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ABSTRACT

To understand the difference between benign and se-
vere outcomes after Coronavirus infection, we ur-
gently need ways to clarify and quantify the time
course of tissue and immune responses. Here we re-
analyze 72-hour time-series microarrays generated
in 2013 by Sims and collaborators for SARS-CoV-
1 in vitro infection of a human lung epithelial cell
line. Transcriptograms, a Bioinformatics tool to an-
alyze genome-wide gene expression data, allow us
to define an appropriate context-dependent thresh-
old for mechanistic relevance of gene differential ex-
pression. Without knowing in advance which genes
are relevant, classical analyses detect every gene
with statistically-significant differential expression,
leaving us with too many genes and hypotheses to
be useful. Using a Transcriptogram-based top-down
approach, we identified three major, differentially-
expressed gene sets comprising 219 mainly immune-
response-related genes. We identified timescales for
alterations in mitochondrial activity, signaling and
transcription regulation of the innate and adaptive
immune systems and their relationship to viral titer.
The methods can be applied to RNA data sets for
SARS-CoV-2 to investigate the origin of differential
responses in different tissue types, or due to immune
or preexisting conditions or to compare cell culture,
organoid culture, animal models and human-derived
samples.

INTRODUCTION

Severe respiratory syndromes during the two previous ma-
jor outbreaks of lethal Coronavirus, SARS-CoV-1 in 2003

(1) and Middle-Eastern Respiratory Syndrome (MERS)
in 2012 (for a Review, see (2) and references therein),
as well as the current SARS-CoV-2 pandemic, often re-
sult from dysfunctional immune responses triggered by
the interaction of the host immune system with the virus
(3,4). While strong immune responses are essential to con-
tain and clear viral infection, excessive inflammation may
damage tissues, delay tissue healing after viral clearance,
and lead to acute inflammatory responses and/or sepsis.
In the case of SARS-CoV-2, the degree and severity of
immune-response pathologies differ greatly between indi-
viduals (https://globalhealth5050.org/covid19/). Because of
the complexity of the many patterns of response to SARS-
CoV-2, we critically need ways to identify important bio-
logical mechanisms which act at different phases of infec-
tion and allow us to reliably identify differences in path-
way and gene activity between individual patients, tissues
within patients, individuals with pre-exiting conditions, sex
and ethnic differences and age. The immune system is com-
plex, sensitive and dynamic, with a delicate balance of trig-
gers, high-gain feed-back loops, and complex interactions
between its many agents, complicating interpretation of
experimental measurements of immune-response compo-
nents and the origins of their variation between individu-
als. In this case, for diagnostic, prognostic, and therapeutic
purposes, detailed mathematical models of patient-specific
immune responses might help us understand the range
of possible immune responses, and how they depend on
patient-specific variables, ranging from initial exposure level
and coinfections, to age, sex, preexisting conditions and
medications, etc. Furthermore, in serious cases, COVID-
19 symptoms may also include blood and vascular disrup-
tion, meaning that the co-activation of other pathways with
deleterious effects may play an important role in disease
outcomes (5).

Both constructing mathematical models of a complex
system like the human immune response and validating
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such models sufficiently for use to propose therapies or as-
sist with diagnoses or prognoses, requires integration of
extensive data from in vitro, organoid and animal exper-
iments with the more limited clinical observations in hu-
mans. Acute inflammatory responses lead to dramatic and
rapid changes in expression of large numbers of genes, re-
quiring extensive transcriptome analyses to interpret. For
construction and validation of immune-response models,
qualitative information is insufficient; we also need specific
quantitative information on the time course of immune re-
sponse and its relationship to viral titer.

Statistical analyses of transcriptome data are gener-
ally classified as either bottom-up, starting by identify-
ing differentially-expressed genes, clustering them into
differentially-expressed pathways and then describing the
biological functions these pathways alter, or top-down,
starting by identifying altered biological functions, then
refining the analysis to hierarchically discover the rele-
vant differently-expressed pathways and then genes. In
cases of immune-system response to viral infection, where
changes in gene expression are genome- wide, top-down ap-
proaches may be more practical, since the large number of
differentially-expressed genes can be overwhelming to ana-
lyze and understand using bottom-up techniques.

RNA-Seq or microarray transcriptomes are affected by
many sources of variability, including differences in ex-
perimental techniques, biological differences between ap-
parently similar samples, and other confounding variables
within samples, like the effect of cell-cycle phase. Our Tran-
scriptogram method to quantify whole-genome-level ex-
pression changes reduces noise and enhances signal-to-
noise ratio in transcriptome analyses, increasing the power
of statistical tests to identify significantly affected path-
ways and timescales (6). Transcriptograms provide a high-
level visualization of significant changes in gene expres-
sion and have been proved useful in identifying relation-
ships between pathways in fungi (7,8), plants (9,10), and
humans (11,12,6), eventually coming up with association
between gene sets or biological functions that are new in
the literature (11). The Transcriptogramer software tool is
freely available for download at https://lief.if.ufrgs.br/pub/
biosoftwares/transcriptogramer/ and has a Bioconductor
application (13).

Here, as a pattern for future Transcriptogram analyses
of SARS-CoV-2 data and to illustrate the power of the
method in quantifying the detailed and complex temporal
pattern of immune response to viral infection in cell cul-
ture, we present Transcriptogram analyses for SARS-CoV-
1 time-series data sets of Sims et al. (14). Sims et al. (14)
infected cultures of a clonal population of Calu3 2B4 cells,
a lung adenocarcinoma cell line isolated from the pleural
effusion of a 25-year-old Caucasian male, sorted for high
expression of the enzyme ACE-2, a major cellular recep-
tor for SARS-CoV-1 (and SARS-CoV-2). They inoculated
cultures with either a wild type SARS-CoV-1 virus (WT
samples) or a mutant SARS-CoV-1 strain (DORF6 sam-
ples) that does not express the accessory protein ORF6 at
high concentration (a multiplicity of infection MOI of 5),
so that the probability of cell contamination in the cul-
ture approached 1. As controls, they also inoculated cul-

tures with a sterile solution (Mock samples). After inoc-
ulation, they incubated the cultures at 37◦C for 40 min,
then changed their medium. They then harvested samples
for microarray assays in triplicate at times they labeled
0 h, 3 h, 7 h, 12 h, 24 h, 30 h, 36 h, 48 h, 54 h, 60 h, and
72 h. Because they did not report the time for the medium
change or the time between inoculation and initial harvest,
their data lack a consistent time-0 data set and all time la-
bels refer to the time after the first RNA harvest. As a result,
even at 0 h, expression in the infected and control cultures
differs (see below). We analyzed these data because of the
short time intervals between samples at early times, which
are critical to understanding the rapid changes occurring
in tissue response to viral infection, and because of the rela-
tively long duration of the experiment. The experiments also
have matched-time controls in triplicate at all time points.
Sims et al. (14) made their data available at Gene Expres-
sion Omnibus (GEO) under accession number GSE33267
(http://www.ncbi.nlm.nih.gov/geo) and we used these data
for our analyses. More details on the experiments are avail-
able in Supplementary Information online, section 1.

Sims et al. focused their analyses on the role of ORF6
in the immune response, examining the differences between
the WT and DORF6 time series (14). Here, we focus on
large-scale and single-gene transcriptomic changes caused
by the WT virus w.r.t. the control. Our analyses confirm
that gene expression changes massively within 24 h, but
we also identified relevant responses before 7 h and com-
plex temporal changes in expression throughout the time-
course of the experiment. Our analyses identify specific ad-
ditional significant changes in expression in different path-
ways and individual immune-related genes at 12 h, 36 h and
54 h. We identified 219 genes with differential expression
at some point of the time sequence for WT samples w.r.t
the control, classified these genes in three clusters by their
covariance, and monitored the evolution of the mean dif-
ferential expression for each cluster. The results suggested
hypotheses regarding the cellular response to the virus in
these experiments, as we discuss below. We also examined
these clusters’ mean differential expression for the mutant
virus strain samples and present these results in the Supple-
mentary Information online. To illustrate the potential of
our method, we selected 4 genes with large expression differ-
ences w.r.t. to controls for further scrutiny, EGR3, TWIST1,
JUN, and TNFAIP3, all related to immune response. To
validate our findings, we also examined a pair of genes,
HSD11B1 and HSD11B2, with known associated effector
action on Cortisol/Cortisone balance.

We also remark that the cellular immune response ac-
companies genome-wide changes in gene expression, yield-
ing too many genes with statistically-significant differen-
tial expression to be helpful in identifying critical pathways.
Separating the very many genes with statistically-significant
changes in expression from the many fewer genes which are
biologically relevant to the immune response can be com-
pared to finding a needle in a haystack. Transcriptogram
analysis acts as a filter based on gene function, reducing the
number of genes of interest to a tractable set and suggesting
shared mechanistic functions for observed gene expression
patterns.
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STATISTICAL METHODS

Overview and analyses pipeline

We performed a Transcriptogram-based (8,15) top-down
analysis of whole-genome transcriptome time-series for hu-
man epithelial cells cultures, comparing cultures inocu-
lated with either a control (Mock), a wild type SARS-
CoV-1-containing (WT) solution, or a mutant SARS-CoV-
1-containing (DORF6) solution (GEO accession number
GSE33267 (http://www.ncbi.nlm.nih.gov/geo)). We first as-
sessed patterns of expression change shared by large num-
bers of genes, then considered smaller gene sets which had
strongly covariant temporal signatures, and finally exam-
ined single genes whose variance was statistically significant
withing these sets. At each stage, we filtered the data based
on the statistical significance of the subseries variability. The
next section briefly discusses the Transcriptogram method
and relevant parameters. We focused our analyses on the
cellular response to WT virus inoculation. We present the
data and Transcriptograms for the Mock and Wild Type
(WT) virus-strain time courses in the main text and the
Transcriptograms for DORF6 in the Supplementary Infor-
mation online. We indicate the gene sets we focus on and
provide a genome-wide visualization of the main patterns
of the time evolution for the covariance-clustered gene data,
comparing the WT-infected and non-infected samples. We
identified 219 genes whose time courses for the WT-samples
show fold-changes larger than two compared to their pair-
matched Mock samples at at least one time point. We clus-
tered these genes by time-course similarity and identified 3
clusters. We determined the time evolution for each cluster’s
mean expression for both WT and DORF6 samples. These
clusters show complex non-monotonic time courses, which
we compare to the viral titer. From the changes in behaviors
presented by the gene clusters’ mean expression, we infer the
typical patterns and timescales for Calu3 2B4 epithelial-cell
immune response to SARS-CoV-1 infection, correlate these
timescales with viral titer and identify single genes that may
be possible targets for therapy development.

Transcriptograms

Transcriptograms are expression profiles, obtained by run-
ning a window average for expression levels of multiple
genes, previously organized in an ordered gene list, repre-
senting the whole human genome. Here we consider win-
dows of radius 30, that is, intervals around a given gene po-
sition including 30 genes to its left and 30 genes to its right
in the ordered gene list. We choose radius 30 based on the
analyses presented by da Silva and collaborators (6). Aver-
aging over these intervals for each gene in the list produces
a smoothed mean expression profile. We generate the or-
dered gene list by first filtering gene products that share at
least one association as inferred from the STRING Protein-
Protein Interaction database with confidence scores of 800
or better (11). The gene-list ordering clusters genes by their
biological function as defined in the STRING database.
STRING uses seven different methods to infer whether
two proteins are associated, ranging from physical interac-
tions, information retrieved from (reliable) data bases like

HUGO, to co-expression, experiments, etc.. STRING also
provides a confidence score for the inference, given by the
fraction of inferences of each method that predicts that the
two proteins participating in the same KEGG metabolic
pathway. We used an overall STRING score of 0.800 as
our threshold for accepting an interaction. The STRING
information we use is more far-reaching than physical in-
teractions, and does not rely on single experiments, but on
knowledge about protein-protein association that integrates
contributions from an extensive scientific community.

The ordered gene list we use for this analysis is available
as an additional file AF1 in Supplementary Information on-
line. Ref. (11) explains the construction of the gene list in
detail. We then apply this ordered list of genes to analyze
gene expression data from micro-arrays or RNA-Seq exper-
iments. Because the list clusters genes by attributed func-
tion, the running window averages expression levels over
genes believed to participate in the same or similar biologi-
cal functions.

One major problem in detecting differential gene expres-
sion in microarray or RNA-Seq experiments is with the
high variance of the data, that can result from measurement
noise or confounding variables that were not explicitly con-
trolled for. Ref. (6) shows that Transcriptograms can reduce
the variance of gene expression measurements and enhance
the power of statistical tests when comparing gene expres-
sion levels between gene samples. We characterize the or-
dered genes by projecting onto the gene list selected biolog-
ical Gene Ontology (GO) terms or KEGG pathways (16), to
associate regions of the list with key biological mechanisms.

Figure 1 shows term-enrichment profiles projected on the
ordered list, obtained for selected KEGG pathways (16)
and Gene Ontology: Biological function terms (GO:BP)
(17). The gene list we use comprises 9684 genes, represent-
ing those genes whose products participate in at least one
Protein-Protein Interaction (with a score of 800 or better) as
listed in STRING. The horizontal axis (intrinsically num-
bered by gene position from 1 to 9684) has been rescaled
to fit the interval (0,1). At each position in the gene list,
represented by the horizontal axis, we plot the fraction of
genes within a window of radius 30 genes around that po-
sition associated with a specific term or pathway. A profile
value near 1 means that almost all 61 genes in that inter-
val link to the term. Moving from left to right, we observe
successive enrichment of terms associated with specific bio-
logical functions: at the far left, we see enrichment linked to
RNA processing and metabolism, then enrichment related
to the cell cycle, followed by cell differentiation, the actin
cytoskeleton and immune systems. Further to the right, we
see enrichment for signaling pathways associated with secre-
tion, ECM receptors and finally, energy metabolism. Conse-
quently, a running window average of expression data over
this ordering, averages the expression of genes linked to
the same or similar biological functions. The choice of the
KEGG and GO:BP terms presented in Figure 1 is arbitrary.
The terms are selected to evince the biologic logic of the or-
dering list. In Ref. (6) a much more detailed panel, contain-
ing 8 figures, illustrates the many possibilities to select an
adequate set of KEGG and GO:BP, all of them containing
the same information.
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Figure 1. Gene list and enrichment of terms related to critical biological functions as a function of position in the list. From left to right, in shades of
purple, the list is enriched with genes associated with translation and mRNA processing then pathways linked to the cell cycle. Next, in shades of blue,
genes associated with cell differentiation and, in shades of green, genes associated with immune response, cytokine production and interaction with the
extra-cellular matrix (ECM). Finally, shades of orange denote genes associated with energy metabolism.

Normalization check using Transcriptograms

Transcriptograms provide a powerful test for sample nor-
malization by revealing undesired variable offsets in expres-
sion levels between samples. We ensure sample normaliza-
tion as follows: we plotted the Transcriptograms of radius
30 for the normalized data available in the GEO database
(shown in Supplementary Figure S1 in the Supplementary
Information online) and verified that each sample set shows
offsets in its mean in relation to the other sample sets. We
then re-normalized the expressions levels for each sample
data set to set its mean expression to 1. Supplementary
Figure S1 shows the resulting renormalized, single-sample
Transcriptograms.

Relative Transcriptograms

We obtain relative Transcriptograms by dividing the Tran-
scriptogram profile values at each point in the ordered gene
list by the Transcriptogram profile value for a control sam-
ple at the same position in the list.

Differential Transcriptograms

We obtain differential Transcriptograms between two time-
series by obtaining the relative Transcriptogram for the WT

samples at a given time point w.r.t. time-matched Mock
samples. In a time-series for differential Transcriptograms,
the control sample differs for each time point.

Term enrichment

We determined term enrichment for the gene sets consist-
ing of the genes in a given interval of the ordered gene
list using the Term Enrichment Panther Service, on the
Amigo 2 home page (http://amigo.geneontology.org/amigo)
(17–19).

Covariance matrix

For each gene i from a gene set with N$elements (i =
1, . . . , N) we define the differential expressionei (t) as:

ei (t) = wi (t)
mi (t)

, (1)

where t represents a time in the time series and wi (t) and
mi (t) are the averages over replicates for the gene expression
values from, respectively, the WT or Mock transcriptomes’
normalized datasets.
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We define the covariance matrixCi j as:

Ci j = 1
σiσ j

1
Nt

∑
t

(ei (t) − 〈ei 〉)
(
e j (t) − 〈e j 〉

)
, (2)

where Nt is the number of the experiment time points (here
Nt = 11) and 〈ei 〉 is the time average of the differential ex-
pression of the i -th gene, that is:

〈ei 〉 = 1
Nt

∑
t

ei (t) , (3)

and σi $is the standard deviation calculated as:

σi =
√

1
Nt

∑
t

(ei (t) − 〈ei 〉)2 . (4)

RESULTS

We start our analysis of expression profiles for WT and
Mock samples at different times by generating relative Tran-
scriptograms as described in the Statistical Methods sec-
tion, taking as the control the Transcriptogram for the
Mock sample at time 0 h (which is the time of the first
RNA harvest, at least 40 minutes after inoculation). Figure
2 shows the relative Transcriptograms at different times for
Mock (blue lines) and WT (red lines) samples. The relative
Transcriptogram for the control expression levels (Mock
samples at 0 h) appears as a black horizontal line. We also
plot the relative Transcriptogram standard errors (due to
the variance among replicates) for each point of the order-
ing: these errors are represented by gray, light red, and cyan
shading around, respectively, the black, red and blue lines.
The Transcriptogram’s window average reduces the vari-
ance between replicates, so the error bars are barely visible.

Figure 2 presents the relative Transcriptogram profiles at
0 h, 24 h and 48 h after first RNA harvest. The top panel
shows that at t = 0 h (approximately 40 minutes after the
viral inoculation and washout at the start of the experiment)
the Mock and WT samples are similar, although in some re-
gions the errors do not overlap (around gene positions 0.41
or 0.53, for example), indicating that cells are already re-
sponding to viral infection at the time of first RNA sam-
pling. Figure 2 shows that at 24 h and 48 h, the relative Tran-
scriptogram profiles of both Mock and WT samples differ
significantly from the Mock-sample mean profile at 0 h. The
direction of deviations at a given gene location at 48 h is typ-
ically the same as that at 24 h, but of greater amplitude. To
identify intervals in the relative Transcriptograms with sig-
nificant expression variations, we define and consecutively
label contiguous regions along the horizontal axis with val-
ues larger than 9/5-fold changes in the WT relative Tran-
scriptogram values at 48 h (labels A1, A2,. . . ,A11). From
the many terms enriching each region (see Methods section)
we select a representative term as a label, based on the num-
ber of genes associated to that term in that region.

Supplementary Figure S6 in the Supplementary Infor-
mation online shows equivalent panels for all time points
(0 h, 3 h, 7 h, 12 h, 24 h, 30 h, 36 h, 48 h, 54 h, 60 h, 72 h).
While our method does not seek to identify genes related
to immune response, most of the bands having statistically

significant different alterations correspond to regions
enriched with genes participating in pathways linked to
the immune response. Genes linked to the cell-cycle I
region (interval A2) are depressed in both Mock samples
and WT samples, probably reflecting contact inhibition
of proliferation in confluent in vitro cultures. However,
Supplementary Figure S6 in the Supplementary Informa-
tion online also shows that at 54 hWT samples show some
expression recovery of genes linked to the cell cycle. This
recovery may reflect the onset of cell cycle after the death
of some infected cells, which reduces contact inhibition
of proliferation, or another tissue-recover mechanism.
Changes in expression across multiple functional bands of
the relative Transcriptogram appear at 24 h. These bands
stay fixed in width but increase in amplitude until 54 h,
after which they slowly decrease in amplitude. For more
details on the changes in each band, refer to Supplementary
Figure S6 and movies SM1 and SM2 in the Supplementary
Information online.

The important messages in Figure 2 and Supplementary
Figure S6 and the animation of the time changes of the rel-
ative Transcriptograms in movies SM1 and SM2 are that:
i) major changes in band expression start after 12 h; ii) the
bands of expression change in amplitude but not in width,
reflecting their correspondence with changes in activity of
specific biological mechanisms; and iii) gene expression in
the control samples also changes in time, because cell state
changes in culture conditions, even in the absence of infec-
tion.

To distinguish cell-culture effects, which affect both WT
and control cultures, from the effects of infection, we con-
sidered time-matched Mock expression profiles as controls
for the WT expression profiles. We define the differential
Transcriptogram profile as the ratio of the WT transcrip-
togram value at a given time and gene position to the time-
matched Mock transcriptogram value at the same gene posi-
tion. Using a time-matched control helps reduce the signal
from tissue-culture effects common to both WT and con-
trol samples and accentuates specific differential infection
effects. Differential profiles do not show changes in expres-
sion of cell-cycle-related genes, for example, since both con-
trol and WT expression change in the same way in time. Fig-
ure 3 shows differential profiles as violet lines, with the light
violet shading showing the standard error. The horizontal
black line shows the control differential expression profile
for the Mock sample at the corresponding time. Figure 3
presents the differential profiles (WT(t)/Mock(t)) at three
time points, Supplementary Figure S7 in the Supplementary
Information online presents the differential profiles for all
time points and Supplementary Movie SM3 animates these
time changes.

Differential Transcriptogram profiles show noticeable al-
terations after 12 h. As before, we associate the most al-
tered bands to biological functions using DAVID tools (20)
at https://david.ncifcrf.gov/tools.jsp and label them accord-
ingly (see below). As in Figure 2, the altered bands remain
constant in width, but change in amplitude.

We next consider the time evolution of the differential ex-
pression (WT(t)/Mock(t)) of the 590 individual genes that
participate in the 17 bands identified as significantly dif-
ferentially expressed in the differential Transcriptograms in

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/4/1/lqac020/6548821 by guest on 07 April 2022

https://david.ncifcrf.gov/tools.jsp


6 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

Figure 2. Relative Transcriptograms of radius 30 for Mock and WT samples, using the Mock sample’s expression at t = 0 has the control. The labeled
time is the experimental time after the first RNA harvest (over 40 minutes after inoculation). Vertical axes are on a l og2 scale. Green horizontal lines in the
bottom panel correspond to 9/5 and 5/9 fold changes. Black horizontal lines represent the control sample (Mock) expression. Red and blue lines represent
the relative Transcriptograms for, respectively, WT and Mock samples. Gray, light red and cyan shading indicate the standard errors of the respective
relative Transcriptograms. We identify 11 intervals, indicated by the horizontal color bars, where the red line differs from the control by more than 9/5 at
48 h or after, except for peak A1. (See the panel for the complete time series in Supplementary Information online, Supplementary Figure S6).

Figure 3 (where we define a significant change as either
larger than 9/5 or less than 5/9). Additional file AF2 in
the Supplementary Materials online presents these results
as an Excel file containing the gene names and plots for each
gene’s relative and differential expression evolution, with
brief information on each gene. Among these 590 genes, we
found 219 for which the expression wi (t) at one or more time
points t differed from the time-matched control mi (t) more
than two fold (i.e.wi (t) > 2mi (t) or wi (t)lt; 0.5 mi (t)). Our
significance limit is higher because here we are considering
single-gene differential expression, rather than the differen-
tial Transcriptogram values, which are averages over the ex-
pression of neighboring genes in the list.

The Transcriptogram analyses identify 219 genes in
differentially-expressed Transcriptogram bands which are
also individually differentially expressed relative to their
time-matched Mock samples. This gene set comprises the
genes that respond more intensely to virus inoculation. To
identify their associated biological functions, we used the
Over Representation test by Panther, available on the Gene
Ontology-Amigo home page (http://amigo.geneontology.
org/amigo) to find the Reactome Pathways that enrich this
set of 219 genes. Among others, we find that 51 of these
genes participate in ‘Cytokine signaling in immune system,’
36 participate in ‘Innate immune system,’ 18 participate in

‘Toll-like-receptor cascade,’ 15 participate in ‘Interleukin 4
and Interleukin 13 signaling’ and 8 genes are participate in
‘TNFR2 non-canonical NF-�B pathways.’ Additional file
AF3 in the Supplementary Materials online gives the com-
plete list of over-represented Reactome Pathways for the
219 genes (P < 0.05, Buonferroni corrected). Of the 219
genes, 35 have not been classified as forming a representa-
tive set for any Reactome Pathway. Thus 84% of the 219
significantly variant genes participate in pathways either di-
rectly or indirectly involved in components of the immune
response.

Proceeding with our top-down strategy, we look for tem-
poral patterns in the differential expression of single genes
(not Transcriptogram values). To find genes with similar
patterns of temporal evolution, we first calculated the co-
variance matrix for the differential expression time series of
the 219 genes (see Statistical methods section). When two
genes have the same pattern of time change of differential
expression, their temporal covariance approaches one. Us-
ing the covariance matrix, we ordered genes into covariance
clusters (Figure 4 A). We identify 3 clusters, A, B and C. As
discussed previously, the ordering of the gene list is based
on biological function attributed to the genes. Now, the co-
variance matrix clusters genes by the similarity of their dif-
ferential expression time series. The activation a pathway
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Figure 3. Differential Transcriptograms WT(t)/Mock(t) (radius 30). Time is time after the first RNA harvest. Vertical axes are on a l og2 scale. Black
horizontal lines represent the control sample Mock(t)/Mock(t). Violet lines are the differential Transcriptograms for WT(t)/Mock(t). Light violet shading
indicates standard errors for WT Transcriptograms. We identify 17 bands where the violet line differs from the control more than 9/5-fold at 24 h. The
horizontal red lines denote the 9/5-fold and 5/9-fold lines in all panels.

associated with one biological function may lead to activa-
tion of genes associated with different biological functions,
leading to temporal correlations in their differential expres-
sion patterns. Also, different genes within a pathway may
activate with different time patterns, reducing their tempo-
ral covariance. Consequently, we do not expect the covari-
ance matrix clusters to directly correspond to the differen-
tial transcriptogram bands in Figure 3. Instead, Clusters
A to C are covariant gene sets for the genes which both
Transcriptogram and single-gene analysis identified as sig-
nificantly differentially expressed in the present experiment.
Additional file AF2 in the Supplementary Materials online
is an Excel file containing a separate worksheet for each of
the 17 bands which the Transcriptogram analysis identified
as significantly differentially expressed, as shown in Figure
3. For each of these bands, file AF2 presents plots of the rel-
ative and differential expression of the 219 genes, in differ-
ent colors, depending on the time-series pattern they follow.
All bands have genes which belong to all covariant clusters,
showing that proximity in the ordered list does not correlate
with covariant cluster identity.

Figure 4(B to C) also present the time series for the dif-
ferential expression of each gene in each cluster, together
with the cluster average of these values. Within clusters A,
B, and C the genes have similar patterns of change of dif-
ferential expression in time. Figure 5 summarizes the aver-

aged temporal patterns of differential gene expression of the
clusters.

To characterize each cluster, we associate its genes with
KEGG pathways and Gene Ontology: Biological Func-
tion terms using DAVID tools (20). Additional files AF4A,
AF4B, and AF4C in the Supplemental Information online
present our full results. Cluster A (43 genes) is enriched
with genes related to energy metabolism, e.g. Oxidation-
Reduction and Retinol metabolism. As expected, this clus-
ter shows reduced gene expression after viral infection.
Cluster B (52 genes) is mainly enriched with terms related to
cytokine production and the MAPK cascade. Finally, genes
in Cluster C (124 genes), correlate with a broader spec-
trum of terms, but many genes relate to cytokine response
(39 genes), signal transduction (62 genes) and regulation,
including phosphorylation (60 genes). Terms or pathways
can participate in more than one cluster simultaneously, but
each gene participates in only one cluster. Genes in different
clusters may, of course, interact.

Figure 5 shows three distinct time courses for elements
of the cells´ response to virus inoculation. The vertical axes
represent the cluster average for gene differential expres-
sion in the WT samples w.r.t. the Mock samples. Genes in
cluster B decrease (Plt; 0.01) in expression relative to the
control at t = 0 h. After 12 h, changes in differential ex-
pression increase rapidly, with 36 h and 54 h having (local)
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Figure 4. Covariance matrix for the time changes of differential expression (time-matched control) for 219 genes selected from the significantly differentially
expressed Transcriptogram bands identified in Figure 3. We find 3 major covariant clusters. Table 1 lists the genes in each cluster. Figure 4 B, C, and D
show the time-series for the differential expression for each gene in each cluster and the averaged differential expression time-series for each cluster. Selected
genes in each cluster are highlighted. The control for each gene at each time point is the Mock sample expression of the same gene at a matched time.
Expression is for individual genes, not Transcriptogram averages over the neighbors in the ordered gene list. Clusters A (43 genes), B (52 genes), and C (124
genes) have highly covariant differential expression time series. Additional file AF2, in the Supplementary Materials online shows the individual relative
expression time series for each gene in full detail.

maxima in the collective differential expression dynamics.
To test the significance of the difference of the fold-change
we estimated the P-value for each time point using a two-
tailed Welch test. We also calculated P values to assess sig-
nificant differences in mean differential expression at each
time point across clusters. We present these results in Table
2.

Figure 5 shows the temporal pattern of response in the
infected cells triggered by virus inoculation together with
the time evolution of the viral titer, reproduced from Ref.
(14), measured in units of PFU/ml (plaque forming units
per milliliter) for 6 samples for each time point. We can ob-
serve that:

1) Viral titer initially decreases from 0 h to 3 h, then in-
creases rapidly from 3 h to 36 h, decreases between 36 h
and 48 h, then increases to a small, but statistically sig-
nificant second maximum at 54 h, and finally decreases
from 54 h to the end of the experiment.

2) In Cluster A (43 genes) average differential expression
does not differ significantly from the control until 12 h.
Between 12 h and 54 h average differential expression
decreases, reaching a minimum at 54 h. After 54 h, aver-
age differential expression increases until the end of the
experiment, but always remains less than 0.5. This clus-
ter is enriched in genes involved in mitochondrial activ-
ity. Shi and collaborators showed that the SARS-CoV-1
protein designated opening reading frame-9b (ORF-9B)
localizes to the outer mitochondrial membrane, manipu-
lating host-cell mitochondria, and disturbing mitochon-
drial anti-viral signaling (21). This interference could ex-
plain why Cluster A’s mean differential expression moves
opposite to the viral titer.

3) The genes in Cluster B (52 genes) have the richest tempo-
ral dynamics of mean differential expression. At 0 h, dif-
ferential expression is already depressed in the WT sam-
ples relative to the control, indicating that some genes
change their expression very rapidly w.r.t. the control,
during the 40 min incubation time before RNA harvest-
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Figure 5. Time evolution of viral titer (14) (right l og10 axis) and average differential expression of the covariant gene clusters A, B and C (left l og2 axis).
The control for each time point is the time-matched Mock sample. We identify three main phases for the host-virus interaction in the cell cultures. In
the first phase, denoted by a pale-pink background, clusters A and C have differential expression near 1, while cluster B differential expression moves
opposite to the viral titer. In the second phase, denoted by a pale-blue background, average differential expression in cluster A decreases monotonically
while average differential expression in clusters B and C increases similarly, in parallel with increasing viral titer. In the third phase, denoted by a pale-yellow
background, differential expression in clusters B and C diverges after the viral titer reaches its maximum, with Cluster B tracking viral titer evolution. After
54 h, however, viral titer and the average differential expression of clusters B and C decrease, while average differential expression in cluster A increases.

ing (0 h). Average differential expression increases be-
tween 0 h and 7 h, then decreases until 12 h, then in-
creases again, reaching a maximum at 30 h. Average dif-
ferential expression then decreases until 48 h, then in-
creases to a second, more modest maximum, at 54 h
and finally decreases until the end of the experiment. Al-
though the maximum at 54 h is modest in amplitude, it is
statistically significant and coincides with the minimum
value of the average differential gene expression in Clus-
ter A and the second peak in viral titer, suggesting that it
reflects a real change in biological function. The term en-
richment analysis for Cluster B showed that 40 of the 52
genes in this cluster participate in Gene Ontology (GO)
terms linked to ‘response to stimulus,’ with 12 specifi-
cally tagged as ‘response to cytokines.’ The great major-
ity of the products of these genes localize either to the ex-
tracellular matrix, indicating signaling activity, or to the
nucleus, indicating response to signaling. Other terms
associated with genes in Cluster B link to ion transport.

4) In Cluster C (124 genes), after 12 h mean differential ex-
pression increases monotonically to a maximum at 54 h,
after which it decreases until the end of the experiment.
The maximum at 54 h coincides with the maximum
at 54 h in Cluster B, the minimum in Cluster A, and
the modest second peak in viral titer. Term enrichment
analysis of the genes in Cluster C shows that the great
majority of these genes have GO annotations involved
in IFN response pathways, e.g. ‘I-kappaB kinase/Nf-
kappaB signaling’ (20 genes); other immune functions
include ‘response to stimulus’ (98 genes), ‘response to
cytokine’ (39 genes), ‘response to hormone’ (19 genes)
and ‘cytokine production’ (31 genes).

Our analysis first considered Transcriptograms, which
allowed us to select peaks in the differential Transcrip-
tograms, representing 590 genes. That selection identified
219 genes with expression values (without Transcriptogram
averages) that presented 2-fold or larger changes w.r.t time-
matched controls at at least one point of the time series.
This selection of relevant genes would not be possible with-
out the previous use of the Transcriptograms. To show the
difficulty of identifying biologically-relevant genes from the
mass of statistically-significant genes using classical bioin-
formatics approaches, we applied two classical analysis ap-
proaches (Volcano plots and correlation with virus titer)
and a more sophisticated one, Gene Set Enrichment Anal-
ysis (GSEA) (22), that searches the differentially-expressed
gene sets based on a ranked gene list, ordered by differen-
tial expression as measured by a customized metric (with
metrics including signal-to-noise ratio, P-value, and ratio-
between-classes, amongst others). Supplementary Informa-
tion online, sections 3 and 4, shows the results for classi-
cal bioinformatic analyses and Gene Set Enrichment Anal-
yses (GSEA) comparing WT and Mock samples using three
different combinations of data sets and metrics: signal-to-
noise ratio and ratio-between-classes for normalized ex-
pression values and ratio-between-classes for values using
Transcriptogram-averaged data. These Volcano plots, cor-
relations and GSEA confirm the significance of the clus-
ters found using our Transcriptogram analyses but, on their
own, cannot identify these clusters directly from the original
data, showing that the Transcriptogram analyses are more
powerful in this context than the classical methods and
GSEA. In the present analyses, Transcriptograms define
a biological-relevance criterion, rather than a statistical-
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Table 1. List of genes in each covariant cluster (Figure 4). Cluster A mostly relates to energy metabolism, Cluster B is enriched with genes related to
cytokine production, and Cluster C involves genes related to cell response to stimuli, including cytokines.

Cluster A ClusterB ClusterC

ABCC3 RAB13 ARNT2 JUNB ADAMTS3 DUSP5 KCNQ4 PPP4R4 TRIB1
AKR1C3 RAB5B B3GAT1 KCNAB3 AHR EIF2AK3 KLHL20 PRTN3 TRIM21
AKR7A2 RDH5 BMP6 KCNF1 AR FBXO6 KRT14 PTPRR TTBK2
ASB9 ROPN1 CACHD1 KCNQ5 ATF3 FNDC5 LTB REL UBD
ATP6V0A1 S100A9 CCL17 KCNV2 AXL FOSL1 MAN1A1 RGS20 UGCG
ATPIF1 SCNN1A CCL3 KISS1 AZIN1 FOXO1 MAP3K1 RIPK2 UGT2B15
BNIP3 SPA17 CCL4 LBP BACH2 GATA3 MAP3K8 RORA UNC13B
BNIP3L SVIP CCR10 LOX BANP GNGT2 MAP4K3 SAMD9 USP18
CAT TFF1 CD1A NPR1 BCL3 HERC6 MED13 SAMD9L USP25
CFD TGFB1 CRYAA NR0B1 BRIP1 HLA-A MT1G SERTAD1 USP9X
CFTR THRA CTRC NUMBL CCL2 HLA-B MT1H SH2D1A ZBTB32
COX7A2L TIMP1 CXCR3 OR1S2 CCL5 HLA-C NEXN SIRT1 ZYG11A
CPE TLE2 CYP17A1 OR2A7 CCR1 HLX NFKB1 SMAD7
CYP2B6 UGT1A8 DNER OR52K2 CCR7 HSD11B1 NFKBIA SMURF2
DEFB1 UQCRC1 DUSP7 SERPINE1 CDK8 HSD17B6 NID2 STAG1
ETFB EGR1 SIRPB1 CER1 HTR3B NLRC5 STON2
GLI1 EGR3 SLC18A3 CHUK ID3 NMI SYT1
HYAL3 ELN SPN CNN1 IFI16 NR1D1 THRB
KCND1 ERRFI1 SRGN CNTN6 IFIT5 NR1D2 TICAM1
KL ESR1 THPO CXCL5 IL18R1 NTNG2 TLE4
NDUFA2 FFAR2 TMOD4 CYR61 IL18RAP PELI1 TLR1
NDUFB2 FOS TNFRSF1B DHRS9 IL1A PELI2 TNF
NDUFB8 GDF6 TWIST1 DLL1 IL1B PLEKHM2 TNFAIP3
NEBL GPR132 ZNF14 DUSP1 IL8 PML TNFSF13B
NFIA HNF4G DUSP10 INHBA POP1 TNFSF15
OBSL1 HSD11B2 DUSP16 IRAK2 POU2F2 TNFSF9
PAQR6 INHA DUSP2 JUN PPIF TRAF1
PNPLA4 IRF8 DUSP4 KCNA3 PPP1R15A TRAF2

Table 2. P values comparing the mean expression of Clusters A, B, and C for the whole time series. Columns on the left compare WT to Control samples,
and columns on the right compare clusters, two by two, for the time-matched differential expression represented in Figure 5.

Time after first RNA harvest (h) P-values

WT and Mock matched time samples Between Clusters

Cluster A Cluster B Cluster C Clusters A and B Cluster A and C Cluster B and C

0 5.50E-02 2.19E-04 8.59E-06 1.35E-09 6.16E-03 1.85E-06
3 1.78E-03 4.78E-01 6.29E-01 1.97E-04 7.21E-02 6.59E-03
7 2.16E-01 3.35E-04 8.26E-01 9.99E-02 9.21E-01 1.05E-01
12 9.64E-01 3.53E-02 2.89E-01 1.18E-02 1.22E-01 8.38E-02
24 9.35E-03 3.71E-03 4.89E-04 6.90E-03 6.77E-11 8.96E-01
30 1.29E-06 2.29E-02 1.31E-03 4.25E-05 4.13E-13 1.79E-01
36 1.15E-05 4.60E-03 6.17E-04 9.31E-06 9.39E-14 8.70E-01
48 6.17E-04 3.11E-04 1.15E-06 3.08E-04 1.52E-11 2.13E-06
54 7.79E-04 6.93E-05 1.83E-04 2.51E-05 6.80E-12 1.83E-05
60 3.14E-03 8.51E-03 7.10E-04 1.09E-06 1.59E-11 2.22E-07
72 1.62E-04 1.34E-03 1.27E-04 2.57E-10 6.70E-07 1.20E-04

significance one, by suggesting the scale of differential ex-
pression at each time that should be considered for fur-
ther investigation of statistical significance. Naturally, when
increasing the threshold required to select gene sets to be
further analyzed, and hence decrease the number of false-
positive errors, we will simultaneously increase the inci-
dence of false-negative errors. We stress that the present
analysis tries to address problems caused by the abundance
of false-positive errors in finding biologically-relevant genes
in experiments showing genome-wide transcription alter-
ations. The role played by this biological-relevance criterion
in the selection of genes to be further analyzed becomes
evident when we compare differential Transcriptograms at
0 h or 3 h with very modest peaks, to those at 30 h or
later with much larger expression alterations (see Figure

3 and Supplementary Figure S7 in the Supplementary In-
formation online). Although some peaks in the differen-
tial Transcriptograms may be statistically significant at early
times, they are less relevant in comparison to the more pro-
nounced peaks seen in differential Transcriptograms at later
times.

In summary, we identified three gene clusters (A, B, and
C) with distinct temporal profiles. Clusters B and C have
the most distinctive patterns of temporal change, probably
reflecting their specific functional roles during early infec-
tion. To verify the power of our method, we selected six
genes from these clusters and analyzed their differential ex-
pression evolution. We then discuss their possible roles in
the cellular response to virus inoculation. As we show be-
low, these genes have well-known roles in immune response,
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showing that the Transcriptogram analysis was reasonable
in identifying their variation as significant.

We begin by considering the gene pair HSD11B1 (from
cluster C) and HSD11B2 (from cluster B). Both genes
are linked to Cortisone-Cortisol balance. Cortisol is anti-
inflammatory, secreted by the adrenal gland and present
in plasma. It can be converted to inactive Cortisone by
the enzyme 11-beta-hidroxysteroid dehydrogenase type 2
(HSD-2), the product of the HSD11B2 gene (For a re-
view, see (23)). The time series for HSD11B2 in Figure 4
C (red line), shows that HSD11B2’s differential expression
in infected cells begins to increase after 12 h up to 36 h
reaching a 32-fold change w.r.t. the control, after which
it gradually decreases to an 8-fold change. The reduction
in anti-inflammatory Cortisol signaling between 12 h and
36 h probably enhances pro-inflammatory signaling in re-
sponse to infection. HSD11B1 differential expression also
starts increasing after 12 h, but peaks later, at about 54 h,
as shown on Figure 4 D (red line). 11-beta-hidroxysteroid
dehydrogenase type 1 (HSD-1), the product of the gene
HSD11B1, converts Cortisone back into Cortisol, possibly
restoring anti-inflammatory signaling, after the initial pro-
inflammatory response. The data thus show that the time
evolution of these genes in this experiment reproduces the
well-known interplay between Cortisone-Cortisol.

Figure 4D (olive green) highlights the differential ex-
pression evolution of JUN and TNFAIP3 from cluster
C. JUN encodes c-Jun, a protein that participates in the
transcription-factor complex ‘Activator Protein-1’ (AP-1)
that has complex context-dependent behaviors (24). In ep-
ithelial cells, AP-1 components (containing c-Jun) may par-
ticipate in regulating apoptosis or cell proliferation. JUN
differential expression seems to increase with viral titer af-
ter a few hours of delay. Cell-cycle mean expression is de-
pressed in both Mock and WT samples compared to Mock
sample expression at 0 h (the interval marked A2 in Figure
2 and Supplementary Figure S6 in the supplemental infor-
mation online), probably due to contact inhibition in the
culture. However, Supplementary Figure S6 shows that cell-
cycle gene expression recovers after 60 h. Both apoptosis
and proliferation may occur in the infected culture. The ob-
served time series for JUN differential expression may relate
to these differences in cell cycle-related expression between
WT and Mock samples.

TNFAIP3 encodes the protein A20, a negative regulator
of the NF-�B protein complex. TNFAIP3 is thus a nega-
tive regulator of inflammation and is known to be rapidly
induced after Toll-like receptors interact with a pathogen or
respond to TNF-� or IL-1 cytokines (25). Figure 4 D shows
a peak of differential expression of TNFAIP3 at 48 h, fol-
lowed by monotonic decrease until the end of the experi-
ment. Comparing the time-series for the differential expres-
sion of TNFAIP3 shown Figure 4 D with the viral titer evo-
lution in Figure 5, we find that TNFAIP3 expression follows
the viral titer after about a 4 h delay. This temporal rela-
tionship suggests that the anti-inflammatory response due
to TNFAIP3 in the WT sample gradually decreases as the
viral titer decreases.

Figure 4C shows the dynamics of differential expression
of individual genes in cluster B. We have highlighted in

navy blue the expression of EGR3 and TWIST1, the two
genes whose differential expression presents the largest fold
changes in cluster B. TWIST1 negatively regulates the NF-
�B protein complex. TWIST1 is thus anti-inflammatory
(26). The variation in the TWIST1 time series in Figure 4C
generally follows the viral titer evolution in Figure 5. EGR3
is a zinc-finger transcription factor of the Early Growth
Transcription family (EGR) that responds early to envi-
ronmental stimuli to induce cell proliferation, differentia-
tion, and immune responses (27). In resting epithelial cells,
EGR3 is usually weakly expressed, but a wide variety of
extracellular signals such as cytokines and T-cell receptor
(TCR) activation can promote EGR3 expression (27). Fig-
ure 4C shows that EGR3 differential expression increases
after 12 h and remains high, varying between 16- and 32-
fold change from 20 h to 54 h, then decreasing when the
viral titer begins to decrease after 54 h$(Figure 5). This cor-
respondence suggests that the virus may activate EGR3 in
epithelial cells. Hypothesizing that the virus also promotes
EGR3 in T cells, fibroblasts, and endothelial cells could ex-
plain T-cell anergy in SARS-CoV-1 and SARS-CoV-2 infec-
tion in T cells, since the co-activation of T-cell receptors by
antigen and EGR3 may lead to T cell anergy (28,29). Fur-
thermore, EGR3 regulates fibrogenic responses in fibrob-
lasts (30), and EGR3 may cause vascular disruption when
active in vascular endothelial cells (31). The infected lung
contains epithelial cells, fibroblasts and endothelial cells, all
of which express the ACE-2 receptor for SARS-CoV-1 and
SARS-CoV-2 (32–35). T-cells have also been reported as be-
ing infected in SARS-CoV-2 in a preprint in biorXiv (36).
Both T-cell depletion due to exhaustion or anergy, and fi-
brotic sequels have been reported in SARS-CoV-1 (37) and
SARS-CoV-2 (38) patients. We wonder whether these effects
on T-cells and fibroblasts may correlate with the activation
of EGR3 by the virus. Also, since EGR3 activates VEGF
in endothelial cells (31), its activation in infected cells may
link to the endothelialitis, thrombosis, and angiogenesis re-
ported in COVID-19 (5). We stress, however, that the six
highlighted genes are only examples that deserve further ex-
amination. The other genes in clusters A, B, and C also de-
serve further exploration.

Finally, in Supplementary Information online, Supple-
mentary Figures S8 and S9 present the Transcriptograms
for the DORF6 sample data sets produced by Sims et al.
in the same experiment which generated the WT and Mock
data series. Supplementary Figure S10 shows the evolution
of the mean expression in clusters A, B, and C for DORF6
samples, showing that genes in cluster B carry the main dif-
ferences between the immune response to DORF6 and WT
infection.

CONCLUSIONS AND PERSPECTIVES

Transcriptogram analysis of microarray time series exper-
iments by Sims et al. (14) for SARS-CoV-1 infection of
Calu3-2B4 cells, a human epithelial cell line selected for
ACE-2 expression (8), identifies three main gene sets with
well-defined dynamics, summarized in Figure 5. Differential
expression profiles indicate that the average differential ex-
pression for Clusters A, B, and C are more intense from 12 h
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after inoculation, and that mitochondrial activity (Clus-
terA) decreases until 54 h, then partially recovers. Clusters
B and C both consist mostly of genes associated with im-
mune response, and their averages show a marked increase
beginning at 12h after inoculation. However, their dynamics
in response to viral inoculation differs, and while Cluster B
presents an average that decreases after 30h, following virus
titer, cluster C average keeps increasing up to 54h post in-
fection. Cluster B consists mainly of genes related to innate
immune response. Cluster C comprises genes related to both
innate and adaptive immune responses. Beyond pro/anti-
inflammatory signaling via, for example, the negative reg-
ulation of NF-�B complex by TNFAIP3 and the interplay
between HSD11B1 and HSDB11B2 differential expression,
the identity of the genes in each cluster suggests that the re-
sponse to viral inoculation also includes regulation of apop-
tosis and proliferation, via JUN, and has secondary effects
on cell differentiation (with different possible outcomes, de-
pending on the cell type), via EGR3. These effects follow the
temporal patterns of either Cluster B or Cluster C, suggest-
ing coordinated cellular responses. Because the Transcrip-
togram analysis selects genes most functionally relevant to
the specific behavioral changes in a particular experiment,
we could identify the correlated responses of genes associ-
ated with different pathways or GO terms, which would be
hard to identify if we conducted correlation analyses of the
temporal expression changes of all genes at once. The differ-
ential Transcriptogram, by identifying differential expres-
sion bands of functionally related genes, greatly reduces the
number of ‘genes of interest’ making their detailed tempo-
ral analysis practical. Because mathematical models usually
consider variables that aggregate the effect of multiple genes
into broad representations of classes of biological mecha-
nisms or pathways, these mean differential expression time
series can serve as direct validation data for mathematical
models of epithelial-cell responses to SARS-CoV-1 infec-
tion.

Because gene expression changes in control samples in
cell culture as well as in infected samples, using time-
matched gene expression controls is critical to distinguish
cell-culture effects from infection effects.

EGR3 activation may explain several symptoms in pa-
tients with severe responses to SARS-CoV-1 and SARS-
CoV-2 infection. Other cell types besides epithelial cells may
be infected by the virus in the infected lung: in particu-
lar, if EGR3 activation also occurs in infected T-cells, it
could explain T-cell anergy (against viral antigens), in in-
fected fibroblasts, EGR3 activation could link to observed
fibrosis, and in infected endothelial cells, if EGR3 activation
could explain the endothelialitis, thrombosis, and angiogen-
esis reported in COVID-19. We suggest that these hypothe-
ses would be worth investigating in future experiments.

Our analysis identified as differentially expressed two
genes from a well-known feed-back loop which regulates
Cortisol-Cortisone balance. Infection perturbs the resting
Cortisone-Cortisol homeostasis and we would expect that
each gene would follow a different time course in response
to infection. We find that differential expression of the
proinflammatory HSD11B2 follows Cluster B and peaks
with viral titer, while the anti-inflammatory HSD11B1 fol-

lows Cluster C and peaks later. We will examine the re-
maining 213 genes identified as significant by our Transcrip-
togram analsysis in future work

Transcriptograms allowed us to define an appropriate
context-dependent threshold for mechanistic relevance of
gene differential expression. If we knew, a priori, which
genes are relevant, both classical and GSEA analyses would
yield the same results as our Transcriptogram analysis.
However, without knowing in advance which genes are rel-
evant, classical analyses detect every gene with statistically-
significant differential expression, leaving us with too many
genes and hypotheses to be useful. The previous filtering us-
ing Transcriptograms reduced the number of genes of inter-
est to a tractable set, allowing us to suggest shared mech-
anistic functions for the observed gene expression patterns.
These gene sets are defined by the data directly, not by refer-
ence to previously defined pathways or biological functions.

Transcriptogram analysis selects and aggregates the
biologically-relevant components of the experimental time
series in a way that will support detailed mathematical
modeling of the inflammatory response of lung cells to
SARS-CoV. This approach to aggregating time-series infor-
mation to yield quantitative net functional responses is new
and useful for the complex undertaking of explaining virus
effects on inflammatory response, an explicit goal of, for
example, the NIH new IMAG/MSM Working Group for
multiscale in-host modeling of viral infection and immune
response (https://www.imagwiki.nibib.nih.gov/working-
groups/multiscale-modeling-and-viral-pandemics).

We could apply the same methodology to identify func-
tional differences between cell-culture responses to SARS-
CoV-1 infection between male-derived and female-derived
cells or between adult-derived and juvenile-derived cells
(to identify sex-linked and age-linked changes in response
pattern). The same methods could identify critical differ-
ences in cell responses to SARS-CoV-1 and SARS-CoV-2
infection or among responses to infection by other respi-
ratory viruses. We could also study differences in response
between cells derived from different possible loci of infec-
tion (nasal, throat, bronchial, alveolar, heart, kidney), or to
compare infection responses between classical cell culture
and organoids, between organoids derived from different
donors, or between different initial infection intensities.

CODE AND DATA AVAILABILITY

The analyses have been performed on a previously pub-
lished dataset by Sims and collaborators (14). The dataset
is publicly available Gene Expression Omnibus (GEO) un-
der accession number GSE33267 (http://www.ncbi.nlm.nih.
gov/geo).

The program we used for our analyses is freely available at
https://lief.if.ufrgs.br/pub/biosoftwares/transcriptogramer/
and is also available as an R-Bioconductor function. The
ordered gene list we used is available as a text file and is
included in the Supplementary Information online.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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