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Microbial eco-evolutionary dynamics in the plant 
rhizosphere 
Bryden Fields and Ville-Petri Friman   

Microbial communities are vital for plant health and 
productivity. While most studies have underlined the ecology of 
plant–microbe interactions, accumulating evidence suggests 
rapid microbial evolution is also important, often occurring at 
ecological timescales within and between plant generations. 
We review current evidence and mechanisms of rapid microbial 
evolution in the rhizosphere, focusing on examples along the 
mutualism–parasitism continuum. We consider how evolution 
can change the ecology and plant–microbe ecosystem 
functioning via eco-evolutionary dynamics and highlight the 
importance of intraspecies diversity as the product and raw 
material for natural selection. We conclude that acknowledging 
rapid evolution is not only crucial for understanding the 
complex plant–microbiota interplay but also an important 
prerequisite for harnessing the benefits of soil microbes for 
sustainable agriculture. 
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Introduction 
The rhizosphere is the section of soil closest to the plant 
root where interactions between soil microorganisms and 
the plant influence plant growth, protection from pa-
thogens, resilience to environmental stresses, competi-
tion for resources, and nutrient cycling [1,2]. 
Reciprocally, microorganisms can benefit from secreted 
root exudates and plant litter as energy sources. As a 
result, plants actively influence the composition of rhi-
zosphere communities by stimulating and repressing 
specific microorganisms for their productive benefit  
[3–7]. This host filtering can be mediated by secretion of 

root exudates which enable microbe–plant signalling and 
the activation of microbe recognition systems to distin-
guish pathogenic and non-pathogenic microbes [2,8]. 
Consequently, agricultural practices have been devel-
oped to manipulate rhizosphere microbiome commu-
nities to improve plant health by encouraging 
interactions with beneficial symbionts, such as rhizobia 
bacteria and mycorrhiza fungi, and plant growth-pro-
moting rhizobacteria that can boost plant growth and 
provide protection against pathogenic bacteria [9–11]. 

Most of these manipulations are based on ecological 
theory. For example, maximising competition and niche 
overlap between pathogenic and non-pathogenic bac-
teria could help to protect plants from infections [12], 
while using species that antagonise pathogen-facilitating 
species [13] could indirectly provide beneficial effects 
for plant health. Overall, promotion of microbial di-
versity has been linked to improved rhizosphere eco-
system functioning, which can be explained by (1) 
selection effects, where community performance is de-
termined by its most productive member, or by (2) 
complementarity effects, where there is an inherent 
benefit to diversity that is greater than the combined 
individual effects of the community members [14]. 
While the positive relationship between species di-
versity and ecosystem functioning is well documented, 
the importance of within-species (intraspecies) diversity 
is less studied [15] despite its significance for plant–-
microbe interactions and functioning of host-associated 
microbiomes [16–19]. Moreover, as the product and raw 
material for natural selection, acknowledging in-
traspecies diversity is paramount for understanding the 
role of rapid microbial evolution in microbe–plant in-
teractions. 

Microbes can evolve rapidly in plant- 
associated microbiomes 
Microbial diversity is a result of natural selection driving 
diversification and speciation via de novo mutations and 
recombination. While microbes are known to evolve ra-
pidly in the lab, we are only beginning to understand 
microbial adaptation in natural environments and plant- 
associated microbiomes [20]. Seminal studies conducted 
in soil microcosms in the absence of plants have estab-
lished that bacteria can diversify [21] and coevolve with 
bacteria-specific viruses (phages) [22], and that such 
local adaptations can have as strong effect as the 
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presence of a given focal species for the surrounding 
community [23]. The effect of intraspecies variation is 
often neglected in most plant–microbe studies that focus 
on changes in species richness and abundance based on 
species-specific amplicon sequencing. As a result, we 
often only observe changes in species relative abun-
dances and can only make ecological inference of the 
effects of microbes on the plants and vice versa (Figure 
1a: Ecological dynamics). Most microbial species in-
habiting the rhizosphere are not clonal but show certain 
degree of intraspecies diversity [24,25]. Such genetic 
variation will provide the raw material for natural selec-
tion, which can change genotype frequencies within 
microbial species during plant growth (Figure 1a: Evo-
lutionary dynamics). When these ecological and evolu-
tionary processes occur at the same timescale, they can 
result in eco-evolutionary dynamics, where evolution 
changes the ecology of interacting species, which can 

further feedback to the process of adaptation by chan-
ging the strength of initial selection pressures [26,27] 
(Figure 1a: Eco-Evo dynamics). While eco-evolutionary 
dynamics are well documented in several systems  
[20,26,28–34], research on their importance in an agri-
cultural context is only emerging [7,35–38]. In this re-
view, we will highlight the importance of rapid microbial 
evolution and eco-evolutionary feedbacks for plant–-
microbe interactions in the rhizosphere. Specifically, we 
review the current evidence by using examples of rapid 
microbial evolution along the mutualism–parasitism 
continuum and discuss how evolution could change the 
ecology and functioning of plant–microbe ecosystems. 

Evolution of mutualism in plant–microbe 
interactions 
While mutually beneficial interactions between mi-
crobes and plants are commonly observed, we still poorly 

Figure 1  

Current Opinion in Microbiology

Both ecological and evolutionary processes are important in determining the composition and functioning of rhizosphere microbiomes. (a) Ecological 
dynamics can lead to species sorting and changes in rhizosphere microbiota composition, while evolutionary dynamics lead to changes in species 
genotype frequencies. When ecological and evolutionary processes occur at the same timescale, rhizosphere microbiota composition could be 
determined by eco-evolutionary dynamics. (b) Selection on standing genetic variation can shift microbe–plant interactions along the 
mutualism–parasitism continuum by selecting for mutualistic or pathogenic bacterial genotypes. (c) Microbial Eco-Evo dynamics within individual 
plants could alter the functioning of plant ecosystems, for example, via effects on plant competition (solid arrow: competition; dashed arrows: loss of 
competition). Changes in plant species abundances and frequencies could in turn alter the selection on rhizosphere microbiota.   
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understand how, and at what timescale, they evolve. 
Macroevolutionary studies suggest that symbiotic inter-
actions are old and likely originally evolved in relation to 
plant terrestrialisation as a major evolutionary transition  
[39]. Recent experimental evolution studies suggest that 
microbe–plant mutualisms can also evolve rapidly at 
much shorter timescales. In a recent study, Batstone 
et al. [40] showed that Ensifer meliloti, the nitrogen-fixing 
rhizobial symbiont, can adapt to become more beneficial 
to its legume host (Medicago truncatula) because of de 
novo mutations in putative genes involved in signalling 
and survival in symbiotic plant root nodules. Interest-
ingly, this adaptation was host genotype-specific and 
only seen when the symbiont and the host had shared 
evolutionary history, indicative of rapid evolution of a 
specialist mutualism [40]. In another study, rhizobial 
symbionts evolved in cycles with different novel legume 
genotypes with which they initially provide negligible 
benefits [41]. Researchers found that rhizobial strains 
evolved to provide plants with more benefits, and dis-
played altered infection, proliferation and survival in 
legume nodules [41]. However, these evolutionary out-
comes were specific to host–symbiont combinations and 
while candidate mutations were identified, these did not 
reach fixation in evolved populations [41]. Plant host- 
specific adaptation has also been shown in the case of 
plant growth-promoting Bacillus subtilis rhizobacterium, 
which rapidly diversified and evolved improved root 
colonisation in the Arabidopsis rhizosphere in a hydro-
ponic system [42]. Similar to the first example, this 
adaptation was host specific and did not improve root 
colonisation in unrelated tomato hosts [42]. Further-
more, diversified bacterial morphotypes showed im-
proved productivity when cultured together, indicative 
of evolution of ecological complementarity [42]. Rapid 
bacterial evolution has also been shown to cause shifts 
along the mutualism-parasitism continuum (Figure 1b); 
for instance, an initially plant-antagonistic Pseudomonas 
protegens bacterium evolved to be more benign on Ara-
bidopsis thaliana roots [43]. Mechanistically, this was 
linked with increased resistance to plant-secreted anti-
microbials and improved resource catabolism, which 
made evolved P. protegens genotypes more competitive 
in the rhizosphere compared to ancestral bacterial 
clones. Similar to B. subtilis, clear phenotypic and gen-
otypic bacterial diversification was observed, which was 
due to mutations in the GacS-GacA two-component 
regulatory system [43]. Crucially, improved bacterial 
competition in the rhizosphere was coupled with im-
proved plant growth promotion by the evolved bacterial 
genotypes, which suggest that adaptation was beneficial 
for both parties, and hence, mutualistic [43]. 

While mutualism is common, it might not always be an 
evolutionary stable strategy. For example, rhizobial strains 
interacting with legumes can range from highly mutua-
listic, beneficial nitrogen-fixers to non-fixing unbeneficial 

'cheater' genotypes [44]. Moreover, non-fixers can hide in 
the nodule alongside nitrogen-fixing genotypes in mixed- 
strain nodules and thereby benefit from the plant without 
providing any benefits in return [45,46]. As a result, legume 
hosts often use partner choice (symbiotic selection based 
on recognition signalling between plant and microbe) or 
sanctioning mechanisms (restriction of nutrient supply to 
poor symbiotic performers and non-fixing 'cheater' strains) 
to differentiate between beneficial and non-beneficial 
symbionts [47]. To what extent evolution of cheating de-
stabilises legume–rhizobia mutualism in natural environ-
ments is however still debated [48–50]. It is also likely that 
rhizobial evolution in the rhizosphere goes beyond infec-
tion and nodule formation and several lifestyle adaptations 
linked to competition via rhizosphere growth and root co-
lonisation have recently been identified [51], including that 
closely related rhizobium strains can show indirect and 
direct antagonism towards each other [52]. Together, cur-
rent evidence suggests that while mutualistic plant–mic-
robe interactions are evolutionarily old, they are still 
refining and changing via selection and rapid bacterial 
evolution in the plant rhizosphere. Crucially, these changes 
can occur just within a few plant generations, having po-
tential implications on the ecology and functioning of 
plant–microbe ecosystems. 

Evolution of antagonism in plant–microbe 
interactions 
Similar to mutualism, antagonistic interactions are 
common in the rhizosphere and can occur between mi-
crobes, or between plants and microbes. Evolution of 
competitive microbial interactions could have indirect 
effects on the plant via changes in the composition and 
functioning of rhizosphere microbiomes [53], while cer-
tain antimicrobials used in bacterial interference com-
petition are also phytotoxic [43]. Microbial competition 
can be mediated indirectly via competition for the same 
resources that often limit microbial growth [19,54] or 
directly by contact-dependent and contact-independent 
microbial warfare [55]. How rapidly microbial competi-
tion evolves in the rhizosphere is however still unclear. 
Indirect evidence suggests that Streptomyces bacteria and 
Fusarium fungi can be locally adapted and show higher 
inhibition when in sympatry, which could have resulted 
from past co-evolutionary history [56]. Furthermore, a 
recent microbial transplantation study showed that Cur-
tobacterium can adapt to its local soil environment 
through mutations in genes related to nutrient acquisi-
tion, stress response, and exopolysaccharide production, 
indicating that bacteria can rapidly evolve in response to 
shifts in microbial community composition at relatively 
short timescale [57]. While microbial competition could 
have indirect positive effects on plant health via in-
tensified competition with the pathogen [54,58], it could 
also potentially promote infections if antagonising mu-
tualistic or plant growth-promoting bacteria. 
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Plant–bacteria interactions are also indirectly shaped 
through selection by parasitic phages [59]. For example, 
phages have been shown to control plant pathogenic 
Ralstonia solanacearum bacterium via density reduction 
and selection for phage-resistant mutants that suffer re-
duced growth and competitiveness [37]. Furthermore, 
the negative effects of phages are amplified in the pre-
sence of antibiotics-producing Bacillus amyloliquefaciens 
bacterium because evolution of phage resistance sensi-
tises R. solanacearum to antibiotics [60]. Phage selection 
can also have community-wide effects in the rhizosphere 
by changing bacterial community diversity, composition 
and functioning in terms of soil suppressiveness [37] and 
nitrogen cycling [61]. In addition to phages, protist 
predators can also drive bacterial evolution in the rhi-
zosphere by providing a selective advantage to bacterial 
genotypes that can avoid predation [62–65]. Evolution of 
antipredatory defences could also indirectly shape bac-
terial competitiveness as secondary metabolites that are 
toxic to protists can improve P. protegens establishment 
into a native rice rhizosphere community [62,66]. While 
more direct evidence on the evolution of anti-protist 
defences in the rhizosphere is still required, the above 
examples together suggest that microbial trophic inter-
actions can play an important role for the ecology and 
evolution of bacteria–plant interactions in the rhizo-
sphere. 

Besides adapting via microbial interactions, bacteria can 
also rapidly evolve to be more antagonistic towards their 
plant host (Figure 1b). Guidot et al. [67] used in planta 
serial transfers to adapt soil-borne R. solanacearum pa-
thogen to two native (tomato and eggplant) and distant 
(bean and cabbage) plant hosts for 300 bacterial gen-
erations. They found increases in bacterial fitness com-
pared to ancestral clones when in direct competition 
during xylem colonisation, which was driven by only a 
few mutations in genes linked with the PhcS-PhcR two- 
component regulatory system and EfpR transcription 
regulator protein. In another study, R. solanacearum was 
serially transferred in the xylem of resistant tomato 
cultivar named ‘Hawaii 7996’ [68]. While no resistance 
breakdown was observed, improved xylem colonisation 
was associated with non-parallel mutations that led to 
parallel rewiring of the virulence gene network between 
replicate selection lines [68]. Although these experi-
ments did not consider pathogen evolution in the rhi-
zosphere per se, they clearly demonstrate that successive 
rounds of plant infections can select for increased pa-
thogen fitness. 

Effects of eco-evolutionary dynamics on 
plant–microbe ecosystems 
Rapid microbial evolution could affect the ecology of 
rhizosphere microbiomes and associated plant commu-
nities. For example, evolution of plant beneficial or 

pathogenic bacteria might change the relative plant 
species abundances via indirect effects on plant–plant 
competition, while virulent pathogens could select for 
resistant or tolerant plant genotypes (Figure 1c). 
Changes in plant species frequencies and abundances 
could in turn affect plant community productivity, di-
versity, stability and aboveground trophic interactions 
with insects and animals. Such changes could further 
alter the selection on rhizosphere microbiota [69], 
leading to evo-eco-evo feedbacks in plant–microbe 
ecosystems and potentially influencing the processes of 
range expansion, coevolution and phylosymbiosis. For 
example, host–microbiome coevolution has been sug-
gested to have occurred during domestication of the 
apple [70] which could over time lead to phylosymbiosis, 
that is, significant associations between host phyloge-
netic relatedness and similarity of associated micro-
biomes [71]. While coevolutionary arms races could also 
lead to specialised interactions and phylogenetic asso-
ciations between pathogens and their plant host 
lineages, host jumps and host range expansions via hy-
bridisation or changes in regulatory networks are also 
possible [72]. Additionally, in the future, more work is 
required to better understand how spatial and temporal 
variation in abiotic physicochemical soil properties, such 
as nutrient availability, pH and soil type, might de-
termine the cold and hot spots of evolution. Moreover, 
although microbial evolution is likely to drive such eco- 
evo feedbacks due to their relatively faster generation 
times, the role of past plant evolution and plant–microbe 
coevolution should be acknowledged when inferring 
current ecological interactions. 

Future perspectives 
While the reviewed examples suggest that rapid micro-
bial evolution is often observed in association with 
plants, there are several outstanding questions. Although 
these questions range from methodological issues of 
quantifying absolute microbial abundances to identi-
fying who is doing what [73], here we highlight the 
challenges of moving beyond a ‘focal-species’ approach 
to study the evolution of microbial communities at dif-
ferent scales. Firstly, it is unclear to what extent the 
species diversity of a community affects the evolution of 
its members. Most experimental evidence comes from 
studies focusing on ‘focal species’ that can be reisolated 
from microbial communities and evolutionary changes 
quantified in the laboratory [20,23,74]. However, only a 
few studies have tried to address microbial evolution at 
the community level [75–77] or used experimental de-
signs that can disentangle the effects caused by genetic 
and species diversity [38]. Secondly, while current evi-
dence suggests that evolution of a focal species can 
change the ecology of communities [37,43,61], it is un-
clear if these changes might alter the strength of future 
selection, highlighting the need for longer term 
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experiments [38]. Finally, although evolution has been 
shown to take place in conditions that mimic natural 
conditions, field transplantation experiments are re-
quired to understand the relative importance of micro-
bial evolution in spatially heterogeneous environments 
at the landscape level (Figure 1c). Acknowledging that 
the strength of selection varies in space and time is 
crucial to identify evolutionary cold and hot spots that 
are likely to determine eco-evolutionary outcomes across 
the natural and agricultural environments. Moreover, 
understanding the rapid evolution of mutualism and 
pathogenicity at agriculturally relevant timescales be-
tween the harvests and seasons could help harnessing 
the evolutionary potential of soil microbes and guide the 
development of experimentally evolved biofertilizers or 
evolutionary-proof pathogen control strategies. 
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