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Simple Summary: Ewing Sarcoma is a rare cancer that, when localized, has an overall five-year
survival rate of 70%. Patients with metastasis have a five-year survival rate of 15 to 30%. Early analysis
of patient prognosis can be crucial to provide adequate treatment and increase chances of survival.
Besides, it is a disease with several gaps in our understanding, including regulation of genes and
which transcription factors are master regulators. This work addresses these two topics by inferring
gene regulatory networks that allow us to identify putative master regulators to predict patient
prognosis. We were able to identify two sets of master regulators that can predict good and bad
patient outcomes.

Abstract: Ewing Sarcoma (ES) is a rare malignant tumor occurring most frequently in adolescents
and young adults. The ES hallmark is a chromosomal translocation between the chromosomes 11 and
22 that results in an aberrant transcription factor (TF) through the fusion of genes from the FET and
ETS families, commonly EWSR1 and FLI1. The regulatory mechanisms behind the ES transcriptional
alterations remain poorly understood. Here, we reconstruct the ES regulatory network using public
available transcriptional data. Seven TFs were identified as potential MRs and clustered into two
groups: one composed by PAX7 and RUNX3, and another composed by ARNT2, CREB3L1, GLI3,
MEF2C, and PBX3. The MRs within each cluster act as reciprocal agonists regarding the regulation of
shared genes, regulon activity, and implications in clinical outcome, while the clusters counteract
each other. The regulons of all the seven MRs were differentially methylated. PAX7 and RUNX3
regulon activity were associated with good prognosis while ARNT2, CREB3L1, GLI3, and PBX3 were
associated with bad prognosis. PAX7 and RUNX3 appear as highly expressed in ES biopsies and ES
cell lines. This work contributes to the understanding of the ES regulome, identifying candidate MRs,
analyzing their methilome and pointing to potential prognostic factors.

Keywords: pediatric cancer; transcription factor; systems biology; cancer of unknown primary;
regulome
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1. Introduction

Ewing Sarcoma (ES) is an aggressive bone and soft tissue sarcoma, occurring most
frequently in adolescents and young adults, of which the hallmark is a chromosomal
translocation between chromosomes 11 and 22, involving genes from the FET and the ETS
transcription factor families. Bone is the most frequent site of origin, but about 15% to
20% of Ewing sarcoma emerges in bone-associated soft tissue [1–3]. EWSR1-FLI1 has been
reported as the most frequent fusion in ES, coding for a chimeric protein that functions as
an aberrant transcription factor [4]. The EWSR1-FLI1 chimeric protein is known to alter
the chromatin leading to mistargeting, dysregulation of chromatin state, and eventually
transcriptional impairing [5,6]. The impact of EWSR-FLI1 fusion on ES transcriptome is still
poorly understood, and the regulatory mechanisms behind those transcriptional alterations
have not yet been deeply investigated.

ES was first described as a presumed diffuse endothelioma of bone [7]. The key
ES prognostic factor is the presence of detectable metastasis at diagnosis, and patients
with bony metastases (with or without lung involvement) have a very poor prognosis,
mostly when compared to patients with exclusively lung metastasis [8]. It is known that
the chimeric protein alters the transcriptional pattern, and some of ES transcriptional
abnormalities have been associated with epigenetic modifications induced by EWSR1-
FLI1 [4]. There is no ES cell of origin identified so far, and several ES tissues of origin
were proposed, including endothelial, vascular pericytes or smooth muscle, primitive
vascular mesenchyme, pluripotential uncommitted mesenchyme, osteoblastic (based on
collagen matrix synthesis patterns) and small cell osteosarcoma, and/or mesenchymal
chondrosarcoma [2,9]. In recent decades, studies converged on two putative ES cells of
origin: human mesenchymal stem cells (hMSC) and human neural crest cells (hNCC) [4].
There are also studies that point towards a neuro-mesenchymal stem cell phenotype [10].

Gene expression is regulated by the activity of regulatory molecules such as transcrip-
tion factors. It is well described that a small number of transcription factors, which acts
as master regulators (MRs), might handle the cell fate in different cellular models [11,12].
The reconstruction of regulatory networks based on transcriptional information has been
successfully applied to different types of cancer, including breast cancer, pancreatic ductal
adenocarcinoma, and neuroblastoma [13–16]. The regulatory network reconstruction aims
to identify those transcription factors at the top of the transcriptional regulatory hierarchy,
the MRs [17,18]. Identifying such MRs could help predict patient prognostic and point-
ing out putative biomarkers that could lead to better diagnosis and treatment protocols.
Compared with other solid cancers, and cancers that have recurrent mutations, the number
of recurrent somatic mutations in ES is limited [19–22]. Therefore, ES development is
known as a transcription-related phenomenon, which points to regulatory analysis as a
promising strategy in ES investigation. Here, we have inferred the ES regulatory network
based on transcriptional data available in public databases. We also identified a set of seven
putative transcription factors which acts as master regulators in ES and analyzed their
methylation profile. Those master regulators clustered in two groups with antagonistic
behavior between the groups regarding the regulation of shared genes, regulon activity,
and implications in clinical outcome.

2. Materials and Methods
2.1. Data Acquisition and Processing

Data used to infer the ES regulatory networks were obtained from Gene Expression
Omnibus (GEO) [23] (accession numbers GSE34620 and GSE63157). The dataset GSE34620
comprises expression data (Affymetrix Human Genome U133 Plus 2.0 Array) from 117 ES
biopsies [24] and the dataset GSE63157 comprises expression data (Affymetrix Human
Exon 1.0 ST Array) from 85 ES biopsies [25]. Data used to infer ES gene signature was
also obtained from GEO (accession numbers GSE73610 and GSE67073) [26,27]. The dataset
GSE73610 comprises expression data (RNA-Seq profiling Illumina Genome Analyzer IIx,
Homo sapiens) from 3 ES cell lines and 2 hMSC cell lines and the dataset GSE67073
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comprises expression data (RNA-Seq profiling Illumina HiSeq 2000, Homo sapiens) from
four induced pluripotent stem cells (iPSC)-derived neural crest populations from familial
dysautonomia patients and 2 iPSC-derived neural crest populations from healthy volun-
teers. Data used for survival analysis was obtained from GSE63157 (also used for Ewing
Sarcoma regulatory network inference) and from GSE17618, both retrieved from GEO.
The dataset GSE17618 comprises expression data (Affymetrix Human Genome U133 Plus
2.0 Array) from 44 ES biopsies and 11 ES cell line samples [27].

To assess the gene expression of the master regulators in different tissues and solid
pediatric cancers, we used once again the dataset GSE34620 for ES, in addition to the fol-
lowing: GSE16476, comprising expression data (Affymetrix Human Genome U133 Plus 2.0
Array) from 88 Neuroblastoma biopsies; GSE53224 comprising expression data (Affymetrix
Human Genome U133 Plus 2.0 Array) from 53 biopsies of Wilm’s tumor; GSE75271 com-
prising expression data (Affymetrix Human Genome U133 Plus 2.0 Array) from 55 biopsies
of hepatoblastoma, GSE87437 comprising expression data (Affymetrix Human Genome
U133 Plus 2.0 Array) from 21 biopsies of high-grade osteosarcoma, GSE29684 compris-
ing expression data (Affymetrix Human Genome U133 Plus 2.0 Array) from 20 biopsies
of retinoblastoma, GSE66533 comprising expression data (Affymetrix Human Genome
U133 Plus 2.0 Array) from 58 biopsies of rhabdomyosarcoma and GSE3526 comprising
expression data (Affymetrix Human Genome U133 Plus 2.0 Array) from 353 samples of 65
different healthy tissues. The criterion chosen for this analysis was the most common solid
pediatric tumors, microarray platform type, and the number of samples.

Microarray raw data (GSE34620 and GSE17618, Affymetrix Human Genome U133 Plus
2.0 Array) normalization (Robust Multichip Average, RMA method) and quality control
was performed with the Affy Bioconductor/R package [28]. For GSE63157 (Affymetrix
Human Exon 1.0 ST Array) normalization (Robust Multichip Average, RMA method) and
quality control was performed with oligo Bioconductor/R package [29]. Annotation data
for Affymetrix Human Genome U133 Plus 2.0 Array was obtained from hgu133plus2.db
and for Affymetrix Human Exon 1.0 ST Array from huex10sttranscriptcluster.db R packages.
RNA-seq data were processed according to the Tuxedo protocol. Briefly, we used fastqdump
to convert SRA compressed files into FASTQ format files and fastqc to assess the quality
of them. Then we run TopHat to align reads to the hg19 reference transcriptome. For the
comparison of gene expression of the master regulators among solid pediatric tumors
and healthy tissues, the datasets GSE34620, GSE16476, GSE53224, GSE75271, GSE87437,
GSE29684, GSE66533, and GSE3526 were normalized together. Looking for samples on
the same platform type was important here since different microarray platforms have a
different set of probes.

In this work, we analyzed three datasets with ES biopsies. For GSE63157, data was
from biopsies collected from patients on Children’s Oncology Group (COG) and EuroEw-
ing. Molecular analysis of COG and EuroEwing tumors was performed using RT-PCR for
EWS-FLI1 and EWS-ERG fusions. Forty-six samples obtained from the COG Biorepository
in Columbus, Ohio (Cooperative Human Tissue Network - CHTN) were prospectively
acquired from patients on clinical trials INT-0154 (CCG-7942, POG-9354) and AEWS0031,
the two most recent COG clinical protocols for patients with localized Ewing sarcoma (ES).
An independent set of 39 tumor samples was obtained from the EuroEwing tumor biorepos-
itory in Muenster, Germany and were prospectively acquired from patients registered on
EICESS 92 (European Intergroup Cooperative Ewing’s Sarcoma Study) and EuroEwing
99.46 out of the 85 samples have information about the primary tumor site (Under three
categories: other, extremity and pelvis) [25]. For GSE17618, the patient material for study
was taken prior to any treatment in 29 cases, and in 15 cases, chemotherapeutics, radiation
therapy, and/or surgical treatment was applied before material was collected [30]. In the
case of GSE34620, samples were from the CIT program (Cartes d’Identité des Tumeurs
research program) from the french Ligue Nationale Contre le Cancer. The published dataset
article details that all cases included in the study showed a specific EWSR1-ETS fusion and
the molecular diagnosis was performed in Institut Curie [24].
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2.2. Regulatory Network Inference and Master Regulator Analysis

The regulatory network inferences and the master regulator analyses were performed
using RTN (Reconstruction of Transcriptional Networks), a Bioconductor/R package that
provides several tools for the reconstruction and analyses of transcriptional networks,
such as the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe),
and the Master Regulator Analysis (MRA) algorithms [15]. Briefly, the RTN algorithm
measures statistical dependence of gene expression data along with a previously defined set
of transcription factors (TFs) to infer a TF-centric regulatory network. The Transcriptional
Network Algorithm (TNI) computes the association between a transcription factor and
each potential regulated gene, removing spurious associations by permutation analysis (BH
adjusted p-value 0.05). We have inferred two ES regulatory networks by using two datasets
containing ES expression data from 117 biopsies (GSE34620), used to infer Network 1,
and 85 biopsies (GSE63157), used to infer Network 2, and a list of 1388 human transcription
factors available in Fletcher2013b Bioconductor/R package [15]. The MRA looks for
regulatory units (regulons) that are enriched for a gene signature (BH adjusted p-value 0.05),
pointing out putative transcription factors that are relevant to the disease, known as Master
Regulators (MRs). Here, we obtained two ES signatures: one by performing a differential
expression analysis comparing hMSC (GSE73610 N = 2) against ES cell lines (GSE73610
N = 3) and another by performing a differential expression analysis comparing hNCC
(GSE67073 N = 2) against the same ES cell line samples (GSE73610 N = 3). RNAseq
samples were processed with the Tuxedo protocol, and Cuffdiff was used to quantify gene
expression in each condition and test for differential expression. Genes with adjusted
p-value lesser or equal than 0.05 were considered to be differentially expressed. We used
both signatures to perform the MRA pipeline to network 1 and network 2 (Figure A1).

2.3. Differential Methylation Analysis

The differential methylation analysis was performed comparing 15 samples from
different ES cell lines with 9 samples from hMSC cell lines. These 9 samples from hMSC are
divided between 6 samples from patients with ES and 3 from healthy donors. The complete
study consists of 24 samples (GSE118872) [31]. We used the methylationArrayAnalysis
package from Bioconductor [32], and followed their pipeline instructions. Data normaliza-
tion was performed using the Genome Studio, the standard software provided by Illumina,
through the function preprocessIllumina.

Quality control was performed looking for failed positions (this is defined as both
the methylated and unmethylated channel reporting background signal levels), as rec-
ommended in the pipeline manual, and with a p-value threshold of 0.01. At the end,
no sample was required to be filtered out. After that, probe-wise differential methylation
analysis was performed (Bonferroni adjusted p-value < 0.01). We then used Fisher’s Exact
Test (Bonferroni adjusted p-value < 0.01) to check if the regulons of the putative master
regulators inferred in the Master Regulator Analysis were significantly enriched with genes
that were found to be differentially methylated in the probe-wise differential methylation
analysis. This enrichment analysis was performed 2 times: (a) with regulons inferred in
Network 1, and (b) with regulons inferred in Network 2.

2.4. Gene Ontology Functional Enrichment

To investigate the functional enrichment of genes regulated by each of the master
regulators, we merged the regulons of each of the master regulators from Network 1
and 2. The Gene Ontology functional enrichment was performed using the clusterProfiler
R Package aimed at the Biological Processes ontology [33]. The adjusted p-value < 0.05
(Benjamini-Hochberg correction) was considered to be significant.

2.5. Network Visualization

We used the RedeR Bioconductor/R package [34] to visualize two types of networks
generated by the RTN package: association maps and tree-and-leaf representations. In as-
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sociation maps, nodes in the network are transcription factors, and the edge width between
any two nodes is related to the number of genes mutually regulated by each pair of tran-
scription factors, i.e., the edge width refers to the regulatory overlap between regulons.
Tree-and-leaf representation is similar to the association map, with the exception that edge
width is fixed and nodes are hierarchically organized throughout the network according to
the overlap of regulated genes. The regulon clusters are formed according to the overlap of
genes regulated by these transcription factors. Regulons with less than 15 genes are not
represented in the networks, a default cut-off in the RTN package.

2.6. Master Regulators Activity

We used the RTN package to measure MR regulatory activity, i.e., the enrichment
score of the regulatory activity of each regulon compared to the other regulons in the
set for every patient. The RTN package measures for every patient how the expression
of every gene deviates towards the average expression of that gene for all patients in
the cohort and then applies the Two-Tailed Gene Set Enrichment Score analysis (GSEA2).
Briefly, gene expression was first converted into z-score and, in each sample, all genes were
sorted by the z-score and then used as the reference list in GSEA2. The TFs activity level
was approximated by the Normalized Enrichment Score (NES) computed for its regulon.
The results of the two analyses were plotted as a heatmap along with dendrograms.

2.7. Survival Analysis

From the ES datasets used in this study, only GSE63157 (N = 85) and GSE17618
(N = 44) had survival data. The survival R package was used to analyze patient overall
survival in terms of the activity of the regulon of each putative master regulator. Samples
were divided into two groups based on the median of the regulatory activity of each
regulon. The regulons with activity values above the median were classified as “high
regulon activity” and values below the median as “low regulon activity”. The median
was calculated for every regulon of each patient. The p-values for the comparison of the
survival curves in the Kaplan-Meier estimator were calculated with the log-rank test.

For the GSE17618 cohort, with too few samples to perform network inference, we used
the regulon structure of the cohort one (the cohort with the largest sample size used for
network inference, N = 117), i.e., which genes were associated with each putative master
regulator, but with the expression values of the GSE17618 cohort.

2.8. RT-qPCR Analysis

For the in vitro expression gene analysis of master regulators identified in silico,
we used different representative cell lines of Ewing Sarcoma (RD-ES and SK-ES), Neurob-
lastoma (SH-SY5Y and SK-N-Be(2)), Hepatoblastoma (HepG2) and Medulloblastoma (Daoy
and D283). The total RNA extraction was performed with SV Total RNA Isolation System
kit (Promega, Madison, USA) according to manufacturer’s instructions and quantified in
Nanodrop (Thermo Fisher Scientific, Waltham, USA). The cDNA was obtained using the
GoScript Reverse System (Promega) according to manufacturer’s instructions. The qPCR
of the master regulators cDNA (PAX7, RUNX3, ARNT2, CREB3L1, GLI3, MEF2C, PBX3)
were amplified using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific.) and
the relative gene expression was analysed using 2(−DDCt) method [35]. The RD-ES was
used as control and ACTB was used as internal control. Statistical analysis was performed
by one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test; p values
under 0.05 were considered to indicate statistical significance.

3. Results
3.1. Regulatory Network Inference and Master Regulator Analysis

We have inferred ES regulatory networks based on two cohorts (GSE34620 and
GSE63157) containing transcriptional data from 117 patients (regulatory network 1) and
85 patients (regulatory network 2) (Figures 1 and A1). A gene signature is required to infer
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potential master regulators. A common strategy to obtain a gene signature for a given tu-
mor is through differential expression analysis by comparing the cancer cells against the cell
of origin. Since the cell of origin of ES is still a matter of debate, we have used two different
cell types to infer ES signature: human mesenchymal stem cells (hMSC) and human neural
crest cells (hNCC), the most accepted cells of origin in the literature [4]. The two signatures
were used to perform the MRA for network 1 and network 2 (Figure A1). Figure 1A,B
show tree-and-leaf representations of both regulatory networks (for the regulatory net-
works with fully regulon names, see Figures A2 and A3). Each network is depicted based
on regulon overlap, and the nodes represent the inferred regulons containing at least 15
genes. Networks 1 and 2 contain 645 and 568 regulons, respectively. The MRA performed
in the network 1 identified 44 master regulators (Table A1) for the hMSC signature and
13 master regulators for the hNCC signature (Table A2). In the network 2, MRA identified
66 master regulators for the hMSC (Table A3) signature and 42 master regulators for the
hNCC signature (Table A4).

Figure 1. Tree-and-leaf representation of Ewing Sarcoma regulatory networks and methylation
profile. Regulatory networks 1 (A) and 2 (B) inferred from ES datasets GSE34620 and GSE63157,
respectively. Nodes represent regulatory units (regulons) labeled by their transcription factors,
and edges represent their relationship as the overlap of mutually regulated genes. Network nodes
are colored according to the master regulator analysis (MRA) results, carried out with the disease
signatures obtained with hMSC and hNCC as ES cells of origin. Methylation profile (C) of the seven
regulons composing the intersection of both networks (networks 1 and 2), and both signatures (hMSC
and hNCC). The color code in C represents methylation p-value as indicated.

Among those four sets of inferred master regulators (MRs), seven are always present:
ARNT2, CREB3L1, GLI3, MEF2C, PBX3, PAX7, and RUNX3 (Figure 1A,B) and
Figure A1). From that point, we chose to work with those seven master regulators compos-
ing the intersection of both networks, and both signatures
(Figure A1). In network 1, five master regulators (CREB3L1, GLI3, MEF2C, PBX3, and PAX7)
out of the seven common to all MRA analyses are located close to each other at a small
region of the network (Figure 1A). In network 2, five of those master regulators (CREB3L1,
GLI3, PBX3, RUNX3, and PAX7) are also located close to each other at a small region of the
network (Figure 1B).

3.2. Differential Methylation Analysis

As a further regulon validation, we investigated the regulon methylation profile in an
independent dataset involving ES cell lines and hMSC cell lines. Figure 1C shows that the
regulons of the seven identified master regulators (ARNT2, CREB3L1, GLI3, MEF2C, PBX3,
PAX7, and RUNX3) have more genes differentially methylated as expected by change in
both network 1 and network 2.

3.3. Biological Function of Master Regulators Associated Genes

To perform the functional enrichment of the genes regulated by the seven master
regulators (MRs), we considered collectively the genes associated with each MR in both
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networks 1 and 2. According to Figure 2, PAX7 regulated genes are associated with glyco-
protein metabolic process, proteoglycan metabolism, and protein deacetylation. There are
no biological functions significantly enriched for RUNX3 regulated genes, while ARNT2
associated genes are involved with synapse and postsynapse organization, and axogenesis.
The regulons CREB3L1, GLI3, PBX3, and MEF2C share biological functions, mainly func-
tions involved with extracellular matrix dynamics. For example, the GO term extracellular
matrix organization is enriched in those four regulons. GO terms extracellular structure or-
ganization, connectivity tissue development, and chondrocyte differentiation are enriched
in regulons CREB3L1, GLI3, and MEF2C, while MRs PBX3 and MEF2C regulates genes
involved with endothelial and epithelial cell migration.

Figure 2. Gene Ontology functional enrichment using clusterProfileR to show the main biological
functions performed by each regulon of the seven putative master regulators. The p-value cutoff
used is 0.05 and the p-value was adjusted by Benjamini-Hochberg correction. Each regulon in this
analysis consists of the genes regulated by each master regulator in Network 1 and 2.

3.4. Regulon Activity

The regulon activity is calculated based on the expression of genes into the regulon.
In other words, a regulon is considered to be activated when the genes identified as
positively regulated by the transcription factor (in this case, the master regulator) are up-
regulated in the GSEA, and the genes negatively regulated by the TF are down-regulated in
the GSEA. On the contrary, the regulon is considered inhibited when negatively regulated
genes are on the GSEA top, and positively regulated genes are on the GSEA tail. We
assessed regulon activity in the different samples used for networks 1 and 2 inference.

Figure 3A shows the heatmaps involving the activity of the seven MR for the 117 sam-
ples used to infer network 1 (GSE34620) and the 85 samples used to infer network 2
(GSE63157). In both heatmaps, it is possible to observe two clusters: one formed by regu-
lons PAX7 and RUNX3 and another formed by regulons ARNT2, CREB3L1, GLI3, MEF2C,
and PBX3. The regulatory activity of these two clusters is antagonistic to each other in both
cohorts: in general, patients with high RUNX3 and PAX7 regulon activity have low ARNT2,
CREB3L1, GLI3, MEF2C, and PBX3 regulon activity and vice-versa (Figure 3A). Figure 3B
shows two subnetworks extracted from the regulatory networks 1 and 2. Both subnetworks
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include only the seven regulons used for heatmap analyses (Figure 3A). Similar to Figure 1,
the network is depicted according to regulon overlapping (i.e., according to genes mutually
regulated), but here the edges indicate whether each pair of transcription factors regulates
the shared genes in the same direction (agonistic regulation) or in the opposite direction
(antagonistic regulation). As seen in Figure 3B, it is possible to observe two groups of
regulons. PAX7 and RUNX3 regulate shared genes in the same direction. Similarly, the
group formed by ARNT2, CREB3L1, GLI3, MEF2C, and PBX3 regulates the shared genes
in the same direction (Figure 3A and Figures A4 and A5). However, transcription factors of
different groups always regulate simultaneously regulated genes in the opposite direction
(Figure 3B). According to Figure 3, regulons PAX7 and RUNX3 are simultaneously acti-
vated or inhibited and act coordinately by regulating shared genes in the same direction.
The same occurs among regulons ARNT2, CREB3L1, GLI3, MEF2C, and PBX3. Moreover,
both groups seem to work as antagonists between each other.

Figure 3. Regulon activity analyses. (A) Heatmaps of regulatory activity obtained for both datasets
(GSE34620 N = 117 and GSE63157 N = 85). (B) Association map of subnetwork 1 (GSE34620) and
subnetwork 2 (GSE63157) involving only the 7 MRs identified in both networks when using the two
gene signatures (hMSC and hNCC). Node size reflects the number of regulated genes into regulon,
and edge width reflects the number of mutually regulated genes between each regulon. Nodes are
colored according to the cluster they belong to. Dotted edges represent regulatory antagonism, while
solid edges represent regulatory agonism.

3.5. Survival Analysis

To evaluate the impact of the seven regulon activity in ES outcome, we accessed
survival data available for the 85 patients from the cohort used to infer ES regulatory
network 2 (GSE63157). The samples into the cohort were classified according to the activity
of each regulon. Figure 4 shows the seven Kaplan-Meier plots corresponding to each
regulon where six of them were significantly related to patient outcome. Again, PAX7 and
RUNX3 present similar behavior regarding patient outcome with both regulons associated
with a good prognosis when activated. In contrast, regulons ARNT2, CREB3L1, GLI3,
and PBX3 are associated with bad prognosis when activated.
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Figure 4. Kaplan-Meier plot of ES patients. High regulatory activity of PAX7 and RUNX3 is
associated with better patient overall survival, while high regulatory activity of ARNT2, GLI3, PBX3,
and CREB3L1 is associated with worse overall survival. Box colors reflect the cluster each regulon
belongs to. p-values are presented inside each box. Survival and expression data were obtained from
ES dataset GSE63157 (N = 85).

Unfortunately, there is no survival data available regarding patients from cohort 1
(GSE34620). To verify the implication of regulon activity in patient outcome, we access
another ES cohort composed by 44 patients (GSE17618). We evaluated the activity of the
seven regulons inferred for network 1 in each of 44 patients with data available in GSE17618.
Figure 5A shows the heatmap clustering based on regulon activity. The heatmap presents
the same pattern observed in Figure 3A. PAX7 and RUNX3 regulons cluster together, in
contrast to regulons ARNT2, CREB3L1, GLI3, and PBX3. Additionally, both PAX7 and
RUNX3 are significantly related to good prognosis when activated. Among the other
regulons, only ARNT2 was significantly related to patient outcome, being associated with
bad prognosis when activated.

3.6. Master Regulators Expression in Ewing Sarcoma

We evaluated the expression of ES master regulators significantly associated with
patient outcome (i.e., PAX7, RUNX3, ARNT2, GLI3, PBX3, and CREB3L1) in ES samples as
well as in samples of the most common solid pediatric tumors: neuroblastoma, Wilm’s tu-
mor, hepatoblastoma, osteosarcoma, retinoblastoma, and rhabdomyosarcoma [36]. We also
evaluated the expression of the above master regulators in a set of samples (N = 353) from
65 different healthy tissues (Figure 6). PAX7 and RUNX3 genes were highly expressed in
ES samples when compared with the other evaluated pediatric tumors and normal tissues.
RUNX3 was also highly expressed in osteosarcoma when compared with normal tissue,
neuroblastoma, Wilm’s tumor, hepatoblastoma, retinoblastoma, and rhabdomyosarcoma.
However, RUNX3 expression in ES was significantly higher when compared with the
expression in osteosarcoma. The expression of the other four master regulators (ARNT2,
GLI3, PBX3, and CREB3L1) had no significant difference among the samples, except by
CREB3L1 gene which was highly expressed in osteosarcoma samples (Pairwise Wilcox test
with Bonferroni correction, p-value < 0.01).
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Figure 5. Regulatory activity and survival analyses (ES dataset GSE17618, N = 44). (A) Heatmaps of
regulatory activity (B) Kaplan Meier plots obtained with survival and gene expression data obtained
from GSE17618. High regulatory activity of PAX7 and RUNX3 regulons is associated with better
overall survival, while high regulatory activity of ARTN2 is associated with worse overall survival.
Box colors reflect the cluster each regulon belongs to. p-values are presented inside each box.

In sense to validate the transcriptome data, the transcript levels of ES master regulators
genes were evaluated in representative cell lines of ES, neuroblastoma, hepatoblastoma
and medulloblastoma (Figure 6B). The expression of PAX7 and RUNX3 were similar
between ES cell lines and were significantly higher in RD-ES cell line in comparison to
other tumor cell lines (p < 0.01). ARNT2 and PBX3 expressions were lower in ES cell line
RD-ES than neuroblastoma cell line SH-5Y5Y (p < 0.001). GLI3 was highly expressed in
medulloblastoma cell line D283 compared to RD-ES (p < 0.01). CREB3L1 expression was
higher in the ES cell line RD-ES compared to neuroblastoma, hepatoblastoma (p < 0.001)
and D283 cell line (p < 0.01), whereas no significant difference was observed in Daoy cells.
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Figure 6. Ewing Sarcoma Master Regulators Expression. The boxplots (A) show the expression of
the six ES master regulators significantly associated with patient outcome (PAX7, RUNX3, ARNT2,
GLI3, PBX3, and CREB3L1). The expression of each MRs was assessed in biopsies from ES (N = 117),
Hepatoblastoma (N = 55), Neuroblastoma (N = 88), Osteosarcoma (N = 21), Retinoblastoma (N = 20),
Rhabdomyosarcoma (N = 58), Wilm’s tumor (N = 53) and a dataset from 65 different healthy tissues
as control (N = 353). Colored boxes indicate the group was significantly different compared to all
the other groups (Pairwise Wilcox test with Bonferroni correction, p < 0.05). Bar plots (B) represent
the relative expression measured by RT-qPCR of the indicated MRs in different cell lines originated
from ES and other pediatric tumors. The differences are always related to RD-ES cell line (* p < 0.05,
** p < 0.01, *** p < 0.0001).

4. Discussion

The primary goal of this study was to reconstruct the ES regulatory network to
understand the ES regulatory properties and, particularly, to identify transcription factors
potentially relevant to that cancer. However, the uncertainty regarding ES cell of origin
hinders the identification of master regulators. To surpass that limitation, we inferred
two signatures using the two most accepted ES cells of origin: hMSC and hNCC [4].
The number of inferred master regulators vary according to the used signatures, but the
master regulators ARNT2, CREB3L1, GLI3, MEF2C, PBX3, PAX7, and RUNX3 were found
using either signature in both networks. It would be naive to consider only those seven
TFs as Ewing Sarcoma regulators. It is reasonable to assume that other TFs identified as
master regulators only when using hMSC signature could be relevant to ES transcriptional
regulation, especially if hMSC were the ES cell of origin. The same is true for the hNCC
signature. As example, the transcription factors NR0B1 and NKX2-2 are well-known to
be associated with Ewing Sarcoma [37]. NR0B1 have been associated with the tumor
phenotype mediated by EWS/FLI chimera in cell lines [38]. NKX2–2, a homeodomain
transcription factor involved in neuroendocrine/glial differentiation and a downstream
target of EWSR1-FLI1, has been reported as an immunohistochemical marker for Ewing
sarcoma [39]. We identified both NR0B1 and NKX2-2 as MRs in our analysis. NR0B1 was
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identified as MR in network 2 using both hMSC and hNCC signatures (Tables A3 and A4,
and Figures A2 and A3), while NKX2-2 was identified in network 1 using hNCC signature
(Tables A2 and Figure A2), and in network 2 using the two signatures (Tables A3 and A4,
and Figure A3). Because they were not always present in the four master regulator analysis
(i.e., networks 1 and 2, using both hMSC and hNCC signatures), they were left out of
the further analysis. Another sensitive point is the Ewing Sarcoma cell of origin. Despite
hMSC and hNCC being the most supported cells of origin by the literature [2,10,40–44],
we can not neglect the possibility of other cells of origin. However, our stringent strategy
assures that the seven master regulators inferred here are involved in the ES transcriptional
regulation.

According to our results, the regulons ARNT2, CREB3L1, GLI3, MEF2C, and PBX3
act coordinately: (i) they are collectively activated or collectively inhibited in the majority
of the patients from the three cohorts evaluated here; (ii) those five regulons always
regulate shared genes in the same direction; (iii) except for MEF2C, all of those regulons
are significantly related with poor prognosis in cohort GSE63157 (N = 85) when activated.
The same statement is true for PAX7 and RUNX3, except that they are both associated
with good prognosis when activated. We also evaluated overall survival of a small cohort
(GSE17618) with 44 patients with similar results: PAX7 and RUNX3 are significantly
associated with good prognosis when activated, and ARNT2 is significantly associated
with poor prognosis when activated. Interestingly, both clusters—the first formed by
ARNT2, CREB3L1, GLI3, MEF2C, and PBX3, and the second formed by PAX7 and RUNX3—
act collectively as reciprocal antagonists to each other regarding activation, regulation of
shared genes, and implication in patient outcome. A similar behavior can be observed in
the biological functions performed by the regulons. For instance, CREB3L1, GLI3, PBX3,
and MEF2C share biological functions involved with extracellular matrix dynamics, and
all those regulons are agonist among each other and cluster together.

The results of our methylation analysis show that all the seven regulons discussed
in the manuscript are differentially methylated in an independent set of ES samples,
reinforcing our findings and highlighting the importance of epigenomic reprogramming
in the tumour regulation, as demonstrated by Sheffield et al that pointed out epigenetic
heterogeneity in genetically homogeneous developmental cancers [45]. However, it was
not possible to associate the methylation experiment with the regulon activity since we do
not have the same set of samples with both methylation and expression experiments.

It is not clear why some patients have the cluster composed of PAX7 and RUNX3
regulons activated, while the same cluster is inhibited in other patients, and further in-
vestigations are needed to elucidate it. However, the differential regulon activity among
patients seems to be important to tumor prognostic since we showed it is associated with
overall survival. Similar result was observed in breast cancer, where it was possible to
stratify a patient cohort based on regulon activity [13].In the same work, the authors have
shown that the pharmacological inhibition of estrogen receptor drastically suppresses the
ESR1 regulon. The ESR1 regulon has either estrogen-induced and estrogen-repressed genes.
Therefore, their function as regulator occurs oppositely when the regulon is repressed and
when the regulon is activated [13]. It suggests that the MR influence can be through the
activation of its targets or by target inhibition, and both activation and repression of an MR
might modulate the cell fate.

In other studies, ARNT2, CREB3L1, GLI3, and PBX3 have been associated with tumor
progression. The role of CREB3L1 in tumor phenotype is controversial: while some studies
associated this TF with metastasis promotion, other studies suggest its role in metastasis
inhibition [46,47]. ARNT2 was pointed out as a key TF in the control of glioblastoma
cell aggressiveness by regulating the expression of TFs related to a tumorigenic/stem
glioblastoma signature [48]. PBX3 is well described as associated with poor prognostic in
several cancer types [49], and the same is correct for GLI3 [50,51]. However, the role of
those TFs has not been previously reported in ES. Previous studies have suggested that
high expression of CREB3L1, GLI3, MEF2C, and PBX3 induces invasion and metastasis
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by promoting epithelial–mesenchymal transition (EMT) [47,51,52], a process reported as
critical to induce metastasis in ES [53]. ARTN2 is associated with hypoxia response and acts
as a dimerization partner of hypoxia-inducible factor 1α (HIF1α), which acts is adaptive
stress response as well as angiogenesis required for tumor growth and metastasis [54,55].

Functional enrichment analysis has shown ARNT2, CREB3L1, GLI3, and PBX3 regu-
lons related to several processes associated with cell migration such as extracellular matrix
organization, collagen metabolic process, glycosaminoglycan (GAG) process, epithelial cell
migration, and regulation of angiogenesis. Cell migration is an essential process for regu-
lating cancer invasion. An initial step in cancer metastasis is the migration of tumor cells
through the extracellular matrix (ECM) and into the lymphatic or vascular systems [56].
Progression to metastasis is associated with some biomechanical particularities, such as the
restructuring of the extracellular matrix, collagen organization, ECM environments rich in
the GAG, angiogenesis process, and epithelial cell migration [57–60] all process regulated
by the ARNT2, CREB3L1, GLI3, and PBX3 regulons according to our results. Therefore,
the high activity of ARNT2, CREB3L1, GLI3, and PBX3 regulons could be related to ES
aggressiveness through stress adaptation, angiogenesis, and mesenchymal-like phenotype
induction [61].

Recent studies suggested that EWSR1-FLI1 chimera regulates the expression of PAX7
and RUNX3 [62,63]. According to the available evidence, PAX7 is required for neural crest
formation and adult skeletal muscle progenitor development [64]. PAX7 is described to
be expressed in ES, subsets of rhabdomyosarcoma, and rare synovial sarcomas [65,66].
Baldauf et al 2018, interrogated Chaville’s findings, since the increased expression of
the PAX7 gene was observed in a dataset that compares samples of CIC-DUX4-positive
sarcomas with EWSR1-NFATc2-positive sarcomas. According Baldauf et al. 2018, EWSR1-
NFATC2-positive sarcomas are transcriptionally distinct from tumors with EWSR1-FLI1
translocation and should be treated as an entity distinct from EWSR1-ETS tumors [67].
On the other hand, Toki et al. 2018 using monoclonal antibody against PAX7 identified the
PAX7 expression in 27 of 30 molecularly confirmed Ewing Sarcomas (90%) [66]. However,
its role in tumor biology is uncertain. Charville and collaborators suggested that EWSR1-
FLI1 binds to the PAX7 promoter, being the chimeric protein required for PAX7 expression
in ES [62]. The transcription factor RUNX3 has been described as a tumor suppressor [68].
Bledsoe and collaborators verified that RUNX3 is expressed in ES cell lines as well as in
tumor biopsies. Additionally, RUNX3 inhibition alters the expression of a set of genes
regulated by EWSR1-FLI1 in A673 cell line. The authors also observed that suppression of
RUNX3 expression in A673 reduced cell growth [63]. On the other hand, several studies
demonstrated RUNX3 inhibition in different cancers, such as colorectal cancer, glioma,
melanoma, and breast cancer [69–72].

The opposite behavior of PAX7 and RUNX3 when compared with ARNT2, CREB3L1,
GLI3, and PBX3 suggests that the first two TFs could act by antagonizing the last four
TFs action. As mentioned before, ARNT2, CREB3L1, GLI3, and PBX3 are well described
in several tumors, while PAX7 and RUNX3 seem to be more specific to ES. When taken
together, our results allow us to hypothesize that PAX7 and RUNX3 activation in ES could
help mitigate the damaging effect caused by ARNT2, CREB3L1, GLI3, and PBX3 activation.
PAX7 is known to be expressed in ES, subsets of rhabdomyosarcoma, and rare cases of
synovial sarcomas, though only in ES samples it was found positive in all evaluated
cases [65]. Charville and collaborators suggest that significant expression of PAX7 is a
unique feature of rhabdomyosarcoma and ES, and put forward PAX7 as a diagnostic
marker for ES diagnosis [62]. Additionally, we also identified RUNX3 as highly expressed
in ES, corroborating with the similar regulatory behavior shared by those two transcription
factors in ES regulatory network. High expression of PAX7 and RUNX3 genes could help
mitigate EMT promoted by the cluster formed by ARNT2, CREB3L1, GLI3, and PBX3,
contributing to avoid metastasis and therefore an aggressive behavior that often leads to
death. Even though there is no evidence that PAX7 and RUNX3 promote mesenchymal-
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epithelial-transition (MET), which is the opposite of EMT, they may be able to avoid
metastasis only by avoiding EMT.

5. Conclusions

The regulatory network analysis sheds light on the Ewing Sarcoma regulatory be-
havior by identifying PAX7 and RUNX3 as promising master regulators for this cancer.
Both regulons are agonists, are simultaneously activated or inhibited in patient samples,
and are both associated with a good prognosis. The analysis evinces another cluster of
regulon consisting of ARNT2, CREB3L1, GLI3, MEF2C, and PBX3, which counteracts PAX7
and RUNX3 in all the parameters mentioned above, suggesting that the last two regulons
counteract the former five regulons.
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Appendix A

Figure A1. Master regulator analysis flowchart. Human mesenchymal stem cells (hMSC) and human
neural crest cells (hNCC) were used along with ES cell lines to obtain the ES signatures. One analysis
using hMSC as control and another using hNCC as control. Gene expression data from GSE34620
(N = 117) and GSE63157 (N = 85) were used to infer the regulatory networks 1 and 2, respectively.
The networks were interrogated with the two gene signatures (disease signature with hMSC as
control and disease signature with hNCC as control), and a set of shared master regulators were
identified: ARNT2, CREB3L1, GLI3, MEF2C, PAX7, PBX3, and RUNX3. The meta-PCNA signature
was used to filter for transcription factors commonly associated with cancer development. However,
none from the ES MRs were filtered.
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Figure A2. Tree-and-leaf representation of network 1 (GSE34620). Nodes are representation of regu-
lons, labeled by the transcription factor that regulates them and colored according to its classification
as master regulator for the hMSC signature (light green), hNCC signature (light blue), both signatures
(red) and not a master regulator (black). The edges are the result of a hierarchical analysis on regulon
overlap, i.e., the more regulated genes two regulons have in common, the closer they are in the
representation.
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Figure A3. Tree-and-leaf representation of network 2 (GSE63157). Nodes are representation of regu-
lons, labeled by the transcription factor that regulates them and colored according to its classification
as master regulator for the hMSC signature (light green), hNCC signature (light blue), both signatures
(red) and not a master regulator (black). The edges are the result of a hierarchical analysis on regulon
overlap, i.e., the more regulated genes two regulons have in common, the closer they are in the
representation.
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Figure A4. Regulatory map (TF-centric regulatory network) of the seven common master regulators
in network 1 (GSE34620). Gray squares are transcription factors (TFs) that are here inferred as mater
regulators (MRs) and circles are genes regulated by at least one of the seven MRs. The edges indicate
regulation and the color of the edge indicates the type of regulation (red for positive regulation,
activation, and blue for negative regulation, inhibition). The circles follow the same color scheme,
except that whenever a gene is positively regulated by one TF and negatively regulated by another
TF, it is colored gray.
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Figure A5. Regulatory map (TF-centric regulatory network) of the seven common master regulators
in network 2 (GSE63157). Gray squares are transcription factors (TFs) that are here inferred as mater
regulators (MRs) and circles are genes regulated by at least one of the seven MRs. The edges indicate
regulation and the color of the edge indicates the type of regulation (red for positive regulation,
activation, and blue for negative regulation, inhibition). The circles follow the same color scheme,
except that whenever a gene is positively regulated by one TF and negatively regulated by another
TF, it is colored gray.
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Appendix B

Table A1. This table contains the 44 master regulators (MRs) inferred for network 1 with
the signature obtained with human Mesenchymal Stem Cells. p-values were adjusted with
Benjamini & Hochberg—BH.

MR p-Value Adjusted p-Value

CREB3L1 1.80 × 10−11 1.20 × 10−8

AEBP1 4.80 × 10−9 1.50 × 10−6

SNAI2 8.00 × 10−9 1.70 × 10−6

PBX3 1.10 × 10−8 1.80 × 10−6

SMAD7 6.80 × 10−8 8.70 × 10−6

NR6A1 2.10 × 10−7 2.30 × 10−5

SOX11 5.10 × 10−7 4.30 × 10−5

HIC1 5.40 × 10−7 4.30 × 10−5

AHR 8.50 × 10−7 6.10 × 10−5

CTBP2 1.40 × 10−6 8.90 × 10−5

TFAP2B 2.60 × 10−5 0.0009
HHEX 2.70 × 10−5 0.0009
TRPS1 3.70 × 10−6 0.00022
HIF1A 6.00 × 10−6 0.00027

HOXB13 5.50 × 10−6 0.00027
SHOX2 5.50 × 10−6 0.00027
EPAS1 7.80 × 10−6 0.00033
KLF9 2.10 × 10−5 0.00083
ELK3 2.20 × 10−5 0.00083
KLF10 3.20 × 10−5 0.001
IRF2 3.30 × 10−5 0.001

FOSL2 3.80 × 10−5 0.0011
PAX7 6.90 × 10−5 0.0018
XBP1 6.90 × 10−5 0.0018

KLF11 6.70 × 10−5 0.0018
MEIS1 0.00012 0.0029
CREG1 0.00012 0.003

IRF7 0.00029 0.0067
ELF4 0.00038 0.0084
SIX2 0.00043 0.0093

RUNX3 0.0008 0.016
ESR1 0.00076 0.016

ZNF667 0.00094 0.018
MEF2C 0.0013 0.025
GAS7 0.0015 0.028

ZNF124 0.0016 0.029
CBFB 0.0017 0.03

GATA6 0.0017 0.03
GLI3 0.0019 0.032

RUNX2 0.0021 0.035
ARNT2 0.0026 0.042
ZNF34 0.0028 0.043
ETS1 0.003 0.045

ZNF195 0.0031 0.045
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Table A2. This table contains the 13 MRs inferred for network 1 with the signature obtained with
human Neural Crest Cells. p-values were adjusted with Benjamini & Hochberg—BH.

MR p-Value Adjusted p-Value

PAX7 5.00 × 10−5 6.50 × 10−3

AEBP1 1.50 × 10−4 1.40 × 10−2

ARNT2 8.20 × 10−6 3.80 × 10−3

PBX3 1.70 × 10−5 3.80 × 10−3

RUNX3 5.30 × 10−4 3.40 × 10−2

NKX2-2 2.20 × 10−5 3.80 × 10−3

MEF2C 2.40 × 10−5 3.80 × 10−3

NOTCH2 1.90 × 10−4 1.50 × 10−2

CREB3L1 1.30 × 10−4 1.40 × 10−2

ZNF423 6.80 × 10−4 3.70 × 10−2

TEF 6.00 × 10−4 0.035
GLI3 9.70 × 10−4 0.048
SOX1 4.70 × 10−4 0.034

Table A3. This table contains the 66 master regulators (MRs) inferred for network 2 with
the signature obtained with human Mesenchymal Stem Cells. p-values were adjusted with
Benjamini & Hochberg—BH.

MR p-Value Adjusted p-Value

SNAI2 8.30 × 10−37 4.70 × 10−34

MEF2C 1.20 × 10−22 3.40 × 10−20

PAX7 5.00 × 10−17 9.50 × 10−15

RUNX1 1.40 × 10−16 2.00 × 10−14

CREB3L1 1.00 × 10−15 1.20 × 10−13

AEBP1 3.30 × 10−14 3.10 × 10−12

NKX2-2 9.00 × 10−14 7.30 × 10−12

PBX3 1.20 × 10−12 8.20 × 10−11

AHR 2.50 × 10−12 1.60 × 10−10

CTNNB1 6.50 × 10−12 3.70 × 10−10

XBP1 8.50 × 10−12 4.40 × 10−10

EPAS1 3.50 × 10−10 1.70 × 10−8

BACH2 1.30 × 10−9 5.60 × 10−8

GLI3 1.40 × 10−9 5.60 × 10−8

SOX11 1.80 × 10−9 6.90 × 10−8

ETV1 1.30 × 10−8 4.20 × 10−7

MAF 1.20 × 10−8 4.20 × 10−7

ETS1 1.60 × 10−8 4.90 × 10−7

TCF4 2.70 × 10−8 8.20 × 10−7

CREG1 3.60 × 10−8 1.00 × 10−6

MEOX2 5.20 × 10−8 1.40 × 10−6

RUNX3 1.90 × 10−7 4.80 × 10−6

ETV5 2.20 × 10−7 5.40 × 10−6

TRPS1 8.80 × 10−7 2.10 × 10−5

FOSL2 1.50 × 10−6 3.30 × 10−5

HEY2 1.70 × 10−6 3.70 × 10−5

CEBPB 7.30 × 10−6 0.00015
PRDM1 9.40 × 10−6 0.00019

PKNOX2 1.20 × 10−5 0.00023
ZNF74 1.30 × 10−5 0.00024

ARNTL2 1.80 × 10−5 0.00033
SOX1 2.00 × 10−5 0.00035
IRF2 2.30 × 10−5 0.00039
ETV4 4.50 × 10−5 0.00075
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Table A3. Cont.

MR p-Value Adjusted p-Value

ELF1 5.30 × 10−5 0.00086
ZBTB25 7.40 × 10−5 0.0011
ARNT2 7.60 × 10−5 0.0011
NR0B1 7.50 × 10−5 0.0011
RUNX2 8.00 × 10−5 0.0012
ESRRB 0.00016 0.0023
ZBTB16 0.00017 0.0024

KLF9 0.0002 0.0027
TFEC 0.00021 0.0028
HEYL 0.00028 0.0036
HCLS1 0.00031 0.0039

HR 0.0005 0.0062
MEIS2 0.00064 0.0076

ZFP36L2 0.0007 0.0082
KLF4 0.00078 0.009

CREB3L2 0.00088 0.01
HIVEP1 0.0012 0.013
ZNF516 0.0012 0.013
ZNF235 0.0013 0.014
MYT1 0.0015 0.016

ZNF219 0.0016 0.017
AFF3 0.0021 0.021

HIVEP3 0.0024 0.024
CEBPD 0.0027 0.026
TEAD1 0.0028 0.027
SMAD5 0.0031 0.029
NR3C1 0.0041 0.038
NFE2L1 0.0043 0.039
NKX6-1 0.0049 0.043
ZNF550 0.0049 0.043
STAT1 0.0054 0.047
SATB2 0.0058 0.05

Table A4. This table contains the 42 MRs inferred for network 2 with the signature obtained with
human Neural Crest Cells. p-values were adjusted with Benjamini & Hochberg—BH.

MR p-Value Adjusted p-Value

PBX3 1.80 × 10−13 1.00 × 10−10

PKNOX2 3.90 × 10−13 1.10 × 10−10

PAX7 3.30 × 10−12 6.20 × 10−10

CEBPB 1.60 × 10−11 2.20 × 10−9

GLI3 2.30 × 10−9 2.60 × 10−7

AFF3 9.20 × 10−9 7.40 × 10−7

ZNF215 9.20 × 10−9 7.40 × 10−7

MYT1 1.20 × 10−8 7.60 × 10−7

RUNX3 1.20 × 10−8 7.60 × 10−7

ARNT2 5.00 × 10−8 2.80 × 10−6

ETV4 1.40 × 10−7 7.20 × 10−6

CREB3L1 6.30 × 10−7 3.00 × 10−5

MYT1L 1.60 × 10−6 7.00 × 10−5

ZBTB25 1.80 × 10−6 7.40 × 10−5

MEOX2 4.30 × 10−6 0.00016
SNAI2 8.70 × 10−6 0.00031
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Table A4. Cont.

MR p-Value Adjusted p-Value

RUNX1 9.40 × 10−6 0.00031
NKX2-2 1.60 × 10−5 0.00051

MSC 3.50 × 10−5 0.001
ETV1 1.10 × 10−4 0.0031
MAF 1.10 × 10−4 0.0031
MYC 1.40 × 10−4 0.0036

HOXB9 1.60 × 10−4 0.0039
MEF2C 1.80 × 10−4 0.0044
LMO1 2.40 × 10−4 0.0055
ETS1 0.00029 0.0063

MEIS2 0.00041 0.0086
SOX17 0.00068 0.014
BACH2 0.00069 0.014
HEY2 0.00076 0.014

HIVEP3 0.00097 0.018
ARNTL2 0.001 0.018
SMAD9 0.001 0.018

TCF4 0.0011 0.019
HOXC11 0.0014 0.023
NR0B1 0.0019 0.029
ESRRB 0.0022 0.033
PRDM1 0.0024 0.035
SMAD6 0.0026 0.037
NR2F1 0.003 0.042
SALL1 0.0036 0.049
TCF7L2 0.0037 0.05

References
1. Moch, H. (Ed.) Soft Tissue and Bone Tumours WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer:

Lyon, France, 2020.
2. Tu, J.; Huo, Z.; Gingold, J.; Zhao, R.; Shen, J.; Lee, D.F. The histogenesis of Ewing Sarcoma. Cancer Rep. Rev. 2017, 1, 1–2.

[CrossRef]
3. Kallen, M.E.; Hornick, J.L. The 2020 WHO classification: What’s new in soft tissue tumor pathology? Am. J. Surg. Pathol.

2021, 45, 1–23. doi:10.1097/PAS.0000000000001552. [CrossRef]
4. Grünewald, T.G.P.; Cidre-Aranaz, F.; Surdez, D.; Tomazou, E.M.; de Álava, E.; Kovar, H.; Sorensen, P.H.; Delattre, O.; Dirksen, U.

Ewing sarcoma. Nat. Rev. Dis. Prim. 2018, 4, 5. [CrossRef]
5. Patel, M.; Simon, J.M.; Iglesia, M.D.; Wu, S.B.; McFadden, A.W.; Lieb, J.D.; Davis, I.J. Tumor-specific retargeting of an oncogenic

transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res. 2012, 22, 259–270. [CrossRef]
[PubMed]

6. Riggi, N.; Knoechel, B.; Gillespie, S.M.; Rheinbay, E.; Boulay, G.; Suvà, M.L.; Rossetti, N.E.; Boonseng, W.E.; Oksuz, O.; Cook, E.B.;
et al. EWS-FLI1Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in
Ewing Sarcoma. Cancer Cell 2014, 26, 668–681. [CrossRef] [PubMed]

7. Gaspar, N.; Hawkins, D.S.; Dirksen, U.; Lewis, I.J.; Ferrari, S.; Le Deley, M.C.; Kovar, H.; Grimer, R.; Whelan, J.; Claude, L.;
et al. Ewing sarcoma: Current management and future approaches through collaboration. J. Clin. Oncol. 2015, 33, 3036–3046.
[CrossRef] [PubMed]

8. Cotterill, S.J.; Ahrens, S.; Paulussen, M.; Jürgens, H.F.; Voûte, P.A.; Gadner, H.; Craft, A.W. Prognostic factors in Ewing’s tumor
of bone: Analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J. Clin. Oncol.
2000, 18, 3108–3114. doi:10.1200/JCO.2000.18.17.3108. [CrossRef]

9. Cavazzana, A.O.; Miser, J.S.; Jefferson, J.; Triche, T.J. Experimental evidence for a neural origin of Ewing’s sarcoma of bone.
Am. J. Pathol. 1987, 127, 507–18.

10. von Levetzow, C.; Jiang, X.; Gwye, Y.; von Levetzow, G.; Hung, L.; Cooper, A.; Hsu, J.H.R.; Lawlor, E.R. Modeling initiation of
ewing sarcoma in human neural crest cells. PLoS ONE 2011, 6, e19305. [CrossRef]

11. Carro, M.S.; Lim, W.K.; Alvarez, M.J.; Bollo, R.J.; Zhao, X.; Snyder, E.Y.; Sulman, E.P.; Anne, S.L.; Doetsch, F.; Colman, H.; et al.
The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463, 318–325.

12. Rooj, A.K.; Bronisz, A.; Godlewski, J. The role of octamer binding transcription factors in glioblastoma multiforme.
Biochim. Biophys. Acta 2016, 1859, 805–811. [CrossRef]

http://doi.org/10.15761/CRR.1000111
http://dx.doi.org/10.1097/PAS.0000000000001552
http://dx.doi.org/10.1038/s41572-018-0003-x
http://dx.doi.org/10.1101/gr.125666.111
http://www.ncbi.nlm.nih.gov/pubmed/22086061
http://dx.doi.org/10.1016/j.ccell.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/25453903
http://dx.doi.org/10.1200/JCO.2014.59.5256
http://www.ncbi.nlm.nih.gov/pubmed/26304893
http://dx.doi.org/10.1200/JCO.2000.18.17.3108
http://dx.doi.org/10.1371/journal.pone.0019305
http://dx.doi.org/10.1016/j.bbagrm.2016.03.003


Cancers 2021, 13, 1860 22 of 24

13. Castro, M.A.; De Santiago, I.; Campbell, T.M.; Vaughn, C.; Hickey, T.E.; Ross, E.; Tilley, W.D.; Markowetz, F.; Ponder, B.A.;
Meyer, K.B. Regulators of genetic risk of breast cancer identified by integrative network analysis. Nat. Genet. 2015, 48, 12–21.
[CrossRef] [PubMed]

14. Albanus, R.D.O.; Dalmolin, R.J.S.; Castro, M.A.A.; De Bittencourt Pasquali, M.A.; De Miranda Ramos, V.; Gelain, D.P.;
Moreira, J.C.F. Reverse engineering the neuroblastoma regulatory network uncovers max as one of the master regulators
of tumor progression. PLoS ONE 2013, 8, e82457. [CrossRef]

15. Fletcher, M.N.; Castro, M.A.; Wang, X.; De Santiago, I.; O’Reilly, M.; Chin, S.F.; Rueda, O.M.; Caldas, C.; Ponder, B.A.;
Markowetz, F.; et al. Master regulators of FGFR2 signalling and breast cancer risk. Nat. Commun. 2013, 4, 2464. [Cross-
Ref] [PubMed]

16. Sartor, I.T.S.; Zeidán-Chuliá.; F.; Albanus, R.D.; Dalmolin, R.J.S.; Moreira, J.C.F. Computational analyses reveal a prognostic
impact of TULP3 as a transcriptional master regulator in pancreatic ductal adenocarcinoma. Mol. BioSystems 2014, 10, 1461–1468.
[CrossRef] [PubMed]

17. Mattick, J.S.; Taft, R.J.; Faulkner, G.J. A global view of genomic information–moving beyond the gene and the master regulator.
Trends Genet. 2010, 26, 21–8. [CrossRef]

18. Chan, S.S.K.; Kyba, M. What is a Master Regulator? J. Stem Cell Res. Ther. 2013, 3. [CrossRef]
19. Brohl, A.S.; Solomon, D.A.; Chang, W.; Wang, J.; Song, Y.; Sindiri, S.; Patidar, R.; Hurd, L.; Chen, L.; Shern, J.F.; et al. The Genomic

Landscape of the Ewing Sarcoma Family of Tumors Reveals Recurrent STAG2 Mutation. PLoS Genet. 2014, 10, e1004475.
[CrossRef]

20. Crompton, B.D.; Stewart, C.; Taylor-Weiner, A.; Alexe, G.; Kurek, K.C.; Calicchio, M.L.; Kiezun, A.; Carter, S.L.; Shukla, S.A.;
Mehta, S.S.; et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014, 4, 1326–1341. [CrossRef]

21. Tirode, F.; Surdez, D.; Ma, X.; Parker, M.; Le Deley, M.C.; Bahrami, A.; Zhang, Z.; Lapouble, E.; Grossetete-Lalami, S.; Rusch, M.;
et al. Genomic landscape of ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations.
Cancer Discov. 2014, 4, 1342–1353.

22. Solomon, D.A.; Kim, T.; Diaz-Martinez, L.A.; Fair, J.; Elkahloun, A.G.; Harris, B.T.; Toretsky, J.A.; Rosenberg, S.A.; Shukla, N.;
Ladanyi, M.; et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011, 333, 1039–1043. [CrossRef]

23. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res.
2002, 30, 207–210. doi:10.1093/nar/30.1.207. [CrossRef] [PubMed]

24. Postel-Vinay, S.; Véron, A.S.; Tirode, F.; Pierron, G.; Reynaud, S.; Kovar, H.; Oberlin, O.; Lapouble, E.; Ballet, S.; Lucchesi, C.; et al.
Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat. Genet. 2012, 44, 323–327.
[CrossRef] [PubMed]

25. Volchenboum, S.L.; Andrade, J.; Huang, L.; Barkauskas, D.A.; Krailo, M.; Womer, R.B.; Ranft, A.; Potratz, J.; Dirksen, U.;
Triche, T.J.; et al. Gene expression profiling of Ewing sarcoma tumours reveals the prognostic importance of tumour-stromal
interactions: A report from the Children’s Oncology Group. J. Pathol. Clin. Res. 2015, 1, 83–94. [CrossRef] [PubMed]

26. Zeltner, N.; Fattahi, F.; Dubois, N.C.; Saurat, N.; Lafaille, F.; Shang, L.; Zimmer, B.; Tchieu, J.; Soliman, M.A.; Lee, G.; et al.
Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat. Med. 2016, 22, 1421–1427.
[CrossRef]

27. Town, J.; Pais, H.; Harrison, S.; Stead, L.F.; Bataille, C.; Bunjobpol, W.; Zhang, J.; Rabbitts, T.H. Exploring the surfaceome of Ewing
sarcoma identifies a new and unique therapeutic target. Proc. Natl. Acad. Sci. USA 2016, 113, 3603–3608. [CrossRef]

28. Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. Affy—Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics
2004, 20, 307–315. [CrossRef]

29. Carvalho, B.S.; Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010, 26, 2363–2367.
[CrossRef]

30. Savola, S.; Klami, A.; Myllykangas, S.; Manara, C.; Scotlandi, K.; Picci, P.; Knuutila, S.; Vakkila, J. High Expression of Complement
Component 5 (C5) at Tumor Site Associates with Superior Survival in Ewing’s Sarcoma Family of Tumour Patients. Int. Sch. Res.
Not. Oncol. 2011, 2011, 168712. [CrossRef]

31. Puerto-Camacho, P.; Teresa Amaral, A.; Lamhamedi-Cherradi, S.E.; Menegaz, B.A.; Castillo-Ecija, H.; Luis Ord, J.; Domínguez, S.;
Jordan-Perez, C.; Diaz-Martin, J.; Romero-Perez, L.; et al. Preclinical Efficacy of Endoglin-Targeting Antibody-Drug Conjugates
for the Treatment of Ewing Sarcoma. Clin. Cancer Res. 2019, 25. [CrossRef]

32. Maksimovic, J.; Phipson, B.; Oshlack, A. A cross-package Bioconductor workflow for analysing methylation array data.
F1000Research 2017, 5. [CrossRef]

33. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS
A J. Integr. Biol. 2012, 16, 284–287. [CrossRef]

34. Castro, M.A.A.; Wang, X.; Fletcher, M.N.C.; Meyer, K.B.; Markowetz, F. RedeR: R/Bioconductor package for representing
modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol. 2012, 13, R29. [CrossRef]

35. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method.
Methods 2001, 25, 402–408. [CrossRef]

36. Allen-Rhoades, W.; Whittle, S.B.; Rainusso, N. Pediatric Solid Tumors of Infancy: An Overview. Pediatr. Rev. 2018, 39, 57–67.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/ng.3458
http://www.ncbi.nlm.nih.gov/pubmed/26618344
http://dx.doi.org/10.1371/journal.pone.0082457
http://dx.doi.org/10.1038/ncomms3464
http://dx.doi.org/10.1038/ncomms3464
http://www.ncbi.nlm.nih.gov/pubmed/24043118
http://dx.doi.org/10.1039/C3MB70590K
http://www.ncbi.nlm.nih.gov/pubmed/24668219
http://dx.doi.org/10.1016/j.tig.2009.11.002
http://dx.doi.org/10.4172/2157-7633.1000e114
http://dx.doi.org/10.1371/journal.pgen.1004475
http://dx.doi.org/10.1158/2159-8290.CD-13-1037
http://dx.doi.org/10.1126/science.1203619
http://dx.doi.org/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/11752295
http://dx.doi.org/10.1038/ng.1085
http://www.ncbi.nlm.nih.gov/pubmed/22327514
http://dx.doi.org/10.1002/cjp2.9
http://www.ncbi.nlm.nih.gov/pubmed/26052443
http://dx.doi.org/10.1038/nm.4220
http://dx.doi.org/10.1073/pnas.1521251113
http://dx.doi.org/10.1093/bioinformatics/btg405
http://dx.doi.org/10.1093/bioinformatics/btq431
http://dx.doi.org/10.5402/2011/168712
http://dx.doi.org/10.1158/1078-0432.CCR-18-0936
http://dx.doi.org/10.12688/f1000research.8839.3
http://dx.doi.org/10.1089/omi.2011.0118
http://dx.doi.org/10.1186/gb-2012-13-4-r29
http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1542/pir.2017-0057
http://www.ncbi.nlm.nih.gov/pubmed/29437125


Cancers 2021, 13, 1860 23 of 24

37. Riggi, N.; Suvà, M.L.; Suvà, D.; Cironi, L.; Provero, P.; Tercier, S.; Joseph, J.M.; Stehle, J.C.; Baumer, K.; Kindler, V.; et al. EWS-FLI-1
Expression Triggers a Ewing’s Sarcoma Initiation Program in Primary Human Mesenchymal Stem Cells. Cancer Res. 2008,
68, 2176–85. [CrossRef] [PubMed]

38. Kinsey, M.; Smith, R.; Lessnick, S.L. NR0B1 Is Required for the Oncogenic Phenotype Mediated by EWS/FLI in Ewing’s Sarcoma.
Mol. Cancer Res. 2006, 4, 851–859. [CrossRef]

39. Shi, X.; Zheng, Y.; Jiang, L.; Zhou, B.; Yang, W.; Li, L.; Ding, L.; Huang, M.; Gery, S.; Lin, D.C.; et al. EWS-FLI1 regulates and
cooperates with core regulatory circuitry in Ewing sarcoma. Nucleic Acids Res. 2020, 48, 11434–11451. [CrossRef] [PubMed]

40. Vidya Rani, P.S.; Shyamala, K.; Girish, H.C.; Murgod, S. Pathogenesis of Ewing sarcoma: A review. J. Adv. Clin. Res. Insights
2015, 2, 164–168. [CrossRef]

41. Riggi, N.; Suvá, M.L.; Stamenkovic, I. Ewing’s Sarcoma. N. Engl. J. Med. 2021, 384, 154–164. [CrossRef]
42. von Heyking, K.; Roth, L.; Ertl, M.; Schmidt, O.; Calzada-Wack, J.; Neff, F.; Lawlor, E.R.; Burdach, S.; Richter, G.H. The posterior

HOXD locus: Its contribution to phenotype and malignancy of Ewing sarcoma. Oncotarget 2016, 7, 41767–41780. [CrossRef]
43. Selvanathan, S.P.; Graham, G.T.; Erkizan, H.V.; Dirksen, U.; Natarajan, T.G.; Dakic, A.; Yu, S.; Liu, X.; Paulsen, M.T.;

Ljungman, M.E.; et al. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc. Natl. Acad.
Sci. USA 2015, 112, E1307–E1316. [CrossRef] [PubMed]

44. Svoboda, L.K.; Harris, A.; Bailey, N.J.; Schwentner, R.; Tomazou, E.; von Levetzow, C.; Magnuson, B.; Ljungman, M.; Kovar, H.;
Lawlor, E.R. Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of
developmental transcription programs. Epigenetics 2014, 9, 1613–1625. [CrossRef] [PubMed]

45. Sheffield, N.C.; Pierron, G.; Klughammer, J.; Datlinger, P.; Schoenegger, A.; Schuster, M.; Hadler, J.; Surdez, D.; Guillemot, D.;
Lapouble, E.; et al. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat. Med. 2017, 23, 386–395.
[CrossRef] [PubMed]

46. Mellor, P.; Deibert, L.; Calvert, B.; Bonham, K.; Carlsen, S.A.; Anderson, D.H. CREB3L1 Is a Metastasis Suppressor That Represses
Expression of Genes Regulating Metastasis, Invasion, and Angiogenesis. Mol. Cell. Biol. 2013, 33, 4985–4995. [CrossRef] [PubMed]

47. Feng, Y.X.; Jin, D.X.; Sokol, E.S.; Reinhardt, F.; Miller, D.H.; Gupta, P.B. Cancer-specific PERK signaling drives invasion and
metastasis through CREB3L1. Nat. Commun. 2017, 8, 1079. [CrossRef] [PubMed]

48. Bogeas, A.; Morvan-Dubois, G.; El-Habr, E.A.; Lejeune, F.X.; Defrance, M.; Narayanan, A.; Kuranda, K.; Burel-Vandenbos, F.;
Sayd, S.; Delaunay, V.; et al. Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature
driving glioblastoma cell aggressiveness. Acta Neuropathol. 2018, 135, 267–283. [CrossRef]

49. Li, H.; Sun, G.; Liu, C.; Wang, J.; Jing, R.; Wang, J.; Zhao, X.; Xu, X.; Yang, Y. PBX3 is associated with proliferation and poor
prognosis in patients with cervical cancer. OncoTargets Ther. 2017, 10, 5685–5694. [CrossRef] [PubMed]

50. Wang, F.; Wu, J.; Qiu, Z.; Ge, X.; Liu, X.; Zhang, C.; Xu, W.; Wang, F.; Hua, D.; Qi, X.; et al. ACOT1 expression is associated with
poor prognosis in gastric adenocarcinoma. Hum. Pathol. 2018, 77, 35–44. [CrossRef]

51. Li, J.; Qiu, M.; An, Y.; Huang, J.; Gong, C. miR-7-5p acts as a tumor suppressor in bladder cancer by regulating the hedgehog
pathway factor Gli3. Biochem. Biophys. Res. Commun. 2018, 503, 2101–2107. [CrossRef]

52. Wang, S.; Li, C.; Wang, W.; Xing, C. PBX3 promotes gastric cancer invasion and metastasis by inducing epithelial-mesenchymal
transition. Oncol. Lett. 2016, 12, 3485–3491. [CrossRef] [PubMed]

53. Sannino, G.; Marchetto, A.; Kirchner, T.; Grünewald, T.G. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in
mesenchymal tumors: A paradox in sarcomas? Cancer Res. 2017, 77, 4556–4561. [CrossRef]

54. Maltepe, E.; Keith, B.; Arsham, A.M.; Brorson, J.R.; Simon, M.C. The role of ARNT2 in tumor angiogenesis and the neural
response to hypoxia. Biochem. Biophys. Res. Commun. 2000, 273, 231–238. [CrossRef] [PubMed]

55. Rankin, E.B.; Giaccia, A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008, 15, 678–685.
56. Palmer, T.D.; Ashby, W.J.; Lewis, J.D.; Zijlstra, A. Targeting tumor cell motility to prevent metastasis. Adv. Drug Deliv. Rev.

2011, 63, 568–581. doi:10.1016/j.addr.2011.04.008. [CrossRef] [PubMed]
57. Velez, D.O.; Tsui, B.; Goshia, T.; Chute, C.L.; Han, A.; Carter, H.; Fraley, S.I. 3D collagen architecture induces a conserved

migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 2017, 8. [CrossRef]
58. Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression

and metastasis. Nat. Commun. 2020, 11, 1–19. [CrossRef]
59. Saaristo, A.; Karpanen, T.; Alitalo, K. Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis.

Oncogene 2000, 19, 6122–6129. [CrossRef]
60. Yang, Y.; Zheng, H.; Zhan, Y.; Fan, S. An emerging tumor invasion mechanism about the collective cell migration. Am. J.

Transl. Res. 2019, 11, 5301–5312.
61. Franzetti, G.A.; Laud-Duval, K.; Van Der Ent, W.; Brisac, A.; Irondelle, M.; Aubert, S.; Dirksen, U.; Bouvier, C.; De Pinieux, G.;

Snaar-Jagalska, E.; et al. Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines proliferation/migration choices in Ewing
sarcoma cells. Oncogene 2017, 36, 3505–3514. [CrossRef]

62. Charville, G.W.; Wang, W.L.; Ingram, D.R.; Roy, A.; Thomas, D.; Patel, R.M.; Hornick, J.L.; Van De Rijn, M.; Lazar, A.J. EWSR1
fusion proteins mediate PAX7 expression in Ewing sarcoma. Mod. Pathol. 2017, 30, 1312–1320. [CrossRef] [PubMed]

63. Bledsoe, K.L.; Mcgee-Lawrence, M.E.; Camilleri, E.T.; Wang, X.; Riester, S.M.; van Wijnen, A.J.; Oliveira, A.M.; Westendorf, J.J.
RUNX3 facilitates growth of Ewing sarcoma cells. J. Cell. Physiol. 2014, 229, 2049–2056. [CrossRef]

http://dx.doi.org/10.1158/0008-5472.CAN-07-1761
http://www.ncbi.nlm.nih.gov/pubmed/18381423
http://dx.doi.org/10.1158/1541-7786.MCR-06-0090
http://dx.doi.org/10.1093/nar/gkaa901
http://www.ncbi.nlm.nih.gov/pubmed/33080033
http://dx.doi.org/10.15713/ins.jcri.70
http://dx.doi.org/10.1056/NEJMra2028910
http://dx.doi.org/10.18632/oncotarget.9702
http://dx.doi.org/10.1073/pnas.1500536112
http://www.ncbi.nlm.nih.gov/pubmed/25737553
http://dx.doi.org/10.4161/15592294.2014.988048
http://www.ncbi.nlm.nih.gov/pubmed/25625846
http://dx.doi.org/10.1038/nm.4273
http://www.ncbi.nlm.nih.gov/pubmed/28134926
http://dx.doi.org/10.1128/MCB.00959-13
http://www.ncbi.nlm.nih.gov/pubmed/24126059
http://dx.doi.org/10.1038/s41467-017-01052-y
http://www.ncbi.nlm.nih.gov/pubmed/29057869
http://dx.doi.org/10.1007/s00401-017-1783-x
http://dx.doi.org/10.2147/OTT.S150139
http://www.ncbi.nlm.nih.gov/pubmed/29225475
http://dx.doi.org/10.1016/j.humpath.2018.03.013
http://dx.doi.org/10.1016/j.bbrc.2018.07.166
http://dx.doi.org/10.3892/ol.2016.5305
http://www.ncbi.nlm.nih.gov/pubmed/27900025
http://dx.doi.org/10.1158/0008-5472.CAN-17-0032
http://dx.doi.org/10.1006/bbrc.2000.2928
http://www.ncbi.nlm.nih.gov/pubmed/10873592
http://dx.doi.org/10.1016/j.addr.2011.04.008
http://www.ncbi.nlm.nih.gov/pubmed/21664937
http://dx.doi.org/10.1038/s41467-017-01556-7
http://dx.doi.org/10.1038/s41467-020-18794-x
http://dx.doi.org/10.1038/sj.onc.1203969
http://dx.doi.org/10.1038/onc.2016.498
http://dx.doi.org/10.1038/modpathol.2017.49
http://www.ncbi.nlm.nih.gov/pubmed/28643791
http://dx.doi.org/10.1002/jcp.24663


Cancers 2021, 13, 1860 24 of 24

64. Basch, M.L.; Bronner-Fraser, M.; García-Castro, M.I. Specification of the neural crest occurs during gastrulation and requires Pax7.
Nature 2006, 441, 218–222. [CrossRef]

65. Charville, G.W.; Varma, S.; Forgó, E.; Dumont, S.N.; Zambrano, E.; Trent, J.C.; Lazar, A.J.; Van De Rijn, M. PAX7 expression in
rhabdomyosarcoma, related soft tissue tumors, and small round blue cell neoplasms. Am. J. Surg. Pathol. 2016, 40, 1305–1315.
[CrossRef]

66. Toki, S.; Wakai, S.; Sekimizu, M.; Mori, T.; Ichikawa, H.; Kawai, A.; Yoshida, A. PAX7 immunohistochemical evaluation of Ewing
sarcoma and other small round cell tumours. Histopathology 2018, 73, 645–652. [CrossRef] [PubMed]

67. Baldauf, M.C.; Gerke, J.S.; Orth, M.F.; Dallmayer, M.; Baumhoer, D.; De Alava, E.; Hartmann, W.; Kirchner, T.; Grunewald, T.G.
Are EWSR1-NFATc2-positive sarcomas really Ewing sarcomas? Mod. Pathol. 2018, 31, 997–999. [CrossRef] [PubMed]

68. Ito, Y.; Bae, S.C.; Chuang, L.S.H. The RUNX family: Developmental regulators in cancer. Nat. Rev. Cancer 2015, 15, 81–95.
[CrossRef]

69. Lau, Q.C.; Raja, E.; Salto-Tellez, M.; Liu, Q.; Ito, K.; Inoue, M.; Putti, T.C.; Loh, M.; Ko, T.K.; Huang, C.; et al. RUNX3 is
frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer
Res. 2006, 66, 6512–6520. doi:10.1158/0008-5472.CAN-06-0369. [CrossRef]

70. Mei, P.J.; Bai, J.; Liu, H.; Li, C.; Wu, Y.P.; Yu, Z.Q.; Zheng, J.N. RUNX3 expression is lost in glioma and its restoration causes
drastic suppression of tumor invasion and migration. J. Cancer Res. Clin. Oncol. 2011, 137, 1823–1830. [CrossRef]

71. Zhang, Z.; Chen, G.; Cheng, Y.; Martinka, M.; Li, G. Prognostic significance of RUNX3 expression in human melanoma. Cancer
2011, 117, 2719–2727. [CrossRef]

72. Ahlquist, T.; Lind, G.E.; Costa, V.L.; Meling, G.I.; Vatn, M.; Hoff, G.S.; Rognum, T.O.; Skotheim, R.I.; Thiis-Evensen, E.;
Lothe, R.A. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset
markers. Mol. Cancer 2008, 7, 94. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature04684
http://dx.doi.org/10.1097/PAS.0000000000000717
http://dx.doi.org/10.1111/his.13689
http://www.ncbi.nlm.nih.gov/pubmed/29920735
http://dx.doi.org/10.1038/s41379-018-0009-7
http://www.ncbi.nlm.nih.gov/pubmed/29895896
http://dx.doi.org/10.1038/nrc3877
http://dx.doi.org/10.1158/0008-5472.CAN-06-0369
http://dx.doi.org/10.1007/s00432-011-1063-4
http://dx.doi.org/10.1002/cncr.25838
http://dx.doi.org/10.1186/1476-4598-7-94
http://www.ncbi.nlm.nih.gov/pubmed/19117505

	Introduction
	Materials and Methods
	Data Acquisition and Processing
	Regulatory Network Inference and Master Regulator Analysis
	Differential Methylation Analysis
	Gene Ontology Functional Enrichment
	Network Visualization
	Master Regulators Activity
	Survival Analysis
	RT-qPCR Analysis

	Results
	Regulatory Network Inference and Master Regulator Analysis
	Differential Methylation Analysis
	Biological Function of Master Regulators Associated Genes
	Regulon Activity
	Survival Analysis
	Master Regulators Expression in Ewing Sarcoma

	Discussion
	Conclusions
	
	
	References

