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ABSTRACT

The computer systems market has been increasing significantly since the beginning of
the cloud computing era. This demand leads to an increase on computer architectures
complexity and efficiency. The simulation step is one of the most important during the
development of new architectures, it eliminates the need of the real hardware during the
initial developing phases. In this work, we propose an ARM Neoverse N1 gem5 simulator
model. We calibrate the cache memories of the model using microbenchmarks on the
model and comparing with the real hardware architecture. The results of the work show
that our calibration method reaches cache delay access time accuracy close to the real
hardware.

Keywords: Computer Architecture. Memory Hierarchy. Computer System Simulation.

High Perfomance Computing. Cloud Computing.



Simulation of multi-core systems

RESUMO

O mercado de sistemas de computacdo tem aumentado significativamente desde o inicio
da era da computacdo na nuvem. Esta demanda leva a um aumento na complexidade
e eficiéncia das arquiteturas de computadores. A etapa de simulacdo é uma das mais
importantes durante o desenvolvimento destas: ela elimina a necessidade do hardware
real durante as fases iniciais do fluxo de desenvolvimento. Neste trabalho, propomos um
modelo de simulac¢do da arquitetura ARM Neoverse N1 utilizando o simulador gems5.
Calibramos as memorias caches do modelo usando microbenchmarks, comparando com
o hardware real que implementa esta arquitetura . Os resultados do trabalho mostram que

nosso método de calibracao atinge tempos de acesso as caches proximo ao hardware real.

Palavras-chave: Computer Architecture, Computer System Simulation, Memory Hierar-

chy, High Perfomance Computing, Cloud Computing.
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1 INTRODUCTION

1.1 Motivation and Scope

Today, the high tech landscape is shaped by the innovations of new, largescale
consumer services such as 5G, Cloud Computing, Internet of Things, Big Data and Au-
tonomous Driving. Machine Learning and Artificial Intelligence applications are fun-
damentally changing consumer behavior. This has in turn led to evolving platform and
solution architectures to address these new applications in an efficient and scalable fash-
ion.

The current development of the cloud computing market aims to improve perfor-
mance and energy efficiency on modern computer systems. This process leads to a de-
mand for high performance solutions, within strict latency constraints and power budgets
that increase the complexity of computer architectures.

One of the first steps in computer architecture development and research is soft-
ware modeling and simulation. This process allows the researchers to test new archi-
tectures without the need of the real hardware. However, one of the major factors on
simulating architectures is to achieve results with good simulation accuracy and tolerable
simulation time. Since its publication in 2011, the gem5 simulator is one of the most

popular academic focused computer architecture simulation frameworks.

1.2 Objectives

In this work, we propose an architecture gem5 model for the ARM Neoverse
N1, based on the Neoverse N1 System Development Platform (N1SPD). To develop this
model, we use an ARM Cortex-A72 gem5 model to tune it to our proposed architecture
(i.e, the Neoverse N1). To correlate with the real hardware, we collect architectural infor-
mation from both system on a chip (SoC) and N1SDP technical documentation (ARM,
2019b; ARM, 2019a). However, some parameters are missing as they are not made pub-
lic. To dribble this problem, we use microbenchmarks for model calibration (i.e., finding
the correct parameter for the model instantiation) of the memory hierarchy of our gem5
model against a real hardware architecture. Our results show that with a proper calibra-
tion we can achieve average access time delays close to real hardware. This work was

developped as a Master’s Thesis in a BRAFITEC double degree scholarship at Polytech
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Montpellier and have the collaboration of Atos R&D Product Architecture 2 Team, based

at Echirolles, France, who provided access to the real platform.

1.3 Outline

The rest of the work is organized as follows: Chapter 2 presents the required
background to comprehend our work, it details the ARM Neoverse N1 architecture and
the gemS simulator, Chapter 3 details our proposed methodology, presenting our gem5
architectural model and our strategies for cache level modeling, Chapter 4 presents and
discuss the results that we achieved using our proposed methodology and then Chapter 5

presents the conclusions and perspectives for future research created by this study.
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2 BACKGROUND

This chapter presents an overview of the concepts and technologies that were stud-
ied and used on the development of this work. Section 2.1 presents the concepts of the
ARM Neoverse N1 architecture and section 2.2 presents gem5, an open source computer

architecture simulator.

2.1 ARM Neoverse N1

In this work, we will be using the ARM Neoverse N1 architecture. This architec-
ture was released in 2019 using the 7nm technology with a different focus on the market.
Normally, ARM aims to the mobile market, where the company has been the leader in the
last years.

The N1 architecture is the first ARM design to specifically target the infrastructure
market, mainly on the cloud domain. This architecture is designed for performance as a
synthesizable Intellectual Property (IP) core and is sold to other semiconductor companies

to be implemented in their own chips.

2.1.1 Architecture Overview

At high level, the Neoverse N1 architecture is based on the Cortex-A76 architec-
ture, but the main difference is the fact that the Neoverse N1 is a core-scalable architec-
ture, being possible to scale from 4 to 128 cores.

That means that multiples SoC’s can be projected using the same architecture, but
with different configurations (for different purposes) and having different performances.
For networking and storage, the N1 targets 8 to 32-core designs with a thermal design
power (TDP) in the range of 25 to 65 W. On the edge domain (e.g., 5G base stations),
N1 targets 16 to 64 core designs targeting TDPs in the range of 35 W to 105 W. For
hyperscale data centers, the N1 targets designs with 64 to as much as 128 cores with 150
W (CHIP, 2019).

Figure 2.1 shows a reduced overview on the block diagram of the architecture.
There are two Neoverse N1 cores per node sitting on the same crosspoint (XP) via the

component aggregation layer (CAL) which allows for two identical devices to sit on the
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Figure 2.1: Reduced Neoverse N1 SoC block diagram.

] ~

ddd

Source: adapted from (WIKICHIP, 2019)

same XP port. Neoverse N1 features 1 MB of shared system level cache (SLC) per core.
Since the N1 is partitioned as duplexes, there is a 2 MB bank per duplex. Thus a 32-core
design features 16 SLC banks for a total of 32 MB of cache. The largest design with 128
cores will have 64 banks for a total of 128 MB system-level cache. Neoverse N1 takes
advantage of the Arm’s Coherent Mesh Network 600 (CMN-600) mesh architecture to
interconnect the nodes and the rest of the circuit.

Figure 2.2 shows in details an individual core of the Neoverse N1. At memory
hierarchy level, the Neoverse N1 has an 64KB private 4-way set associative L1 instruction
and data caches and an 8-way set associative L2 cache with a configurable size of 256KB,
512KB, or 1024KB and also the shared system level cache. It provides also a dedicated
L1 Translation lookaside buffer (TLB) for instruction cache (ITLB) and another one for
data cache (DTLB). Additionally, there is a unified L2 TLB (STLB). At instruction level,
Neoverse N1 supports an aggressive out-of order superscalar pipeline and implements a 4-
wide front-end with the capability of dispatching/committing up to eight instructions per
cycle. The core deploys three ALUs, a branch execution unit, two Advanced SIMD units,
and two load/store execution units. Note that L3 and SLC caches are implementation

options.



Figure 2.2: Neoverse N1 individual core.
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2.1.2 The Neoverse N1 System Development Platform (N1SDP)

The Neoverse N1 System Development Platform (N1SDP) (ARM, 2019b) is an
N1 CPU-based development platform for hardware prototyping, software development,
system validation, and performance profiling or tuning provided by ARM. The board
implements two dual-core Neoverse N1 CPU clusters (i.e. total of 4 N1 CPUs) with an
operational clock speed of 2.6 GHz.

Each core on N1SPD has an L1 64KB instruction cache and data cache and a IMB
private L2 cache. Also, it has a 2MB cluster-level shared L3 and an 8MB shared L4 sys-
tem level cache (SLC). The board implements the ARM CMN-600 mesh architecture and
supports dual-channel DDR4-2667 memories. On this work, we will be using the N1SDP
on our methodology (discussed in Section 3) to validate and compare the simulations and

architectural changes done on this work.

Figure 2.3: N1SDP Architecture

ARM N1SDP CPU Architecture
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| Main Memory (8GB DDR x 2) |

Source:(HAM et al., 2021)

2.2 The gemS Architecture Simulator
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a diverse set of CPU models, system execution modes, and memory system models and it
currently supports a variety of instruction set architectures (ISA) including Alpha, ARM,
MIPS, Power, SPARC, and x86.

The simulator runs on Linux environment and it is developed based on Python and
C++ languages. To perform a simulation the user has to instantiate the chosen architecture
with the correct configuration (i.e. number of cores, caches, memory, etc.) and that can
be easily done on a Python configuration script. Each architectural component (i.e. CPU,
cache, memory, bus, etc.) is declared as a Python class called SimObject. SimObjects are
wrapped C++ objects that are accessible from the Python configuration script. Almost all

objects in gemS5 inherit from the base SimObject type.

2.2.1 CPU models

The gem5 simulator provides a different set of CPU models that can be used for

different purposes:

1. In-Order Models: Instructions executed on in-order model are statically scheduled,
they are fetched, executed and completed in compiler-generated order, meaning
that if a dependency occurs, all the code execution is affected by this dependency.
Two main in-order CPU models are available on gem5 simulator: (1) Atomic-
SimpleCPU, (2) TimingSimpleCPU. The major difference between the models is
that AtomicSimpleCPU uses atomic memory accesses (i.e for fast forwarding and
warming up caches and return an approximate time to complete the request without
any resource contention or queuing delay) while TimingSimpleCPU uses timing
memory accesses (i.e most realistic timing and it includes the modeling of queuing
delay and resource contention). Both CPU models implement functions to read and
write memory, also the port that is used to hook up to memory, and the CPU to

cache connection.

2. Out-of-Order Models: Instructions executed on out-of-order model are dynamically
scheduled, they are fetched in compiler-generated order, but their executions can
be re-scheduled to avoid dependencies and pipeline stalls (i.e. a condition that
stops the pipeline execution). The O3CPU is the out-of-order model available on
the gem5 simulator. It is a pipelined model that simulates dependencies between

instructions, functions units, memory access and pipeline stages. In this work, we
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use the O3CPU model as a base model for our methodology (detailed on section

3.1) as it is the closest to the Neoverse N1 core architecture that we try to simulate.

2.2.2 Simulation Types

The gem5 simulator provides two types of execution mode depending on the user

requirements:

1. Full System Emulation: In Full System Emulation (FS) mode, gem5 simulates a
bare-metal environment suitable for running an operating system. The FS mode is
similar to running a virtual machine, it provides support to interruptions, exceptions,
privilege levels, I/O devices, etc.

2. System-call Emulation: The System-call Emulation (SE) mode is designed to be
used when the user is focused on the simulation of the CPU and the memory system,
being not necessary to model the operating system. The SE mode emulates most
common system calls, so whenever the program executes a system-call, gem5 traps
and emulates the call, often by passing it to the host operating system. We chose to
use only System-call Emulations due the fact that is not necessary to simulate the
operating system and its functionalities for our proposed methodology and also due

to facility reasons.

2.2.3 Simulation Example

In this section we present the steps to perform a simple simulation using the SE
mode on gemS5 simulator. First, it is necessary to install all of the required dependencies:

$ sudo apt install build-essential git m4 scons zliblg zliblg-dev
libprotobuf —dev protobuf-compiler libprotoc —dev libgoogle —perftools
—dev python-dev python
Then, we need to clone the official gem5 repository to our local machine using the

command git clone:
$ git clone https://gem5.googlesource.com/public/gem5
At this point, we are able to compile the simulator, currently, we must compile

gem5 separately for every ISA that we want to simulate, for this simple example we are

going to perform a simulation using the x86 architecture. We use the SCons command to
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compile the simulator for the chosen architecture:

$ scons build/X86/gem5.opt —j9

When compilation is finished, we should have a working gem5 executable at
<build/X86/gemb5.opt>. We are now ready to simulate in gemS5. First, we intro-
duce the corresponding command line, the gem5 command line has the following format:

$ <gem5_ISA_binary> [gem5_options] <simulation_script> [
script_options ]

This command calls the gemS5 binary (compiled for the chosen ISA) and its related
options, as well a simulation Python script and its corresponding options. This Python
script sets up and executes simulation, by setting the SymObjects in the gem5 model,
including the CPU models, caches, memory controllers, buses, etc. On this example we
are going to use a python simulation script provided by the gem5 documentation and
a simple "Hello World!" program to validate our simulation. So, we can run a simple
simulation using the following command:

$ build/X86/gem5.opt configs/example/se.py ——cmd=tests/test—progs/
hello/bin/x86/linux/hello ——cpu-type=TimingSimpleCPU —-caches —
11d_size=64kB ——11i_size=16kB

Figure 2.4: Output of the simulation example.

n
line: buil ems . on p py --cmd=t t-pro o/bi inux/hello --cpu

ive thread context
Source: the authors

Here, "se.py” is the simulation script and we pass as positional arguments: (1)
"hello", the program binary file, (2) "cpu-type”, the CPU model (TimingSimpleCPU for
this example) and (3) "l1d_size" and "l1i_size", the size specifications (64KB for this
example) for the L1 data cache and L1 instruction cache, respectively.

Figure 2.4 shows the terminal output for our simulation example, we can observe

that we have some warnings that can be safely ignored at this moment. Then, at the end of
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the output we can see that the simulator was able to execute our "Hello World!" program.
On Section 2.2.4 we will be presenting all the generated outputs and statistics provided

by gem5 simulator.

2.2.4 The gemS5 outputs and statistics

The gem5 simulator provides output files and statistics after the simulation run for
data studies and debugging. Normally, there are three files generated in a directory chosen
by the user: "config.ini", "config.json" and "stats.txt". The "config.ini" file contains a list
of every SimObject (CPU models, caches, memory controllers, buses, etc.) created for
the simulation and the values for its parameters. The "config.json" file is the same as
"config.ini", but in json format.

The "stats.txt” file collects all statistics regarding the simulation, as Figure 2.5
indicates. Each instantiation of a SimObject has its own statistics, so we have statistics
for the CPU (number of float instructions executed, for example), the memories (total
read bandwidth, for example) and the simulation itself (number of instructions simulated,

for example).

Figure 2.5: Fragmented example of a "stats.txt"” file.

—————————— Begin Simulation Statistics ----------

final_tick 22155758 # Number of ticks from beginning of simulation
host_inst_rate 97427 # Simulator instruction rate (inst/s)
host_mem_usage 2434600 # Number of bytes of host memory used
host_op_rate 112763 # Simulator op (including micro ops) rate (op/s)
host_seconds 8.85 # Real time elapsed on the host

host_tick_rate 428093722 # Simulator tick rate (ticks/s)

sim_freq 1000000000000 # Frequency of simulated ticks

sim_insts 5028 # Number of instructions simulated

sim_ops 5834 # Number of ops (including micro ops) simulated
sim_seconds @.0600022 # Number of seconds simulated

sim_ticks 22155750 # Number of ticks simulated
system.cpu_cluster.cpus.committedInsts 5028 # Mumber of instructions committed
system.cpu_cluster.cpus.committedOps 5834 # Number of ops (including micro ops) committed
system.cpu_cluster.cpus.cpi 17.625895 # CPI: cycles per instruction
system.cpu_cluster.cpus.discardedOps 1297 # Number of ops (including micro ops) which were
system.cpu_cluster.cpus.idleCycles 78327 # Total number of cycles that the object has spe
system.cpu_cluster.cpus.ipc 8.856735 # IPC: instructions per cycle

Source: the authors
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3 EVALUATION METHODOLOGY

On this section we present the methodology used for this work. Section 3.1
presents the development of the Neoverse N1 gem5 model and Section 3.2 presents an

analysis at system cache level to calibrate our gem5 model.

3.1 Neoverse N1 gem5 model

At the beginning of this work, we have started performing several simulations
using different available CPU models and architectures to get familiar with the simulator.
Then, we developed a gem5 CPU model for the Neoverse N1 architecture. The model is
based on an ARM Cortex-A72 CPU (ARM, 2014) gem5 model provided by Atos R&D.

This CPU model implements also an out-of-order architecture.

Figure 3.1: Neoverse N1 gem5 model Python Class.
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Source: the authors

To have all the out-of-order functionalities, we derived our Neoverse N1 model
from the O3CPU model Python class. Figure3.1 shows the Python class that describes

some main parameters from the core of the architecture. In the same file, we have also
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instantiated the functional units, the branch predictor, ALU instructions, floating point
instructions and also the cache memories (i.e. instruction and data L1, TLB’s, L2 and
L4).

Figure 3.2 shows the block diagram generated by gem5 for our Neoverse N1
model. We can observe that it has one N1 CPU in the CPU cluster, with its instruction and
data L1 caches and TLB’s, L2 cache, also all the buses that interconnects each module.
Out of the CPU cluster, we have the main memory (represented as SimpleMemory) and
the L4 cache. We have instantiated only a single N1 CPU core to be easier to study and
validate our methodology. This choice in using only a single CPU core affects the cache
L3 usage, due the fact that this cache level is used for communication between the two
CPUs sharing a cluster. Therefore, we do not instantiate the L3 cache in our simplified

gemS model.

Figure 3.2: Block diagram of the Neoverse N1 model provided by gemS5.

‘cpu_cluster
: CpuCluster

cpus
:ARM_Neoverse_N1

Source: the authors

In this work, we focus on calibrating the caches of the model to be as close as
possible with the real SoC hardware (i.e, the N1SDP board). At the beginning, we have
used a generic gemS cache module (with default values for size, associativity and data
latency) to instantiate the caches of the architecture and test the functionality of the model.
Then, we used the Neoverse N1 (ARM, 2019a) and N1SDP (ARM, 2019b) technical
documentations as the main sources of information to model the architecture. This type of
documentation provides general information about the architecture that are helpful for this
process. We can find details about each cache level (e.g, caches sizes, associativity, etc.)
and the CPU itself (e.g, pipeline functionality, clock frequency, etc.) that are important for
our model. However, the translation from documentation to simulator parameters is not

simple and some key parameters are not public (e.g, the cache access times, the number
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Table 3.1: List of default and calibrated parameters for the Neoverse N1 model extracted
from technical documentation.

gemS Cache module gemS cache Parameter Default Calibrated

size 32KB 64 KB
L1 ICache replacement_pohcy LRURP LRURP
writeback_clean false true
associativy 2 4
size 32KB 64 KB
L1 DCache replacement_pohcy LRURP LRURP
writeback_clean false true
associativy 2 4
L2_Cache size - 1MB 1MB
associativy 16 8
L4_Cache size N/A 8MB

Source: the authors

of parallel access that can be processed by a cache, or the memory controller buffering

latency).

3.2 Cache level analysis

Initially, the caches of the model were instantiated with default parameters pro-
vided by the generic gem5 cache module. Then, we started calibrating the parameters
that are easily provided by the documentation. Table 3.1 shows the default and calibrated
parameters that were found in the technical documentation. In this part of the work, we
calibrated the caches size and associativy. Note that the L4 cache is not instantiated by
default on the gem5 caches modules, so we instantiated it with the correct values. We
simulate, then, the model with the default and calibrate parameters and we conclude that
the default model provides results that are not close to our architecture. However, even
if the calibrated model provides good results, we decide to extract the caches parameters
that are not listed in the architecture technical documentation.

We target, then, to find the correct data latency on each cache level (i.e, the re-
quired number of cycles to access each cache level). To identify the simulator parameters
related with the memory hierarchy, we study the path that a memory request follows dur-
ing simulation.

When a memory instruction is executed by the Memory Unit (MU), the instruction

is issued to a Load/Store Queue (LSQ) and a memory request is generated. The instruction
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stays in the LSQ until the memory request is fully executed. When a memory request is
issued, the data goes through the different levels of the memory hierarchy depending on
where the data sits. If a request misses all cache levels, it goes to the main memory

(represented as SimpleMemory in our model).

Figure 3.3: The delay of a memory request increases as it deepens in the hierarchy. Access
time begins in start until end.

+D,

Source: the authors

The memory request departs from the MU of the CPU core and accumulates de-
lay as it moves deeper in the memory hierarchy. If we sum all of these individual delays
we find the request access time, as illustrated in Figure 3.3. We selected, then, three
cache parameters that are related with cache latency: data_latency, tag_latency and re-
sponse_latency. All of them control the required number of cycles to access and move
data at each cache level.

To discover these parameters, we execute microbenchmarks on the real hardware
(i.e, the N1SDP board). A microbenchmark is a small program that was developed to
extract these missing cache parameters. We exploit the memory dependencies of the

architecture to perform our microbenchmark with the following structure:

1. Data Pinning: The microbenchmark initializes data in a targeted level of the mem-
ory hierarchy and uses a fixed access pattern to force all memory requests to follow
a predetermined path of the delay model. The data can be pinned in different cache
levels and in the main memory. We set the location of the data by controlling the
size of an array we repeatedly access. For example, if we target the L2 data latency,
we should set an array size that fits in L2 and, consequently, the cache L1 miss rate
should be close to 100%.

2. Memory request dependency: The program avoids or trigger conflicts that may oc-
cur when the program is performing multiples access on the memory hierarchy.
These conflicts can modify the path of the delay model (e.g, the L2 cache bank is

busy with a previous request).
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3. Access time measurement: The program iterates through the memory access pattern
many times in a loop, such that the overall execution time interval is large enough
to average out transient effects. Then, the body loop is unrolled multiple times to

minimize the impact of the iterator count and the conditional check instructions.

Figure 3.4: Code example for microbenchmark.

array[N];
* ptr_1 = NULL;

(time(@));

n = (1<< MIN);
incre = n >»> GRANU;
caMAX) ) {

g(array, n);
array[e];

n;

(check == ERR CHASING)
{ERR_CHASTING MSG}

1 ¢ Max/2; i++){
*preal;
cpu_time used = ((double)(end- start))/ CLOCKS PER SEC;

( ptr_1 LL M
printf( Error *end--\n");

oat) (cpu_time_used®

n += incre;
( n == (incre

Source: the authors

Figure 3.4 illustrates a quick code overview of the microbenchmark adapted from
(HUPPERT et al., 2021). The program generates MAX sequential load requests to a con-
tiguous region of memory named array of size N. In line 16, we initialize each element in

array allocated to a first word of a cache line. The initialized elements include the address
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of another randomly chosen element also allocated to a first word of a cache line. The
program closes a circular chain of references not repeating any address. Therefore, we
can generate an unlimited sequence of random read requests to different cache lines by
iterating over array with a pointer (i.e., pointer chasing) as shown in line 29. Accordingly,
we select MAX to be several orders of magnitude larger than N. We can, then, control the
size of array and the target cache area with N.

To avoid cache line locality, the program only accesses a single word of each cache
line in array. We randomize the sequence to avoid triggering data prefetching that may
interfere on the computation of the cache delay access. Also, the microbenchmark should
traverse the array many times for cold start misses and work correctly.

For example, if the array is smaller than L1 data cache (L1D), then the array re-
sides in the L1D size area, thus the whole execution and every load request takes the
access time of L1D. Then, we can collect the L1D access time by dividing the time spent
in the region of interest by MAX (i.e., the number of load requests). Alternatively, if
array is much larger than L1D but still smaller than L2, then the accesses to array always
miss L1D and hit L2, which allows us to measure L2 access time. The same process
can be repeated with an even larger N to measure higher levels of the memory hierar-
chy. We present, then, in the next chapter, the performed simulations using our proposed

microbenchmark and the achieved results.
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4 RESULTS

This chapter presents the simulations and data extracted from the real hardware

and the gem5 model using our proposed methodology.

4.1 Architecture simulations and Model Calibration

4.1.1 Neoverse N1 gem5 Model Checking

Figure 4.1: Simple benchmark for first validation of the Neoverse N1 gem5 model.

Calling add vector function ‘n");
or();

Source: the authors

One of the first step after developing CPU models on gemS5 is to be sure that
what we want to simulate matches with our described model. We perform, then, a simple
simulation using a simple benchmark, presented in Figure 4.1, that executes a vector
aggregation on a global variable in our Neoverse N1 gem5 model. At this point of the
simulation process, we can generate the block diagram described on Figure 3.2 to check
if every component on the model is well instantiated and if the architecture hierarchy
is respected. We check also the output files provided by the simulator (i.e, stats.txt and
config.ini files) to confirm that the parameters of each component (e.g, cache and memory
sizes) and all simulation settings (e.g, CPU frequency, main memory type) match with the
ones that we instantiate in our gem5 model and also in the Python configuration file. This
procedure helps the debugging process due the fact that this simple benchmark has a short
simulation time, so it is easy to check and validate each modification that we perform on

our Neoverse N1 gem5 model.
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4.1.2 Model calibration using microbenchmark

After validating and debugging our gem5 model, we pass to the calibration step.
At this point, we have to extract data from the real hardware to find the missing cache
latency parameters. We execute, then, the microbenchmark described on Section 3.2
in the N1SPD platform. We target to find the access times for caches L1, L2 and L4,
so we need to choose an array size N that reaches all the cache levels. Note that our
implementation does not instantiate L3 due the fact that we are simulating a single N1
core and the L.3 cache works only with dual-core clusters.

Originally, the microbenchmark provides the access time in nanoseconds. To con-
vert it to clock cycles we use the real hardware clock period. The N1SDP operates at a
frequency of 2.6GHz, so we extract its clock period (i.e, ~ 0.385 ns) from it and then
we calculate the average access time in CPU clock cycles by dividing the access time in

nanoseconds by the clock period.

Figure 4.2: Microbenchmark running on the real hardware and on the gemS5 simulator
with default and calibrated configurations, respectively.

N1SPD Default model Calibrated model
109 109
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1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Array Size (KB) Array Size (KB) Array Size (KB)

Source: the authors

The graph on the left of Figure 4.2 shows the average access time, in cycles,
measured with the microbenchmark on N1SDP for different sizes of array. We note that,
at the cache L1 level (i.e, the range of 2KB to 64KB) the real hardware needs 4 cycles to
access data at L1 level and, for the L2 cache (i.e, the range of 64KB to 1MB), the N1SDP
takes 14 cycles to access data. Then, for L4 (i.e, the range of 1MB to 4MB) the board
takes 109 cycles.

Once we have the average number of cycles of the real hardware, we can pass
to the calibration phase. At this point, we have to find and tune the cache parameters
that are related with data latency in our gem5 model: data_latency, tag_latency and re-

sponse_latency. Data_latency controls the cache data access latency, tag_latency controls
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the tag lookup latency and response_latency controls the latency for the return path when

a cache miss occurs. All three parameters are instantiated in number of clock cycles.

Figure 4.3: L1 data cache instantiation code with modified latency parameters.

tag ncy
data_latency
response_latency

write_ buffers

writeback clean

Source: the authors

During the process of calibration, we have to change these values to reach as close
as possible to the real hardware. However, we observed that if we set the parameters with
the same values that we found running the program on the N1SDP, the model will not
correspond with the real architecture. We explain this behavior by the fact that the gem5
simulator adds simulation delay cycles at each cache level affecting the overall access
time. Therefore, we calibrate the model by analyzing at first the average access time in

nanoseconds on the simulation and correlating it with the values extracted in N1SPD.

Figure 4.4: Proposed simulation script for cache modeling.

WORKING_DIR-"/auto/pmartins
BENCH_DIR="/auto/pmartinsba

~=/auto/pmartinsbasso/PIFE/mSout/output_modeling N1/ %

odeling microbenchmark

Source: the authors

Figure 4.4 shows an overview of the simulation script used to perform our simula-
tion with our proposed microbenchmark. Table 4.1.2 lists the default and calibrated cache
latency parameters for our Neoverse N1 gem5 model. The value of each parameter corre-
sponds to the average access time, in cycles, for the each gem5 cache module. Figure 4.3
shows the L1 data cache instantiation in gem5 where we modified the latency parameters.

In this process, we start by calibrating the L1 data cache. In order to facilitate the

calibration and decrease simulation time we adapted the microbenchmark to reach only
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a specific cache size and not a range of sizes. For L1D, we run the program focusing
in the middle of the L1D memory area by setting the program to perform the timing
measure at 64KB. Then, we compare the average delay access time with the real hardware.
By changing the three cache parameters we reach to values that generate timing values
that correspond with the NISDP ones. We repeat, then, the same calibration process by

changing the specific cache size for 256KB and 4MB for caches L2 and L4, respectively.

Table 4.1: List of default and calibrated parameters extracted from microbenchmark.

gemS Cache module gemS cache Parameter Default Calibrated

tag_latency 2 3
L1 _DCache data_latency 2 3
response_latency 2 3
tag_latency 12 5
L2 _Cache data_latency 12 5
response_latency 12 5
tag_latency 30 89
L4_Cache data_latency 30 89
response_latency 30 89

Source: the authors

For reference, the graph on the center Figure 4.2 shows the average access times
of running our microbenchmark on the gem5 model using the default latency parameters.
We observe that the L1 and L4 access times are lower than the ones of the real hardware,
while the opposite is true for the L2 access time. Then, the graph on the right side of
Figure 4.2 shows the average access time measured with our simulation model after mod-
eling all cache levels. We note that the new average access times of the calibrated model
are practically identical to those of the real hardware. We can observe that for both sim-
ulation model (i.e default and calibrated) we have some small oscillations in the average
access time values due the fact that gem5 simulator adds simulation delay cycles as ex-
plained before, but even with this effect, we can demonstrate that by a proper parameter

calibration, a gem5 architecture simulation can become quite accurate.
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5 CONCLUSION

In this work, we propose a method for modeling the ARM Neoverse N1 architec-
ture in gemS simulator. Also, we present a method for instantiating and calibrating the
key timing parameters of the cache hierarchy of the model using microbenchmarks and
correlating with the real ARM N1SPD SoC. Our results show that with our calibrating
proposed method, we can reach average access time closes to the real hardware, without
losing accuracy and with fair simulation time.

In future work, we plan to continue modeling our gem5 model by increasing the
number of CPUs and modeling the L3 cache and the main memory. The main memory
can be better explored by instantiating a dual channel DDR4 instead of a SimpleMem-
ory. Also, we can run benchmark suites on the model to compare the performance (e.g,

execution time, instructions per cycle, etc) of our calibrated model and the real hardware.
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