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Abstract—The usage of medical images is part of the clinical
daily in several healthcare centers around the world. Partic-
ularly, Computer Tomography (CT) images are an important
key in the early detection of suspicious lung lesions. The CT
image exploration allows the detection of lung lesions before
any invasive procedure (e.g. bronchoscopy, biopsy). The effec-
tive localization of lesions is performed using different image
processing and computer vision techniques. Lately, the usage
of deep learning models into medical imaging from detection
to prediction shown that is a powerful tool for Computer-
aided software. In this paper, we present an approach to
localize pulmonary lung lesion using fuzzy deep learning. Our
approach uses a simple convolutional neural network based
using the LIDC-IDRI dataset. Each image is divided into
patches associated a probability vector (fuzzy) according their
belonging to anatomical structures on a CT. We showcase our
approach as part of a full CAD system to exploration, planning,
guiding and detection of pulmonary lesions.
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I. INTRODUCTION

According to the statistics of the American Cancer Society
[1], in 2019 in the U.S., there will be an estimated 1.762.450
new cancer cases and 606.880 cancer deaths. Lung and
bronchus cancer for both sexes occupies the second more
frequent with 228.150 new cases, with 62.53% of mortality.
Lung cancer takes more lives annually in the U.S. than the
next three most common cancers combined.

Only 19% of all people diagnosed with lung cancer will
survive 5 years or more, but if it is caught before it spreads,
the chance for 5-year survival improves dramatically. For
instance, the relative survival rate compares people with
the same type and stage of cancer to people in the overall
population. Thus, the localized lung cancer, when there is
no sign that the cancer has spread outside of the lung, has
60% of survival rate.

The early detection of any possible cancer lung lesion
allows the application of a treatment to avoid the lesion
gradual expansion. Lung lesions (commonly named as tu-
mors), vary in size, locations and tissue type. Nowadays,
the detection and diagnostic of lung cancer are based on
CT (Computed Tomography) images which is more effec-
tive than plain chest X-ray [2]. These CT images open a
possibility to use different software to support and enhance
the physicians labour.

Software allows the manipulation of images extracted
from a CT. Images could be presented in 2D, 3D and mixed

ways to visualize them. The axial, sagittal and coronal called
as anatomical planes of the body are a primordial way to
present these data. Then, physicians explore a patient over
the anatomical planes (or using a 3D views) to locate the
possible lung lesions and to extract all key features the most
as they can (e.g. exact location, dimensions, tissue type).

The patient image exploration is a process performed
before a procedure such as a biopsy, and some cases
to detect or classify a lung lesion as benign or malign.
Computer-aided detection (CADe) or computer-aided diag-
nosis (CADx) are systems to assist physicians in the proper
interpretation of patient images. Moreover, CADe allows
computing values as nodules diameter/volume [3], path to
follow from the trachea until a lesion [4], degree of the
lesion [5], and more. The amount of data, the precision of
a system and the effectiveness in operations rooms are part
of an active field of research.

As part of the research in this field, the neural networks
arise as a good solution to detection, localization and
segmentation of lung lesion structures. Thus, considering
that the high variability of lesions shape, size and texture,
the classic low-level descriptors fail to capture discriminate
features, we propose the usage of a convolutional neural
network (CNN) for detection of nodules. In this paper, we
present a simple architecture based on convolutional filters
for localization of lung lesions in CTdata using belonging
probability vectors (fuzzy approach).

This paper is organized as follows: Section II presents a
few related works for this research. The full explanation of
our approach, including the dataset used and the proposed
architecture is presented in Section III. In the Section III
details of the experimentation performed are presented.
Finally, Section V shows the conclusions and future work
on this investigation.

II. RELATED WORK

Part of the previous planning consist in the localization
of possible pulmonary lesions, called as lung nodules, by
physicians. Then, the early detection of these nodules from
CT scan is key to improving lung cancer treatment but
poses a significant challenge for radiologists due to the
high throughput required of them. The detection is also
challenging due to the various shape, size, density, and
location of the nodules.Studies have adopted machine learn-
ing approaches such as segmentation, clustering, Artificial



Figure 1. Representation of input for the CNN. Image Ii is aligned to size frontier to IROI . Masks of lungs - ML, bronchi - Mb, vessels - Mv and
bronchi - Mb are used to compute belonging probability of each anatomical structure on each slice of a CT.

Neural Network and Supporter Vector Machines (SVM) to
tackle this problem [6], [7], [8], [9], [10]. As shown in
[11], these systems typically use a candidate selection step,
which identifies all objects that resemble nodules, followed
by a machine learning classifier which separates true nodules
from false positives.

In [11] argues that these VBN systems typically use a
candidate selection step, which identifies all objects that
resemble nodules, followed by a machine learning classifier
which separates true nodules from false positives. Indeed,
several works are focused on deep convolutional neural
network (DCNN)-based approaches for this task [12], [13],
[14] also, working together with already existing computer-
aided diagnosis systems [15].

As stated in [16], the importance of medical imaging anal-
ysis is on the extraction of effective and efficient information
to improve the clinical diagnosis. Also, the authors presented
a review of the current state-of-the-art in medical image
analysis using deep convolutional networks. For instance,
some work uses the fuzzy approach for inferences. A re-
markable work is presented by Bonanno et al. [17] where
they show an approach for rule based methodology into
neural networks using fuzzy inference systems. Furthermore,
Hosseini and Maryam [18] present a notable proposal to
integrate the best features of fuzzy systems and neural
networks using an adaptive neuro-fuzzy inference system.
Those work represents a clear tendency on mixing different
points of view to improve the clinical diagnosis.

III. CONVOLUTIONAL NEURAL NETWORK

This section covers the explanation of our approach de-
scribing the input dataset used and the CNN approach for
training and evaluation.

A. Dataset

As part of a deep learning approach, the network requires
data to train the model. The selected data were obtained
from the Lung Image Database Consortium image collection

(LIDC-IDRI) [19] which consists of diagnostic and lung
cancer screening thoracic computed tomography (CT) scans
with marked-up annotated lesions. This collection, initiated
by the National Cancer Institute (NCI), contains 1018 CT
cases (124 GB) with their associated XML files with results
of a two-phase image annotation process performed by four
experienced thoracic radiologists.

However, for this research, we transform the DICOM data
to NIfTI file format to save content data (i.e. Hounsfield
values). In our approach, the network training for the local-
ization we only consider the data marked, in LIDC-IDRI, as
nodule > or =3 mm and nodule <3 mm.

B. CNN Architecture

The convolutional neural network (CNN) is a type of neu-
ral network mostly used to analyze images. Basically, CNN
is a fully connected network (i.e. multilayer perceptron),
where each neuron in one layer is connected to neurons
in the next layer. This type of network is inspired into the
biological process according with the connectivity pattern
between neurons in the visual cortex.

Moreover, the convolutional operation involves the com-
bination of input data (feature map) with a convolution
kernel (filter) to compose a transformed feature map. The
filters are modified based on learned parameters to obtain the
most useful information for a specific task. Common tasks
for CNNs include: image recognition, image classification,
video labelling, text analysis, speech recognition, natural
language processing, text classification, virtual assistants,
self-driving cars and more.

In this paper, the proposed input CNN consists of a set
of 2D images corresponding to non-overlapping patches of
each slice of a patient. The squared patches have a dimension
of size×size over the CT data. An image patch joining with
a probability vector is the ground truth of the network. The
probability vector is composed for the pixel’s proportion to
belong to an anatomical structure. The anatomical structures



Figure 2. Proposed convolutional network architecture for lung lesion detection.

considered are: background, lungs, bronchi, vessels and
lesions.

The defined anatomical structures are separated from
other employing volumetric mask. The volumetric masks
are created using our own segmentation algorithms. The
background is defined as each value different to lungs,
bronchi, vessels and lesions, therefore there is no mask for
the background. The mask for lungs ML, the mask for
bronchi Mb, the mask for vessels Mv , and the mask for
lesion Ml together composing a full mask to label pixel.
Those labelled pixels allowed counting them to compute the
probability belonging vector on each anatomical structures.

The probability vector specifies a five-vector for each
anatomical structure. To compute it, an input image I is
divided into equally sized patches of size size × size, and
for a patch each pixel is count according which anatomical
structure it belongs. Thus, for counting the division (i.e.
patches) are achieved over masks images. For instance,
Figure 1 shows an image Ii representing the i-th slice of a
patient CT. The masks ML, Mb, Mv and Ml are computed
for Ii.

It is importance to notice that no scaling was applied to
the CT data. Then, not all time the width and height of
image are aligned with size. For the aligning, we created a
ROI (IROI shown in Figure 1) to the original CT, and patch
computation is performed over the ROI data.

Figure 3 shows a colored representation of IROI

divided into equally sized patches. For instance, the
red square represents the belonging probability vector
[0.03, 0.61, 0.31, 0.05, 0.0] and green square represents the
vector [0.0, 0.59, 0.0, 0.0, 0.41], values for [background,
lungs, bronchi, vessels, lesion] respectively.

Different CNN architectures and parameters were tested.
We selected a simple and effective configuration taking
patches of 64× 64 pixels from CT data. The architecture is
shown in Figure 2. The convolutional-pooling-normalization
layers are composed three times executed in that order,
before reducing into 1024 neurons to create an output dense

Figure 3. Equally sized patched for colored (Left) CT slice and (Right)
masks with 2 marked regions in red and green.

layer with five output.
The five-output dense layer uses the softmax activation

function. We define this architecture to allow change pa-
rameters on each layer to suit the appropriate configuration
to locate lesions. Also, using the same patch-based dataset,
we are focused on other tasks as the classification between
medium/small nodules or more than five classes (considering
more anatomical structures).

For training and evaluation, the data division was 70/30
from the total dataset in Nifti format. Notice that data should
be normalized before enter into proposed CNN architecture.

IV. EXPERIMENTATION

Aforementioned, the CNN was trained using the data
from LIDC-IDRI extracted from [20]. However, our network
will be used on patient’s data from the Bellvitge Hospital
[21] where there are different acquisition devices, image
configurations and parameters. With the current architecture
using the parameters presented in Figure 2, we obtained an
accuracy of 81% on average for training/evaluation.

Then, we evaluated a total of 796 patients, where 557
were used for training and 239 for evaluation. Each patient
contains between 2000 to 6500 patches; the lungs occupies
the 32-38% of the total, the bronchi occupies the 0.8-3.2%,
the vessels the 0.08-0.16% and lesions only the 0.02-0.07%.
Also, considering all slices for a patient, the lesions are in



the 2-5% of the total number of slices (for a total number of
slices between 100-150 approximately). To balance the input
about the lesions to detect, we created sliding windows over
the lesions to increase those values.

For obtaining statistical values, we computed the TP (true
positive), FP (false positive), TN (true negative) and FN
(false negative). The evaluation (i.e. network prediction)
obtains a five-vector, where we focus on the last position
(lesion value). In this way:

• TP is increased when both lesion prediction and ground
truth are positive (presence of a lesion)

• FP is increased when lesion prediction is positive and
ground truth is zero (absence of a lesion)

• TN is increased when both lesion prediction and ground
truth are zero (absence of a lesion)

• FN is increased when lesion prediction is zero and
ground truth is positive (presence of a lesion)

The probabilities allow us to combine with other tech-
niques to determine the best-suited place in a CT where
anatomical structures are present.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a network architecture for
localization of peripheral pulmonary lesions using CT im-
ages. The network output contains fuzzy values according
to a belonging probabilities value of anatomical structures
segmented into CT data. This detection is part of BronchoX
[22] to offer an interactive easy-to-use system to improve
the diagnosis and exploration of peripheral patient nodules.
This could be used in the bronchoscopy planning stage and
during an intervention into the operating room.

The CNN architecture offers a flexible way to change
the parameters to explore the layers for obtaining the best
combination to locate different structures. When the number
of filters are increasing as much as deep layer, the obtained
features allow discriminated structures. The five-output be-
longing probability vector is a useful tool to analyze the
effectiveness of the network.

The low proportion of lesion pixels present on each CT
represent an unbalancing situation between lesions vs. other
structures. To avoid this, adding the lesions with different
patch sizes or using sliding-window might be a solution.
However, this approach could be unfair for a general classi-
fication when the same network is used to different structures
(e.g. vessels). For the future, we propose different loss
functions in terms of probability as L2-norm or categorical
cross-entropy.
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