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Abstract
Einstein’s relation between mass and energy is perhaps the most famous
equation of Physics. Despite its simplicity, the meaning of E0 = mc2 is not
easy to grasp. Furthermore, its traditional derivations rely either on the
integral of momentum, on properties of electromagnetic radiation, or even on
the expression for transformation of energy. In the present work, we provide
a simple thought experiment with an inelastic collision between two particles
observed from two inertial reference frames. We show that for the
conservation of relativistic momentum to hold, the mass of the system must
increase after the collision. We also show that the increase of mass relates to
the loss of kinetic energy according to the equation ∆K=−∆mc2,
which enables us to define the equation for relativistic energy
(E= mc2/

√
1− v2/c2), rest energy (E0 = mc2) and relativistic kinetic

energy (K= E−E0). There are two main advantages in this presentation:
first, it relies only on simple algebra, not depending on differential calculus
and on any property of radiation; second, it leads directly to a
comprehensible physical meaning of the relation of equivalence, which can
sometimes be too obscure in more formal derivations.
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1. Introduction
The relation between mass and energy discussed
by Albert Einstein (1992a) in 1905 originated the
most famous equation of Physics (E0 = mc2). Its
meaning, however, is not easy to grasp since it
contradicts our very intuitive notions about these
two concepts. Also, the difficulty in comprehend-
ing the relation of equivalence is due to the fact
that the equation brings a whole new understand-
ing to the conception of inertia that does not fit
in Newtonian physics (Jammer 2000). Further-
more, Einstein’s relation is also encompassed by
a dispute around the concept of ‘relativistic mass’
(Kneubil 2018b)—which can also bring uncer-
tainty to the meaning of this concept in the context
of special theory of relativity3.

Another aspect that can be challenging in
a first presentation of the equivalence relation
is its derivation. Albeit mathematically simple,
Einstein’s original derivation already relied on
the expression of energy transformation. Without
using differential calculus, Einstein has also
presented other derivations, but they still even-
tually depend on properties of electromagnetic
radiation (Einstein 1992c). Moreover, popular
contemporary derivations are usually based on
defining the expression of work, a method that
demands the computation of an integral (Tipler
and Llewellyn 2012, p 70). In any case, the deriv-
ation can be difficult to follow in introductory
levels or it can lead to the wrong impression that
the equation is only valid for the case of absorp-
tion or emission of radiation.

In the present work, we discuss a simple
thought experiment with an inelastic collision
between two particles, i.e. a collision in which
momentum is conserved, but kinetic energy is
not. Relying on the expression of relativistic
momentum and on the velocity-addition formula,
we show that, after the collision, the mass of
each particle increases. If we suppose that the

3 In this paper, we adopt the notation according to which
mass is an invariant property (Okun 1989, Hecht 2009). In
this case, it is not necessary to make a distinction between
m0 (rest mass) and m (mass). What we distinguish is energy
(E= mc2/

√
1− v2/c2) from rest energy

(
E0 = mc2

)
. It

should be noted however that the analysis to be presented steers
away from this controversy. Independently of using m0 or m,
the derivation and the analysis remain valid.

mass increase (∆m) is proportional to the loss of
kinetic energy (∆K), it is possible to show that
∆K=−∆mc2.

The study of this equation allows us to
define three concepts, the total relativistic energy(
E= mc2√

1−β2

)
, the rest energyE0 = mc2 and kin-

etic energy (K= E−E0).
The first advantage of this derivation is that it

relies only on basic principles of the special the-
ory of relativity and basic mathematics. More spe-
cifically, along the analysis, we use the following
physical concepts:

(a) velocity-addition formula of the Special The-
ory of Relativity

(b) the relation between relativistic momentum
and mass

(c) relativistic momentum conservation
(d) reduction of relativistic expressions into New-

tonian expressions in the limit of low speed.

And we need the following mathematical
tools:

(a) algebra
(b) Newton’s Binomial.

In section 2, we review the basic concepts
of STR that are necessary to discuss the thought
experiment. In section 3, we present the thought
experiment and the derivation of the equations,
then discuss their meanings. In section 4, we
present our concluding remarks. The mathemat-
ical framework used allows this approach to be
presented in high school or introductory under-
graduate Physics courses.

2. Fundamental concepts of the Special
Theory of Relativity
In 1905, Albert Einstein (1992b) showed that, for
electromagnetic theory to be considered valid in
all inertial reference frames, important alterations
should be done in Newtonian Physics. Proposing
the principle of relativity (i.e. all laws of Phys-
ics must be valid in reference frames in which
mechanics holds good) and the principle of con-
stancy of the speed of light (i.e. the speed of light
in vacuum is the same independently of the speed
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of the source), Einstein has shown that the set of
equations that relate the coordinates in a refer-
ence S′ moving with velocity +V along the x-axis
in relation to a reference frame S is given by the
Lorentz Transformations. For the x-component,
one has

x ′ =
(x−Vt)√
1− V2

c2

. (1)

Since S′ is moving in the x-direction, the other
coordinates remain unchanged in both frames (i.e.
y ′ = y and z ′ = z). Also, in special theory of
relativity, the time coordinate is different in S′

and S:

t ′ =

(
t− Vx

c2
)√

1− V2

c2

. (2)

Neither the spatial coordinate nor the time are
measured equally in both systems, thus velocities
also assume different values in different inertial
frames. For a velocity vmeasured in the reference
S along the x-direction, the value v ′ measured in
S′ is

v ′ =
∆x ′

∆t ′
=

(v−V)

1− vV
c2

. (3)

An important feature of these new relations
is that in the limit of low velocity V between the
two frames, they reduce to what one would expect
in Newtonian mechanics (i.e. the Galilean trans-
formations).

In this context, it is possible to show that in
the same way that in Newtonian Mechanics there
is a property called momentum, which is always
conserved for a closed system, in special theory
of relativity, there is a property called relativistic
momentum, which is also always conserved for a
closed system (Tipler and Llewellyn 2012, p 66).
The relativistic momentum may be written as

p=
mv√
1− v2

c2

, (4)

in which m is the mass of the body. The mass
in expression (4) is invariant, i.e. it is considered
to be independent of the velocity of the body4.

4 As we had said, we use a notation for invariant mass. For
those who prefer to work with the concept of relativistic mass,

Furthermore, since the relativistic momentum
should be conserved for a closed system, we may
say that ∑

p= constant. (5)

Thus, for instance, in a collision process,
the sum of the relativistic momentum of all
the particles before the collision must be equal
to the sum of the relativistic momentum of all
the particles after the collision. Although the
momentum assumes different values in different
inertial reference frames, its value is kept constant
in each frame. Finally, it should be noted that for
low speeds, the relativistic momentum reduces to
the Newtonian expression.

3. A simple thought experiment
In a laboratory (inertial reference frame S′), a
collision between two particles, each one with
mass m, is carried out for an experiment. In this
frame, particle 1 has an initial velocity equal to
v ′1 =+v, and particle 2 has an initial velo-
city equal to v ′2 =−v. The collision is perfectly
inelastic, which means that the two particles stick
together in reference S′ after the collision.

When an inelastic collision happens, even
though the momentum is conserved, the kinetic
energy is not. The lost kinetic energy is considered
to be dissipated in different forms of energy such
as with internal modes of movement and vibra-
tion. As will be discussed, this increase of internal
energy leads to a corresponding increase in mass.
By studying this collision experiment, it is pos-
sible to determine not only the expression of
relativistic kinetic energy but also the relation
between mass and energy.

In order to do so, one may assume that the
collision experiment is also observed in a second
reference frame S, moving with velocity V ′ = − v
in relation to S′. It means that the reference frame
S is moving in relation to S’ with the same velo-
city of the particle 2. One can think about this as if
an observer at rest in S was traveling on particle 2.
The thought experiment is represented in figure 1.

what is used in expression (4) is the rest mass, i.e. p= m0v√
1− v2

c2

.

So, in both notations, the ‘mass’ that is part of the expression
of relativistic momentum is invariant.
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Figure 1. Inelastic collision between two particles
observed from two different inertial reference frames.

We start our analysis by describing the conserva-
tion of relativistic momentum in both inertial ref-
erence frames.

3.1. Momentum conservation in S’

In the laboratory frame (S’), the initial momentum
(p ′

1 and p ′
2) of the two particles are

p ′
1 =

mv√
1− v2

c2

(6)

and

p ′
2 =− mv√

1− v2
c2

. (7)

Thus, the total initial momentum of the sys-
tem is

p ′
1 + p ′

2 = 0 . (8)

After the collision, the system is bound and at
rest, and the total final momentum pf is

p ′
f = 0. (9)

Since the initial total momentum and the final
total momentum are the same, the conservation of
momentum clearly holds.

3.2. Conservation of momentum in
reference frame S

In the reference frame S, before the collision,
the velocities of particle 1 and 2 (v1 and

v2, respectively) can be obtained with the
velocity-addition formula (equation (3)):

v1 =
2v

1+ v2
c2

(10)

and

v2 = 0. (11)

The momentum of each particle can be
described using equations (4)–(11):

p1 =
2mv

1+ v2
c2

1√√√√1−
4v2

c2(
1+v

2
/c2

)2

=
2mv

1− v2
c2

(12)

and

p2 = 0. (13)

After the inelastic collision, the bound sys-
tem (that is at rest in S′, i.e. v′ = 0) has the velo-
city in S given by the velocity addition formula
(equation (3)):

vf =
v+ 0

1− 0. vc2
= v. (14)

Consequently, considering that the bound
system has a mass M, and using the definition of
momentum (equation 4):

pf =
Mvf√
1− v ′2

f
c2

=
Mv√
1− v2

c2

. (15)

Considering the conservation of momentum,
the initial total momentum must be equal to the
final momentum:

2mv

1− v2
c2

=
Mv√
1− v2

c2

(16)

thus, the mass M of the bound system in the
reference frame S is

M=
2m√
1− v2

c2

. (17)

According to equation (17), the mass of the
bound system after the collision is greater than
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the sum of the original masses. Our next step is to
investigate how the increase ofmass can be related
to other physical parameters and how it can be
explained.

3.3. Relation between mass and energy

As we have discussed, the mass in the expression
of momentum is invariant, so it is the same in the
reference frames S and S′:

M ′ =M=
2m√
1− v2

c2

. (18)

We stress the fact thatM is an invariant prop-
erty, in a way to highlight that equation (18) is
not a transformation equation of mass for differ-
ent inertial frames. It expresses the new mass of
the system after the full inelastic collision with the
established conditions. Equation (18) leads us to
recognize that the mass increase in each particle is

∆m=

 1√
1− v2

c2

− 1

m. (19)

Something in the process of collision is
responsible for this increase. Since we are work-
ing with an idealized model, the problem does
not involve many parameters. In simple lines, we
know that the momentum is constant, the mass
increased and the kinetic energy diminished. It is
reasonable to suppose that the increase of mass
in each particle is proportional to their loss of
kinetic energy. This hypothesis is from the very
beginning, leading us to interpret that the original
kinetic energy, that is dissipated in the system
through the inelastic collision, is responsible for
the increase in mass. This loss of kinetic energy is
very clear in the reference frame S, because, after
the collision, the particles are at rest (which may
not be so obvious in S′). Thus, we can write the
proportionality equation in reference frame S:

∆K=−α

 1√
1− v2

c2

− 1

m . (20)

We have not determined yet the expression
for the relativistic kinetic energy. We know, how-
ever, that in the low-speed limit, the expression

for kinetic energy must reduce to the Newtonian
expression. Thus, in the limit of low velocities, the
left side of equation should be considered to be

∆K≈ 0− 1
2
mv2 (21)

and the right side of equation (20) can be re-
written using Newton’s binomial

(a+ b)n =
n∑

k=0

(
n
k

)
an−kbk (22)

Using equation (22) to determine the expres-
sion for (1+ x)n and if x≈ 0, one may eliminate
all terms with xk for k⩾ 2. Thus5,

(1+ x)n ≈ 1+ nx. (23)

Taking x= v2

c2 , then:

1√
1− v2

c2

≈ 1+
1
2
v2

c2
. (24)

Substituting the results obtained in (21) and
(24) in equation (20):

1
2
mv2 = α

1
2
m
v2

c2
. (25)

Thus,

α= c2 . (26)

It is possible to conclude, therefore, that
the loss of energy ∆K was accompanied by an
increase of mass ∆m that looks like this:

∆K=−∆mc2 . (27)

Equation (27) expresses the fact that the dis-
sipation of energy ∆K in internal modes of trans-
lational or vibrational movement is responsible
for a correspondent increase in mass equal to
∆K/c2. Also, substituting (19) in (27) and recog-
nizing that ∆K= 0−Ki =−Ki:

Ki =

 1√
1− v2

c2

− 1

mc2. (28)

5 Although equation (23) is derived as long asn is a positive
integer, the expression is valid for any realn.
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Equation (24) is a subtraction of two terms,
one that is dependent on the velocity of the body,
and the other that is not velocity-dependent. If
velocity-independent term E0 (rest energy) and
velocity-dependent-term E (relativistic energy)
are brought to the equation, then kinetic energy
(the energy related to the movement of a body) is
simply the subtraction of a body’s total energy and
its rest energy. In synthesis, total energy equals

E(total energy) =
mc2√
1− v2

c2

. (29)

The rest energy equals

E0 (rest energy) = mc2. (30)

And, finally, the kinetic energy looks like this

K(Kinetic Energy) = E−E0. (31)

Following our interpretation on equation (27),
equation (30) leads us to interpret that the mass
of a system is a measurement of its energy con-
tent, i.e. what is measured as mass is also taking
into account different sorts of internal energy of
a body (binding energy, kinetic energy, vibra-
tional energy of the components of the body).
Nowadays, there are many physical, concrete
examples in which this relation can be used
(Kneubil 2018a).

4. Concluding remarks
In this paper, we presented a very simple exper-
iment to derive the famous equation of equi-
valence between mass and energy (E0 =mc2).
In our proposal, one relies on the concept of
conservation of relativistic momentum and on
the velocity-addition formula. Along the deriv-
ation, we only use simple algebra. Besides its
simplicity, an important feature of this thought
experiment is that it deals with the equivalence
between kinetic energy and mass, and not with
the equivalence between energy of radiation and
mass of a body (as in many other derivations).
This specificity is broad enough to allow for a
discussion that, according to the special theory of

relativity, energy (in different forms) may contrib-
ute to the inertia of a physical system.

Data availability statement
All data that support the findings of this study are
included within the article (and any supplement-
ary files).

Acknowledgments
We would like to thank Professor Maria de
Fátima Alves da Silva from Rio de Janeiro State
University for her comments on the text.

ORCID iDs
Sergio Duarte  https://orcid.org/0000-0003-
0392-8886
Nathan Lima  https://orcid.org/0000-0002-
0566-3968

Received 6 February 2021, in final form 2 March 2021
Accepted for publication 9 March 2021
https://doi.org/10.1088/1361-6552/abed3b

References
Einstein A 1992a Does the inertia of a body depend

upon its energy content? Einstein’s Collected
Papers (Princeton, NJ: Princeton University
Press) pp 172–4

Einstein A 1992b On the electrodynamics of moving
bodies Einstein’s Collected Papers (Princeton,
NJ: Princeton University Press) pp 140–71

Einstein A 1992c The principle of conservation of
motion of the center of gravity and the inertia of
energy Einstein’s Collected Papers (Princeton,
NJ: Princeton University Press) pp 200–6

Hecht E 2009 Einstein never approved of relativistic
mass The Phys. Teach. 47 336–41

Jammer M 2000 Concepts of Mass in Contemporary
Physics and Philosophy (Princeton, NJ: Princeton
University Press)

Kneubil F B 2018a E = mc2 and the weight of energy
Eur. J. Phys. 40 15604

Kneubil F B 2018b The meanings of mass and
E = mc2: an approach based on conceptual maps
Rev. Bras. Ens. Fís. 40 4305-1–16

Okun B L 1989 The concept of mass Phys. Today
42 629–38

Tipler P A and Llewellyn R A 2012 Modern Physics
(New York: W. H. Freeman and Company)

May 2021 6 Phys. Educ. 56 (2021) 035028

https://orcid.org/0000-0003-0392-8886
https://orcid.org/0000-0003-0392-8886
https://orcid.org/0000-0003-0392-8886
https://orcid.org/0000-0002-0566-3968
https://orcid.org/0000-0002-0566-3968
https://orcid.org/0000-0002-0566-3968
https://doi.org/10.1088/1361-6552/abed3b
https://doi.org/10.1119/1.3204111
https://doi.org/10.1119/1.3204111
https://doi.org/10.1088/1361-6404/aae7a6
https://doi.org/10.1088/1361-6404/aae7a6
https://doi.org/10.1590/1806-9126-rbef-2018-0027
https://doi.org/10.1590/1806-9126-rbef-2018-0027
https://doi.org/10.1063/1.881171
https://doi.org/10.1063/1.881171


A simple thought experiment to discuss the mass–energy equivalence

Sergio Duarte studied physics at
Universidade Federal do Rio de
Janeiro, worked as a high school
and higher education professor,
obtained his PhD in physics at Centro
Brasileiro de Pesquisas Físicas.
Currently, he works at the Centro
Federal de Educação Tecnológica
Celso Suckow da Fonseca.

Nathan Lima studied physics at
Potinfícia Universidade Católica
do Rio Grande do Sul and obtained
his PhD in Physics Education at
Universidade Federal do Rio Grande
do Sul, where he is currently working.

May 2021 7 Phys. Educ. 56 (2021) 035028


	A simple thought experiment to discuss the mass–energy equivalence in the special theory of relativity
	1. Introduction
	2. Fundamental concepts of the Special Theory of Relativity
	3. A simple thought experiment
	3.1. Momentum conservation in S'
	3.2. Conservation of momentum in reference frame S
	3.3. Relation between mass and energy

	4. Concluding remarks
	Acknowledgments
	References


