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A B S T R A C T

This work aims at developing a strategy to obtain damage evolution parameters of wound cylinders to verify
the influence of the winding pattern on them. First, a detailed description of the pattern generation is presented.
Then, a finite element (FE) model is developed, in which the cylinders are constructed with winding patterns
(WP) of 1/1, 2/1, and 3/1 and subjected to radial compressive loading. Since the cylinder-to-plate contact
is considered, the variation of radial stiffness with respect to the parallel plate position is also analyzed.
In addition, a damage model is used to predict the progressive failure of those cylinders. A finite element
model updating (FEMU) routine is then developed to find the damage input parameters that best simulate
experimental force–displacement curves. Key results show that the FEMU algorithm is strongly dependent on
the initial guesses producing, however, an excellent correlation with experimental data. The predicted force
versus displacement curves for all winding patterns are within the experimental standard deviation, except for
the cases in which the winding pattern is not taken into consideration. The computational framework proposed
is validated both quantitatively and qualitatively through post-mortem analysis of the specimens. The winding
pattern affects the failure and damage mechanisms of the cylinders and, consequently conventional FE models
that disregard the pattern cannot capture these mechanisms.
1. Introduction

Fiber-reinforced composite structures are being increasingly used in
structural applications, such as in space launch vehicles, fuselages, and
energy storage systems (e.g. pressure vessels) due to their outstanding
high strength- and stiffness-to-weight ratios, and high-corrosion and
fatigue resistances [1–4]. Another key aspect behind the systematic
replacement of metallic components by fiber-reinforced composites is
their high design freedom, in which placing fibers in suitable directions
substantially enhances the performance of the component [5–7]. This
design freedom is, nonetheless, dependent not only on the orthotropy
of the system but also on the manufacturing process [8,9]. Focusing
on closed shells, filament winding (FW) is widely recognized as the
most adequate production technique to manufacture cylinders and pres-
sure vessels [10,11], for instance. However, when a filament-wound
structure is designed, an aspect from the manufacturing process is
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usually disregarded: the mosaic winding pattern formed during the
winding [12,13]. In spite of being a natural consequence of the con-
tinuity of the process, its influence on the mechanical behavior of the
part is yet to be understood [14].

The winding pattern (WP) of a wound layer is generated after a
regular deposition of the tow onto a mandrel/liner 𝑛 times, which
characterizes a circuit. A diamond (or triangular) shape is formed
during either a helical or polar winding. A winding angle can be wound
at several patterns and still have the same production time and amount
of material used, however, the mechanical properties might not be the
same [13]. There are numerous studies available in which the WP is
disregarded [15,16]. On the other hand, among the works that the
winding pattern was considered, Rousseau et al. [17] analyzed exper-
imentally filament wound pipes and concluded that the WP can affect
both their compressive strength, but the WP does not affect the burst
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strength. Morozov [18] developed a finite element (FE) model to in-
vestigate the stress and strain distribution of FW cylinders tubes under
internal pressure. He concluded that the WP generates a non-uniform
stress field throughout the shell and the stress levels are higher for
the models with WP modeled than conventional models in which the
shell has nominal ±𝛼 angle-ply angles. Hernández-Moreno et al. [19]
analyzed composite tubes under external pressure and concluded that
the WP has no influence on the buckling and collapse strength. Uddin
et al. [20] developed a model similar to Ref. [18] but focusing on
predicting the mechanical response of a flywheel disk under rotational
loading. The authors concluded that the stress distribution around the
disk is sensitive to the WP. Zakrzhevskii and Khitrov [21] studied the
effect of the interweaving on torsion of thin-walled filament-wound
structures and found that the load capacity can be incremented by
just increasing the interweaving of the fibers, which means increasing
the pattern number. Azevedo et al. [22] experimentally investigated
the mechanical response of composite cylinders with WP of 1/1, 3/1,
and 5/1 under axial compression. They concluded that the higher the
WP, the higher the strength; also, the highest stiffness was found for
cylinders with a WP of 3/1. Lisbôa et al. [14] evaluated experimentally
the WP influence of composite cylinders under radial compression. The
stiffness does not vary statistically among the patterns, whereas the
shape of load × displacement curves, the maximum supported load, and
energy at break were strongly dependent on the pattern.

Considering that the study carried out by Lisbôa et al. [14] pro-
vides comprehensive experimental results, developing a computational
model able to take into account the manufacturing characteristics
of the winding process becomes necessary. Moreover, the develop-
ment of a computational methodology able to reproduce the winding
pattern is essential to capture more accurately stress fields through-
out the shell. Given the fact that simulating experimental results of
large fiber-reinforced FW shells under complex loading cases (i.e. ra-
dial compression) is extremely challenging, optimization algorithms
can further assist stand-alone FE models. An efficient way to ap-
proximate simulations to experiments is by ‘‘updating’’ parameters
of the virtual model. This procedure is called finite element model
updating (FEMU) [23] and is based on a sensitivity analysis that
iteratively updates coefficients/properties (such as elastic properties,
strength allowables, damage coefficients) with the aim to better cor-
relate simulations to target values, i.e. experimental response. For a
well-structured FEMU procedure, a usual outcome is a more reliable
FE framework, in which the effect of uncertainties is minimized by
reducing errors associated with a stand-alone FE model.

Markiewicz et al. [24] presented a comprehensive review on inverse
problems for parameter identification, characterizing some method-
ologies, which includes FEMU. The FEMU method is a very multi-
disciplinary tool and it is usually applied to solve many engineering
problems, such as the parameter identification for damage detection
of structures [25] and plasticity [26]. The procedure is also used in the
dynamics of structures. Zhao et al. [27] updated both mass and stiffness
distributions of a composite flying-wing aircraft by using the method
and the authors considered two strategies for evaluating the fitness
function: the root mean square error (RMSE) and the mean absolute
error (MAE). For the latter, a particular optimization procedure was
developed using sequential linear programming and it was found that
the updated FEM could achieve exactly the test data for MAE while
RMSE distributed the error in all responses. Kumar Bagha et al. [28]
enhanced numerical predictions of a structure from its experimen-
tal modal analyses applying FEMU. In composite materials, Rahmani
et al. [29] developed a procedure for accurate identification of me-
chanical properties of composite components using micromechanical
models, where FEMU was very effective in finding the best input prop-
erties, while Lim et al. [30] developed a multiscale damage plasticity
model and inverse characterization for particulate composites, where
FEMU was used to find the best material properties.

As can be seen, FEMU is a very efficient approach to approximate FE

models to match experimental results over a wide range of materials, a
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loading cases, engineering scenarios, etc. Given the fact that composite
cylinders present a highly non-linear response when loaded in radial
compression [14], a model able to predict these non-linearities and
identify damage initiation and propagation is essential. One of the main
difficulties in a damage model is to properly identify input parameters.
Although it is possible to do so experimentally, this is a very costly
and time-consuming procedure, which is not attractive for industrial
purposes. Therefore, a framework able to update input parameters of a
damage model can be an interesting alternative to overcome that.

In this context, this work proposes a methodology to computation-
ally construct the mosaic pattern formed during the filament winding
process for composite cylinders. The following patterns are considered:
1/1, 2/1, and 3/1. Furthermore, the cylinders are subjected to radial
compressive loading. An efficient damage model is proposed to predict
the progressive failure of the cylinders. Considering that commercial FE
software platforms are developed to cover a range of materials, micro-
structures, and geometries, this work introduces a complementary finite
element model updating (FEMU) routine to calibrate simulations with
respect to experiments considering the winding pattern generated by
the filament winding process, aiming at evaluating the influence of the
winding pattern on damage propagation.

The manuscript is further organized as follows: Section 2 describes
the FE model along with the pattern generation, progressive damage
model, and FEMU approaches; Section 3 briefly presents details on
manufacturing and testing; Section 4 presents results and discussions;
and Conclusions are drawn in Section 5. Further results are presented
as the supplementary material.

2. Numerical modeling

2.1. The pattern generation

The WP is an intrinsic feature of the FW process for either helical or
polar winding [13]. Fig. 1 depicts a scheme to generate two different
patterns with the same winding angle. In Fig. 1(a), 𝛼, 𝑎, and 𝑏 cor-
respond to the winding angle, pitch, and tow width, respectively [13,
31,32]. In Fig. 1(b), the second stroke is presented and the first inter-
crossing regions are shown. In Fig. 1(c), the third and fourth strokes
are depicted and then the pattern is defined: figures on the top and
bottom correspond to the WP = 1 and WP = 2, respectively. In WP =
1, the third stroke is adjacent to the first one and, the fourth stroke is
adjacent to the second one. The process continues until full coverage is
reached, as shown in Fig. 1(d) on top, which results in one diamond-
shaped form in one pitch, 𝑎. In a different manner, the third stroke
of WP = 2 is deposited on a diametrically opposite position of the
first one (180◦ in the circumferential distance), developing then the
aforementioned pattern. It is worth mentioning that the trajectories in
Fig. 1 are geodesic (straight lines in a cylindrical developed surface).
The most noticeable difference between the patterns is the size of
the partitions (divisions created by the diamond-shaped forms in the
circumferential direction). The pattern number, an integer, is defined as
the number of these divisions/partitions. In greater detail, the periodic
diamond-shaped form is presented in Fig. 1(e) and shows each side
of the diamond with a different laminate configuration (

[

±𝛼∕ ∓ 𝛼
]

).
hree regions are highlighted: regular laminate, circular and helical
ross-over.

.2. The FE model

The pattern is generated by dividing the geometry into diamond-
haped forms, following manufacturing observations. Then, the lami-
ate properties (i.e. stacking) are properly considered in each region.
ig. 2(a)–(i) presents the graphical output from FW-CAM software
adwind, the manufactured cylinders, and the modeling approach for

dentical cylinders except for the pattern: WP = 1 (Figs. 2(a), (d),

nd (g)), WP = 2 (Figs. 2(b), (e), and (h)), and WP = 3 (Figs. 2(c),
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Fig. 1. Pattern generation process, where: (a) first stroke, (b) second stroke, (c) WP = 1 (top) and WP = 2 (bottom), (d) full coverage for WP = 1 (top) and WP = 2 (bottom),
and (e) the detailed diamond-shaped form. The light and dark gray correspond to a forward and a backward stroke, respectively. The red rectangle, in (e), defines the circular
cross-over, the green rectangle the helical cross-over, and the blue triangle the regular laminate region. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. The winding patterns from CADWind (CAM software) (a–c); the manufactured cylinders (d–f); and the FEA–plots (g–h) (cyan and purple regions are defined as
[

+𝛼∕ − 𝛼
]

and
[

−𝛼∕ + 𝛼
]

), respectively; (j) Material coordinate system used throughout this work. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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(f), and (i)). The colors in Fig. 2(g)–(i) highlight different stacking
configurations. This approach makes the FE mesh independent of the
WP.

One can observe small differences among the patterns in Fig. 2,
particularly to lines that construct the triangles. WP = 1 and WP = 2
ave several lines inside the diamonds whereas WP = 3 has none.
his refers to the algorithm for constructing such geometry and the
ossibility of multi-valued functions for the two former patterns. Thus,
ince WP = 4 encompasses both patterns [13], it is used as a base and
he triangles are redefined to resemble a particular pattern (WP = 1 or
P = 2).
The algorithm to create the pattern in a cylindrical geometry is rel-

tively simple and straightforward. Geometry generation is developed
n two steps: the creation of the lines and areas and the assignment
f areas to a respective stacking configuration. One can also further
ivide the first step into 2 parts: definition of the geodesic and circular
ines and formation of the areas. The geodesic lines can be considered
s straight lines in a cylindrical coordinate system. Thus, they can
e directly built by just knowing an initial point and the winding
ngle (and, of course, the length). The number of lines required to
evelop the helical cross-overs of a particular pattern is twice the
umber of the pattern, due to the clockwise and anticlockwise lines.
ere lie the aforementioned multi-valued solutions: by choosing the

nitial and final points, two different trajectories are possible (clockwise
nd anticlockwise). That is why, for WP = 1 and WP = 2, a larger
attern is chosen to define the lines and then the algorithm that assigns
particular area is modified. The circular lines are also directly related

o the WP and winding angle and they simulate the circular cross-over.
or each pitch, 𝑝𝑐ℎ, which is a full turn of a tow onto the cylinder, there
re 2WP+ 1 circular lines, which means that the distance between two
ircular lines (or two circular cross-overs) is 𝑝𝑐ℎ∕2WP. By defining both
ets of lines, the generation of the areas is straightforward (regarding
he boundary lines). The assignment of stacking sequence configuration
o the areas considers a simple property of the diamonds: areas that
hare a boundary have opposite stacking configurations.

This algorithm can be slightly modified and applied to CAD and
AE environments. Here, both pattern generator and FE models are

mplemented as parametric codes in ANSYS Mechanical Parametric
esign Language (APDL). The full model, already meshed, is depicted

n Fig. 3. Information on the pattern is also observed (purple- and
lue-colored elements) along with two rigid areas representing the
ompressive platens (in red). An 8-node quadratic element in its de-
enerated form (6-node triangular element) based on Mindlin’s theory
s used for simulating the shell and the contact behavior. The contact
lgorithm used is based on a surface-to-surface formulation along with
he augmented Lagrangian algorithm. Furthermore, the model incorpo-
ates geometric non-linearity and the problem is solved implicitly along
ith the Newton–Raphson method.

The bottom platen (see Fig. 3) is fully clamped. The top platen can
nly move vertically and in this direction, the displacement is applied
o mimic the actual testing. The reaction forces on the top-edge nodes
re monitored throughout the simulation and used to compare with the
xperimental response. The elastic material properties used as input in
he models are presented in Table 1. No direct boundary condition is
pplied to the cylinder since the first step of the convergence analysis
s used to find the contact between the platens and the specimen.
his initial evaluation can be considered a preliminary analysis of the
ontact, performed to avoid the need for stabilization or inertia relief
echniques. The next stage of the simulation begins when the top platen
inds the contact surface of the cylinder.

.3. The damage model

A damage model based on instantaneous stiffness degradation is em-
loyed. Before the degradation process takes place, the damage must be

riggered. Hashin failure criterion [34] is chosen for damage initiation.

4

Fig. 3. Meshed geometry highlighting three different regions: rigid compressive platens
in red, +𝛼∕ − 𝛼 in blue, and +𝛼∕ − 𝛼 in purple. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Material properties used in the simulations [33]. The 123 material coordinate system
is oriented following the fiber direction, as illustrated in Fig. 2(j).

Property Symbol Description Value

Elastic

𝐸11 Longitudinal elastic modulus 129.90 GPa
𝐸22 Transverse elastic modulus 8.52 GPa
𝜈12 = 𝜈23 Poisson’s ratio in planes 1-2/2–3 0.26
𝐺12 = 𝐺13 = 𝐺23 In-plane shear modulus 4.26 GPa

Strength

𝐹1𝑇 Longitudinal tensile strength 976.95 MPa
𝐹2𝑇 Transverse tensile strength 53.63 MPa
𝐹1𝐶 Longitudinal compressive strength 572.00 MPa
𝐹2𝐶 Transverse compressive strength 117.00 MPa
𝐹4 Shear strength in plane 2–3 44.79 MPa
𝐹6 Shear strength in plane 1–2 52.65 MPa

Hashin criterion identifies four different failure modes: tensile fiber,
compressive fiber, tensile matrix, and compressive matrix failure, as
follows [35].

Fiber

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝐹𝑇 =
(

𝜎11
𝐹1𝑇

)2
+

(

𝜎212 + 𝜎213
𝐹6

)

𝜎11 ≥ 0

𝑋𝐹𝐶 =
(

𝜎11
𝐹1𝐶

)2
𝜎11 < 0

Matrix

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑋𝑀𝑇 =
(

𝜎22
𝐹2𝑇

)2
+
(

𝜎23
𝐹4

)2
+

𝜎212 + 𝜎213
𝐹 2
6

𝜎22 ≥ 0

𝑋𝑀𝐶 =
𝜎22
𝐹2𝐶

[

(

𝐹2𝐶
2𝐹4

)2
− 1

]

+
(

𝜎22
2𝐹4

)2

+
(

𝜎23
𝐹4

)2
+

𝜎212
𝐹 2
6

𝜎22 < 0

, (1)

where 𝜎𝑖𝑗 , with 𝑖, 𝑗 = {1, 2, 3, 4, 5, 6}, correspond to the stresses, in which
1-axis is considered to be in the fiber direction. The parameters 𝑋𝐹𝑇 ,
𝑋𝐹𝐶 , 𝑋𝑀𝑇 , and 𝑋𝑀𝐶 are always positive and represent the strength
allowables required to trigger a particular damage when greater than
1. The description of 𝐹1𝑇 , 𝐹1𝐶 , 𝐹2𝑇 , 𝐹2𝐶 , 𝐹4, and 𝐹6 parameters are
presented in Table 1.

An intralaminar material property degradation model is used. Here,
a degradation factor is multiplied by the material stiffness component
after any damage initiation criterion is met. In other words, a ply
discount mechanism is used to degrade the stiffness matrices.

Initially, a displacement 𝑑 is applied on the top compression platen
and transmitted to the composite cylinder via contact, as previously
explained in Section 2.2. Throughout the analysis, this displacement
incrementally increases and, for each step, the equilibrium is sought.
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When any of the failure criterion (Eq. (1)) is satisfied and damage is
triggered in any finite element, the elastic properties of this element
is degraded following the specified damage allowable related to that
failure criterion met. Damage keeps progressing through the FE mesh
until the cylinder completely loses its structural carrying capacity.
This means that several failure modes may happen simultaneously
and different finite elements may fail in different manners. This hap-
pens because, after damage initiates, the updated elastic properties
re-distribute the stresses and consequently cause the failure of more
elements at the same time increment or not. This procedure is repeated
𝑛 times until the final failure is reached or the total displacement is
applied. Thus, since the numerical evaluation is a simulation of the
experimental test, the analyses were performed on an intact specimen
up to a pre-defined maximum displacement, applied monotonically,
simulating a quasi-static experiment.

The damage progression is applied by a slight modification of
Hooke’s Law. The nominal Cauchy stress, 𝝈, written in Voigt notation,
is obtained from the product of the strain, 𝜺 (also written in Voigt
notation), and a damaged elasticity tensor, 𝐃, which is a function of the
damage parameters under plane-stress stress state [35–37]. This tensor
is written as

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸11

(

1 − 𝜌𝐹
)

−𝜈21
𝐸22

0 0 0

−𝜈12
𝐸11

1
𝐸22

(

1 − 𝜌𝑀
) 0 0 0

0 0 1
𝐺23

(

1 − 𝜌𝑆
) 0 0

0 0 0 1
𝐺13

(

1 − 𝜌𝑆
) 0

0 0 0 0 1
𝐺12

(

1 − 𝜌𝑆
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1

,

(2)

where 𝝈 = 𝐃𝜺, 𝜌𝐹 , 𝜌𝑀 , and 𝜌𝑆 correspond to the fiber, matrix and shear
damage variables defined by

𝜌𝐹 =

{

𝑑𝑓𝑡 𝜎11 ≥ 0
𝑑𝑓𝑐 𝜎11 < 0

𝜌𝑀 =

{

𝑑𝑚𝑡 𝜎22 ≥ 0
𝑑𝑚𝑐 𝜎22 < 0

,

𝜌𝑆 = 1 −
(

1 − 𝑑𝑓𝑡
) (

1 − 𝑑𝑓𝑐
) (

1 − 𝑑𝑚𝑡
) (

1 − 𝑑𝑚𝑐
)

.
(3)

in which 𝑑𝑓𝑡, 𝑑𝑓𝑐 , 𝑑𝑚𝑡, and 𝑑𝑚𝑐 are damage allowables associated
ith the fiber tensile, fiber compression, matrix tensile, and matrix

ompression failure, respectively. For this particular model, the vector
s written as follows

=
{

𝑑𝑓𝑡 𝑑𝑓𝑐 𝑑𝑚𝑡 𝑑𝑚𝑐
}

. (4)

This vector groups the parameters that define damage progression and,
hence, need to be properly determined (see next Section) for achieving
accurate predictions. Thus, once the damage is triggered (Eq. (1)), the
stiffness is reduced based on the damage allowables.

2.4. Finite element model updating (FEMU) procedure

A single-pass FEMU used here stands as a simplification of the usual
methods used in vibration analysis and is adapted to find the best set
of damage allowable values (presented in Section 2.3) to degrade the
stiffness matrices of the structures after the damage is triggered. The
main purpose of using FEMU methodology here is to fine-tune the
damage allowables so that the numerical analyses are more accurate
with respect to the experimental results and this will then enable the
evaluation of cylinders of different winding patterns.

The use of several experimental points of the equilibrium path
during an actual test as input data in the norm does not guarantee the
convexity of the problem, instead, it represents the calibration of the
numerical model to correct hidden flaws. It also adds to the reliability
of the model to deliver good results for other deformation cases than

the ones used as input. A weighted norm is used here to define the

5

istance between experimental and numerical data as

𝑁 =

⎡

⎢

⎢

⎢

⎣

∫𝛺
𝜔 |

|

|
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|

|

𝑁
d𝛺

∫𝛺
𝜔 d𝛺

⎤

⎥

⎥

⎥

⎦

1
𝑁

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑛𝑝
∑

𝑗=0
𝜔𝑗

|

|

|

𝑓EXP
𝑗 − 𝑓NUM

𝑗
|

|

|

𝑁

𝑛𝑝
∑

𝑗=0
𝜔𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

1
𝑁

,

(5)

where 𝑁 determines the nature of the norm, 𝑛𝑝 denotes the number
f evaluation points of the norm, the superscripts ‘EXP’ and ‘NUM’
orrespond to experimental and numerical, respectively, and 𝑤 is the

weight. The right-hand side of Eq. (5) is the discrete part of the left-
hand side equation, in which 𝑖th point defines the point of evaluation of
all parameters – experimental and numerical as well as their respective
weight. The last is determined as

𝑤𝑗 =
1

𝑠TD
, (6)

n which 𝑠TD denotes the standard deviation of the experimental data
or a given displacement. This approach reduces/increases the impor-
ance of points with larger/smaller standard deviation on the norm at
he 𝑖th point of evaluation.

It is important to mention that the experimental and numerical
data sets may be different and that points, where the force and/or
displacement are monitored may mismatch. So, the procedure adopted
is to: (i) create a linear space using 𝑛𝑝 − 1 regular intervals; (ii) select
the closest points of each data set (experimental or numerical) for the
specified entry; (iii) perform a linear interpolation. The norm will then
be fully defined.

It is also important to notice that Eq. (5) is valid even for a single
curve comparison, leading to a non-weighted n-norm. Since the exper-
imental data, numerical results, and points of the norm evaluation are
placed in different positions, both experimental and numerical values
are linearly interpolated given the norm position evaluation.

The cost function is then set as 𝐿𝑁 and the constraint minimization
process is

min
𝝆∈[0,1]

𝐿𝑁 (𝝆) = min
𝝆∈[0,1]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑛𝑝
∑

𝑖=0
𝜔𝑗

|

|

|

𝑓EXP
𝑗 − 𝑓NUM

𝑗 (𝝆)||
|

𝑁

𝑛𝑝
∑

𝑗=0
𝜔𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

1
𝑁

, (7)

where 𝝆 are the set of damage parameters (Eq. (4)).
A gradient descent – steepest descent – algorithm is implemented

to determine 𝝆 that minimize 𝐿𝑁 . Fig. 4 presents a flowchart of the
proposed methodology. There, the norm (Eq. (5)) is slightly modified
to determine the gradient in a specific point of the cost function. First
declaring that

𝛥𝛿(𝑘)𝑚 ≐

{

0 𝑚 ≠ 𝑘
𝛿𝑘 𝑚 = 𝑘

,

where 𝛿𝑘 is the step size of the 𝑘th design variable for determining the
gradient of the cost function and should not be confused with the step
size of the optimization procedure. Then, the norm is rewritten as

𝐿(𝑖,𝑘)
𝑁 =

⎡

⎢

⎢

⎢

⎢

⎢

𝑛𝑝
∑

𝑗=0
𝜔𝑗

|

|

|

𝑓EXP
𝑗 − 𝑓NUM

𝑗
(

𝝆(𝑖) + 𝛥𝜹(𝑘)
)

|

|

|

𝑁

𝑛𝑝
∑

𝜔𝑗

⎤

⎥

⎥

⎥

⎥

⎥

1
𝑁

, (8)
⎣ 𝑗=0 ⎦
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Fig. 4. Flowchart of the optimization procedure, where 𝝆 defines the damage allow-
bles and, in the optimization procedure, the design variables. 𝐿(𝑖,𝑛)

𝑁 is the norm; 𝐠(𝑘)
nd 𝐝(𝑘) are, respectively, the gradient and the search direction at 𝐿𝑛(𝝆(𝒌)) while 𝛥𝝆
escribes the step size in 𝐝(𝑘) direction with 𝛽 and 𝑙, which are Goldstein conditions
arameters. 𝝆f inal is obtained when a tolerance, 𝑡𝑜𝑙, is achieved.

n which 𝑗 and 𝑘 correspond to the loop and sensitivities indices,
espectively. The gradient is approximated by finite differences as

(𝑖)
𝑘 =

𝜕𝐿𝑁 (𝝆)
𝜕𝜌𝑘

=
𝐿(𝑖,𝑘)
𝑁 − 𝐿(𝑖,0)

𝑁
𝛿𝑘

. (9)

The steepest descent method defines that the search direction, 𝐝, is
defined by

𝐝 = −
𝐠

||𝐠||
, (10)

and is used to determine the optimization step size, written as

𝛥𝝆 = 𝛽𝑙𝐝 . (11)

where 𝛽 ∈ (0, 1) and 𝑙 ∈ {0} ∪ N. Both are related to the backtracking
rocedure of Amrijo’s step size. The domain of 𝛽 is a consequence
f the required monotonic reduction of the step size (backtracking)
nd the requirement of remaining at the same search direction. These
arameters ensure that the reduction in the cost function is sufficient.
nother condition applied to the step size is related to the curvature of

he cost function. Both correspond to the Goldstein conditions [38,39],
escribed by

− (1 − 𝛼)𝛽𝑙𝐝T𝐠 ≤ 𝐿(𝑖+1,0)
𝑁 − 𝐿(𝑖,0)

𝑁 ≤ −𝛼𝛽𝑙𝐝T𝐠 , (12)

here 𝛼 ∈ (0, 0.5) is a constant. The left and the right inequalities
egard the curvature and the Amrijo’s step size [38,39], respectively.
t is worth noticing that since 𝐝 and 𝐠 are collinear, however, with
pposite directions, the difference 𝐿(𝑖+1,0)

𝑁 − 𝐿(𝑖,0)
𝑁 is always confined to

egative values.
Furthermore, even if a design variable achieves values smaller/larger

han the imposed limits, a varying restriction is adopted. Let us first
onsider 0 < 𝜔 < 0.5 as a restriction value in which 𝜌𝑖 ∈ [𝜔, 1 − 𝜔]. The
pdating is essentially a monotonic decreasing function that depends
n 𝜔. The function used here is

f
(

𝜌𝑖 < 0 O𝑅 𝜌𝑖 > 1
)

⇒ 𝜔 ≐ 𝜔2 (13)

Fig. 5 highlights the main aspects of the proposed methodology. The
irst step is an initial guess of the damage allowables. The points around
he initial guess are also evaluated, and then the descent direction is
etermined, followed by the gradient of the objective function in that
articular position, 𝐿𝑁 (𝝆). For that, the norms between experimental
nd numerical responses are defined (objective function – Eq. (8)).
6

Table 2
Geometric properties of manufactured and tested cylinders wound at
[±60] [14]. Differences in the thickness are related to the winding
procedure [13]. Pattern is defined by the pattern number/skip number.
Case no. 𝑝𝑡𝑟 Thickness Length

1 1/1 0.822 ± 0.001 99.26 ± 1.08
2 2/1 0.859 ± 0.014 98.60 ± 0.95
3 3/1 0.850 ± 0.026 98.46 ± 1.31

These norms, 𝐿(𝑖,0)
𝑁 and 𝐿(𝑖,𝑘)

𝑁 with 𝑘 ∈ N ≤ 4, are obtained at 𝝆(𝑖) and
𝝆(𝑖) + 𝛥𝜹𝑘, respectively, to determine the gradient by a finite difference
scheme. With the gradient vector and, consequently, the descending
direction, Goldstein conditions (Eq. (12)) are used to derive the size of
the step (backtracking). Then, another FE analysis is required, with an
updated step size, 𝝆(𝑖) + 𝛥𝝆(𝑖). If the Goldstein conditions are met, the
last evaluation becomes the starting position of the new loop (𝐿(𝑖+1,0)

𝑁 ≐
𝐿(𝑖,0)
𝑁 , see Fig. 5). If not, the step size is monotonically reduced (Amjiro’s

step size) until the criteria are met. These loops continue until the gra-
dient norm is smaller than the predefined tolerance, achieving therefore
an either local or global minimum.

The FEMU herein formulated searches for the optimum set of dam-
age allowables given experimental and numerical data for radially
compressed cylinders. The objective of the algorithm is to define the
role of considering the pattern in wound structures and the best input
parameters to predict their response under radial compression. The
FEMU approach can also be used to cover unknown manufacturing
parameters, such as the thickness. However, since the thickness was
experimentally measured [14], it was not necessary to consider this
parameter here.

3. Experimental details

The experimental setup and results are described in detail in a
recent publication of the group [14]. The cylinders have an inner
diameter of 50.8 mm. The towpreg used to manufacture the cylinders
is from TCR Composites, composed of T700-12K-50C carbon fiber and
UF3369 epoxy resin. All cylinders have a winding angle of ±60◦.
The other geometrical characteristics of each family are presented in
Table 2, in which both thickness and length are shown with their
average and standard deviation values. It is worth noticing that the
difference in thickness comes from inserting more tows in the process
in order to produce the desired pattern [13].

The experimental test follows the recommendations of the ASTM
D2412 standard and the testing setup is shown in Fig. 6. Briefly, the
specimen is placed between the platens and the top platen moves
downwards while the bottom platen is kept stationary. The tests are
performed in an Instron Universal machine model 3382 with a load cell
of 100 kN under a cross-head speed of 12.5 mm/min. Five specimens
free of burrs and jagged edges of each winding pattern (WP) are tested.

4. Results and discussion

The FEMU algorithm is applied along with the experimental data
from Lisbôa et al. [14] (the supplementary material presents the raw
data used) and the FE models developed here (Section 2). The meshes
used in all analyses slightly differ (due to the patterns) and correspond
to the mesh in Fig. 3, which is defined following a mesh sensitivity
analysis. This analysis was carried out using the reaction force as the
parameter (by a given displacement), in which the selected mesh (and
finer meshes) produces no statistical difference in terms of reaction
force. Considering that the mesh could affect the reaction force at every
step of the simulation since the damage model changes element-wise
the stiffness if a failure criterion is met, damage evolution was in-
cluded in the convergence analysis by evaluating the norm for different
meshes.
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Fig. 5. Summary of the FEMU procedure.
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For the norm determination, 𝑛𝑝 = 300 and 𝑁 = 2 (Euclidean norm),
and the 𝜔𝑖 is obtained from Ref. [14]. At the beginning of the analysis,
the time step is small so that the contact surface can be properly
defined. In each simulation step, the displacement change is not higher
than 0.5 mm.

For each pattern, five initial guesses are considered and the op-
timum damage parameters for each case are obtained. Due to the
multi-valued solution, post-mortem analyses are performed to identify
the most suitable set of damage allowables to predict the experimental
response of the cylinders. Further details of the numerical results are
provided as a supplementary material.

4.1. Damage analysis — numerical and experimental force × displacement
curves

Five initial guesses, namely ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’, are considered in
all numerical analysis, as follows
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⎪
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. (14)

These initial guesses are chosen so as to consider different initial aspects
of the objective function. For example, 𝝆(0)

𝑑 and 𝝆(0)
𝑒 correspond to a

very severe and mild damage (see Eq. (2)), respectively. The notation
on the damage allowables henceforward follows: 𝝆(0)

𝑋 , 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒},
for the initial set (Eq. (14)); 𝝆𝑓

𝑋 for the optimized set; and 𝝆𝑋 (without
superscript) corresponds to variables of the optimization procedure,
such as the evolution of the norm/damage allowables, for a particular
set of variables.

It is worth presenting the predictions without considering the pat-
tern in the model, which can be considered here as the baseline.
However, since FEMU needs an experimental response to calibrate
the numerical predictions, it is not feasible to do so disregarding the
pattern due to manufacturing constraints of the FW process considering
a helical winding [13,17]. Thus, these baselines for WP = 1, WP =
2, and WP = 3 use the damage allowables obtained through FEMU
(i.e. optimized sets) considering the pattern.

Fig. 7(a-c) presents the experimental results (the median curve and
its standard deviation — represented as an error band), the predictions
for all three winding patterns with the five optimum damage allowables
7

Fig. 6. Radial compression of the wound cylinders.

for each pattern, and the prediction without a pattern. Considering that
the optimum five sets of damage allowables generated similar results,
a simulation without a pattern is carried out using any of these opti-
mum damage allowables from each winding pattern. Thus, the results
shown in Fig. 7(a) represent the optimum design variables (damage
allowables) for WP1, WP = 2 (Fig. 7(b)) and WP = 3 (Fig. 7(c)).

As can be seen in Fig. 7(a), the simulation disregarding the pattern
hows satisfactory prediction in the linear part of the curve and also
n the non-linear part until a displacement of 12 mm. In Fig. 7(b), the
rediction for the no pattern case is worse than for WP = 1. After a dis-
lacement of 4 mm, the simulation keeps out of the standard deviation
f the experimental response until the end of the simulation. The results
f the simulation without pattern considering the WP = 3 experimental

data are similar to the ones with WP = 2. The equilibrium path of this
simulation (7(c)) is out of the experimental standard deviation area
after the damage is triggered. This indicates the importance of modeling
the winding pattern.

Fig. 7(a)–(c) also shows the equilibrium path of the initial guesses
considering the pattern (dashed lines with hollow symbols). It can be
seen that, for WP = 1, the initial guesses 𝝆𝑎, 𝝆𝑏, and 𝝆𝑐 , are relatively
close to the experimental results up to 12 mm displacement. Nonethe-
less, the same initial guesses do not yield a good fit of the experimental
curve for WP = 2 and WP = 3. For those patterns, 𝝆 performed better.
𝑒
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Fig. 7. Experimental (error band) and numerical force × displacement curves for (a) 𝑊𝑃 = 1, (b) 𝑊𝑃 = 2, and (c) 𝑊𝑃 = 3. Continuous lines with solid symbols represent the
optimized (𝜌𝑓𝑖 ) damage allowables set (through FEMU) with WP modeled; continuous lines with hollow symbols (𝜌𝑖) represent the initial response (damage allowables of Eq. (14));
ashed line with × symbol corresponds to the modeling without the WP for a chosen converged set of damage allowables (using guess 𝜌𝑎 for 𝑊𝑃 = 1, guess 𝜌𝑐 for 𝑊𝑃 = 2 and
uess 𝜌𝑒 for 𝑊𝑃 = 3).
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urthermore, 𝝆𝑑 does not converge to the final displacement for all
atterns. These results rectify the importance of modeling the pattern
i.e., the same damage allowable yields distinct behaviors depending
n the pattern) and also validate the optimization procedure and the
ptimum damage allowable sets.

Fig. 7(a) depicts the experimental curve along with standard devi-
tion and numerical predictions for all five initial guesses for 𝑊𝑃 =
. In the linear-elastic region, all simulations are fully within the
xperimental range. This good agreement is not related to FEMU, but
nstead to a set of suitable material properties, adequate FE modeling,
nd especially the consideration of the winding pattern in the analysis.
8

amage is triggered at a displacement level of 6 mm, i.e. any of the four
ifferent failure criteria (Eq. (1)) is met (deeper insights into the failure
riterion that triggered damage as well as damage propagation char-
cteristics are provided in Section 4.3). A small deviation in the FEM
esults is observable for 𝑢𝐹𝐸𝑀 > 15 mm. Nonetheless, the numerical
esults are inside the deviation in most of the experimental range. It is
ery difficult to accurately predict the whole load × displacement curve
ince the experiments show that the cylinder becomes slightly stiffer in
he nonlinear region of the curves, and this cannot be predicted with
he current damage model. Nevertheless, the numerical predictions are
till within the deviation and therefore the simulations are in good
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Fig. 8. 𝐿2 norm of the optimization procedure with respect to the number of iterations, 𝑛𝑖𝑡, the initial guesses, 𝝆𝑘, and the winding pattern: (a) 𝑊𝑃 = 1, (b) 𝑊𝑃 = 2, and (c)
𝑃 = 3. Values close to the arrows correspond to the 𝐿2 norm at the first iteration.
t
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greement with experiments. It is worth noticing the high complexity
n modeling these structures, since a large sample is transversely com-
ressed, generating large displacements. Even with these drawbacks,
ll five guesses provide excellent predictions.

The increase in stiffness observed in the experiments (refer to the
rror band in Fig. 7(a)) after a displacement of 8 mm, is attributed to
he reorientation around the two plastic hinges (i.e. at the two con-
act points with the platens) of tensile-loaded transverse yarns, which
ightens the plasticized compression zones. Although this phenomenon
s associated with strain, it can be applied to displacement and it
appens in two phases: the elastic or elastic–plastic transition (when
amage initiates), and the strain hardening zone. At large displace-
ents, i.e. above 12 mm, the two lateral hinges (horizontal axes) might

ouch the compressive platens, creating additional internal supports,
herefore increasing stiffness. A similar phenomenon has been reported
y Calme et al. [40].

Fig. 8(a) shows the development of the norm with respect to the
terations of the minimization procedure and Table 3 presents both the
2-norm and the design variables values at the end of the minimization
rocedure. The initial guesses reach distinct norm values and, hence,
one of the design variables set are the same at the minimized value.
his is a consequence of the dynamics of the failure process and
ow one failure mode can drive the others, implying a highly path-
ependent problem. Thus, there is no guarantee that the value obtained
y 𝝆𝑓

𝑒 for WP = 1 is a global minimum. The evolution of the design
ariables, from the initial guesses to the converged values, is presented
n the supplementary material.

Furthermore, it is noticeable that for some initial guesses, the
ptimized set differs significantly mostly for cases with large values
f damage allowables. The reason is that the objective function is
elatively ill-behaved. The optimizer enters in a ‘‘valley’’ and ‘‘travel’’
hrough the objective function seeking for the minimum and thus the
alues of the design variables can have a significant change. In the
upplementary material (SM2), one can observe even the oscillation
hat is characteristic of the steepest descent method in such problems.
ao et al. [41] proposed a multi-start gradient-based strategy using

sogeometric analysis in which multiple initial designs for gradient-
ased (GB) optimization were determined by space tailoring method
o enhance both convergence rate and efficiency.

The same procedure is then applied to the WP = 2 experimental
ata. The model is also updated to include the information on the
attern (Fig. 2(b)) and the results are presented in Fig. 7(b). All numer-
cal curves are relatively distant from the experimental curve within
− 12mm displacement. This takes place because in the numerical

imulations the cylinders start damaging by matrix tensile and com-
ression simultaneously earlier than in the experimental observations,
herefore the degradation process starts prematurely. However, they
9

Table 3
𝐿2-norm and design variables values at the end of the minimization procedure for
𝑊𝑃 = 1, 𝑊𝑃 = 2, 𝑊𝑃 = 3 and each initial guess 𝝆(0)

𝑘 .

WP 𝝆 set 𝐿2-norm 𝑑𝑓𝑡 𝑑𝑓𝑐 𝑑𝑚𝑡 𝑑𝑚𝑐

1

𝝆𝑎 17.119 0.314 0.464 0.338 0.556
𝝆𝑏 19.429 0.607 0.477 0.191 0.265
𝝆𝑐 16.812 0.272 0.354 0.469 0.438
𝝆𝑑 19.191 0.361 0.593 0.282 0.442
𝝆𝑒 14.510 0.394 0.309 0.459 0.371

𝐿2-norm 𝑑𝑓𝑡 𝑑𝑓𝑐 𝑑𝑚𝑡 𝑑𝑚𝑐

2

𝝆𝑎 30.641 0.389 0.378 0.165 0.416
𝝆𝑏 28.395 0.502 0.474 0.015 0.249
𝝆𝑐 33.254 0.320 0.198 0.328 0.512
𝝆𝑑 30.542 0.269 0.467 0.232 0.413
𝝆𝑒 32.557 0.438 0.268 0.289 0.257

𝐿2-norm 𝑑𝑓𝑡 𝑑𝑓𝑐 𝑑𝑚𝑡 𝑑𝑚𝑐

3

𝝆𝑎 45.448 0.327 0.393 0.005 0.356
𝝆𝑏 45.823 0.172 0.491 0.142 0.257
𝝆𝑐 47.141 0.345 0.320 0.128 0.258
𝝆𝑑 47.731 0.293 0.338 0.179 0.297
𝝆𝑒 49.774 0.250 0.211 0.250 0.235

achieve very good agreement in the following region, i.e. between
12 and 17 mm, being fully within the standard deviation. Besides,
at the last region, the standard deviation is smaller than in the first
one (penalizing the curves which are ‘‘far’’ in an Euclidean sense);
and, in absolute values, the error is larger for greater forces, which
benefits numerical responses that are closer to the experimental ones
in large displacements. This indicates the importance of analyzing
several samples either experimentally or numerically (through FEMU)
to evaluate the numerical predictions.

Fig. 8(b) shows the norm with respect to the number of FEMU
iterations. It has the same characteristics of Fig. 8(a) for WP = 1. The
very first steps reduce greatly the norm and then several steps are
required to stabilize the damage parameters. As in WP = 1, the values
obtained in FEMU for the initial guesses are different with a similar
mechanical response in terms of force × displacement curve shapes,
as observed in Table 3 and Fig. 7(b). Moreover, larger values of the
norm, with respect to WP = 1, are expected given the aforementioned
distances between experimental and numerical values.

The results obtained for WP = 3 are presented in Fig. 7(c) and,
hey are in excellent agreement with the experimental ones in the
ntire curve. Even with a smaller standard deviation region when
omparing WP = 1 and WP = 2, the predictions are more accurate. The

greater success of these predictions is also due to a more homogeneous
evolution throughout the test. The variation of the norms regarding
the number of iterations are presented in Fig. 8(c). Again, the norm
decreases very quickly and then stabilizes. As one can see, in Table 3,
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Fig. 9. Images of failed specimens for: (a–b) WP = 1, (c–d) WP = 2, and (e–f) WP = 3. The first column presents the failures at the contact between the cylinders and the platen
hile the second column shows the inner surface of the cylinders, highlighting the lateral compressive failures.
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𝑇
𝑀 is bound to this function in iterations 4 and 5. However, with the
id of Eq. (13), the value of the minimum is not in the boundary of a
easible domain.

As happened for the other two patterns, FEMU has obtained five
ifferent optimum solutions (Table 3). The norm values are larger com-
ared to the other two patterns, which is a consequence of two effects:
very small standard deviation in experimental data (which strongly

enalizes any deviation from the curve); and differences between ex-
erimental and numerical curves at large displacement regions. This
hows that for this pattern, the norm oscillates considerably and this is
lso an explanation for a large number of iterations in most evaluated
ases. Nevertheless, the quality of the predictions is as good as for the
ther cases.

.2. Damage characteristics — experimental analysis

Fig. 9 depicts the external and internal surface of some tested
pecimens, in which (a)–(b), (c)–(d) and (e)–(f) correspond to WP = 1,
P = 2, and WP = 3, respectively. Some of the failures are highlighted
 t

10
nd they are related to a very large compressive stress along the fiber
irection.

In some cases, shown in detail in Figs. 9(b) and 9(d), there is a
‘jump’’ of the ‘‘line of damage’’ at the helical-cross over. This is a
ery particular behavior that cannot be predicted by conventional FE
odels without any information on the winding pattern. These ‘‘lines

f damage’’ are related to the resultant stresses that act on the cylinder
uring the testing: two at the region of the contact between plates-
ylinder, with compression and tension on the external and internal
urface, respectively; and other two 90◦ from the contact region, with
ension and compression on the external and internal surface, respec-
ively. These lines are in regions where the maximum bending moment
cts [42] and are much clearer in the internal surface. This ‘‘jump’’
s due either to local strength variations that made the crack change
irection or to an initial damage that might have begun there and
ropagated to the line of damage. For WP = 1 the line slightly diverges
nd then returns, whereas, for WP = 2, it goes as a straight line up to the
ree edge. For WP = 3, some oscillation is observable but not ‘‘jumps’’,
s the helical cross-overs are closer to each other when compared to
he other patterns.
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Fig. 10. Damage plots at the maximum compressive load for all investigated failure modes. The cylinders are plotted in the isometric view and show a similar damage response
in both top and bottom regions (the contact with the platens). Final results for the patterns 𝑊𝑃 = 1, 𝑊𝑃 = 2, and 𝑊𝑃 = 3 are associated with guesses ‘a’, ‘c’, and ‘e’, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Although the information on how damage initiated cannot be ob-
tained (therefore the importance of the simulations — see Section 4.3),
the final failure of all three families of cylinders present a combination
of fiber-dominated and matrix-dominated mechanisms, since cracks
along the fiber direction and transverse cracks are found. Furthermore,
delaminations are also present especially at the plate–cylinder con-
tacts [43]. Delaminations and transverse cracks can be confirmed not
only by the fracture specimens but also based on the successive load
drops in the force × displacement curves (see Figs. 7(a)–(c)).

4.3. Damage characteristics — numerical analysis

Fig. 10 presents damage plots of the cylinders at the final load,
where red and blue regions correspond to damaged and undamaged
elements, respectively. The damage plots show both the outer and
the inner layers of the cylinders. In all simulations, regardless of the
optimum guess, failure initiated at 30% of the applied load by matrix
tension at the contact with the bottom platen. Then, matrix compres-
sion failure mode is triggered. It is noticeable that the damaged regions
are very similar for the different patterns, except for the contours. In
these, the pattern information – helical cross-overs – can also be seen
as a modifier of the damaged contour.

It is noticeable that at the top and bottom of the cylinders (the con-
tact regions with the platens), the damage in the fiber is dominated by
both tension and compression. The same occurs for the matrix damage
at the sides (approximately 90◦ away from the contact area). The stress
distribution of WP = 3 with 𝝆𝑓

𝑑 is shown in Fig. 11 in each layer. Due to
the nature of the element, there are differences in the stresses on the top
and on the bottom of the layer (in Fig. 11 is shown as outside and inside
of the deformed cylinders). One observes that, inside a layer, given the
large and complex forces acting on the cylinder, there exist both tensile
and compressive stresses at levels that cause/trigger damage. That
is the reason for regions having both damages allowables triggered,
despite the loading being monotonic. Furthermore, by the stress results,
11
the pattern influence can be even better evaluated. Similar results are
observable for other damage allowables set and patterns.

Fig. 12 depicts the information of damage of the cylinder shown
in Fig. 11 and increment the information of the triggered damages.
Different from other damage plots herein presented, this one consid-
ers all damage allowables by defining: no damage, partial damage,
and complete damage, whose concept are no damage triggered, some
damage triggered and all damage triggered. As aforementioned, due to
the complex loading case, types of damage can be triggered together.
This is also observed by Banat and Mania [44], where a profile is sub-
jected to compressive loading and regions with all damage allowables
triggered are observed.

An interesting result is that, for all patterns at the platen-shell con-
tact regions, the failure is dominated by both matrix and fiber failure
modes. Fig. 13 shows the progression of the fiber and matrix tension
for 50%, 60%, 65%, and 70% of the final load. For the fiber (𝑑𝑓𝑡), the
damage over the cylinder is barely noticed with 50% loading. With
60%, a line of damage appears in the inner surface with a small region
on the outer surface close to the free borders due to the anticlastic
curvature, an effect of free-border boundary condition. Then, with 65%
loading, the damage is already in both inner and outer surfaces. The
damaged area slightly increases for 70% loading. For 𝑑𝑚𝑡, the damage
due to tension at the outer surface appears within 50%–60% loading
and the same characteristics of the evolution of 𝑑𝑓𝑡 are observed for
𝑑𝑚𝑡.

Key information from Fig. 13, which is also observed for the other
winding patterns, is the contribution of tensile stresses at the contact
of the cylinder with the upper platen, which should be dominated by
compressive stresses. At a loading level of 50%, two small areas show
tensile matrix failure – which is due to edge effects since they are
free. At 60% loading, the cylinder/upper platen region presents a row
of failed (matrix tension) elements along the cylinder length. Above
65% up to final failure, the amount of failed elements in that area
increases. Cylinder/platen friction also has a significant contribution
to it. Nevertheless, the cylinder/upper platen contact is dominated by
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Fig. 11. Stress distribution of WP = 3 cylinder with 𝝆𝑓
𝑑 : (a), (c), (e), (g), and (i) present the stresses 𝜎11, 𝜎22, 𝜎12, 𝜎13, and 𝜎23, for layer 1 (inside), respectively, while (b), (d),

(f), (h), and (j) show the stresses 𝜎11, 𝜎22, 𝜎12, 𝜎13, and 𝜎23 for layer 2 (outside), also respectively. Units in [MPa].
l
v
–

Fig. 12. Damage on the WP = 3 cylinder with 𝝆𝑓
𝑑 . Definitions: no damage (none of

the failure criteria met), some damage (some of the failure criteria triggered), and full
damage (all failure criteria met).

compressive stresses, as expected. As can be seen in the Supplementary
Material, matrix and fiber tension dominate the four main damaged
areas, i.e. bottom and top contacts with the platen and the two sides,
whereas matrix and fiber compression failure modes dominate at the
upper and right-side of the cylinders.

Fig. 14 shows the damage evolution for WP = 2 (guess 𝝆𝑐) within
0%–70% loading. The same characteristics concerning the damaged
egions can be observed here (tensile damage parameters in both
ottom and top layers) and they appear with a similar absolute load
range between 500 N and 600 N). It is also noticeable that the damage
way from the platen-shell contact starts around 50% of the applied
orce for 𝑑𝑚𝑡 at the helical regions. This conclusion can only be drawn

using the modeling approach presented here, i.e. taking the winding
pattern into account in the analysis. Otherwise, the stresses would be
underestimated since the helical cross-over regions may represent stress
concentration areas. Therefore, failure is more likely to be triggered
in those areas instead of a regular laminate area. Although the cross-
over regions can be interpreted as stress concentration areas, they can,
nonetheless, postpone crack initiation and propagation, as observed in
Ref. [14].
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The damaged regions increase significantly within 50%–60% load-
ing. However, this is more pronounced for the matrix damage failure
mode, since even at a load level of 40%, damage elements are seen at
the four main failure regions of the cylinder, i.e., damage propagation
by matrix tension occurs faster than the other failure modes. A few
elements are damaged by fiber (compression/tension) at the helical
cross-over regions at this loading range. Considering that a loading
level of 70% is near the final damage pattern, and therefore the dam-
aged regions at this load step are shown, the failure pattern is mainly
dominated by these modes, in the following sequence: matrix tension
> fiber tension > matrix compression > fiber compression. These
observations are further supported in the Supplementary Material.

In all analyzed cases (regardless of the pattern), the aforementioned
damage progression occurs (see Supplementary Material). The matrix
starts to fail in tension at the bottom layer close to the plate–cylinder
contact. Then, at nearly the same load – around 50%, different damage
mechanisms are triggered: matrix in both tension and compression at
the contact areas, and, in fiber tension at the cylinder–upper platen
contact region. Until this loading stage, the contact region plays the
most significant role in the progression. After that, the most significant
differences among the patterns arise. In WP = 1, the damage at the
ateral of the cylinder appears only after a load step of 70% (at 70%,
ery small regions – a few number of elements at the helical region
are damaged). This behavior takes place slightly different for WP =

2 and WP = 3. For WP = 1, considerable areas are already damaged
(matrix in both tension and compression) at 60% loading. Fiber damage
(both compression and tension) can also be observed in some guesses
and in very small regions close to the helical cross-over regions. With
70% loading, all cylinders have a similar damage pattern compared
to the one at the final load step, only small variations related to the
pattern lines and damage sizes are observed. The differences between
the WP = 2 and WP = 3 concern, essentially, fiber damage. For WP =
2, this damage mode is considerable while for WP = 3, only regions
close to the helical cross-overs are damaged. It is important noticing
that these characteristics encompass all guesses, since they have sim-
ilar behavior. As mentioned before, these differences in the damage
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Fig. 13. Damage propagation – 𝑑𝑓𝑡 and 𝑑𝑚𝑡 – from 50% to 70% of the total applied force for the winding pattern (WP) of 1. The cylinders, plotted in isometric view, have a
similar mirrored damage response in both top and bottom regions – the contact with the platens – as well as in both lateral (left and right) sides.
Fig. 14. Damage propagation of all failure modes from 40% to 70% of the total applied force (1100 N) for the WP = 2. The cylinders, plotted in isometric view, have a very
similar mirrored damage response in both top and bottom regions – the contact with the compression plates – as well as in both sides.
evolution characteristics for different patterns are only observed with
the current approach. This also corroborates with the results found by
Lisbôa et al. [14] regarding the maximum load and the absorbed energy
of radially compressed filament-wound tubes.

The post-mortem analysis presented and discussed in Section 4.2,
corroborates the numerical findings. One can see compressive damage
at the fiber in both top and bottom layers. Regardless the optimum
guess, the final numerical results are almost the same: differences are
found between 50% and 70% of the loading. It is then concluded that
any of the set of optimum guesses found here through FEMU approach
provides a suitable prediction of the damage initiation and propagation
of the cylinders.
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5. Conclusions

A finite element model updating (FEMU) type approach is presented
to find the damage allowables that best predict the mechanical re-
sponse of composite cylinders under radial compression. The typical
mosaic pattern formed during the filament winding process is taken
into account in the models. Experimental tests were carried out with
two purposes: (i) as input for the FEMU procedure, and (ii) to compare
the final damage pattern with simulations. The optimization algorithm
within FEMU, whose design variables are the damage allowables, is
implemented in order to minimize the norm between experimental and
numerical results. This norm is weighted by the standard deviation of
the experimental data. Three winding patterns are considered (1/1,
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2/1, and 3/1), each of them with five pre-selected initial guesses
considered in FEMU algorithm for determining the damage parameters
that best predict the experimental data.

The pattern plays a key role in the radial compressive response of
filament wound cylinders and, therefore, this manufacturing character-
istic should be taken into account for generating realistic stress fields.
The helical cross-over regions can either postpone crack initiation and
propagation or represent stress concentration areas, since stress peaks
are found in these regions. In general, different winding patterns and
optimum guesses produce similar damage initiation and propagation
mechanisms, in which failure is triggered by matrix tension at the
cylinder–upper platen contact, followed by matrix compression at both
top and bottom contact areas with the platens. The final damage
pattern is dominated by a combination of these failure modes at these
regions and the sides, regardless of the pattern and optimum guess, as
expected. This is the natural response of fiber-reinforced cylinders un-
der radial compression regardless of the winding pattern. Nonetheless,
differences in maximum load, stress, strength, and damage propagation
were observed for different WPs and damage allowables set. Qualitative
differences in crack propagation were also seen in the post-mortem
analysis of the fractured cylinders. Therefore, the experimental setting
was suitable to exploit the WP effect, and the adopted numerical
methodology was effective in predicting the experimental response of
the cylinders.

It should be pointed out that the optimum sets of damage allowables
found here are only valid for loads and BCs of the current FE model. The
multiplicity of solutions herein obtained and the associated dependence
on the initial values could be attenuated by using surrogate models (or
metamodels). Also, the lack of physically meaningful parameters sug-
gests caution in the extrapolation of the obtained results to conditions
far from the range of values herein explored. In that case, a new set of
experiments could be used for checking purposes. The proposed FEMU
framework, however, can be easily adapted to any arbitrary FE model,
for multiple load cases and BCs.
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