is located in the context of 
vulnerability, climate hazards and risk 
mapping outlined above, and aimed 
to identify what underpins agricultural 
climate risk in the SADC region. 

We were guided by the 
following questions: 

What are the key climate 
hazards linked to 
agriculture? 

How and where do they 
interact with agricultural 
vulnerability and 
adaptations to create 
climate risk hotspots?  

Literature source (justification and description): 

We searched SCOPUS and Web of Knowledge databases because they contain a substantial 
collection of relevant research, and because they perform precisely and reproducibly when using an 
extensive Boolean search string, such as the one we used (Gusenbauer and Haddaway 2020). The 
search was limited to peer-reviewed literature, published since 2016 that included research conducted 
in SADC countries to enable compilation of the most recent evidence on climate risk and vulnerability 
across the region. Time constraints limited our ability to include research published prior to 2016. Only 
literature written in the English language was included. 

Search terms and process and selection criteria: 

Literature was selected, screened, and then coded following the process and criteria outlined in Figure 
2, which also details the search string and database fields used and the numbers of studies rejected 
at each step. The initial search was undertaken on May 5th 2020 by one researcher. Three researchers 
completed subsequent screening and coding. 

For quality control, all abstracts were double-screened, and retained for full review in the event of 
disagreement. Our initial search produced 759 research articles, which was reduced to a final set of 
275 (Appendix A). Articles were generally excluded because they either did not focus on the SADC 
region, did not include empirical data (e.g. they were review papers), and/or did not identify findings or 
use data about the specified climate-related topics linked to agriculture (Figure 2). 

1.

1.

2.

2.

3.

4.

4.

Photo: Ryan Searle-unsplash
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Analysis and presentation 
of results

Summary of literature

Methods of analysis: 
We developed a set of questions and a corresponding coded 
Excel spreadsheet to extract and store information from the papers. 
The same three researchers performed the coding exercise after piloting 
the questions and coded template. The final output was an Excel 
spreadsheet providing information about the location of the research, the 
focal agricultural system and climate hazards, and whether the research 
was vulnerability- and/or adaptation-oriented. 

Information quality: 
We included only peer-reviewed data in our review in an attempt 
to assure research included was rigorous. More rigorous controls on 
information quality were precluded by time constraints. However, greater 
consideration of data quality was given to research included as climate-
risk hotspot case studies.

With the exception of 2018, research in the SADC countries 
about climate-related hazards and exposure of agricultural 
systems has increased year on year between 2016 and 2019 
(Figure 2). The 23 articles published to April in 2020 and that met our 
review criteria, suggest a continuing trend. More research was conducted 
in Tanzania than any other SADC country, featuring in nearly one quarter 
(22%) of articles (Figure 2). South Africa, Zimbabwe, Malawi and Zambia 
were also frequently the geographic focus (occurring in between 14-18% 
of articles). The remaining 11 SADC countries received less attention. 
Only two studies were conducted in Lesotho and one in Mauritius 
and Comoros, and we did not find any research meeting our criteria 
conducted in the Seychelles. Fifty-five papers had a regional or global 
focus. Drought, temperature and precipitation were the hazards most 
frequently linked to agricultural systems. Sea-level rise and hazards linked 
to salinization were seldom the focus of investigation. Most (87%) of the 
articles reviewed included analysis of food crops. Livestock systems were 
considered in approximately one third of articles, whilst non-food crops, 
aquaculture and agroforestry systems received much less attention. The 
majority of studies focussed on agricultural system vulnerability to climate 
hazards. However, nearly half researched adaptation, and nearly one 
quarter (23%) were concerned with both.

Figure 2. Search, screening and coding process and results for the systematic literature review. Numbers refer to the number of papers.* In 2020, 
articles were only retrieved for January-April. Coding sub-categories are not mutually exclusive. Articles can occur in multiple sub-categories.
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03Outcomes 
of the 
Climate 
Risk 
Analysis 
and 
Mapping 

CLIMATE 
HAZARD MAPS 

Droughts

By mid-century, the likelihood of droughts 
increases in both RCP4.5 and 8.5 scenarios 
(Figure 3 and Figure 4). In RCP8.5, drought 
risk increases across most of the region, while 
in RCP4.5, droughts become more common 
primarily in the DRC, parts of East Africa, 
Angola and Namibia. The result of these 
changes in droughts is that in both RCP4.5 
and 8.5 by mid-century droughts are common 
in most of the SADC region (Figure 5 and 
Figure 6). However, droughts are more severe 
in RCP8.5 than 4.5, although the most severe 
droughts remain rare.  

Figure 3. Multi-model ensemble mean of change in frequency of 1-month droughts 
by mid-century in RCP4.5 (2031–2059), as compared to the historical time period 
(1971–1999). Drought change of greater than 1 only shown in shading. Overlaid on 
vulnerability map where red = more vulnerable, blue = less vulnerable. 

Figure 5. Multi-model ensemble mean 1-month droughts (SPEI <= -1) in mid-
century in RCP4.5 (2031–2059). Overlaid on vulnerability map where red = more 
vulnerable, blue = less vulnerable. 

Figure 4. Multi-model ensemble mean of change in frequency of 1-month droughts 
by mid-century in RCP8.5 (2031–2059), as compared to the historical time period 
(1971–1999). Drought change of greater than 1 only shown in shading. Overlaid on 
vulnerability map where red = more vulnerable, blue = less vulnerable. 

Figure 6. Multi-model ensemble mean 1-month droughts in mid-century in RCP8.5 
(2031–2059). SPEI <= -1 used to indicated droughts, and SPEI <= -2 indicates 
severe droughts. Overlaid on vulnerability map where red = more vulnerable, blue = 
less vulnerable. 

By 2059, much of the 
north and west of 

the SADC region will 
experience drought 

under a medium GHG 
emissions scenario

By 2059 droughts 
will be more frequent 

across the DRC, 
Angola and Namibia 

under a medium GHG 
emissions scenario

By 2059 droughts 
will be more frequent 

across much of the 
north and west of the 
SADC region under a 
high GHG emissions 

scenario

By 2059, only the 
south east of the 
SADC region, and 

eastern Madagascar, 
will avoid droughts 
under a high GHG 

emissions scenario
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Extreme rainfall

Extreme rainfall increases by mid-century 
in both RCP4.5 and 8.5 in most of the 
northern SADC region. The increases in 
extreme rainfall are larger in RCP8.5 than 
in 4.5, and more widespread (Figure 7 and 
Figure 8).
R95 is an indicator of an extreme that 
occurs on a yearly basis. Figure 9 and 
Figure 10 show that by mid-century, rainfall 
between 12–25 mm/day should be a yearly 
occurrence in the northern SADC region 
under RCP4.5 and 8.5. 

Recent research in East Africa has 
shown that there is a risk of landslides in 
susceptible areas (susceptibility depends 
on topography, land cover and soil type) 
with antecedent rainfall between 9.2 and 
22 mm (Monsieurs et al. 2019). Research 
in the Sahel region has also shown floods 
are associated with 5-day rainfall totals 
of 30mm or more (Tazen et al. 2019). 
Rainfall at these levels could therefore be 
associated with risks of landslides and 
floods.

Figure 7. Multi-model ensemble mean of change in 95th percentile of rainfall (R95) 
by mid-century in RCP4.5 (2031–2059), as compared to the historical time period 
(1971–1999). Overlaid on vulnerability map where red = more vulnerable, blue = 
less vulnerable. 

Figure 9. Multi-model ensemble mean 95th percentile of rainfall (R95) by mid-
century in RCP4.5 (2031–2059). Overlaid on vulnerability map where red = more 
vulnerable, blue = less vulnerable. 

Figure 8. Multi-model ensemble mean of change in 95th percentile of rainfall (R95) 
by mid-century in RCP8.5 (2031–2059), as compared to the historical time period 
(1971–1999). Overlaid on vulnerability map where red = more vulnerable, blue = 
less vulnerable. 

Figure 10. Multi-model ensemble mean 95th percentile of rainfall (R95) by mid-
century in RCP8.5 (2031–2059). Overlaid on vulnerability map where red = more 
vulnerable, blue = less vulnerable. 

By 2059, under 
a medium GHG 

emissions scenario, 
extreme rainfall 
events will be a 

yearly occurence in 
the north and east of 

the SADC region

By 2059, most 
countries in the 

north of the 
SADC region, and 
Madagascar, will 

experience extreme 
rainfall events under 

a medium GHG 
emissions scenario

By 2059, extreme 
rainfall events will 

be more widespread, 
including Losotho 
and parts of South 

Africa, under a high 
GHG emissions 

scenario

By 2059, under a 
high GHG emissions 

scenario, extreme 
rainfall events 
will be a yearly 

occurence for much 
of the north and east 

of the SADC region
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VULNERABILITY MAPS

Figure 11 represents the combined vulnerability index at national (inset) and district level. Vulnerability across the SADC region varies, with higher 
national-level vulnerability found in northern and eastern countries, including the DRC, Tanzania, Mozambique and Madagascar. There is a greater 
degree of variability between districts with, for example, countries such as Madagascar and areas such as northern Mozambique and south-western 
Angola demonstrating higher vulnerability. South Africa exhibits lowest overall levels of vulnerability, though urban districts (e.g. surrounding 
Pretoria and Johannesburg and in the south-western tip near to Cape Town) demonstrate the lowest vulnerability at a sub-national level. 

Figure 11. Vulnerability status of districts and countries (inset) across the SADC region. Quartiles 
represent the combined (10 indicators) relative vulnerability levels, whereby quartile 1 (red) = more 
vulnerable, quartile 4 (blue) = less vulnerable.

Looking across all 
of the indicators, 

red shows the 
areas of greatest 
vulnerability and 
blue the areas of 

least vulnerability
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Figure 12. Bivariate map showing hotspots of vulnerability to and risk of extreme rainfall within 
the districts of each SADC region for the RCP4.5 scenario. The first number within each 
matrix colour represents the normalised and rounded mean vulnerability value for the district, 
with the second number representing the rounded climate hazard value (i.e. 34 equates to 
‘medium low vulnerability’, ‘low climate hazard). 

Risk hotspots for 
extreme rainfall 

under a medium GHG 
emissions scenario 

are found in Tanzania 
and Madagascar, but 
medium high risk is 

widespread 
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CLIMATE RISK HOTSPOTS

So far an overlay method has been used to provide a visual description of the impact of climate change across the SADC region, and where areas of greater vulnerability are located. However, the locations where the extremes in both climate 
hazard and vulnerability (i.e. hotspots) are located are difficult to identify. Bivariate choropleth maps enable the range of climate hazard to be combined with vulnerabilities within the same districts so that potential hotspots of concern can be 
identified. 

Presented are the bivariate maps for combined current vulnerability within districts and future rainfall and drought under the RCP4.5 and RCP8.5 scenarios. Vulnerability is represented from high (red), medium high (orange), medium low (green) 
and low (blue), while climate hazards are represented by colour shading from high (darker) to low (lighter) risk. Figure 12 suggests that there are hotspots of high rainfall and high vulnerability, therefore climate risk hotspots, along the northern coast 
of Madagascar (particularly Antsiranana and Toamasina) and along the coast of Lake Nyasha/Malawi (particularly the east coast around Ruvuma in Tanzania). Some further potential hotspots can also be seen along the eastern border of the DRC 
and the coasts of Angola and Mozambique. In comparison to the RCP.4.5 scenario, under RCP.8.5 there is little change between potential hotspots (Figure 13).

Figure 13. Bivariate map showing hotspots of vulnerability to and risk of extreme rainfall within 
the districts of each SADC region for the RCP8.5 scenario. The first number within each 
matrix colour represents the normalised and rounded mean vulnerability value for the district, 
with the second number representing the rounded climate hazard value (i.e. 34 equates to 
‘medium low vulnerability’, ‘low climate hazard). 

Risk hotspots for 
extreme rainfall 

under a high GHG 
emissions scenario 

are found in Tanzania 
and Madagascar, but 
medium high risk is 
widespread across 
northern countries



Figure 15. Bivariate map showing the vulnerability and risk of extreme drought within the 
districts of each SADC region for the RCP8.5 scenario. The first number within each matrix 
colour represents the normalised and rounded mean vulnerability value for the district, with the 
second number representing the rounded climate hazard value (i.e. 34 equates to ‘medium low 
vulnerability’, ‘low climate hazard). 

Risk hotspots for 
drought under a 

high GHG emissions 
scenario are found 

in Tanzania, but 
medium high risk is 

widespread

Potential hotspots of vulnerability to and risk of extreme droughts can 
be seen under the RCP4.5 scenario along Lake Nyasha/Malawi with 
medium high vulnerability, and high drought risk seen across extensive 
areas of Namibia, northern Zambia, inland Tanzania, and across large 
areas of the DRC (Figure 14). Under the RCP8.5 scenario the hotspots 
do not change significantly, with some climate risk reduced along the 
coast of Lake Nyasha/Malawi, and some increase in the area of the 
hotspot along the coast of Namibia (particularly IIKaras) (Figure 15).

It is clear across all the hotspot bivariate maps that medium-
high climate risk (high vulnerability, medium-high climate hazard) 
is widespread under both future scenarios (RCP4.5 and 8.5) and 
for extreme rainfall and droughts across Angola, DRC, Tanzania, 
Mozambique and Madagascar.

Figure 14. Bivariate map showing hotspots of vulnerability to and risk of extreme drought within 
the districts of each SADC region for the RCP4.5 scenario. The first number within each matrix 
colour represents the normalised and rounded mean vulnerability value for the district, with the 
second number representing the rounded climate hazard value (i.e. 34 equates to ‘medium low 
vulnerability’, ‘low climate hazard). 

Risk hotspots 
for drought 

under a medium 
GHG emissions 

scenario are 
found in Tanzania, 
but medium high 
risk is widespread

Photo: Sonja Leitner (ILRI)
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Three studies were identified that have taken a broadly similar 
approach to climate risk mapping and the identification of climate 
risk hotspots across a broadly similar set of countries in Southern 
Africa: Thornton et al (2008) who examined poverty and climate change 
for sub-Saharan Africa;  Midgley et al (2011) who mapped climate risk and 
vulnerability for Southern Africa, and Herding for Health (2020) who conducted 
a climate vulnerability assessment for Southern Africa’s rangelands (excluding 
Tanzania, Malawi and DRC).

In the Thornton et al (2008) study hotspots of climate hazard 
were identified using Global Climate Models (GCMs) to calculate changes 
to the length of the growing season, combined with an agricultural system 
classification. This enabled agricultural systems at risk to be identified. Hotspots 
of vulnerability were identified by mapping 14 vulnerability indicators from across 
the capital assets, including soils, distance to markets, governance, incidence 
of malaria, etc. A principle components analysis was used to create four factors, 
explaining 63% of the variance, which were combined using the percentage 
variance explained to weight each factor, normalised and then quartiled. A 
qualitative synthesis of the results identified hotspots of vulnerability to climate 
change in the mixed rainfed crop-livestock systems of the Sahel, and in the great 
lakes region and mixed agricultural systems of East Africa. Livestock and mixed 
rainfed systems were considered most vulnerable to future changes in climate.

In their study mapping climate risk hotspots, Midgley et al (2011) used 
an earlier IPCC vulnerability model compared to the one used 
in this study, where vulnerability is a function of exposure, sensitivity and 
adaptive capacity. They developed a set of 11 exposure indicators for current 
(rainfall variation, risk of cyclones, fires, etc) and future (using GCMs) climate. 
Their 16 sensitivity indicators included land under irrigation, soil moisture and net 
primary productivity and their 19 adaptive capacity indicators included measures 
of conflict, contribution of agriculture to GDP, governance and education. They 
used a weighted overlay method to identify hotspots of vulnerability in northern 
and central Tanzania, Madagascar, south and central Mozambique, Malawi, 
Zimbabwe and Zambia, south and central Angola, and south and west DRC.

The work by Herding for Health (2020) focused on rangelands, used 
the same IPCC climate risk model as this study. They used both 
observed data, future indices and GCMs to map climate hazards including aridity, 
heatwaves, deforestation and land degradation. Their six vulnerability indicators 
included measures of access to markets, gender and the Human Development 
Index (including education, income and health), while their exposure index included 
measures of population density and the distribution of rangelands. The indices of 
hazard, vulnerability and exposure were equally weighted in a combined index of 
climate risk. Hotspots of climate risk were identified in Zambia and Mozambique. 

Direct comparisons are difficult because of differences in spatial 
coverage. The creation of indices, and the use of quartiles to aggregate the 
data mean that areas and countries identified as high climate risk are done so in 
comparison to the other areas and countries included in the analysis. Each study 
has also used a different combination of climate models, with our study using the 
CORDEX-Africa ensemble rather than CMIP5 ensembles used in the other studies.. 
These models will have evolved in accuracy over time, from 2008 when the earliest 
study was undertaken (Thornton et al, 2008) to this study and that by Herding for 
Health in 2020. The data underlying the vulnerability and exposure indices used in 
all the studies will also have been updated over time.

Nevertheless, all four studies identify comparatively higher climate 
risks for the areas further north and east in their study regions, 
from parts of Zambia and Mozambique for Herding for Health (2020); 
parts of Angola, DRC, Zambia, Zimbabwe, Malawi, Mozambique, 
Tanzania and Madagascar for Midgley et al (2011); parts of Angola, 
DRC, Tanzania, Mozambique and Madagascar in this study, to the 
Sahel and parts of East Africa for Thornton et al (2008). This highlights 
the importance of considering vulnerabilities (in agricultural and social systems) 
as well as climate hazards (i.e. droughts or extreme rainfall events). Vulnerability in 
particular is likely to be behind the spatial patterns of increasing climate risk found 
in all these studies. As a result, all of these studies suggest that efforts to reduce 
climate risk should be targeted particularly to areas (and countries) in the north and 
north-east of the SADC region where vulnerabilities are highest.



From the systematic review 60 papers were identified 
as meeting our criteria for Tanzania, with 10 having 
conducted research in medium high vulnerability and medium 
high climate hazard areas for both extreme rainfall events and 
drought (Figure 12 to Figure 15), including two in the hotspot 
identified in the plateau region in the south west of the country 
near lake Nyasa/Malawi (Kangalawe 2017; Luhunga 2017). 

Luhunga (2017) undertook an assessment of the impacts of 
climate change on maize yields in the southern highlands and 
plateau region of southern Tanzania. They used a climate crop 
model, using CORDEX-Africa climate models, to simulate 
maize yields under different future scenarios. They found that 
maize yields may decrease by up to 10% (under RCP8.5) in the 
hotspot region (Figure 15) due to increased temperatures and 
a shortening of the growing season caused by reductions in 
rainfall. 

Kangalawe (2017) conducted participatory rural assessments to 
understand perceptions of changing climate in Mbinga District, 
within the hotspot identified by our bivariate mapping (Figure 12 
to Figure 15). Here, villagers report decreasing river flows and 
decreasing water availability for both agriculture and domestic 
purposes, in line with our hotspots for drought (Figure 14 and 
Figure 15). These reductions in available water have led to 

expansion of agriculture into wetland areas with subsequent 
losses of diversity, but also the shrinkage of wetland areas 
as river flows decrease and water use increases. A trebling 
of the population in this region (up to 120 people per square 
kilometers) indicates increasing exposure of the population to 
increasing drought. These findings are supported by Kassain 
et al. (2017) whose participatory research in the Iringa region 
also found perceptions of a decline in river flows over the 
last 20 years following declines in rainfall. This has led to 
impacts on water levels in irrigation channels, over-utilisation 
of available water, and reductions in yields. Both Kangalawe 
(2017) and Kassain et al. (2017) found that farmers were likely 
to implement measures such as deepening wells, expanding 
irrigation channels, or expanding agriculture into wetland areas 
that would be considered maladaptive. While some adaptation 
measures, such as tree planting for water conservation, are 
understood, they are not widely undertaken. There is a clear 
need for more work to understand, and implement, adaptation 
options in this region.

In addition to research in the southern highlands and plateau 
region, research has been undertaken in the northern highlands, 
specifically on Mount Kilimanjaro in northern Tanzania. This 
area also falls under the medium high vulnerability and 
medium to medium high climate hazard. Here the focus is very 
much on coffee production, given the importance of these 
highlands to producing this important export crop. The work 
by Rahan et al. (2018) developed a coffee crop model, linked 
to climate and soils data, to understand the effect of changing 
climate on yields. They found that increasing temperatures 
and drought stress are likely to reduce yields by as much 

as 32%, although increased carbon dioxide concentrations 
may go some way towards mitigating this effect. Their work 
suggests that a common strategy of using shade plants may 
not be beneficial under conditions of water stress. In addition, 
Azrag et al. (2018) predicted the distribution of an important 
coffee pest, Antestiopsis thunbergii, under climate change 
on Mount Kilimanjaro. Their work suggests that the risks of 
pest infestation at lower elevations are likely to decrease 
under climate change, but would be offset by increased risks 
occurring at higher elevations. 

Finally, a set of 3 papers were identified by our systematic 
review covering the alluvial plans and semi-arid regions found 
in central Tanzania, an area of medium high vulnerability and 
medium to medium high climate hazards. Näschen et al. (2019) 
used the CORDEX-Africa climate models to examine the 
impact of climate change on water resources in the Kilombero 
region. They found increasing temperatures, and particularly 
intensification of the season with extreme flooding and 
drought, along with shifts in peak river flows will become more 
pronounced. Some farmers are already aware of changes to 
climate in the region, with rainfall becoming more unpredictable 
(Balama et al. 2016). Here, farmers are already implementing 
adaptation strategies through changes to planting calendars, 
uptake of agricultural technologies, crop diversification and the 
use of non-timber forest products to supplement incomes and 
household consumption. Osewe et al. (2020) have also found 
evidence of farmer led adaptation schemes, particularly farmer 
led irrigation schemes. However, more research is needed on 
these autonomous strategies to assess how robust and climate 
smart they are.

054 Hotspot Case Studies 

TANZANIA

Only two of the 23 studies identified by our systematic literature review were carried out in the hotspots identified through the mapping of climate hazard and vulnerability outlined above. This suggests a possible mismatch between 
locations where climate risk is likely to be highest and where research on impacts of and adaptation to climate change is being conducted. Here we outline what we know from the research that has been undertaken in our hotspots, but 
also more broadly in the countries where the hotspots occur.

UNITED 
REPUBLIC OF 

TANZANIA
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Few studies meeting our criteria were retrieved from 
the literature search for Madagascar, and none were 
conducted in the areas identified as climate risk 
hotspots along the northern coast (Figure 12 to Figure 
15). However, locations subject to medium-high vulnerability 
and rainfall or drought related hazards have received research 
attention. Eight studies in these locations explored local 
agricultural practices and related knowledge, and adaptation 
options to reduce climate-related production risks.  

The Lake Alaotra region in north eastern Madagascar currently 
experiences variable wet and dry episodes during the rainy 
season (Bruelle et al. 2017), and is at high risk of future extreme 
rainfall events, and moderately-highly vulnerable under both 
RCP 4.5 and 8.5 projections (Figure 12 and Figure 13) Rain-fed 
rice production, which characterises and is expanding on the 
hillsides as a result of the increasing food needs of the growing 
local population, is highly susceptible to rainfall variability, and 
resulting water stress and impoverished soils (Bruelle et al. 
2017; Penot et al. 2018). Research using simulated water × soil 
× rice interactions indicates the use of conservation agriculture 
(CA) in these areas mainly increased water loss because of 
drainage in the majority of conditions, and that crop growth 
was least affected when sown in November regardless of other 
interactions. Simulations and findings suggest mulching widened 
the favourable sowing window towards early dates, reduced 
associated risks by enhancing water capture and storage during 
the first erratic rains of the season, and increased crop yields 
(Bruelle et al. 2017). However, Penot et al. (2018), highlight 
high abandonment rates by upland rice farmers adopting CA 
in the same region over a 10-year period, partly because of 

difficulties implementing technologies including mulching, and 
perceived risk of crop failure, especially when disappointed by 
losses or yields early on. Abandonment was lower by those 
farming colluvial land because costs were often offset by yields. 
However, findings overall indicate >5–7 years of practice was 
needed for CA to persist. Despite high drop-out, the use of CA 
technologies was sustained by farmers fully convinced of their 
benefits, albeit in diversified forms reflecting innovation that 
tailored cropping systems to individual circumstances. 

Rainfall in Madagascar’s mid-west is also erratic, with droughts 
alternating with intense rainfall events (Randrianjafizanaka et al. 
2018), which are forecast to pose high future risk to moderately 
or highly vulnerable farming communities (Figure 12 and Figure 
13). Here, rice-maize rotations predominate in upland areas 
on impoverished soils that attract weeds, including Striga 
asiatica, which suppress yields and increases labour demand.  
Randrianjafizanaka et al. (2018) present evidence that illustrates 
how different combinations of zero-tillage, intercropping and 
mulching CA strategies promoted as adaptations to soil and 
climatic constraints, can also delay and reduce (although not 
eradicate) the impact of S. asiatica parasitism in rice and maize 
crops, particularly when partially-resistant rice varieties are 
integrated into the system. Methods to assess accessibility of 
insurance to compensate for losses associated with climate 
hazards, have also been researched in this region. Focussing 
on rice cultivation, Möllmann et al. (2020) found that remotely-
sensed vegetation health indices provided considerably higher 
explanatory power for credit risk related to the variability of 
borrowers’ yields, than indices derived from the more often 
used meteorological data which is scarce, and hence less 
reliable in regions like this. Lower credit risk, and thus predicted 
default rates, allow lending institutions to reduce interest rates, 
potentially enhancing farmers’ access to the credit often critical 
for elevating and sustaining production.

In the semi-arid south, maize composite varieties have been 
developed from local landraces to produce higher-yielding plants 

more tolerant of local climatic and agronomic conditions than the 
old landraces or obsolete hybrid varieties smallholder farmers 
often rely on (Masoni et al. 2020). The authors emphasise that 
maize has become Madagascar’s second staple food in recent 
years, and highlight its potential contribution to future food 
security because it has lower water demand than rice. On the 
southeast coast, the high risk of extreme rain events in the future 
looms large for a potentially vulnerable farming community 
(Figure 12 and Figure 13) already prone to flooding and drought 
(Kruger 2016). During interviews and focus groups, farmers 
described early and late-planting, and using short-cycle cassava 
and yam varieties to increase resilience to hazards. In certain 
areas however, farmers have been unable to mitigate the lack 
of infrastructure to store water, and floods that destroy crops 
every year. In the southwest, drought is projected to be a greater 
hazard (Figure 14 and Figure 15), and conditions are already 
harsh. Very low amounts of rainfall on the Mahafaly plateau, and 
famine regularly affects those dependent on rain-fed production 
(Neudert et al. 2015). 

Knowledge accumulated and transmitted locally related to 
climatic extremes and changing resource use is presented 
by Fritz-Vietta et al. (2017) to identify principles for inherent 
sustainable land management: management based on context 
specific values, socio-cultural norms, and the knowledge and 
perceptions of the local population, to enable future adaptation 
to environmental change. A different approach to facilitating 
adaptation to the dry and drying climate in the southeast is 
provided by Fust and Schlecht (2018), who developed a spatially 
explicit agent-based model to simulate livestock production 
systems, with the objective of sustaining the economic and 
food security of livestock keepers faced with impoverished 
forage yields and variable pasture quality. The model integrates 
metabolic energy costs due to pastoral herd movements in 
search of forage, incorporates seasonal dynamics in forage 
quality in terms of feed digestibility, and relates forage availability 
and quality to climatic conditions.

MADAGASCAR
MADAGASCAR
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